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Abstract—The stethoscope is a daily used tool that allows 

medical doctors to diagnose common cardiovascular diseases by 

listening to heart sounds. However, dedicated medical training is 

required to operate it. Numerous machine learning techniques 

have been used in attempts to automate this process and have 

yielded highly accurate results. However, creating a low power, 

portable, economical, and accurate machine learning stethoscope 

calls for tiny processing of phonocardiograms i.e., heart sound 

digital processing to run within an embedded device. To address 

the need to deploy the solution within a constrained tiny device, we 

propose an 8-bit deep learning model with low embedded FLASH 

and RAM utilization of 126 KiB and 45 KiB respectively, which is 

optimized for inference on an off-the-shelf STM32H7 

microcontroller with an inference time of 12 ms, in 126KiB 

FLASH and 45 KiB RAM being 91.65% accurate. 

Keywords—PCG segmentation, heart sound, tiny machine 
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I. INTRODUCTION 

 Tiny Machine Learning (TinyML) technologies have 
reshaped the approaches that developers took to leverage the 
advantages of machine learning in consumer electronic devices. 
The ability to inference a deep learning model directly on small-
footprint microcontrollers (MCU) removed the need for 
complex IoT architectures with ML workloads executed on the 
cloud. This helped to reduce data transfer, between the cloud and 
the edge device, security risks and increases scalability, all of 
which are key requirements to be fulfilled for consumer-grade 
medical devices. For users it eliminated the need for complex 
setup processes and the risk of connection issues while allowing 
more scalability and flexibility as to the conditions in which a 
device can be used. 

 Cardiovascular diseases (CVDs) are a leading cause of death 
in developed countries representing 32% of all global deaths [1]. 
Early diagnosis is key to adopt effective treatments. The 
popularity of consumer-grade blood pressure and ECG monitors 
is strong evidence that consumers are aware of the importance 
of monitoring blood pressure and cardiac activity on their own 
and daily. Therefore, they would likely also be interested in 
devices capable of recording and analysing phonocardiograms 
(PCGs) i.e., automated stethoscopes. These would have 
advantages over typical stethoscopes such as the ability to 
monitor patients for extended periods of time or during physical 
activity and therefore detect abnormalities which may not be 
evident during routine check-ups performed by doctors, who are 
limited in time. 

 PCG segmentation techniques studied in previous works are 
diverse and include algorithmic techniques, statistical models 
and deep learning models. The latter utilised convolutional 
neural networks (CNNs) [2], long short-term memory networks 
(LSTMs) [3] and temporal convolutional networks (TCNs) [4]. 

II. OBJECTIVES AND REQUIREMENTS 

 The goal of this study is to develop a tiny neural network 

model for PCG segmentation capable of inference on an ARM 

Cortex-M MCU and a supporting pipeline for data pre-

processing and post-processing. Such a MCU can be used to 

produce a cheap automated stethoscope with low power 

consumption. The model shall achieve adequate accuracy 

compared to more complex pipelines or even higher to ensure 

that PCG segments are precisely measured. The total resource 

utilisation of the neural network and supporting data acquisition 

and processing must not exceed the FLASH and RAM memory 

embedded into MCU. Inference time should be minimised. 

Models shall prioritise high temporal resolution over PCG 

segmentation. It is expected that murmur analysis will take 

place within the same device. 

III. PROPOSED PIPELINE 

Explainability is key for machine learning models adopted 
in medical applications. Deep learning models which aim to 
directly infer a diagnosis do not fit this requirement due to their 
black box nature. Therefore, it is required for the model to only 
output information that are comprehensible and verifiable by 
medical professional to support their process of establishing the 
diagnosis. 

To facilitate the diagnostic procedure an automated 
stethoscope shall employ the pipeline shown in Figure 1. 

 This paper focused on the segmentation including data pre-
processing and inference stages and aimed to optimize these to 
fit into the smallest memory and inference time as possible 
without compromising the accuracy.  

