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Abstract. 16 

To reduce machine-related accidents on sites, automatically monitoring the full-body 17 

poses of operating heavy machines is crucial. Conventional pose estimation systems 18 

relying on homogeneous sensors are vulnerable to negative environmental impacts, 19 

leading to inaccurate and unstable estimation of machine states. Hence, a full-body pose 20 

estimation framework is proposed for excavators, with a data fusion strategy to utilize 21 

different types of onboard sensors for enhanced accuracy and robustness. Specifically, 22 

a non-invasive onboard visual-inertial sensor system is designed for data fusion. Then, 23 

through competitive and complementary data fusion, the keypoints describing the full-24 

body poses of the excavator are tracked in 3D space. Especially, an EKF-based 25 

localization algorithm is developed for optimized multi-keypoint tracking, which is 26 

verified to improve the accuracy and robustness of pose estimation by a real-world 27 

excavator case study. The proposed sensor-fusion method can effectively improve 28 

operational safety, by accurately monitoring the motion of heavy machines operating 29 

on construction sites. 30 

 31 
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1. Introduction 35 

The construction industry has been regarded as one of the most dangerous industries. 36 

According to the Occupational Safety and Health Statistics Bulletin published in 2021 37 

by the Labour Department of Hong Kong [1], the construction industry had the highest 38 

accident rate and numbers of fatalities among all industry sectors in the past decade. In 39 

China, 904 workers died in construction safety accidents in 2019, up 7.26% year-on-40 

year [2], with an average of 2.5 fatalities per day. In addition to casualties, these 41 

construction accidents have resulted in significant financial loss for employers, 42 

including medical costs, worker’s compensation expenses, losses of project delay, etc. 43 

[3]. Therefore, it is important to address the construction safety issues and prevent 44 

potential dangers on construction sites. 45 

 46 

In particular, operation of heavy construction machines constitutes a major cause of 47 

occupational hazards on construction sites. In 2020, contacting with or being struck by 48 

moving machines was reported as the second most common source of construction 49 

accidents in Hong Kong [4]. Occupational Safety and Health Administration (OSHA) 50 

[5] in the U.S. has also suggested struck-by machines as one of the top four construction 51 

hazards causing over 60% of construction-related deaths. In addition to directly causing 52 

casualties, the unsafe operations of a construction machine may also damage buried 53 

underground pipelines, and endanger other public and private facilities, pedestrians, 54 

and nearby residents. In order to avoid these accidents, in addition to training operators, 55 

external intervention measures are also needed. It is therefore necessary to monitor the 56 

operations of heavy machines on a construction site to prevent potential dangers, as 57 

well as improve operational safety and productivity. Traditionally, monitoring the 58 

operations of construction machines relied on inspector observing on site or watching 59 

a video captured by surveillance cameras [6], but such manual monitoring is labor-60 

intensive and error prone work and is subjected to the inspector’s reaction and 61 

experience. Therefore, automated solutions of construction machine monitoring are 62 

necessary to enable more precise and proactive operational safety management. 63 

 64 

In the early stages, the automated operation monitoring of construction machines 65 

focuses on locating the machines on a two-dimensional (2D) map by localization 66 

technologies [7-9]. However, the vague information is not sufficient to adequately 67 

describe the working status of heavy machines on construction sites. It is observed that 68 
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in construction activities the heavy machines (e.g., excavators) rarely change in 69 

locations, but their articulated parts, consisting of multiple movable independent 70 

components are operated in 3D space and form complex poses. Excavators are the most 71 

typical of such articulated equipment. An excavator has four movable components (i.e., 72 

a cabin, a boom, an arm, and a bucket) and, compared to other heavy machines such as 73 

trucks and bulldozers, an excavator has a higher degree of structural freedom, giving it 74 

a much greater range of motions and complexity in poses. Compared to varying 75 

locations, the changing pose of the excavator is more likely to make collisions with 76 

surrounding facilities, pedestrians, and vehicles to threaten operational safety. Hence, 77 

tracking the current 3D poses of articulated construction machines is essential and 78 

forms the basis of automated operational safety monitoring. 79 

 80 

Recent studies have explored using only homogeneous sensors to track the motion of 81 

articulated construction machines. Both visual (e.g., cameras) [10, 11] and non-visual 82 

sensors (e.g., inertial measurement units (IMU)) [12] have been used to effectively 83 

estimate the (partial or full-body) poses of excavators. However, these pose estimation 84 

systems utilizing homogeneous sensors are unavoidably limited by environmental 85 

interferences and noises on construction sites, and consequently, cause inaccurate and 86 

unreliable descriptions of the pose, which is extremely dangerous for operational safety 87 

monitoring. To address the problem, the data from different sensors should be fused to 88 

improve the survivability of the pose estimation system under different conditions and 89 

optimize the description of excavator motions. Unfortunately, there is no effective full-90 

body pose estimation approach for articulated construction machines by fusing data 91 

from multiple sensors. 92 

 93 

This study therefore proposes employing data fusion a full-body pose estimation 94 

framework for monitoring machine in 3D. In the framework, first of all, a non-invasive 95 

onboard multi-sensor system comprising a stereo vision module and IMU sensors 96 

mounted on the machine — in our study, an excavator — is developed to track the 97 

machine’s motion and collect data regarding its poses. With the various onboard sensors 98 

now in place, data can be fused competitively and complementarily, and through this 99 

data fusion, multiple keypoints on the body of the machine can be tracked by a 100 

developed multi-keypoint localization algorithm based on Extended Kalman filter 101 

(EKF), and then be combined to form a full-body 3D visual of the position and pose to 102 
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have enhanced accuracy and robustness. The proposed approach provides the 103 

theoretical basis for developing an accurate and robust 3D full-body pose estimation of 104 

excavators on real construction sites to monitor the motions of machinery and improve 105 

operational safety. 106 

 107 

The rest of the paper is organized as follows: Section 2 reviews relevant research on 108 

methods of tracking the movements of construction machines. Section 3 describes the 109 

data fusion–based full-body pose estimation approach proposed by this study. Section 110 

4 illustrates tests that validate the approach, and Section 5 concludes with the research’s 111 

contributions and limitations. 112 

 113 

2. Related Works 114 

This section reviews and evaluates relevant research on the pose estimation methods 115 

for construction machines using both homogenous and heterogeneous (multiple) 116 

sensors. 117 

 118 

2.1.  Pose Estimation of Construction Machines Based on Homogenous Sensors 119 

Pose estimation refers to describing the spatial orientation and motion of (construction) 120 

machines. In previous studies, using homogeneous sensors, including visual and non-121 

visual sensors, is common when tracking the motion states of machines. 122 

 123 

Visual sensors such as digital cameras deployed near the machine and surveillance 124 

cameras mounted on site, capture the images with geometry and color information to 125 

record the motions of construction machines. Marker-based pose estimation attaches 126 

fiducial markers to the machine component to be estimated. An optical camera is used 127 

to monitor the fiducial markers, and to estimate their orientations which represent the 128 

motion states of the estimated component [11, 13, 14]. Although relying on markers, 129 

these methods help to develop a low-cost, high-deployment efficiency, and fast-130 

recognition pose estimation system for construction machines. Additionally, other 131 

studies focus on using unmarked image processing to remove the limitation of marker 132 

recognition when tracking the motions of construction machines. For example, Soltani 133 

et al. [15] tracked the partial motions of an excavator by extracting the 2D skeleton. 134 

