

Phonocardiogram Segmentation with Tiny Computing

Krzysztof K. Kwiatkowski

Department of Electrical and

Electronic Engineering,

Imperial College London &

STMicroelectronics

kkk321@ic.ac.uk

Danilo P. Pau, FIEEE

System Research and

Applications

STMicroelectronics, Italy

danilo.pau@st.com

Terence Leung

Department of Medical

Physics and Biomedical

Engineering, University

College London

t.leung@ucl.ac.uk

Oriana Di Marco

Healthcare &Wellbeing

STMicroelectronics, Italy

oriana.dimarco@st.com

Abstract—The stethoscope is a daily used tool that allows

medical doctors to diagnose common cardiovascular diseases by

listening to heart sounds. However, dedicated medical training is

required to operate it. Numerous machine learning techniques

have been used in attempts to automate this process and have

yielded highly accurate results. However, creating a low power,

portable, economical, and accurate machine learning stethoscope

calls for tiny processing of phonocardiograms i.e., heart sound

digital processing to run within an embedded device. To address

the need to deploy the solution within a constrained tiny device, we

propose an 8-bit deep learning model with low embedded FLASH

and RAM utilization of 126 KiB and 45 KiB respectively, which is

optimized for inference on an off-the-shelf STM32H7

microcontroller with an inference time of 12 ms, in 126KiB

FLASH and 45 KiB RAM being 91.65% accurate.

Keywords—PCG segmentation, heart sound, tiny machine

learning, STM32

I. INTRODUCTION

 Tiny Machine Learning (TinyML) technologies have
reshaped the approaches that developers took to leverage the
advantages of machine learning in consumer electronic devices.
The ability to inference a deep learning model directly on small-
footprint microcontrollers (MCU) removed the need for
complex IoT architectures with ML workloads executed on the
cloud. This helped to reduce data transfer, between the cloud and
the edge device, security risks and increases scalability, all of
which are key requirements to be fulfilled for consumer-grade
medical devices. For users it eliminated the need for complex
setup processes and the risk of connection issues while allowing
more scalability and flexibility as to the conditions in which a
device can be used.

 Cardiovascular diseases (CVDs) are a leading cause of death
in developed countries representing 32% of all global deaths [1].
Early diagnosis is key to adopt effective treatments. The
popularity of consumer-grade blood pressure and ECG monitors
is strong evidence that consumers are aware of the importance
of monitoring blood pressure and cardiac activity on their own
and daily. Therefore, they would likely also be interested in
devices capable of recording and analysing phonocardiograms
(PCGs) i.e., automated stethoscopes. These would have
advantages over typical stethoscopes such as the ability to
monitor patients for extended periods of time or during physical
activity and therefore detect abnormalities which may not be
evident during routine check-ups performed by doctors, who are
limited in time.

 PCG segmentation techniques studied in previous works are
diverse and include algorithmic techniques, statistical models
and deep learning models. The latter utilised convolutional
neural networks (CNNs) [2], long short-term memory networks
(LSTMs) [3] and temporal convolutional networks (TCNs) [4].

II. OBJECTIVES AND REQUIREMENTS

 The goal of this study is to develop a tiny neural network

model for PCG segmentation capable of inference on an ARM

Cortex-M MCU and a supporting pipeline for data pre-

processing and post-processing. Such a MCU can be used to

produce a cheap automated stethoscope with low power

consumption. The model shall achieve adequate accuracy

compared to more complex pipelines or even higher to ensure

that PCG segments are precisely measured. The total resource

utilisation of the neural network and supporting data acquisition

and processing must not exceed the FLASH and RAM memory

embedded into MCU. Inference time should be minimised.

Models shall prioritise high temporal resolution over PCG

segmentation. It is expected that murmur analysis will take

place within the same device.

III. PROPOSED PIPELINE

Explainability is key for machine learning models adopted
in medical applications. Deep learning models which aim to
directly infer a diagnosis do not fit this requirement due to their
black box nature. Therefore, it is required for the model to only
output information that are comprehensible and verifiable by
medical professional to support their process of establishing the
diagnosis.

To facilitate the diagnostic procedure an automated
stethoscope shall employ the pipeline shown in Figure 1.

 This paper focused on the segmentation including data pre-
processing and inference stages and aimed to optimize these to
fit into the smallest memory and inference time as possible
without compromising the accuracy.