IV. DATASET 

 PCGs constitute of four distinct sections, shown in Figure 2, 
which occur in sequence as follows: 1st heart sound (S1), systolic 
interval, 2nd heart sound (S2) and diastolic interval. The time-

 
Fig. 1. Pipeline of an automated stethoscope 

 



 

 

frequency characteristics of each of these segments and those of 
murmurs found in the systole and diastole, are important for the 
diagnosis of certain CVDs. The four sections can be derived 
based on the output of a machine learning segmentation model. 
Since the sequence is known the model shall be capable of 
distinguishing between the classes: S1, S2, systolic and diastolic 
intervals before their time-frequency characteristics can be 
further analysed for diagnostic purposes. 

 There are many datasets available for PCG segmentation. 
Among them, the Logistic Regression-HSMM-based Heart 
Sound Segmentation dataset by David Springer available on 
PhysioNet [6][7] was selected by this work, although it does not 
include the segmented labels. It consists of 792 recordings with 
a sampling rate of 1 kHz from 135 patients, some of whom 
exhibit abnormalities in their PCGs. 

V. AUDIO DATA PRE-PROCESSING 

 A wide range of feature extraction techniques for PCG 
segmentation have been explored in related works. A Fourier 
synchro-squeezed transform (FSST) is an accurate technique 
that has been used in conjunction with a Bidirectional Long 
Short-Term Memory (BiLSTM) neural network [4]. This work 
adopted a similar approach utilising a series of short-time 
Fourier transforms (STFTs) for data pre-processing due to their 
simplicity and the availability of open-source implementations 
of STFT optimized for STM32 MCUs. 

 STFT was computed for audio data windows with a length 
of 128 data points sampled at 1 kHz and a stride of 1 sample. 
Window length was decided upon based on the clarity of the 
appearance of S1 and S2 in a plot of STFT magnitudes. Stride 
should be minimal to achieve the best possible temporal 
resolution. This does, however, require increased inference runs 
per second over the duration of PCG recording. Kaiser 
windowing was used and different β factors were considered 
(see Figures 3 and 4) [8]. It was determined that rectangular 
windows with β = 0 allowed the tested models to achieve higher 
accuracy than tapered windows with β = 5 or β = 6. It is 
suggested that this is due to the appearance of artefacts during 
S1 and S2. These created clearer boundaries between classes 
which reduced the misclassification rate in areas of transition. 

Table 1. Comparison of accuracy between models trained using audio data pre-
processed with STFT using Kaiser windowing with different values of β 

Model Type Accuracy for β = 0 Accuracy for β = 5 Accuracy for β = 6 

3-class BiLSTM 97.63% 95.88% 95.93% 

3-class fp32 CNN 91.97% 90.38% 90.23% 

 [8] Schmidt et. al. have determined that the frequency range 
of PCG features is 25 – 400 Hz. It is known that the STFT 
features also exist within the 20 – 25 Hz range and are faint 
above 200 Hz [3]. Therefore, 22 different STFT magnitudes for 
the 20 – 200 Hz range were inputted into the models. For 
BiLSTM models both the real and imaginary parts of the STFT 
values were included in the input array resulting in 44 values per 
each original audio data point. For CNN models the absolute 
values of the complex values were calculated resulting in 22 
values per audio data point. These were inputted as an array 
resembling a monochromatic image. Furthermore, input values 
were Z-score standardised to fit the training dataset average and 
to avoid introducing biases into the learning. 

VI. MODEL TOPOLOGY AND HYPERPARAMETERS 

 This work developed a model capable of inference on a tiny 
MCU such as, for example, the STM32H7 ARM Cortex-M7 
processor, with embedded 1 MB RAM and 2 MB FLASH. The 
BiLSTM approach by Gaona and Arini [3] was considered as 
baseline and modified in early experiments. Unfortunately, it 
was not possible to simplify the model to fit into the MCU while 
maintaining sufficient accuracy. Accuracy requirement was set 
at 90% or above to precisely measure the duration of each S1 
and S2 segment. Therefore, an alternative tinier CNN model was 
devised, which used the STFT based data pre-processing 
technique and fit onto the MCU. 

 Known PCG segmentation models aim to separate the signal 
into 4 classes: S1, systolic interval, S2, diastolic interval. It is, 
however, not necessary to identify systole and diastole since the 
sequence in which they occur is fixed. Intervals can therefore be 
labelled as either systolic or diastolic during data post-
processing based on the occurrence of S1 and S2. Such a 
strategy worked well in all cases even when murmurs exist in 
systole and/or diastole. Therefore, a labelled PCG dataset with 3 
classes was derived and an example is shown in Figure 5. 