Multiple vision-based excavator parts' detectors, which were trained at different angles 135 
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through synthetic images, were used to estimate the partial pose of the excavator by the 136 

skeletonization of each component in the foreground. Furthermore, to reduce the 137 

workload of training multiple detectors and improve the accuracy, Luo et al. [10] 138 

developed an end-to-end deep learning approach to estimate the full-body poses of 139 

excavators. The images collected by a surveillance camera are labelled with pre-defined 140 

keypoints of the machine, based on which three architectures of deep learning networks 141 

are trained to estimate the full-body pose of an excavator. In addition to monocular 142 

cameras, the stereo visual module can also be used in the pose estimation of 143 

construction machines. Soltani et al. [16] presented a stereo vision system with a long 144 

baseline on a large construction site to estimate the motions of excavators. The 3D pose 145 

of the machine was computed with 2D skeletons of partial excavator from each camera 146 

which is involved in the stereo vision system.  147 

 148 

Using visual sensors and computer vision technology can effectively develop a low-149 

cost and user-friendly pose estimation system, but it still has obvious disadvantages: 150 

Besides the instabilities caused by insufficient illumination and limited field of view, 151 

there are always obstructions of views on dynamic and complex construction sites 152 

which affect the accuracy of vision-based pose estimation [6]. Specifically, the moving 153 

machines and workers usually block the monitoring object (e.g., fiducial markers or 154 

joints), and render the pose estimation system lose its tracking target.  155 

 156 

In addition to visual sensors, non-visual sensors have also been utilized to estimate the 157 

poses of construction machines non-invasively. Precision measuring equipment (e.g., 158 

LiDAR [17, 18]) and high-precision localization technologies (e.g., ultra-wideband 159 

(UWB) real-time location system (RTLS) [19]) can provide the location information of 160 

the keypoints to be estimated on the machine, which directly describe its motions. 161 

Although great accuracy can be achieved using these devices, the high price of these 162 

devices makes them inoperable in the construction industry. Current research has made 163 

attempts to use low-cost inertial measurement units (IMU) to estimate the poses of 164 

construction machines. IMU sensors can be installed on the surface of a movable 165 

component to record its rotation states in space [20-23]. Through kinematics modeling 166 

of construction machines, the rotations of different components can be integrated to 167 

describe the full-body pose of the machine [12]. The study on IMU-based pose 168 

estimation method claimed that using IMUs can effectively provide a spatial description 169 
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of the full-body pose of a construction machine with an accuracy of 90%.  170 

 171 

However, for non-visual sensors, the unmodeled noises and deviations are unavoidable 172 

due to the intrinsic characteristics of sensors and the negative influences from the 173 

external environment, which lead to inaccurate and unstable machines pose estimation 174 

in practical applications [24]. For example, in the IMU-based pose estimation, when 175 

the temperature rises during operation, the performance of the IMUs decreases, which 176 

causes systematical problems including data loss and uncontrollable measurement 177 

errors. 178 

 179 

Overall, although both visual and non-visual sensors can be used to describe the poses 180 

of construction machines, due to the limitations and errors that are unavoidable for any 181 

type of measurement, using only homogeneous sensors in pose estimation is instable 182 

and inaccurate in practice. Especially, for operational safety monitoring, any deviates 183 

that render the monitoring system abnormal or fails to work is dangerous. Therefore, it 184 

is necessary to use a multi-sensor (heterogeneous) system to make the information 185 

obtained from different sensors (i.e., visual or non-visual sensors) complement or 186 

compete with each other, so as to ensure the stability of the full-body pose estimation 187 

and improve its accuracy.  188 

 189 

2.2.  Pose Estimation of Construction Machines Based on Heterogeneous Sensors 190 

Using a heterogeneous sensor system for pose estimation requires fusing data from 191 

different sensors. Data fusion can be done complementarily or competitively [25].  192 

 193 

For complementary fusion, the mutually-exclusive data from different sources are 194 

integrated to extend the spatial and temporal coverage of the sensors, then appended to 195 

each other to piece together a full picture. Currently, using multi-sensor in pose 196 

estimation of construction machines has had only a smattering of studies, and mainly 197 

focuses on fusing data complementarily to get abundant pose-related information. Kim 198 

et al. [26] for example present a multi-sensory system to track the position in 3D of the 199 

cutting edge on a bulldozer’s blade. This system complementally fuses orientation and 200 

2D location provided by motion sensors and RTK GPS to estimate the spatial motion 201 

status of the end effector with errors no more than 30 mm. Additionally, In Soltani et 202 

al. [16]’s stereo-vision-based pose estimation system, they fused locations from GPS 203 
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and images from cameras complementarily to decrease processing efforts of excavator 204 

detection and improve the accuracy. However, relying on the integration of mutually-205 

exclusive data cannot reduce the uncertainty of the pose estimation system, so the 206 

shortcomings of using homogenous sensors mentioned in Section 2.1 cannot be 207 

overcome. Hence, to improve the accuracy and robustness of the pose estimation for 208 

construction machines, in addition to complementary fusion, competitive data fusion is 209 

also needed to be used in the pose estimation of construction machines. 210 

 211 

In competitive fusion, an object’s motion (e.g., movements of the boom and the arm of 212 

an excavator) is tracked redundantly (i.e., the same component/part tracked by more 213 

than one sensor), and the description of the object, in the end, is optimized by the 214 

competitive data. Especially for operational safety monitoring, due to the requirement 215 

of locating potential hazards, the poses of construction machines should be directly 216 

optimized at the level of 3D locations of pre-defined keypoints for accurate and reliable 217 

representations of motions. In the manufacturing industry, competitive fusion with a 218 

multi-sensor system has given excellent performances in tracking a single point of a 219 

manipulator. According to the dynamics model proposed by Moberg et al. [27], 220 

Axelsson et al. [28] present an EKF-based method to estimate the tool position of a 221 

robot with two degrees of freedom. The accelerations of the robot tool and dynamics 222 

parameters (i.e., motor torques and motor angles), which are from different sources, are 223 

fused in their proposed method. However, considering the ease with which the 224 

measurement devices need to obtain the required parameters non-invasively without 225 

making extensive modifications [29], the data fusion method based on dynamics model 226 

cannot satisfy the needs of applications for construction machines, because the 227 

parameters required by dynamics models are difficult to obtain using non-invasive 228 

sensors. Specifically, many off-the-shelf machines in practical require pose estimation 229 

system which can be directly mounted on surfaces without any modification inside the 230 

machine, as it can avoid refurbishing outdated machines, reducing both labor and 231 

financial costs for users. Therefore, the non-invasive sensor-fusion technologies based 232 

on a kinematics model should be the practical exploratory direction of the operational 233 

safety monitoring for construction machines. Liu et al. [30] uses a Kalman filter (KF) 234 

and multi-sensor optimal information fusion algorithm (MOIFA) to fuse the data 235 

collected by a multi-sensor system, which included a visual sensor and an angle sensor, 236 

and managed to improve accuracy by 38% ~ 78%. Ubezio et al. [31] conducts end-237 
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effector tracking on a nonlinear manipulator using sensor fusion techniques and a 238 

particular visual-inertial sensor suite. It proves to be more accurate and robust than 239 

homogenous sensor measurement on a complex machine. These previous studies show 240 

the ability of competitive data fusion with heterogeneous sensors to improve accuracy 241 

and reduce the uncertainty for single point (i.e., the end-effector) localization of a 242 

manipulator. However, for the articulated construction machine with multiple 243 

components (e.g., excavators), when monitoring its operational safety, the locations of 244 

multiple keypoints on independent components should be tracked simultaneously to 245 

comprehensively represent its pose. However, there is a lack of method on 246 

competitively fusing data from heterogeneous (multiple) non-invasive sensors to locate 247 

multiple pre-defined spatial keypoints on different movable components of a 248 

construction machine. 249 

 250 

2.3.  Research Gaps 251 

According to the research reviewed in Sections 2.1 and 2.2, the research gap in existing 252 

pose estimation methods of excavators can be summarized as the following points: 253 

