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Abstract

Measure transport underpins several recent
algorithms for posterior approximation in the
Bayesian context, wherein a transport map is
sought to minimise the Kullback–Leibler di-
vergence (KLD) from the posterior to the ap-
proximation. The KLD is a strong mode of
convergence, requiring absolute continuity of
measures and placing restrictions on which
transport maps can be permitted. Here we
propose to minimise a kernel Stein discrep-
ancy (KSD) instead, requiring only that the
set of transport maps is dense in an L2 sense
and demonstrating how this condition can
be validated. The consistency of the asso-
ciated posterior approximation is established
and empirical results suggest that KSD is a
competitive and more flexible alternative to
KLD for measure transport.

1 Introduction

A popular and constructive approach to approxima-
tion of complicated distributions is to learn a transfor-
mation from a simpler reference distribution. Within
machine learning, neural networks are often used to
provide flexible families of transformations which can
be optimised by stochastic gradient descent on a suit-
able objective, with variational autoencoders (Kingma
and Welling, 2013; Rezende et al., 2014), generative
adversarial networks (Goodfellow et al., 2014), gener-
ative moment matching networks (Li et al., 2015; Dz-
iugaite et al., 2015) and normalizing flows (Rezende
and Mohamed, 2015; Kingma et al., 2016; Dinh et al.,
2016; Papamakarios et al., 2019; Kobyzev et al., 2020)
all fitting in this framework. The principal application
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for such generative models is distribution estimation;
samples are provided from the target distribution and
the task is to fit a distribution to these samples. Paral-
lel developments within applied mathematics view the
transformation as a transport map performing measure
transport (Marzouk et al., 2016; Parno and Marzouk,
2018). The principal application for measure transport
is posterior approximation; an un-normalised density
function defines the complicated distribution and the
task is to approximate it. In this paper we study pos-
terior approximation, noting that the flexible transfor-
mations developed in the machine learning literature
can also be applied to this task.

Measure transport provides a powerful computational
tool for Bayesian inference in settings that can be chal-
lenging for standard approaches, such as Markov chain
Monte Carlo (MCMC) or mean field variational infer-
ence. For example, even sophisticated MCMC meth-
ods can fail when a posterior is concentrated around
a sub-manifold of the parameter space (Livingstone
and Zanella, 2019; Au et al., 2020), while it can be
relatively straight-forward to define a transport map
whose image is the sub-manifold (Parno and Marzouk,
2018; Brehmer and Cranmer, 2020). Likewise, mean
field variational inference methods can perform poorly
in this context, since independence assumptions can
be strongly violated (Blei et al., 2017).

Let Y be a measurable space equipped with a proba-
bility measure P , representing the posterior to be ap-
proximated. The task that we consider in this paper is
to elicit a second measurable space X , equipped with
a probability measure Q, and a measurable function
T : X → Y, such that the push-forward T#Q (i.e. the
measure produced by applying T to samples from Q)
approximates P , in a sense to be specified. It is fur-
ther desired that Q should be a “simple” distribution
that is easily sampled. In contrast to the literature on
normalising flows, it is not stipulated that T should
be a bijection, since we wish to allow for situations
where X and Y have different cardinalities or where P
is supported on a sub-manifold.

A natural starting point is a notion of discrepancy
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D(P1, P2) between two probability measures, P1 and
P2, on Y, with the property that D(P1, P2) = 0 if and
only if P1 and P2 are equal. Then one selects a mea-
surable space X and associated probability measure Q
and seeks a solution to

arg min
T∈T

D(P, T#Q), (1)

over a suitable set T of measurable functions from X
to Y. A popular choice of D is the Kullback-Leibler
divergence (KLD), giving rise to variational inference
(Blei et al., 2017; Agrawal et al., 2020), but other dis-
crepancies can be considered (Ranganath et al., 2016).
The problem in (1) can be augmented to include also
the selection of X and Q, if desired.