IV. DATASET

 PCGs constitute of four distinct sections, shown in Figure 2,
which occur in sequence as follows: 1st heart sound (S1), systolic
interval, 2nd heart sound (S2) and diastolic interval. The time-

Fig. 1. Pipeline of an automated stethoscope

frequency characteristics of each of these segments and those of
murmurs found in the systole and diastole, are important for the
diagnosis of certain CVDs. The four sections can be derived
based on the output of a machine learning segmentation model.
Since the sequence is known the model shall be capable of
distinguishing between the classes: S1, S2, systolic and diastolic
intervals before their time-frequency characteristics can be
further analysed for diagnostic purposes.

 There are many datasets available for PCG segmentation.
Among them, the Logistic Regression-HSMM-based Heart
Sound Segmentation dataset by David Springer available on
PhysioNet [6][7] was selected by this work, although it does not
include the segmented labels. It consists of 792 recordings with
a sampling rate of 1 kHz from 135 patients, some of whom
exhibit abnormalities in their PCGs.

V. AUDIO DATA PRE-PROCESSING

 A wide range of feature extraction techniques for PCG
segmentation have been explored in related works. A Fourier
synchro-squeezed transform (FSST) is an accurate technique
that has been used in conjunction with a Bidirectional Long
Short-Term Memory (BiLSTM) neural network [4]. This work
adopted a similar approach utilising a series of short-time
Fourier transforms (STFTs) for data pre-processing due to their
simplicity and the availability of open-source implementations
of STFT optimized for STM32 MCUs.

 STFT was computed for audio data windows with a length
of 128 data points sampled at 1 kHz and a stride of 1 sample.
Window length was decided upon based on the clarity of the
appearance of S1 and S2 in a plot of STFT magnitudes. Stride
should be minimal to achieve the best possible temporal
resolution. This does, however, require increased inference runs
per second over the duration of PCG recording. Kaiser
windowing was used and different β factors were considered
(see Figures 3 and 4) [8]. It was determined that rectangular
windows with β = 0 allowed the tested models to achieve higher
accuracy than tapered windows with β = 5 or β = 6. It is
suggested that this is due to the appearance of artefacts during
S1 and S2. These created clearer boundaries between classes
which reduced the misclassification rate in areas of transition.

Table 1. Comparison of accuracy between models trained using audio data pre-
processed with STFT using Kaiser windowing with different values of β

Model Type Accuracy for β = 0 Accuracy for β = 5 Accuracy for β = 6

3-class BiLSTM 97.63% 95.88% 95.93%

3-class fp32 CNN 91.97% 90.38% 90.23%

 [8] Schmidt et. al. have determined that the frequency range
of PCG features is 25 – 400 Hz. It is known that the STFT
features also exist within the 20 – 25 Hz range and are faint
above 200 Hz [3]. Therefore, 22 different STFT magnitudes for
the 20 – 200 Hz range were inputted into the models. For
BiLSTM models both the real and imaginary parts of the STFT
values were included in the input array resulting in 44 values per
each original audio data point. For CNN models the absolute
values of the complex values were calculated resulting in 22
values per audio data point. These were inputted as an array
resembling a monochromatic image. Furthermore, input values
were Z-score standardised to fit the training dataset average and
to avoid introducing biases into the learning.

VI. MODEL TOPOLOGY AND HYPERPARAMETERS

 This work developed a model capable of inference on a tiny
MCU such as, for example, the STM32H7 ARM Cortex-M7
processor, with embedded 1 MB RAM and 2 MB FLASH. The
BiLSTM approach by Gaona and Arini [3] was considered as
baseline and modified in early experiments. Unfortunately, it
was not possible to simplify the model to fit into the MCU while
maintaining sufficient accuracy. Accuracy requirement was set
at 90% or above to precisely measure the duration of each S1
and S2 segment. Therefore, an alternative tinier CNN model was
devised, which used the STFT based data pre-processing
technique and fit onto the MCU.

 Known PCG segmentation models aim to separate the signal
into 4 classes: S1, systolic interval, S2, diastolic interval. It is,
however, not necessary to identify systole and diastole since the
sequence in which they occur is fixed. Intervals can therefore be
labelled as either systolic or diastolic during data post-
processing based on the occurrence of S1 and S2. Such a
strategy worked well in all cases even when murmurs exist in
systole and/or diastole. Therefore, a labelled PCG dataset with 3
classes was derived and an example is shown in Figure 5.

Fig. 2. Segmented PCG with 4 classes

Fig. 3. PCG processed with STFT
using Kaiser windowing with β=0

Fig. 4. PCG processed with STFT
using Kaiser windowing with β=6

Fig. 5. Segmented PCG with 3 classes

 Considering systole and diastole as the same class did not
significantly affect the performance of BiLSTM models due to
their ability to learn temporal sequences and exhibits memory.
It did, however, improve the performance of CNNs (see Table
2) which were challenged in distinguishing between the two
interval classes (see Figure 6).