 

 
Fig. 2. Segmented PCG with 4 classes 

 

Fig. 3. PCG processed with STFT 
using Kaiser windowing with β=0 

Fig. 4. PCG processed with STFT 
using Kaiser windowing with β=6 

 

 
Fig. 5. Segmented PCG with 3 classes 

 



 

 

 Considering systole and diastole as the same class did not 
significantly affect the performance of BiLSTM models due to 
their ability to learn temporal sequences and exhibits memory. 
It did, however, improve the performance of CNNs (see Table 
2) which were challenged in distinguishing between the two 
interval classes (see Figure 6). 

Table 2. Comparison of accuracy between 4-class (S1, systole, S2, diastole) and 
3-class (S1, systole/diastole, S2) models 

Model Type 4-class Model Accuracy 3-class Model Accuracy 

fp32 BiLSTM 96.46% 97.63% 

fp32 CNN 88.98% 91.97% 

 The duration of frames used as inputs for the BiLSTM 
models was set at 2 seconds (or 2000 samples) for a sampling 
rate of 1 kHz. This was to ensure that the BiLSTM models learnt 
the complete sequence of PCG segments which must appear at 
least once in any 2 second section of a PCG recorded for a 
patient with a heart rate of above 60 BPM. The upper limit of 
frame size was set by the dataset due to some recordings having 
a duration of 2 seconds or less. Recordings shorter than the 
frame length could not be used to train or test the model. For 
CNN models’ different durations of input frames were 
considered and the performances of models with different 
lengths of input frames were compared (see Table 3). It was 
determined that a frame length of 256 data points corresponding 
to 2.56 s for a sampling rate of 1 kHz was the optimum value for 
3-class and CNNs. 4-class CNNs benefited from a longer frame 
length of 512 samples or 5.12 s. 

Table 3. Comparison of accuracy between CNN models with different input 
window sizes 

Frame Length [samples] 64 128 256 512 1024 

3-class 32fp CNN accuracy 88.03% 90.21% 91.97% 91.58% 90.26% 

4-class 32fp CNN accuracy 71.54% 77.14% 83.64% 88.98% 88.36% 

 The scikit-learn implementation of grid search was used to 
optimize CNN batch size (see Table 4). The EarlyStopping 
TensorFlow callback function was used to terminate training if 
the model overfitted rather than using a set number of epochs. 

Table 4. Optimal CNN training hyperparameters determined with grid search 

 
Model Optimal Batch Size 

4-class 32fp CNN 4 

3-class 32fp CNN 8 

 

VII. 8-BIT QUANTIZATION  

 CNNs, in contrast to floating point (fp32) 32-bits BiLSTMs, 
allowed for 8-bit quantization, which reduced by four times the 

memory footprint of the model and decreased inference 
execution duration. Unfortunately, post training quantization 
(PTQ) reduced too much the accuracy. To minimize that drop, 
QKeras deep learning framework featuring quantization aware 
training (QAT), was used to implement an 8-bit CNN. 
Evaluation results are in Tables 5 and 6. In the future, these 
results will be improved through the employment of knowledge 
distillation based QAT, and using a more accurate, even if with 
a greater model size, fp32 CNN as the teacher. 

Table 5. Effect of 8-bit quantization with QAT on model performance 

 
Model Type Accuracy 

fp32 bits CNN 91.97% 

8-bits CNN 89.84% 
   

 The models, shown in Figure 7, were automatically deployed 
and run on the MCU using the X-CUBE-AI 7.3.0 expansion 
pack for STM32CubeMX. Inferences were tested on the 
hardware board featuring the STM32H7 @ 480 MHz. 

 Table 6 reports the model footprints in RAM, FLASH, 
computational complexity measured as number of Multiply and 
ACCumulate (MACC) operations and single inference time in 
ms. The latter has been estimated by equation (1). 

𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 = 𝑀𝐴𝐶𝐶 ∗ 9
𝑐𝑦𝑐𝑙𝑒𝑠

𝑀𝐴𝐶𝐶
∗

1

480 ∗ 106 
𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐

      (eq. 1) 

 9 cycles/MACC is the average number computed by running 
several benchmarks on the MCU. 

 Table 5. Resource utilization for different 3-class deep learning models 

 *Estimated ~9 cycles/fp32 MACC, STM32H7 – see eq. 1; ** measured on the 
real hardware MCU 

Model Type RAM Usage Flash Usage Multiply 
Accumulate 
(MACC) 

Inference 
Time 
[ms] 

BiLSTM (Keras) 3.91 MiB 2.21 MiB 1,146,464,000 21,496.2* 

fp32 CNN (Keras) 44.89 KiB 523.48 KiB 2,310,856 37.751** 

8-bit CNN (QKeras) 45.39 KiB 126.3 KiB 2,163,912 11.994** 

 

Fig. 6. Confusion matrixes for 4-class and 3-class CNNs 

 
 

Fig. 7. Model diagrams 



 

 

VIII. POST-PROCESSING 

Due to breaks in continuity of classifications performed by 
CNN models postprocessing was required to smooth out the 
segmentation output. A voting algorithm with a sliding window 
with a length of 9 output samples was utilised for this purpose 
(see Figure 8). The final classification for each original audio 
datapoint was set to be that of the most prevalent class in a 
window of length 9 centred around the datapoint currently being 
considered. 

 This process removed single point misclassifications, which 
were common in the output of CNN models. Such a method of 
post-processing made the output suitable for use in further stages 
of the automated stethoscope pipeline (see Figure 8). It 
improved the total accuracy of segmentation at a very close level 
of the fp32 CNN (in Table 5) even if the single datapoint 
misclassifications were constituting a small proportion of total 
misclassifications (see Table 6.) 

Table 6. Performance improvements due to post-processing of CNN output 

 
Processing Type Accuracy 

3-class 8-bit CNN 89.84% 

3-class 8-bit CNN + post-processing 91.65% 

IX. INFERENCE PIPELINE 

 The proposed 8-bit CNN model required that a series of pre-

processing and post-processing tasks shall be carried on the 

MCU of an automated stethoscope in addition to inference of 

the neural network (see Figure 9). The downsampling stage 

could be integrated with STFT by introducing a larger stride 

between STFT windows. STFT magnitudes shall be normalized 

and quantized to 8 bits prior to being inputted into the CNN for 

inference. 

X. CONCLUSIONS 

 This work proposed a tiny Keras fp32 and 8-bits QKeras 
CNN models for PCG segmentation, optimized for inference on 
low cost ARM Cortex-M MCU and which was comfortably 
deployed into the available embedded FLASH and RAM of the 
STM32H7 to enable the development of a tiny consumer-grade 
automated stethoscope. Even a MCU with lower embedded 
memory could be used due to the memory footprint of the 8-bits 
CNN model with QAT quantization. 

 A 3-class segmentation model was deemed enough to 
identify S1, S2 and systole/diastole which can then be further 
analysed to perform the final diagnosis. BiLSTM and CNN 
models' deployability on STM32 MCUs were evaluated in terms 
of the memory resource utilization and inference speeds. The 8-
bits CNN model was more parsimonious for the target 
application due to its smaller footprint and faster inference as 
reported in Table 5. This model was optimized by employing 8-
bit QAT (QKeras) quantization. Thanks to the post processing 
the accuracy drop was reduced to a marginal value with respect 
to the fp32 CNN.  

 In the future, knowledge distillation will be used to improve 
furthermore the 8-bit CNN accuracy. Moreover, the deployment 
costs on the MCU could be further optimized by investigating 
hybrid binary weights and activation quantization. Inference 
time will be improved by introducing a larger stride STFT and 
by reducing the length of the CNN input frame in samples while 
maintaining the same length in time. This will come at the cost 
of decreased temporal resolution and is therefore a compromise 
that must be carefully evaluated. 
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Fig. 8. Effect of post-processing on segmentation output 

(classes: 0 – S1, 1 – interval, 2 – S2) 

 
Fig. 9. Complete pipeline that shall be 

implemented on an MCU for PCG segmentation 