The solution of (1) provides an approximation to P
whose quality will depend on the set T and the dis-
crepancy D. This motivates us to consider the choice
of T and D, taking into account considerations that
go beyond computational tractability. For example,
a desirable property would be that, for a sequence of
probability measures (Pn)n∈N, if D(P, Pn) → 0 then
Pn → P in some suitable sense. For D = DKL, the
KLD1, it holds that DKL(P, Pn) → 0 implies Pn con-
verges to P in total variation, from Pinsker’s inequality
(Tsybakov, 2009). This is a strong mode of conver-
gence, requiring absolute continuity of measures that
may be difficult to ensure when the posterior is con-
centrated near to a sub-manifold. Accordingly, the use
of KLD for measure transport places strong and po-
tentially impractical restrictions on which maps T are
permitted (e.g. Marzouk et al., 2016; Parno and Mar-
zouk, 2018, required that T is a diffeomorphism with
det∇T > 0 on X ). This motivates us in this paper to
consider the use of an alternative discrepancy D, cor-
responding to a weaker mode of convergence, for pos-
terior approximation using measure transport. The
advantage of discrepancy measures inducing weaker
modes of convergence has also motivated recent devel-
opments in generative adversarial networks (Arjovsky
et al., 2017).

Our contributions are as follows:

• We propose kernel Stein discrepancy (KSD) as an
alternative to KLD for posterior approximation
using measure transport, showing that KSD ren-
ders (1) tractable for standard stochastic optimi-
sation methods (Proposition 1).

• Using properties of KSD we are able to establish
consistency under explicit and verifiable assump-
tions on P , Q and T (Theorem 2).

1We use the notation DKL(P,Q) := KL(Q||P ).

• Our theoretical assumptions are weak – we do not
even require T to be a bijection – and are verified
for a particular class of neural network (Proposi-
tion 3). In particular, we do not require Q and
P to be defined on the same space, allowing quite
flexible mappings T to be constructed.

• Empirical results support KSD as a competitive
alternative to KLD for measure transport.

Earlier work on this topic appears limited to Hu et al.
(2018), who trained a neural network with KSD. Here
we consider general transport maps and we establish
consistency of the method, which these earlier authors
did not. We note also that gradient flows provide an
alternative (implicit) approach to measure transport
(Liu and Wang, 2016).

Outline: The remainder of the paper is structure as
follows: Section 2 introduces measure transport using
KSD, Section 3 contains theoretical analysis for this
new method, Section 4 presents a detailed empirical
assessment and Section 5 contains a discussion of our
main findings.

2 Methods

This section introduces measure transport using KSD.
In Section 2.1 and Section 2.2 we recall mathematical
definitions from measure transport and Hilbert spaces,
respectively; in Section 2.3 we recall the definition and
properties of KSD; in Section 2.4 we formally define
our proposed method, and in Section 2.5 we present
some parametric families T that can be employed.

Notation: The set of probability measures on a
measurable space X is denoted P(X ) and a point mass
at x ∈ X is denoted δ(x) ∈ P(X ). For P ∈ P(X ) let
Lq(P ) := {f : X → R :

∫
fqdP <∞}. For P ∈ P(Rd)

and (Pn)n∈N ⊂ P(Rd), let Pn ⇒ P denote weak con-
vergence of the sequence of measures (Pn)n∈N to P .
The Euclidean norm on Rn is denoted ‖ · ‖. Partial
derivatives are denoted ∂x. For a function f : Rn → R
the gradient is defined as [∇f ]i = ∂xif . For a function
f = (f1, . . . , fm) : Rn → Rm, the divergence is defined
as ∇ · f =

∑n
i=1 ∂xifi.

Our main results in this paper concern the Euclidean
space Rd, but in some parts of the paper, such as Sec-
tion 2.1, it is possible to state definitions at a greater
level of generality at no additional effort - in such sit-
uations we do so.
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2.1 Measure Transport

A Borel space X is a topological space equipped with
its Borel σ-algebra, denoted ΣX . Throughout this
paper we restrict attention to Borel spaces X and
Y. Let Q ∈ P(X ) and P ∈ P(Y). In the par-
lance of measure transport, Q is the reference and P
the target. Let T : X → Y be a measurable func-
tion and define the pushforward of Q through T as
the probability measure T#Q ∈ P(Y) that assigns
mass (T#Q)(A) = Q(T−1(A)) to each A ∈ ΣY . Here
T−1(A) = {x ∈ X : T (x) ∈ A} denotes the pre-image
of A under T . Such a function T is called a transport
map from Q to P if T#Q = P .

Faced with a complicated distribution P , if one can
express P using a transport map T and a distribu-
tion Q that can be sampled, then samples from P
can be generated by applying T to samples from Q.
This idea underpins elementary methods for numer-
ical simulation of random variables (Devroye, 2013).
However, in posterior approximation it will not typ-
ically be straightforward to identify a transport map
and at best one can seek an approximate transport
map, for which T#Q approximates P in some sense
to be specified. In this paper we seek approximations
in the sense of KSD, which is formally introduced in
Section 2.3 and requires concepts in Section 2.2, next.