⚫ Instability and inaccuracy of existing full-body pose estimation based on 254 

homogeneous sensors for excavators. 255 

⚫ Lack of an accurate and robust multiple keypoints localization algorithm for 256 

excavators by fusing data from multiple sensors competitively. 257 

It is therefore necessary to develop a full-body pose estimation framework for 258 

excavators based on a fusion of data collected from multiple onboard sensors, including 259 

competitive and complementary fusion. In this framework, a multi-keypoint 260 

localization algorithm should be designed for excavators to competitively incorporate 261 

data and provide pose information accurately and stably. 262 

 263 

3. Methodology 264 

As described in Section 2, introducing multi-sensor fusion into the pose estimation 265 

method is expected to improve the accuracy and robustness of motion tracking of 266 

construction machines. This study therefore proposes a full-body pose estimation 267 

framework based on data fusion of multiple on-board sensors for excavators, which is 268 

illustrated in Fig. 1. This proposed framework consists of two steps: (1) non-invasive 269 

on-board multi-sensor system and (2) full-body pose estimation of excavators based on 270 
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data fusion. More details of the proposed study are given in the following sub-sections. 271 

 272 

Fig. 1 Full-body pose estimation framework based on data fusion of multiple on-board sensors for 273 

excavators 274 

The keypoints of an excavator are defined as the positions where the collision may 275 

occur in practice, including the end of each movable component and the rear edge, as 276 

well as the important connection point for transmitting motions. Fig. 2 shows the pre-277 

defined keypoints of an excavator: K1 denotes the end of its cabin; K2 denotes the joint 278 

between the boom and the cabin, called the boom joint; K3 denotes the joint point 279 

between the boom and the arm — the arm joint; K4 denotes the joint point between the 280 

arm and the bucket, known as the bucket joint; and K5 denotes the end point of the 281 

bucket. These definitions will be used throughout the paper when the keypoints or pre-282 

defined keypoints are mentioned without further elaboration. K1, K2, K3, K4, and K5 283 

are coplanar. 284 
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 285 
Fig. 2 Defining keypoints on an excavator 286 

Five major reference frames are used in this proposed framework. They are: 287 

(1) the sensor frame (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) , which is attached to the IMU on the movable 288 

component of the excavator; 289 

(2) the pixel frame (𝑢, 𝑣), which is attached to the image, with the u-axis pointing to 290 

the right in the image’s plane, the v-axis pointing down, and the origin located at the 291 

left corner of the image; 292 

(3) the camera frame (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) , which is attached to the camera with the z-axis 293 

pointing to the optical axis; the x-axis pointing to the right direction on the image plane; 294 

the y-axis pointing to the down direction on the image plane, and the origin located at 295 

the optical center of the camera; 296 

(4) the projected 2D frame(𝑥, 𝑦) , which is attached to the camera with the x-axis 297 

pointing to the optical axis, the y-axis pointing up, and the origin being the optical center 298 

of the stereo vision module; and 299 

(5) the world frame (𝑥𝑤, 𝑦𝑤, 𝑧𝑤), which facilitates users to conduct further pose-related 300 

analyses and is determined based on the users’ needs. 301 

 302 

3.1.  Excavator Pose Information Collection and Processing Based on A 303 

Developed Non-invasive Onboard Multi-Sensor System 304 

In this step, a non-invasive on-board multi-sensor system is developed to collect pose 305 

information from two different data sources (i.e., IMUs and cameras) and to fuse the 306 

data. IMUs are attached to movable components of an excavator to estimate its poses. 307 

Simultaneously, a stereo vision module is installed on the cabin to track the trajectories 308 

of excavator keypoints based on a developed image-based onboard motion tracking 309 

method. 310 

 311 
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3.1.1. Sensor Selection 312 

As discussed in Section 2.1, previous studies have demonstrated the characteristics and 313 

applicable scenarios of different techniques for estimating the poses of construction 314 

machines. Among those techniques, two types of sensors are predominant ones. One is 315 

inertial measurement unit (IMU), which has been widely studied and used in sensor 316 

fusion applications, because of its low cost, user-friendliness, quick response and not 317 

being susceptible to occlusion and illumination [24]. Another type is cameras as they 318 

can provide visual information directly without drift, based on which the position of the 319 

excavator’s keypoints can be obtained with computer vision methods [10, 15]. 320 

Considering the above-mentioned complementary properties of IMUs and cameras, the 321 

proposed framework focuses on fusing data from both sensors, i.e., a visual-inertial 322 

sensor suit, where the angular data from IMUs and the visual information from cameras 323 

can complement each other to enable more accurate motion tracking. 324 

 325 

3.1.2. IMU-based Pose Estimation of Excavators 326 

As illustrated in Section 2.1, IMU sensors are installed on an excavator to collect 327 

angular data. The objective of this section is to obtain four types of information on 328 

angular sequences: (1) change of the joint angles between the cabin and the boom; (2) 329 

change of the joint angle between the arm and the boom; (3) the joint angle between 330 

the bucket and the arm, and (4) the cabin’s angle of rotation. Such IMU-based pose 331 

information is obtained based on an existing method, developed by Tang et al. [12], the 332 

workflow of which is shown in Fig. 3. 333 

 334 

Fig. 3 Flow of information in the IMU-based Full-body Pose Estimation for construction machines[12] 335 

9-axis-IMUs are attached to the surface of every movable component for the target 336 
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excavator (i.e., cabin, boom, arm, and bucket), in order to collect three types of inertial 337 

data: (1) acceleration captured from the sensor’s accelerometer, (2) angular velocity 338 

obtained from the gyroscope, and (3) magnetic flux collected from its magnetometer. 339 

First, raw data collected by the IMUs is preprocessed to remove noise caused by 340 

vibrations and other uncertainties intrinsic to the IMUs. Then, the de-noised IMU data 341 

is transformed to the orientation of each component for the excavator based on a 342 

quaternion-based drift-free orientation filter (e.g., Madgwick filter [32]). Afterwards, 343 

to specify the connection between the estimated orientation of each independent 344 

component as mathematical relationships, a kinematics model is built based on the 345 

structural information of the excavator. Finally, combining the estimated orientations 346 

of components and the kinematics model, the angular trajectories (i.e., the cabin’s 347 

rotational angle and the relative angles of adjacent components) which can directly 348 

describe the pose of the excavator are generated using a developed quaternion-based 349 

method. The outputs of the angular sequences on the change of the joint angle between 350 

the cabin and the boom and the change of the joint angle between the arm and the boom 351 

need further processes. To obtain these sequences of angular changes, the relative angle 352 

of adjacent components at the time k is subtracted by that at time k–1. Consequently, 353 

four types of angular sequences required by the data fusion are obtained without drifts 354 

and partially modellable noises. 355 

 356 

3.1.3. Image-based Onboard Motion Tracking of Excavators 357 

In addition to angular data obtained from the IMUs, cameras are used as another data 358 

source for data fusion to collect visual information and track keypoints’ positions of the 359 

target excavator. As discussed in Section 2.1, the major problem of existing computer-360 

vision-based motion tracking methods for excavators is the frequent mutual occlusions 361 

between the target machine and obstacles on construction sites. To address the 362 

foregoing problem, we design an independent onboard system configured for the 363 

excavator. An additional advantage of the developed system is that all the required 364 

keypoints can be located only by obtaining the position of a single feature point. 365 