Table 2. Comparison of accuracy between 4-class (S1, systole, S2, diastole) and
3-class (S1, systole/diastole, S2) models

Model Type 4-class Model Accuracy 3-class Model Accuracy

fp32 BiLSTM 96.46% 97.63%

fp32 CNN 88.98% 91.97%

 The duration of frames used as inputs for the BiLSTM
models was set at 2 seconds (or 2000 samples) for a sampling
rate of 1 kHz. This was to ensure that the BiLSTM models learnt
the complete sequence of PCG segments which must appear at
least once in any 2 second section of a PCG recorded for a
patient with a heart rate of above 60 BPM. The upper limit of
frame size was set by the dataset due to some recordings having
a duration of 2 seconds or less. Recordings shorter than the
frame length could not be used to train or test the model. For
CNN models’ different durations of input frames were
considered and the performances of models with different
lengths of input frames were compared (see Table 3). It was
determined that a frame length of 256 data points corresponding
to 2.56 s for a sampling rate of 1 kHz was the optimum value for
3-class and CNNs. 4-class CNNs benefited from a longer frame
length of 512 samples or 5.12 s.

Table 3. Comparison of accuracy between CNN models with different input
window sizes

Frame Length [samples] 64 128 256 512 1024

3-class 32fp CNN accuracy 88.03% 90.21% 91.97% 91.58% 90.26%

4-class 32fp CNN accuracy 71.54% 77.14% 83.64% 88.98% 88.36%

 The scikit-learn implementation of grid search was used to
optimize CNN batch size (see Table 4). The EarlyStopping
TensorFlow callback function was used to terminate training if
the model overfitted rather than using a set number of epochs.

Table 4. Optimal CNN training hyperparameters determined with grid search

Model Optimal Batch Size

4-class 32fp CNN 4

3-class 32fp CNN 8

VII. 8-BIT QUANTIZATION

 CNNs, in contrast to floating point (fp32) 32-bits BiLSTMs,
allowed for 8-bit quantization, which reduced by four times the

memory footprint of the model and decreased inference
execution duration. Unfortunately, post training quantization
(PTQ) reduced too much the accuracy. To minimize that drop,
QKeras deep learning framework featuring quantization aware
training (QAT), was used to implement an 8-bit CNN.
Evaluation results are in Tables 5 and 6. In the future, these
results will be improved through the employment of knowledge
distillation based QAT, and using a more accurate, even if with
a greater model size, fp32 CNN as the teacher.

Table 5. Effect of 8-bit quantization with QAT on model performance

Model Type Accuracy

fp32 bits CNN 91.97%

8-bits CNN 89.84%

 The models, shown in Figure 7, were automatically deployed
and run on the MCU using the X-CUBE-AI 7.3.0 expansion
pack for STM32CubeMX. Inferences were tested on the
hardware board featuring the STM32H7 @ 480 MHz.

 Table 6 reports the model footprints in RAM, FLASH,
computational complexity measured as number of Multiply and
ACCumulate (MACC) operations and single inference time in
ms. The latter has been estimated by equation (1).

𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 = 𝑀𝐴𝐶𝐶 ∗ 9
𝑐𝑦𝑐𝑙𝑒𝑠

𝑀𝐴𝐶𝐶
∗

1

480 ∗ 106
𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐

 (eq. 1)

 9 cycles/MACC is the average number computed by running
several benchmarks on the MCU.

 Table 5. Resource utilization for different 3-class deep learning models

 *Estimated ~9 cycles/fp32 MACC, STM32H7 – see eq. 1; ** measured on the
real hardware MCU

Model Type RAM Usage Flash Usage Multiply
Accumulate
(MACC)

Inference
Time
[ms]

BiLSTM (Keras) 3.91 MiB 2.21 MiB 1,146,464,000 21,496.2*

fp32 CNN (Keras) 44.89 KiB 523.48 KiB 2,310,856 37.751**

8-bit CNN (QKeras) 45.39 KiB 126.3 KiB 2,163,912 11.994**

Fig. 6. Confusion matrixes for 4-class and 3-class CNNs

Fig. 7. Model diagrams

VIII. POST-PROCESSING

Due to breaks in continuity of classifications performed by
CNN models postprocessing was required to smooth out the
segmentation output. A voting algorithm with a sliding window
with a length of 9 output samples was utilised for this purpose
(see Figure 8). The final classification for each original audio
datapoint was set to be that of the most prevalent class in a
window of length 9 centred around the datapoint currently being
considered.