2.2 Hilbert Spaces

A Hilbert space H is a complete inner product space;
in this paper we use subscripts, such as 〈·, ·〉H, to de-
note the associated inner product. Given two Hilbert
spaces G, H, the Cartesian product G × H is again
a Hilbert space equipped with the inner product
〈(g1, h1), (g2, h2)〉G×H := 〈g1, g2〉G+〈h1, h2〉H. In what
follows we let B(H) := {h ∈ H : 〈h, h〉H ≤ 1} denote
the unit ball in a Hilbert space H.

From the Moore–Aronszajn theorem (Aronszajn,
1950), any symmetric positive definite function k :
Y×Y → R defines a unique reproducing kernel Hilbert
space of real-valued functions on Y, denoted Hk and
with inner-product denoted 〈·, ·〉Hk . Indeed, Hk is
a Hilbert space characterised by the properties (i)
k(·, y) ∈ Hk for all y ∈ Y, (ii) 〈h, k(·, y)〉Hk = h(y)
for all h ∈ Hk, y ∈ Y. Reproducing kernels are central
to KSD, as described next.

2.3 Kernel Stein Discrepancy

Stein discrepancies were introduced in Gorham and
Mackey (2015) to provide a notion of discrepancy that
is computable in the Bayesian statistical context. In
this paper we focus on so-called kernel Stein discrep-
ancy (KSD; Liu et al., 2016; Chwialkowski et al., 2016;

Gorham and Mackey, 2017) since this has lower com-
putational overhead compared to the original proposal
of Gorham and Mackey (2015).

The construction of KSD relies on Stein’s method
(Stein, 1972) where, for a possibly complicated prob-
ability measure P ∈ P(Y) of interest, one identi-
fies a Stein set F and a Stein operator AP , such
that AP acts on elements f ∈ F to return functions
AP f : Y → R with the property that

P ′ = P iff EY∼P ′ [(AP f)(Y )] = 0 ∀f ∈ F (2)

for all P ′ ∈ P(Y). A Stein discrepancy uses the extent
to which (2) is violated to quantify the discrepancy
between P ′ and P :

DS(P, P ′) := sup
f∈F
|EY∼P ′ [(AP f)(Y )]|

Note that DS is not symmetric in its arguments. For
Y = Rd and suitably regular P , which admits a pos-
itive and differentiable density function p, Liu et al.
(2016); Chwialkowski et al. (2016) showed that one
may take F to be a set of smooth vector fields f : Rd →
Rd and AP to be a carefully chosen differential oper-
ator on Rd. More precisely, and letting sp := ∇ log p,
we have Theorem 1 below, which is due to Gorham
and Mackey (2017, Theorem 7):

Definition 1 (Eberle (2015)). A probability mea-
sure P ∈ P(Rd) is called distantly dissipative if
lim infr→∞ κ(r) > 0, where

κ(r) := −r−2 inf‖x−y‖=r〈sp(x)− sp(y), x− y〉.

Theorem 1. Suppose that P ∈ P(Rd) is distantly dis-
sipative. For some c > 0, ` > 0 and β ∈ (−1, 0), let

F := B
(∏d

i=1Hk
)
, k(x, y) := (c2 + ‖x−y` ‖

2)β (3)

AP f := f · ∇ log p+∇ · f. (4)

Then (2) holds. Moreover, if DS(P, Pn) → 0, then
Pn ⇒ P .

The kernel k appearing in (3) is called the inverse
multi-quadric kernel. It is known that the elements
of Hk are smooth functions, which justifies the appli-
cation of the differential operator. The last part of
Theorem 1 clarifies why KSD is useful; convergence in
KSD controls the standard notion of weak convergence
of measures to P .

KSD, in contrast to KLD, is well-defined when the
approximating measure P ′ and the target P differ in
their support. Moreover, in some situations KSD can
be exactly computed: from Liu et al. (2016, Theorem
3.6) or equivalently Chwialkowski et al. (2016, Theo-
rem 2.1),

DS(P, P ′) =
√
EY,Y ′∼P ′ [up(Y, Y ′)] (5)
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up(y, y
′) := sp(y)>k(y, y′)sp(y

′) + sp(y)>∇y′k(y, y′)

+∇yk(y, y′)>sp(y
′) +∇y · ∇y′k(y, y′). (6)

It follows that KSD can be exactly computed whenever
P ′ has a finite support and sp can be evaluated on this
support:

DS

(
P, 1

n

∑n
i=1 δ(yi)

)
=
√

1
n2

∑n
i,j=1 up(yi, yj). (7)

Computation of (7) can proceed with p available up to
an unknown normalisation constant, facilitating appli-
cation in the Bayesian context. Now we are in a posi-
tion to present our proposed method.