Compared to previous studies [10, 11] where the pose of the excavator needs to be 366 

estimated by identifying multiple points distributed in different components, our 367 

method can improve the deployment efficiency and reduce the computational cost. As 368 

illustrated in Fig. 4, the proposed image-based onboard motion tracking method 369 

consists of four components: (1) hardware setup; (2) camera calibration; (3) single 370 
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feature point tracking; and (4) image-based keypoint estimation. The sub-sections 371 

explain the method in detail.  372 

 373 

Fig. 4 Image-based onboard pose estimation method for excavators 374 

Hardware Setup. The independent onboard method is designed with inspiration from 375 

the features of the operators’ practical excavation works. Specifically, during digging 376 

and dumping, the operators pay more attention to the location of the excavator’s arm, 377 

and they always ensure that the lower part of the arm can be seen without any occlusion, 378 

while the bucket is usually obscured by rock or soil. In addition, the operators 379 

intuitively estimate the current pose of the excavator using their eyes by observing the 380 

arm. According to such experience, it is found that if cameras are simulated as the 381 

operator’s eyes and estimate the poses of the excavator like human, the problem of 382 

occlusions can be solved to a large extent. Hence, two cameras, which provide RGB 383 

and geometric information simultaneously, are used to build a stereo vision module in 384 

the proposed independent onboard method, which is mounted at the front of the cabin 385 

to simulate the operator’s eyes. A marker is attached to the lower part of the arm to 386 

mimic the focus of the operator’s eyes to facilitate estimating poses. The marker should 387 

be always in the view of cameras. Fig. 5 shows the actual operator’s view and the view 388 

obtained by the stereo vision module, as well as the attached marker. As shown in this 389 

figure, due to the limited field of view, the cameras can only provide the positions of 390 

partial keypoints on the excavator, i.e., the boom joint (K2), the arm joint (K3), and the 391 

bucket joint (K4). As the bucket is usually blocked by soil and rocks during excavation, 392 

it is impossible to effectively provide the position of the end point of the bucket (K5). 393 

Since the cameras are installed on the cabin, it is also impossible to observe the position 394 

of the end of the cabin (K1). However, information on K1 and K5 will be obtained by 395 
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methods introduced in Section 3.2.2. 396 

 397 

Fig. 5 Comparison of (a) the actual operator’s view with (b) the view as obtained by the stereo 398 

module 399 

Camera Calibration. This is the process of obtaining intrinsic and external information 400 

about the camera and standardizing the image through estimating the camera’s 401 

parameters. Camera calibration technologies have been quite mature, and this study 402 

adopts Zhang’s method [33], which features a simple process with no professional-403 

grade equipment, and is completed only by viewing a checkerboard with unknown 404 

orientations. When using a stereo vision module, in addition to calibrating each of the 405 

two cameras independently, the rotational and translational relationships between 406 

cameras also need to be established. This study uses the stereo calibration method by 407 

Hartley [34], which uses an essential matrix to show the relationship between the image 408 

pair normalized by the intrinsic and external parameters. After the camera calibration, 409 

images from the visual sensors are normalized and prepared for the feature point 410 

tracking. 411 

 412 

Single Feature Point Tracking. Instead of requiring information of all keypoints, a 413 

single feature point is used to improve the efficiency of having to track multiple 414 

keypoints. The single feature point is defined as the centroid of the marker, and its 415 

coordinates are tracked in the camera reference frame based on the standardized images. 416 

First, the outer contour of the attached marker is detected. Although various types of 417 

markers are available in this method, in order to overcome the changing background on 418 

construction sites and enhance the stability of detection, binary square fiducial markers 419 

with their pre-defined libraries, such as ArUco [35], are selected in this study. After 420 

that, the feature point (𝑢𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑣𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)  in RGB images is calculated using 421 
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moments, as shown in Eqs. (1) and (2). 422 

𝑢𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑𝐼(𝑢, 𝑣)𝑢𝑖

∑𝐼(𝑢, 𝑣)
 

(1) 

𝑣𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑𝐼(𝑢, 𝑣)𝑢𝑖

∑𝐼(𝑢, 𝑣)
 

(2) 

where 𝑢𝑖 and 𝑣𝑖 denote the pixel coordinates of the i-th mass point along the u and v 423 

axes respectively; 𝐼(𝑢, 𝑣) denotes the density function related to the mass of each 424 

point in the contour. Fig. 6 shows an example of detected outer contour of a fiducial 425 

marker attached on the excavator and its centroid. Afterwards, the depth information of 426 

the feature point is extracted from the corresponding positions of the 3D map generated 427 

by the stereo vision module. Finally, combining the given pixel coordinates of the 428 

feature point and its depth information, the location of this point is projected to the 429 

camera reference frame based on basic camera model [36], using Eqs. (3) and (4).  430 

𝑥𝑐 = 𝑧 ∗ (𝑢𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 − 𝑐𝑥)/𝑓𝑥 (3) 

𝑦𝑐 = 𝑧 ∗ (𝑣𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 − 𝑐𝑦)/𝑓𝑦 (4) 

where (𝑥𝑐, 𝑦𝑐)  shows the coordinates of the feature point in the camera reference 431 

frame in x and y-axes; z is the depth information of the feature point; 𝑐𝑥  and 𝑐𝑦 432 

denote the optical center of the camera; 𝑓𝑥 and 𝑓𝑦 represent the focal length of the 433 

camera. All the camera parameters are included in the intrinsic matrix obtained in 434 

camera calibration. 435 

 436 

(a) Detected outer contour of a fiducial marker (b) Centroid of the detected marker 

Fig. 6 Detected outer contour of a fiducial marker and its centroid computed by moments. 437 

Image-based Keypoints Estimation. Combining the location of the single feature point 438 

and physical parameters of the excavator, this step estimates, in the camera’s reference 439 

frame, the coordinates of the target keypoints on the excavator (i.e., the boom joint 440 

(K2), the arm joint (K3), and the bucket joint (K4)). The major challenge of the 441 
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developed method is that due to the large motion amplitudes of operating excavators 442 

and limited field of view of the camera, it is impossible to always keep each target 443 

keypoint in the field of vision of the cameras. In the proposed method, to ensure the 444 

marker attached to the lower part of the arm is always visible, the position of the arm 445 

joint (K3) cannot be directly observed in images. The location of the keypoint beyond 446 

the visual range (e.g., in a blind spot) is estimated through known information. A 447 

geometric decoder of excavators is designed to estimate the coordinates of the blind 448 

spot based on a given feature point and physical information of the excavator, and then 449 

further determine locations of all target keypoints in the camera reference frame. Fig. 8 450 

shows details of the developed algorithm of the geometric decoder. First, six physical 451 

parameters of the excavator are manually measured in advance: (1) L1 — length of the 452 

boom, (2) L2 — distance from the joint point between the boom and the arm to the 453 

centroid of the marker, (3) L3 — length of the arm, (4) L4 — horizontal distance from 454 

the center of the camera to the boom joint, (5) L5 — vertical distance from the center 455 

of the camera to the boom joint and (6) L6 — depth from the center of the camera to 456 

the boom joint. Fig. 7 illustrates the physical information of an excavator, where the 457 

yellow point represents the blind spot, while the blue point M represents the centroid 458 

of the detected marker. Afterwards, K3 is estimated based on the structural relationship 459 

of the excavator. Eqs. (5) and (6) elaborate the basic principles of the blind spot 460 

estimation: 461 

𝐾2𝐾3⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑= [0, −𝑠𝑖𝑛∠𝐾2 ∗ 𝑧𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  + 𝑐𝑜𝑠∠𝐾2 ∗ 𝑦𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝑐𝑜𝑠∠𝐾2 ∗ 𝑧𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  + 𝑠𝑖𝑛∠𝐾2 ∗ 𝑦𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ] (5) 

𝐾3 = [𝑥𝐾2, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑦𝐾2𝐾3⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ) ∗ 𝐿1 + 𝑦𝐾2, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑧𝐾2𝐾3⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ) ∗ 𝐿1] (6) 

where(𝑥𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝑦𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝑧𝐾2𝑀⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )  shows the vector K2M; 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥𝐾2𝐾3⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝑦𝐾2𝐾3⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 𝑧𝐾2𝐾3⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ) 462 

denotes the normalized vector K2K3; (𝑥𝐾2, 𝑦𝐾2, 𝑧𝐾2) denotes the coordinates of the 463 