 This process removed single point misclassifications, which
were common in the output of CNN models. Such a method of
post-processing made the output suitable for use in further stages
of the automated stethoscope pipeline (see Figure 8). It
improved the total accuracy of segmentation at a very close level
of the fp32 CNN (in Table 5) even if the single datapoint
misclassifications were constituting a small proportion of total
misclassifications (see Table 6.)

Table 6. Performance improvements due to post-processing of CNN output

Processing Type Accuracy

3-class 8-bit CNN 89.84%

3-class 8-bit CNN + post-processing 91.65%

IX. INFERENCE PIPELINE

 The proposed 8-bit CNN model required that a series of pre-

processing and post-processing tasks shall be carried on the

MCU of an automated stethoscope in addition to inference of

the neural network (see Figure 9). The downsampling stage

could be integrated with STFT by introducing a larger stride

between STFT windows. STFT magnitudes shall be normalized

and quantized to 8 bits prior to being inputted into the CNN for

inference.

X. CONCLUSIONS

 This work proposed a tiny Keras fp32 and 8-bits QKeras
CNN models for PCG segmentation, optimized for inference on
low cost ARM Cortex-M MCU and which was comfortably
deployed into the available embedded FLASH and RAM of the
STM32H7 to enable the development of a tiny consumer-grade
automated stethoscope. Even a MCU with lower embedded
memory could be used due to the memory footprint of the 8-bits
CNN model with QAT quantization.

 A 3-class segmentation model was deemed enough to
identify S1, S2 and systole/diastole which can then be further
analysed to perform the final diagnosis. BiLSTM and CNN
models' deployability on STM32 MCUs were evaluated in terms
of the memory resource utilization and inference speeds. The 8-
bits CNN model was more parsimonious for the target
application due to its smaller footprint and faster inference as
reported in Table 5. This model was optimized by employing 8-
bit QAT (QKeras) quantization. Thanks to the post processing
the accuracy drop was reduced to a marginal value with respect
to the fp32 CNN.

 In the future, knowledge distillation will be used to improve
furthermore the 8-bit CNN accuracy. Moreover, the deployment
costs on the MCU could be further optimized by investigating
hybrid binary weights and activation quantization. Inference
time will be improved by introducing a larger stride STFT and
by reducing the length of the CNN input frame in samples while
maintaining the same length in time. This will come at the cost
of decreased temporal resolution and is therefore a compromise
that must be carefully evaluated.

REFERENCES

[1] World Health Organization (2017) Cardiovascular Diseases (CVDs) Fact
Sheet. http://www.who.int/news-room/fact-sheets/detail/cardiovascular-
diseases-(cvds)

[2] Renna, Francesco & Oliveira, Jorge & Coimbra, Miguel. (2019). Deep
Convolutional Neural Networks for Heart Sound Segmentation. IEEE
Journal of Biomedical and Health Informatics. PP. 1-1.
10.1109/JBHI.2019.2894222.

[3] Gaona, A. J., & Arini, P. D. (2020). Deep recurrent learning for heart
sounds segmentation based on instantaneous frequency features.
Elektron, 4(2), 52–57. https://doi.org/10.37537/rev.elektron.4.2.101.2020

[4] Yin, Yibo & Ma, Kainan & Liu, Ming. (2020). Temporal Convolutional
Network Connected with an Anti-Arrhythmia Hidden Semi-Markov
Model for Heart Sound Segmentation. Applied Sciences. 10. 7049.
10.3390/app10207049.

[5] Springer, D. (2019). Logistic Regression-HSMM-based Heart Sound
Segmentation (version 1.0). PhysioNet. https://doi.org/10.13026/vnt9-
kf93

[6] Springer, D., Tarassenko, L., & Clifford, G. (2015). Logistic Regression-
HSMM-based heart sound segmentation. IEEE Transactions on
Biomedical Engineering, 1–1.
https://doi.org/10.1109/tbme.2015.2475278

[7] J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by digital
computer”, Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and
Sons, New York, (1966).

[8] Schmidt, S. E., Holst-Hansen, C., Graff, C., Toft, E., & Struijk, J. J. (2010).
Segmentation of heart sound recordings by a duration-dependent hidden
Markov model. Physiological Measurement, 31(4), 513–529.
https://doi.org/10.1088/0967-3334/31/4/004

Fig. 8. Effect of post-processing on segmentation output

(classes: 0 – S1, 1 – interval, 2 – S2)

Fig. 9. Complete pipeline that shall be

implemented on an MCU for PCG segmentation