2.4 Measure Transport with KSD

Our proposed method for posterior approximation is
simply stated at a high level; we attempt to solve (1)
with D = DS and over a set T of candidate functions
T θ : X → Y indexed by a finite-dimensional parameter
θ ∈ Θ. That is, we aim to solve

arg min
θ∈Θ

DS(P, T θ#Q). (8)

Discussion of the choice of T is deferred until Sec-
tion 2.5. Compared to previous approaches to measure
transport using KLD (Rezende and Mohamed, 2015;
Kingma et al., 2016; Marzouk et al., 2016; Parno and
Marzouk, 2018), KSD is arguably more computation-
ally and theoretically tractable; the computational as-
pects will now be described.

The solution of (8) is equivalent to minimisation of
the function F (θ) := DS(P, T θ#Q)2 over θ ∈ Θ. In or-
der to employ state-of-the-art algorithms for stochastic
optimisation, an unbiased estimator for the gradient
∇θF (θ) is required. A naive starting point would be
to differentiate the expression for the KSD of an empir-
ical measure in (7), however the resulting V-statistic
is biased. Under weak conditions, we establish instead
the following unbiased estimator (a U-statistic) for the
gradient:

Proposition 1. Let Θ ⊆ Rp be an open set. Assume
that ∀θ ∈ Θ

(A1) (x, x′) 7→ up(T
θ(x), T θ(x′)) is measurable;

(A2) EX,X′∼Q
[
|up(T θ(X), T θ(X ′))|

]
<∞;

(A3) EX,X′∼Q
[
‖∇θup(T θ(X), T θ(X ′))‖

]
<∞;

and that ∀x, x′ ∈ X ,

(A4) θ 7→ ∇θup(T θ(x), T θ(x′)) is continuous.

Then ∀θ ∈ Θ

∇θF (θ) = E
[

1
n(n−1)

∑
i 6=j
∇θup(T θ(xi), T θ(xj))

]
,

where the expectation is taken with respect to indepen-
dent samples x1, . . . , xn ∼ Q.

All proofs are contained in Appendix A. The assump-
tions on up amount to assumptions on T , p and k, by
virtue of (6). It is not difficult to find explicit assump-
tions on T , p and k that imply (A1-4), but these may
be stronger than required and we prefer to present the
most general result.

Armed with an unbiased estimator of the gradient,
we can employ a stochastic optimisation approach,
such as stochastic gradient descent (SGD; Robbins and
Monro, 1951) or adaptive moment estimation (Adam;
Kingma and Ba, 2015). See Kushner and Yin (2003);
Ruder (2016). For the results reported in the main
text we used Adam, with θ initialised as described in
Appendix C.1, but other choices were investigated (see
Appendix C.2).

2.5 Parametric Transport Maps

In this section we describe some existing classes of
transport map T : X → Y that are compatible with
KSD measure transport. From Proposition 1 we see
that measure transport using KSD does not impose
strong assumptions on the transport map. Indeed,
compared to KLD (Rezende and Mohamed, 2015;
Kingma et al., 2016; Marzouk et al., 2016; Parno and
Marzouk, 2018) we do not require that T is a dif-
feomorphism (T need not even be continuous, nor a
bijection), making our framework considerably more
general. This additional flexibility may allow measure
to be transported more efficiently, using simpler maps.
That being said, if one wishes to compute the density
of T#Q (in addition to sampling from T#Q), then a dif-
feomorphism, along with the usual change-of-variables
formula, should be used.