K2 all in the camera reference frame. Finally, according to the estimated blind spot K3 464 

and the length of the arm (L2), the coordinates of the K4 can be computed. When 465 

locations of all target keypoints are recorded at each moment, the trajectories of these 466 

keypoints in the camera reference frame are drawn to describe the motion of partial 467 

excavator.   468 
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 469 

Fig. 7 Physical parameters of an excavator. 470 

 471 

Fig. 8 Algorithm of geometric decoder of excavators to track target keypoints in the camera 472 

reference frame. 473 

3.2.  Full-body Pose Estimation Based on Data Fusion 474 

As discussed in Section 3.1, data collected by IMUs and cameras in the onboard visual-475 

inertial sensor system is used separately to measure the excavator’s motion. However, 476 

two problems need to be further investigated. Firstly, measurements from different 477 

sensors are imprecise and unstable. Due to the negative influence of the sensors’ 478 

intrinsic mechanical structure and the external environment, the unmodeled deviation 479 
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and feature missing (e.g., stochastic noise and data loss) affect the accuracy of the 480 

measurements inevitably and increase uncertainty of the motion tracking system. 481 

Secondly, homogeneous sensors have limited spatial coverage, so they cannot provide 482 

thorough information on the full pose of an excavator. Specifically, for cameras, due to 483 

their limited field of view, it is difficult to measure the movements of the bucket and 484 

the cabin. To address such problems, this study proposes to fuse the IMU and camera 485 

data by a visual-inertial system. First, to improve the accuracy and robustness of the 486 

system, a competitive fusion is achieved in the articulated part of the excavator (i.e., 487 

boom and arm). A multiple keypoints localization algorithm is developed to combine 488 

the IMU and camera measurements competitively and find optimal estimations of the 489 

locations of the keypoints in the camera reference frame. After that, an effective 490 

complementary fusion is conducted with data at the cabin and the bucket to extend the 491 

spatial coverage of independent sensors and provide full-body pose information of the 492 

excavator. 493 

 494 

3.2.1. The Developed Multiple Keypoints Localization Algorithm for Excavators 495 

Based on Competitive Fusion 496 

An EKF (Extended Kalman Filter), a classical approach for non-linear stochastic 497 

system [37], is utilized in this study for competitive data fusion. An EKF linearizes non-498 

linear systems using first-order approximation, and gives optimal results via a process 499 

with long iterative tuning. The EKF compensates for the limitations of using IMUs and 500 

cameras separately in motion tracking, so that the sensor fusion system has better 501 

performance than using a single type of sensors. The general EKF functions [37] are 502 

given. Let 503 

𝑥𝑘+1 = 𝑓 (𝑥�̂�, 𝑢𝑘, 𝑤𝑘), 𝑤𝑘~𝑁(0, 𝑄𝑘) (7) 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑣𝑘), 𝑣𝑘 ~ 𝑁(0, 𝑅𝑘) (8) 

where 𝑓(∙)  is the state transition unction; 𝑥𝑘  denotes a state vector; 𝑢𝑘  denotes a 504 

known control input; 𝑤𝑘 denotes the process noise, and 𝑣𝑘 denotes the measurement 505 

noise; 𝑦𝑘 represents the measurement vector; ℎ(∙) is the observation function, all in 506 

time k. The process noise 𝑤𝑘 and measurement noise 𝑣𝑘 are assumed as zero-mean 507 

white Gaussian noise with covariance matrixes 𝑄𝑘  and 𝑅𝑘 , respectively. The EKF 508 

takes the first-order part of the Taylor expansion at its reference point as the 509 

approximation of the linear model and obtains the linearized description of the 510 

nonlinear system at time k. The prediction equations of the linearized system are given 511 
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in Eqs. (9) and (10): 512 

𝑥𝑘
− =  𝐴(𝑥𝑘−1̂, 𝑢𝑘) (9) 

𝑃𝐾
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 (10) 

where A is the transition matrix, which is the partial derivative of 𝑓(∙) with respect to 513 

the x at 𝑥�̂�
 
; P denotes the variance of the predicted state estimate. The measurement 514 

update functions are shown as Eqs. (11) and (12).   515 

𝑥�̂� = 𝑥�̂�
− + 𝐾𝑘(𝑦𝑘 − 𝐻(𝑥�̂�

−) (11) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (12) 

where the Kalman gain 𝐾𝑘 is given as Eq. (13):  516 

𝐾𝑘 =
𝑃𝑘

−𝐻𝑘
𝑇

𝐻𝑘𝑃𝑘
−𝐻𝑘 + 𝑅

 (13) 

𝐻𝑘 is the Jacobian matrix, which is the partial derivative of ℎ(∙) with respect to x at 517 

the prior state estimation 𝑥�̂�
−

. 518 

 519 

The state transition functions, and observation functions are built based on the specific 520 

motion modes of the excavator. It is noted that according to the characteristics of 521 

excavator motions, the keypoints tracking problem in 3D space can be projected onto a 522 

2D plane to reduce the complexity of the functions and improve computational 523 

efficiency. Since the stereo vision module is installed on the cabin, no matter how the 524 

components move, including the rotation of the cabin, all the target keypoints can be 525 

projected onto a fixed 2D plane in the camera frame. Fig. 9 illustrates the excavator 526 

model and the projected 2D coordinates system. In the projected 2D plane, the boom 527 

joint (K2) is a fixed point, which can be determined by the physical parameters of the 528 

excavator. The arm joint (K3) and the bucket joint (K4) are moving according to the 529 

movement of different components.  530 

 531 

Fig. 9 Excavator model and projected 2D coordinates system. 532 

In the algorithm, the locations of K3 and K4, which are directly observed by cameras, 533 

are inputted as measurements. The changes of relative angles estimated by IMUs (i.e., 534 
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the change of the joint angle between the cabin and the boom, and the change of the 535 

joint angle between the arm and the boom) are used to predict the state estimations. The 536 

state vector is given as: 537 

𝑋𝑘 = [𝑥3, 𝑦3, 𝑥4, 𝑦4]
𝑇 (14) 

where (𝑥3, 𝑦3) denotes the coordinates of K3, and (𝑥4, 𝑦4) denotes the coordinates 538 

of K4, all in the projected 2D frame. According to the kinematic relationship of the 539 

excavator model, the state transition functions are given as follows: 540 

𝑥3
𝑘 = 𝑥2 + (𝑥3

𝑘−1 − 𝑥2)𝑐𝑜𝑠𝑢1 − (𝑦3
𝑘−1 − 𝑦2)𝑠𝑖𝑛𝑢1 (15) 

𝑦3
𝑘 = 𝑦2 + (𝑦3

𝑘−1 − 𝑦2)𝑐𝑜𝑠𝑢1 + (𝑥3
𝑘−1 − 𝑥2)𝑠𝑖𝑛𝑢1 (16) 

𝑥4
𝑘 = 𝑥3

𝑘 + (𝑥4
𝑘−1 − 𝑥3

𝑘−1)𝑐𝑜𝑠𝑢2 − (𝑦4
𝑘−1 − 𝑦3

𝑘−1)𝑠𝑖𝑛𝑢2 (17) 

𝑦4
𝑘 = 𝑦3

𝑘 + (𝑦4
𝑘−1 − 𝑦3

𝑘−1)𝑐𝑜𝑠𝑢2 + (𝑥4
𝑘−1 − 𝑥3

𝑘−1)𝑠𝑖𝑛𝑢2 (18) 

where (𝑥2, 𝑦2) denotes the coordinates of the known fixed-point K2; 𝑢1 denotes the 541 

change in the joint angle between the cabin and the boom; 𝑢2 is the sum of 𝑢1 and 542 

the change of the joint angle between the arm and the boom. These state transition 543 

functions show that the estimates of K3 and K4 are not independent. Specifically, 544 

estimating K3 is based on the known fixed-point K2, and estimating K4 is based on the 545 

estimation of K3 at time k–1. Then, since the excavator model is nonlinear, these 546 

functions need to be linearized by first-order Taylor expansion, and the state transition 547 

matrix can be written as: 548 

𝐀 = [

𝑐𝑜𝑠𝑢1 −𝑠𝑖𝑛𝑢1

𝑠𝑖𝑛𝑢1 𝑐𝑜𝑠𝑢1

0 0
0 0

−𝑐𝑜𝑠𝑢2 𝑠𝑖𝑛𝑢2

−𝑠𝑖𝑛𝑢2 −𝑐𝑜𝑠𝑢2

𝑐𝑜𝑠𝑢2 −𝑠𝑖𝑛𝑢2

𝑠𝑖𝑛𝑢2 −𝑐𝑜𝑠𝑢2

] (19) 