Triangular Maps: Rosenblatt (1952) and Knothe
et al. (1957) observed that, for P,Q ∈ P(Rd) admit-
ting densities, a transport map T : Rd → Rd can with-
out loss of generality be sought in the triangular form

T (x) = (T1(x1), T2(x1, x2), . . . , Td(x1, . . . , xd)), (9)

where each Ti : Ri → R and x = (x1, . . . , xd) (Bo-
gachev et al., 2005, Lemma 2.1). The triangular form
was used in Marzouk et al. (2016); Parno and Mar-
zouk (2018), since the Jacobian determinant, that is
required when using KLD (but not KSD), can exploit
the fact that ∇T is triangular to maintain linear com-
plexity in d.
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Maps from Measure Transport: In the context
of a triangular map T = (T1, . . . , Td), Marzouk et al.
(2016) and Parno and Marzouk (2018) considered sev-
eral parametric models for the components Ti, includ-
ing polynomials, radial basis functions and monotone
parameterisations of the form

Ti(x1, . . . , xi) = fi(x1, . . . , xi−1)

+
∫ xi

0
exp(gi(x1, . . . , xi−1, y)) dy,

for functions fi : Ri−1 → R and gi : Ri → R. The
monotone parameterisation ensures that det∇T > 0
on Rd, which facilitates computation of the density of
T#P , as required for KLD2.

Maps from Normalising Flows: The principal
application of normalising flows is density estimation
(Papamakarios et al., 2019; Kobyzev et al., 2020), but
the parametric families of transport map used in this
literature can also be used for posterior approximation
(Rezende and Mohamed, 2015). A normalising flow is
required to be a diffeomorphism T : Rd → Rd with the
property that the density of T#Q can be computed. A
popular choice that exploits the triangular form (9) is
an autoregressive flow Ti(x) = τ(ci(x1, . . . , xi−1), xi),
where τ is a monotonic transformation of xi param-
eterised by ci, e.g. an affine transformation Ti(x) =
αixi+βi where ci outputs αi 6= 0 and βi. For instance,
Kingma et al. (2016) proposed inverse autoregressive
flows (IAF), taking T (x) = µ + exp(σ) � x. Here �
is elementwise multiplication and µ and σ are vectors
output by an autoregressive neural network: one de-
signed so that µi, σi depend on x only through xj for
j < i. In Huang et al. (2018), τ was the output of a
monotonic neural network and the resulting flow was
called a neural autoregressive flow (NAF). Composi-
tions of normalising flows can also be considered, of
the form

T = T (n) ◦ · · · ◦ T (1) (10)

where each T (i) is itself a normalising flow e.g. a
IAF. For instance, Dinh et al. (2014) proposed
using coupling layers of the form T (i)(x) =
(h(x1, . . . , xr), xr+1, . . . , xd), where r < d and h :
Rr → Rr is a bijection. These only update the first r
components of x, so they are typically composed with
permutations.

Regardless of the provenance of a transport map T , all
free parameters of T are collectively denoted θ, and are
to be estimated. The suitability of a parametric set of
candidate maps in combination with KSD is studied
both empirically in Section 4 and theoretically, next.

2For polynomials and radial basis functions, these au-
thors only enforced det∇T > 0 locally, introducing an ad-
ditional approximation error in evaluation of KLD; such
issues do not arise with KSD.

3 Theoretical Assessment

In Section 3.1 we affirm basic conditions on P and
Q for a transport map to exist. In Section 3.2 we
establish sufficient conditions for the consistency of our
method and in Section 3.3 we consider a particular
class of transport maps based on neural networks, to
demonstrate how our conditions on the transport map
can be explicitly validated.

3.1 Existence of an L2 Transport Map

For a complete separable metric space X , recall that
the Wasserstein space of order p ≥ 1 is defined by
taking some x0 ∈ X and

Pp(X ) :=
{
P ∈ P(X ) :

∫
dist(x, x0)p dP (x) <∞

}
,

where the definition is in fact independent of the choice
of x0 ∈ X (Villani, 2009, Definition 6.4). For existence
of a transport map, we make the following assumptions
on P and Q:

Assumption 1 (Assumptions on Q). The reference
measure Q ∈ P(X ), where X is a complete separable
metric space, and Q({x}) = 0 for all x ∈ X .

Assumption 2 (Assumptions on P ). The target mea-
sure P ∈ P2(Rd) has a strictly positive density p on
Rd.

These assumptions guarantee the existence of a trans-
port map with L2 regularity, as shown in the following
result:

Proposition 2. If Assumptions 1 and 2 hold, then
there exists a transport map T ∈

∏d
i=1 L

2(Q) such that
T#Q = P .

Of course, such a transport map will not be unique in
general.

3.2 Consistent Posterior Approximation

The setting for our theoretical analysis considers a se-
quence (Tn)n∈N of parametric classes of transport map,
where intuitively Tn provides a more flexible class of
map as n is increased. For example, Tn could represent
the class of triangular maps comprising of nth order
polynomials, or a class of normalising flows comprising
of n layers in (10).

Assumption 3 (Assumptions on Tn). There exists a

subset T ⊆
∏d
i=1 L

2(Q) containing an element T ∈ T
for which T#Q = P . The sequence (Tn)n∈N satis-
fies Tn ⊆ T with Tn ⊆ Tm for n ≤ m and T∞ :=
limn→∞ Tn is a dense set in T.

Proposition 2 provides sufficient conditions for the set
T in Assumption 3 to exist; the additional content of
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Assumption 3 ensures that T∞ is rich enough to con-
sistently approximate an exact transport map, in prin-
ciple at least. Next, we state our consistency result:

Theorem 2. Let Assumptions 1 to 3 hold. Further
suppose that P is distantly dissipative, with ∇ log p
Lipschitz and EX∼P [‖∇ log p(X)‖2] < ∞. Suppose
that Tn ∈ Tn satisfies

DS(P, (Tn)#Q)− inf
T∈Tn

DS(P, T#Q)
n→∞→ 0, (11)

with DS defined in Theorem 1. Then (Tn)#Q⇒ P .

The statement in (11) accommodates the reality that,
although finding the global optimum T ∈ Tn will typi-
cally be impractical, one can realistically expect to find
an element Tn that achieves an almost-as-low value of
KSD, e.g. using a stochastic optimisation method. To
our knowledge, no comparable consistency guarantees
exist for measure transport using KLD.

3.3 Validating our Assumptions on Tn

Recall that earlier work on measure transport placed
strong restrictions on the set of maps Tn, requiring
each map to be a diffeomorphism with non-vanishing
Jacobian determinant. In contrast, our assumptions
on Tn are almost trivial; we do not require smoothness
and there is not a bijection requirement. Our assump-
tions can be satisfied in principle whenever X is a com-
plete separable metric space, since then

∏d
i=1 L

2(Q)
is separable (Cohn, 2013, Proposition 3.4.5) and ad-
mits an orthogonal basis {φi}i∈N, so we may take
Tn = span{φ1, . . . , φn} for Assumption 3 to hold. In
practice we are able to verify Assumption 3 for quite
non-trivial classes of map Tn. To demonstrate, one
such example is presented next, similar to that consid-
ered in Lu and Lu (2020):

We consider deep neural networks with multi-layer
perceptron architecture and ReLU activation functions
Let Rl,n(Rp → Rd) denote the set of such ReLU neu-
ral networks f : Rp → Rd with l layers and width at
most n. See Definition 4 in Appendix A.4 for a formal
definition.

Proposition 3. Let Assumptions 1 and 2 hold. Let
Q admit a positive, continuous and bounded density on
X = Rp. Let Tn = Rl,n(Rp → Rd) with l := dlog2(p+
1)e. Then Assumption 3 holds.

The maps in Proposition 3 are not bijections, illustrat-
ing the greater flexibility of KSD compared to KLD
for measure transport. This completes our theoretical
discussion, and our attention now turns to empirical
assessment.

4 Empirical Assessment

The purpose of this section is to investigate whether
KSD is competitive with KLD for measure transport.
Section 4.1 compares both approaches using a variety
of transport maps and a synthetic test-bed. Then, in
Sections 4.2 and 4.3 we consider more realistic pos-
terior approximation problems arising from, respec-
tively, a biochemical oxygen model and a parametric
differential equation model.

In all experiments we used the kernel (3) with c =
1, ` = 0.1, β = −1/2 (other choices were in-
vestigated in Appendix C.5), the stochastic opti-
miser Adam with batch size n = 100 and learning
rate 0.001 (other choices were investigated in Ap-
pendix C.2), and the reference distribution Q was
taken to be a standard Gaussian on Rp (other choices
were considered in Appendix C.4). Code to repro-
duce these results is available at https://github.

com/MatthewAlexanderFisher/MTKSD.