The process noise covariance is from the IMUs and given as: 549 

𝐐 = 𝐼4𝛿𝐼𝑀𝑈
2  (20) 

where 𝛿𝐼𝑀𝑈
 

 is the variance in IMU noise. The measurement noise covariance is from 550 

the cameras and is given as: 551 

𝐑 =  𝐼4𝛿𝐶𝐴𝑀
2  (21) 

where 𝛿𝐶𝐴𝑀
 

 is the variance of camera noise. In addition, since the stereo vision module 552 

can directly provide the coordinates of K3 and K4 as the measurements, the observation 553 

matrix is given as: 554 

𝑯 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] (22) 
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So far, the trajectories of K3 and K4 in the projected 2D frame have been obtained by 555 

the proposed data fusion algorithm. These trajectories can be easily reconstructed from 556 

2D to the 3D camera reference frame, which will be shown in Section 3.2.2. 557 

Additionally, to meet the needs of tracking multiple keypoints of an excavator in 558 

practice, there are two mechanisms specially designed in the proposed algorithm. The 559 

first mechanism is for synching the sampling rates of different sensors. In detail, the 560 

sampling rates of the IMUs are always much higher than that of cameras, so the IMU 561 

data needs to be integrated into the same sampling rates as the cameras to ensure 562 

consistent calculation. We therefore defined an adjustment parameter n in Eq. (23), 563 

which is equal to the integer portion of the ratio of the IMU’s sampling frequency to 564 

the camera’s sampling frequency. Before the competitive fusion, the n data provided by 565 

the IMUs are integrated from the camera statues k-1 to k, as the control input , to 566 

consistent the sampling rates of different sensors, as shown in Eq. (24). 567 

𝑛 = [
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐼𝑀𝑈

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎
] (23) 

𝑢𝑘 = ∑𝐼𝑀𝑈𝑖

1

𝑖=𝑛

 (24) 

The second mechanism is for monitoring outliers to enhance the robustness of the 568 

motion tracking system. There are two judgments for outliers: (1) If the differences 569 

between the measurement and the estimation exceed a preset threshold, the 570 

measurement will be accepted by the optimal result; (2) If measurements are lost, the 571 

estimations will be accepted by the optimal result. This mechanism allows users to 572 

adjust the fault tolerance of the algorithm based on their needs, improving the stability 573 

of the system in abnormal situations. 574 

 575 

3.2.2. Tracking Other Keypoints of An Excavators Based on Complementary 576 

Data Fusion 577 

This section determines the trajectories of the motions of all keypoints of an excavator 578 

in the world reference frame by complementarily fusing the optimal trajectories of 579 

partial keypoints (detailed in Section 3.2.1) with the motions of non-optimizable 580 

components (i.e., the cabin and the bucket) estimated by IMUs. 581 

 582 

Due to the limited measurements provided by the cameras, the proposed multiple 583 

keypoints localization algorithm based on competitive data fusion can only obtain the 584 
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trajectories of partial keypoints on the excavator (i.e., the arm joint (K3) and the bucket 585 

joint (K4)) in the camera reference frame. The end of the cabin (K1) and the boom joint 586 

(K2) are fixed points in the camera reference frame, which are only related to some 587 

physical information of the excavator (i.e., the length of the cabin, spatial distances 588 

between the boom joint and the camera). To describe the 3D full-body pose of the 589 

excavator, the location of the end of the bucket (K5) and the rotation of the cabin need 590 

to be estimated. Therefore, it is necessary to complementarily fuse data from IMUs 591 

attached to the bucket and the cabin to perform the measurements while the cameras 592 

cannot. First, as mentioned in Section 3.1.2, IMUs can independently estimate the joint 593 

angles between the bucket and the arm. Based on this relative angle, the locations of 594 

K5 can be easily appended to the incomplete excavator model in the camera reference 595 

frame by trigonometric functions. Afterwards, the IMU attached to the cabin 596 

complementarily provide the cabin rotating angle, which can help to transform the 597 

excavator motions from the camera frame to the world reference frame. Specifically, 598 

the transformation from the camera frame to the world frame required the orientation 599 

of cameras in the world frame. In our study, the cameras are mounted on the cabin so 600 

that the camera rotation is represented by the cabin rotating angles estimated by IMUs. 601 

This transformation acts on each keypoint of the excavator through a matrix 𝑇𝑤𝑐 , 602 

shown in Eq. (25). 603 

𝑇𝑤𝑐 = [
𝑅𝑤𝑐 𝑡𝑤𝑐

0𝑇 1
] 

(25) 

where the 𝑅𝑤𝑐 denotes the rotation of the camera frame relative to the pre-defined 604 

world frame, represented by a rotation matrix. This rotation is composed of the cabin 605 

rotating angle and a fixed rotation defined by the world frame in advance. 𝑡𝑤𝑐 denotes 606 

the position of the camera in the world frame, represented by a translation vector. Thus, 607 

based on complementary data fusion, the spatial coverage of the proposed competitive 608 

algorithm can be effectively extended and the full-body poses of the excavator are 609 

estimated in the world reference frame. 610 

 611 

4. Experiments and Discussions 612 

In this section, firstly, the EKF-based multiple keypoints localization algorithm 613 

developed in this study is applied on an excavator to test and evaluate its accuracy and 614 

robustness. Afterwards, based on the estimated locations of keypoints, full-body poses 615 

of the excavator are modeled to verify the feasibility of the proposed framework. More 616 
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details are given in the subsections. 617 

4.1. Experiment Setup 618 

To fully prove the performance of the proposed framework in practical applications, the 619 

experiment was carried out on a real construction site using a real machine. Fig. 10 620 

shows the devices used in the experiment. Image-based data acquisition was done using 621 

a fiducial marker (ArUco) attached onto the arm of the excavator and two RGB cameras 622 

embedded in mobile phones (OPPO Reno6), which formed a stereo module. The 623 

resolutions of the RGB cameras were 1280 x 720, and the frame rates were 30 frames 624 

per second (FPS). The cameras were installed on the front window of the excavator 625 

(model: FR65E2-H, make: LOVOL). In addition, IMU data was collected by the 626 

commercial IMU sensors LPMS-B2, equipped with embedded lithium batteries 627 

(3.7V@230mAh), which can work continuously for more than 6 hours, and with a 628 

sampling frequency of 100 Hz. These IMU sensors were non-invasively installed on 629 

the surface of each movable component (i.e., cabin, boom, arm, and bucket), which 630 

allows the sensors to be easily recharged, maintained, and replaced. The IMU is 631 

equipped with a Bluetooth transmitting and receiving module, which supports real-time 632 

data transmission (delay < 15ms), and the data was received and stored in a PC terminal 633 

within 20 meters. To validate the estimated pose of the excavator, another depth camera 634 

(RealSense D435i) was set on one side of the excavator to collect data as ground truth. 635 

By manually labeling and determining the positions of pre-defined keypoints in the 636 

depth camera coordinate system, the relative angles between adjacent components of 637 

the excavator were obtained. Then, according to the motions of each component pair 638 

and the structural relationship of the excavator, the locations of the pre-defined 639 

keypoints of the excavator were computed in the experimental coordinate system as 640 

ground truth. To ensure the reliability of the ground truth, the following methods were 641 

taken to reduce the potential noises of the measurements: (1) Depth information of the 642 

multiple points labeled near the pre-defined keypoints was averaged; (2) Two depth 643 

cameras simultaneously recorded the motions of the excavator, and their measurements 644 

were averaged; (3) The depth cameras were set close to the excavator about 2 meters. 645 
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 646 