4.1 Synthetic Test-Bed

First we consider a set of synthetic examples that have
previously been used to motivate measure transport as
an alternative to MCMC. Three targets were consid-
ered; p1 is a sinusoidal density, p2 is a banana density
and p3 is multimodal; these are formally defined in
Appendix B.2. Results for p1 and p3 are displayed
in Figure 1. The convergence of the approximation to
the target is shown for KSD and the corresponding ap-
proximation after 104 iterations of Adam is shown for
KLD. Since, for both objectives, one iteration requires
102 evaluations of log pi or its gradient, this represents
a total of 106 calls to log pi or its gradient. The corre-
sponding approximation produced using an adaptive
Hamiltonian Monte Carlo (HMC) algorithm (Hoffman
and Gelman, 2014; Betancourt, 2017) is shown, where
the HMC chains were terminated once 106 evaluations
of log pi or its gradient had been performed. Both p1

and p3 present challenges for HMC that, to some ex-
tent, can be overcome using measure transport.

The results in Figure 1 are for a fixed class of transport
map, but now we report a systematic comparison of
KSD and KLD. The majority of maps that we consider
are diffeomorphic (in order that KLD can be used),
implemented in Pyro (Bingham et al., 2018). Since
KSD does not place such requirements on the trans-
port map, we also report results for a (non-bijective)
ReLU neural network. Our performance measure is
an estimate of the Wasserstein-1 distance between the
target and approximate distributions computed using
104 samples (see Appendix B.1 for details). Results
are detailed in Table 1. Overall, there is no clear sense
in which KSD out-performs KLD or vice versa; KSD
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Figure 1: Measure transport with KSD, versus KLD and HMC. The top row reports results for approximation
of a sinusoidal density using an inverse autoregressive flow, while the bottom row reports analogous results
for a multimodal density and a neural autoregressive flow. The first three columns display convergence of the
KSD-based method as the number of iterations of stochastic optimisation is increased. The remaining columns
compare the output of the KLD-based method and HMC for an identical computational budget.

performed best on p1, KLD performed best on p2, and
for p3 the results were mixed. We conclude that these
objectives offer similar performance for measure trans-
port. However, KLD cannot be applied to the ReLU
neural network (denoted N/A in Table 1) due to the
strong constraints on the mapping that are required
by KLD.

Two discussion points are now highlighted: First, it
is known that certain normalising flows can capture
multiple modes due to their flexibility, however others
cannot (Huang et al., 2018). One solution is to con-

sider a mixture of transport maps; i.e.
∑d
i=1 wiT

(i)
# Qi

with reference distribution Q1 × · · · × Qd and mixing
weights wi > 0 satisfying

∑
i wi = 1. This idea has

been explored recently in Pires and Figueiredo (2020).
In Table 1 we report results using mixtures of inverse
autoregressive flows (IAF). As one might hope, these
approximations were successful in finding each of the
modes in p3, but fared relatively worse for p1 and p2.
Second, since in Adam we are using a Monte Carlo es-
timator of the gradient, it is natural to ask whether a
quasi Monte Carlo estimator would offer an improve-
ment (Wenzel et al., 2018). This was investigated and
our results are reported in Appendix C.3.

4.2 Biochemical Oxygen Demand Model

Next we reproduce an experiment that was used to il-
lustrate measure transport using KLD in Parno and
Marzouk (2018). The task is parameter inference in
a d = 2 dimensional oxygen demand model, of the

form B(t) = α1(1−exp(−α2t)), where B(t) is the bio-
chemical oxygen demand at time t, a measure of the
consumption of oxygen in a given water column sam-
ple due to the decay of organic matter (Sullivan et al.,
2010). The parameters to be inferred are α1, α2 > 0.
Full details of the prior and the likelihood are con-
tained in Appendix B.3.

For our experiment, we trained a block neural autore-
gressive flow3 using N = 30, 000 iterations of Adam.
Results are presented in Figure 2. Unlike the syn-
thetic experiments, we no longer have a closed form
for the target P ; however, this problem was amenable
to MCMC and a long run of HMC (106 iterations,
thinned by a factor of 100) provided a gold standard,
allowing us to approximate the Wasserstein-1 distance
from T#Q to P as in Section 4.1. For the KSD-based
method, we obtained a Wasserstein-1 distance of 0.069,
while KLD achieved 0.015. Although the Wasserstein-
1 distance for KSD is larger than that for KLD, both
values are close to the noise floor for our approxima-
tion of the Wasserstein-1 distance; two independent
runs of HMC (106 iterations, thinned by a factor of
100), differed in Wasserstein-1 distance by 0.022. We
therefore conclude that KSD and KLD performed com-
parably on this task.

3This class of transport map was experimentally ob-
served to outperform the other classes we considered.
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Sinusoidal Banana Multimodal

Transport Map N KSD KLD KSD KLD KSD KLD

IAF 104 0.38 0.52 0.20 0.07 0.67 1.1
IAF (stable) 104 0.35 0.39 0.16 0.11 0.61 0.62
NAF 104 0.55 0.64 0.39 0.025 0.095 0.11
SAF 104 0.23 0.58 0.20 0.18 0.30 0.48
B-NAF 104 0.78 1.2 0.70 0.18 1.0 0.99
Polynomial (cubic) 104 0.40 0.84 0.25 0.059 0.51 0.43
IAF mixture 3×104 1.29 0.61 0.19 0.14 0.037 0.036
ReLU network 5×104 0.71 N/A 0.43 N/A 0.22 N/A

Table 1: Results from the synthetic test-bed. The first column indicates which parametric class of transport
map was used; full details for each class can be found in Appendix B.2. A map-dependent number of iterations
of stochastic optimisation, N , are reported - this is to ensure that all optimisers approximately converged. The
main table reports the (first) Wasserstein distance between the approximation T#Q and the target P . Bold
values indicate which of KSD or KLD performed best.

Figure 2: Results for the biochemical oxygen demand
model. The leftmost panel is the target distribution,
while the central and rightmost panels show samples
generated from the output of the methods based, re-
spectively, on KSD and KLD.

4.3 Generalised Lotka-Volterra Model

Our final experiment is a realistic inference problem
involving a non-trivial likelihood. Following Parno and
Marzouk (2018), we consider parameter inference for
a generalised Lotka–Volterra model

dp
dt (t) = rp(t)

(
1− p(t)

k

)
− sp(t)q(t)a+p(t) ,

dq
dt (t) = up(t)q(t)a+p(t) − vq(t),

(12)

where p(t), q(t) > 0 are the predator and prey popula-
tions respectively at time t and r, k, s, u, a and v, along
with the initial conditions p(0) = p0 and q(0) = q0, are
parameters to be inferred. Together, these d = 8 pa-
rameters were inferred from a noisy dataset, with the
prior and likelihood reported in Appendix B.4. This
task is realistic and yet amenable to MCMC; the lat-
ter is an essential requirement to allow us to provide a
gold standard against which to assess KSD and KLD,
and we again used an extended run of HMC.

For this experiment, the B-NAF class and N = 5 · 104

iterations of Adam were used. The gradients, required

both for HMC and KSD measure transport, were com-
puted using automatic differentiation through the nu-
merical integrator used to solve (12), implemented in
the torchdiffeq Python package (Chen et al., 2018).

For the KSD-based method, we obtained an approxi-
mate Wasserstein-1 distance from T#Q to P of 0.130,
while KLD achieved 0.110. The noise floor for our ap-
proximation of the Wasserstein-1 distance in this case
was 0.107. We therefore conclude that KSD and KLD
also performed comparably on this more challenging
task.

5 Discussion

This paper proposed and studied measure transport
using KSD, which can be seen as an instance of op-
erator variational inference (Ranganath et al., 2016).
Our findings suggest that KSD is a suitable variational
objective for measure transport; we observed empirical
performance comparable with that of KLD, yet only
minimal and verifiable conditions on the map T were
required.

There are three potential limitations of KSD compared
to KLD: First, the parameters of the kernel must be
specified, and a poor choice of kernel parameters can
result in poor approximation; see Appendix C.5. It
would be interesting to explore whether adversarial
maximisation of KSD with respect to the kernel pa-
rameters, while minimising KSD over the choice of
transport map, offers a solution (Grathwohl et al.,
2020). Second, while only first order derivatives are
required for KLD, gradient-based optimisation of KSD
requires second order derivatives of p. In most auto-
matic differentiation frameworks, and for most models,
this is possible at little extra computational cost, but
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sometimes this will present difficulties e.g. for models
with differential equations involved. Third, it is known
that score-based variational objectives can sometimes
exhibit pathologies (Wenliang, 2020); some of these
are illustrated in Appendix C.9.

Several recent works explored the possibility of com-
bining measure transport with Monte Carlo (Salimans
et al., 2015; Wolf et al., 2016; Hoffman, 2017; Caterini
et al., 2018; Prangle, 2019; Thin et al., 2020) and it
would also be interesting to consider the use of KSD
in that context. Related, for both KSD and KLD there
is freedom to select the space X and the reference dis-
tribution Q. This could also be handled within the
optimisation framework, but further work would be
needed to determine how these additional degrees of
freedom should be parametrised.
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