Fig. 10 Devices used in the on-site experiment 647 

 648 

4.2. Performance Evaluation of the EKF-based Multiple Keypoints Localization 649 

Algorithm  650 

The performance of the proposed algorithm as data-fusion-based keypoints localization 651 

of the excavator is evaluated and discussed on accuracy and robustness in two cases: 652 

(1) independent motion and (2) continuous motion.  653 

 654 

In the case of independent motion, the components of the excavator are operated, 655 

including the lifting and lowering of the boom and arm, independently respectively. 656 

This case focuses on verifying the performances of the proposed algorithm in tracking 657 

a single keypoint of an excavator so only the point directly affected by the independent 658 

motion is concerned in this case. Specifically, when the boom moves, the performance 659 

(i.e., accuracy and robustness) of tracking the arm joint (K3) is evaluated; When the 660 

arm moves, the performance of tracking the bucket joint (K4) is evaluated. The boom 661 

trial involves four repeated cycles of boom motions and evaluates 2100 sets of IMU 662 

data and 630 independent measurements from the camera. The arm trial includes four 663 

repeated cycles of arm motions, and 2185 sets of IMU data and 656 independent 664 

measurements from the camera are evaluated. The data contains all the motion modes 665 

of the components, so it is diverse.  666 

 667 

Pose information of the excavator estimated by IMUs is computed using an existing 668 

method which has been evaluated in [12] in detail. Raw data is collected by IMUs 669 

attached on different movable components of the excavator and processed to estimate 670 

the orientation of each component using the method explained in Section 3.1.2. The 671 

static initial pose of the excavator required for IMU-based pose estimation is provided 672 

by the stereo vision module. These orientations of movable components are calculated 673 

into the pose information from IMUs which is required by the proposed data-fusion-674 

based keypoints localization algorithm. 675 
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 676 

The image data describing the current pose of the excavator is captured by a stereo 677 

vision module composed of two RGB cameras installed on the cabin. The baseline 678 

between the cameras is 100 mm to ensure a relatively stable acquisition of the depth 679 

information of the feature point when the arm of the excavator is away from the 680 

cameras. After camera calibration, each standardized images pair is generated a stereo 681 

anaglyph and a disparity map, and the depth information of each recognizable point is 682 

reconstructed on the left view. Fig. 11 illustrates an example of the original image, the 683 

stereo anaglyph, and the disparity map in the experiment. Then, the contour of the 684 

fiducial marker is identified on the corresponding left view, and the pre-defined feature 685 

point as the centroid of the marker is determined on the image based on the contour, as 686 

introduced in Section 3.1.3. The coordinates of the feature point in the camera reference 687 

frame are obtained by retrieving the depth information of the centroid. Combined with 688 

the coordinates of the feature point and the physical parameters of the excavator, the 689 

trajectory of K3 and K4 are obtained in the camera frame by the proposed geometric 690 

decoder. Table 1 shows the physical parameters of the excavator in the image-based 691 

onboard motion tracking. The trajectories of K3 and K4 provide a direct observation 692 

for the locations of keypoints which are the inputs of the data-fusion-based localization 693 

method from cameras. 694 

 695 

Fig. 11 An example of the original image, the stereo anaglyph, and the disparity map 696 

 697 

Table 1 Physical parameters of the excavator used in the image-based on-board motion tracking 698 

Physical parameters Length (mm) 
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L1: Length of the boom 3100 

L2: Distance from the arm joint to the centroid of the marker 600 

L3：Length of the arm 1500 

L4: Horizontal distance from the stereo module to the boom joint 365 

L5: Vertical distance from the stereo module to the boom joint 270 

L6: Depth from the stereo module to the boom joint 340 

 699 

After synchronizing the first moving point to align different data on the timeline, the 700 

pose information contributed from the IMUs and cameras is merged and inputted into 701 

the keypoint localization algorithm. The parameters used for the algorithm tunning are 702 

listed in Table 2. Since the articulated parts of the excavator are coplanar in the camera 703 

frame, the performance of tracking K3 and K4 is evaluated on the projected 2D frame. 704 

In this study, the root mean squared error (RMSE) is used to represent the average errors 705 

of the estimated keypoint location, as it is common to use RMSE to measure the 706 

differences between estimated values and ground truths. Table 3 shows the results and 707 

their RMSEs in the case of independent motions.  708 

Table 2 Parameters for the proposed algorithm tunning 709 

Variables Meanings 

Sampling interval of IMU sensors 100HZ 

Sampling interval between image frames 30 FPS 

Noise variance of IMU sensors, 𝛿𝐼𝑀𝑈
  0.1 

Noise variance of cameras, 𝛿𝐶𝐴𝑀
  0.59 

 710 

Table 3 Results of the independent motion case in x- and y- axes 711 

Components/Keypoint Results RMSEs(mm) 
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Boom/K3  

Camera_X= 80.41 

IMU_X= 96.15 

Optimal_X= 45.59 

 

Camera_Y= 75.64 

IMU_Y= 89.28 

Optimal_Y= 55.45 

Arm/K4 
 

Camera_X=108.91 

IMU_X= 147.43 

Optimal_X= 84.09 

 

Camera_Y=51.73 

IMU_Y= 87.63 

Optimal_Y= 40.39 

 712 

The trajectories of K3 and K4 are illustrated on the x-axis and y-axis respectively. Each 713 

figure includes four curves: the trajectory as directly observed by the stereo vision 714 

module; the trajectory estimated by the IMUs, the optimized trajectory estimated by the 715 
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developed algorithm, and the ground truth. Through comparing the curves, the 716 

robustness and accuracy of the developed algorithm are verified and discussed. Four 717 

distinct cycles, corresponding to the four repeated independent motions in each trial, 718 

can be observed in each curve. The amplitudes of these curves are consistent with the 719 

normal operation of an excavator. In terms of robustness, the results show that there are 720 

some outliers or zeros during the process of tracking keypoints using cameras. Such 721 

points represent the loss or large deviation of the image data captured at any given time. 722 

It is speculated that these noises are caused by sparse disparity maps or unrecognized 723 

makers due to environmental changes. In addition, the trajectories obtained by the 724 

cameras have obvious noise coming from the vibrations of the moving component and 725 

the unavoidable slight displacement of the cameras with the operation of the excavator. 726 

For IMU sensors, the results shown in Table 3 are obtained by integrating the IMU data 727 

directly. Obvious biases are observed in the trajectories, which exceed 1 degree over 20 728 

seconds and increase with time. It is speculated that these biases are caused by 729 

accumulating drifts of gyroscopes. In general, when relying on homogeneous sensors, 730 

especially the cameras, the keypoint localization system shows obvious instability, 731 

which may cause great deviation in the results or even failure of the system. In contrast, 732 

the trajectories estimated by the developed method are smooth and stable, which 733 

compensates for the missing observations of cameras and optimizes significant bias 734 

through the data from another source. Therefore, the experimental results demonstrate 735 

that the proposed sensor-fusion-based keypoints localization method is more robust 736 

than the method using homogeneous sensors, in independent motion tracking. It means 737 

that the developed method is less susceptible to extreme cases with data loss and 738 

obvious biases. To further investigate the accuracy, Table 4 shows overall results and 739 

average errors of the different methods on the keypoints localization which are 740 

calculated based on the estimated results in the x-axis and y-axis provided in Table 3. 741 

According to the RMSEs listed in Tables 3 and 4, the difference between the estimated 742 

trajectory obtained by the proposed method and the ground truth is in the range of 40 743 

to 84 mm, and the average errors are 73.76mm. Compared with the average errors of 744 

115.48mm based on camera observation and 151.36mm based on IMU estimation, it is 745 

found that the proposed method effectively improved the accuracy of keypoint 746 

localization. In addition, it is also observed that the errors of K4 localization are always 747 

slightly greater than K3, because the vibration of the arm caused by inertia is more 748 

obvious than that of the boom when the components of the excavator are moving. In 749 



29 

 

summary, the proposed sensor-fusion-based keypoints localization algorithm has better 750 

robustness and accuracy than the direct visual observations or IMU-based estimation, 751 

in the case of independent motion tracking. 752 

Table 4 Spatial RMSEs and average errors of the independent motion 753 

Methods RMSEs_K3(mm) RMSEs_K4(mm) Average(mm) 

Camera 110.39 120.57 115.48 

IMU 131.21 171.51 151.36 

Developed method 71.78 75.73 73.76 

 754 

To further investigate the effectiveness of the proposed method in the working states of 755 

the excavator with continuous motions, the second case focuses on using the proposed 756 

algorithm to track multiple keypoints (i.e., K3 and K4) simultaneously when the 757 

excavator digs and dumps. Each trial involves two repeated full working cycles of 758 

digging and dumping. In each cycle, multiple components of the excavator moved 759 

continuously, including the left and right rotation of the cabin, the up and down motion 760 

of the boom, the arm, and the bucket respectively. In this case, 3024 sets of IMU data 761 

and 907 independent measurements from the camera were respectively evaluated for 762 

each keypoint. The data contains all the motion modes of digging and dumping in 763 

practical, so it is diverse. Table 5 shows the results and their RMSEs in the case of 764 

continuous motions. 765 

Table 5 Results of the continuous motion case in the x- and y- axes 766 

Keypoints Results RMSEs 

K3 

 

Camera_X= 58.88 

IMU_X= 96.15 

Optimal_X= 54.89 
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Camera_Y= 62.45 

IMU_Y= 111.76 

Optimal_Y= 56.88 

K4 

 

Camera_X= 111.47 

IMU_X=166.50 

Optimal_X= 77.96 

 

Camera_Y= 106.08 

IMU_Y= 125.94 

Optimal_Y= 66.21 

 767 

From the figures of the trajectories in the x-axis and y-axis, two clear cycles can be 768 

observed in the results achieved by different tracking methods, corresponding to the 769 

two continuous work cycles of digging and dumping. From the perspective of 770 

robustness, similar to the first case, the keypoints trajectories obtained by the cameras 771 

are unstable, which can be obviously observed in the figures. Besides the outliers 772 

discussed in the first case, some continuous data losses were observed with an interval 773 

of 5 to 10 s. A possible reason is that as the cabin rotates, the changes of illumination 774 

render the fiducial marker unrecognizable. The instability of the IMU-based location 775 
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estimation manifested itself in the obvious drift caused by accumulated biases, which 776 

were observed on the trajectories computed through the direct integration of IMU data. 777 

Compared with the keypoints’ trajectories achieved by cameras and IMUs, the proposed 778 

method based on sensor fusion optimizes the estimated results by data from different 779 

sources, leading to smoother and more stable trajectories. Especially in the interval 780 

where the camera observations are missing, the proposed algorithm can still estimate 781 

the motion of the excavator by data from the other source – IMU, which means that the 782 

proposed algorithm degenerates into an IMU-only method but keeps the basic 783 

survivability and stability of the pose estimation system. Thus, the proposed method 784 

can effectively improve the robustness of multiple keypoints localization for excavators 785 

on construction sites. Table 6 shows the overall results and average errors of the 786 

continuous motion, which is calculated based on the RMSEs in the x- and y-axes 787 

provided in Table 5. Based on Table 6, the differences between the trajectories estimated 788 

by the proposed method and the ground truths are in the range of 54.89 to 102.28 mm 789 

with its average as 90.66mm. This result is less than the errors of camera observation 790 

as 119.85mm and IMU estimation 178.10mm. Therefore, it is proved that in the case of 791 

continuous motions, the proposed method can improve the robustness and accuracy of 792 

tracking multiple keypoints of excavators on construction sites. 793 

 794 

Fig. 12 illustrates the RMSEs of the estimated results based on the proposed method 795 

from the cases of independent motions and continuous motions. There is no significant 796 

difference in the trends of RMSEs in the two cases, and the total average numerical 797 

error for tracking the multiple keypoints of the excavator is 82.21 mm in value. In order 798 

to intuitively show the improved accuracy of the proposed algorithm, the average 799 

percent error (as a percentage of the total traveled distance) [38] is used to evaluate the 800 

errors of different methods. According to the above experimental results, the average 801 

percent error of the proposed algorithm accounts for 1.21% of the total traveling length 802 

(29372 mm computed by ground truth), which is lower than the error of the IMU-based 803 

approach at 2.38% and of the camera-based approach at 1.65%. Besides, in Fig. 12, it 804 

is observed that the errors of the second case are slightly larger than the of the first case. 805 

Here, two reasonable inferences are provided about this phenomenon: (1) When 806 

multiple keypoints of an excavator were tracked simultaneously, the estimation 807 

uncertainties of the previous keypoint were inherited by the following one. It means 808 

that the uncertainties were accumulated in K4, resulting in a relatively large deviation 809 
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in the K4 localization; (2) In the case of continuous motions, the rotating cabin and the 810 

moving bucket brought more unmodeled vibrations for the keypoints localization. 811 

Especially, if the machine stopped emergently, the strong swing of the articulated parts 812 

of the excavator on both the x- and y-axes caused by inertia affects the overall 813 

estimation accuracy. In summary, compared with the existing IMU-based pose 814 

estimation method and image-based motion tracking method for excavators, this 815 

experiment verifies that the proposed sensor-fusion-based algorithm can effectively 816 

improve the robustness and accuracy of keypoints localization for excavators, for 817 

estimating both single keypoint in the independent motions and multiple keypoints in 818 

continuous motions. 819 

Table 6 Spatial RMSEs and average errors of the continuous motion 820 

Methods RMSEs_K3(mm) RMSEs_K4(mm) Average(mm) 

Camera 85.83 153.87 119.85 

IMU 147.43 208.77 178.10 

Developed method 79.04 102.28 90.66 

 821 

 822 

Fig. 12 Comparison of the RMSEs of estimated results from case 1 and case 2 823 

 824 

Considering the changing implementation conditions on sites, the conclusion drawn 825 

from the experiment needs to be further discussed. Firstly, to investigate the influence 826 

of different excavator models on the performance of the proposed algorithm, a large 827 

excavator (model: ZAXIS 240, make: HITACHI) was used to repeat the continuous 828 

motions of digging and dumping in the third case and the estimation results were 829 

compared with the medium-sized excavator in the second case. Table 7 lists the 830 

specifications of the large excavator. To render the acquisition of depth information 831 
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relatively stable, the baseline of the stereo vision module was increased to 150 mm. 832 

Other hardware configurations were the same as in the previous experiment. Fig. 13 833 

illustrates the large excavator and the installation of the onboard devices. In this case, 834 

3020 sets of IMU data and 906 independent measurements from the camera were 835 

respectively evaluated for each keypoint. Table 8 shows the estimated results and their 836 

RMSEs in the case of the large excavator. 837 

Table 7 Physical parameters of the large excavator 838 

Physical parameters Length (mm) 

L1: Length of the boom 4560 

L2: Distance from the arm joint to the centroid of the marker 1000 

L3：Length of the arm 2900 

L4: Horizontal distance from the stereo module to the boom joint 790 

L5: Vertical distance from the stereo module to the boom joint 510 

L6: Depth from the stereo module to the boom joint 620 

 839 

 840 

Fig. 13 Large excavator and the installation of the onboard devices 841 

 842 

Table 8 Results of using the large excavator in the continuous motion case 843 

Keypoints Results RMSEs 
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K3 
 

Camera_X= 77.09 

IMU_X= 104.26 

Optimal_X= 61.34 

 

Camera_Y= 108.76 

IMU_Y= 155.04 

Optimal_Y= 63.13 

K4 

 

Camera_X= 257.43 

IMU_X=255.67 

Optimal_X= 179.88 
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Camera_Y= 225.26 

IMU_Y= 296.58 

Optimal_Y= 135.90 

 844 

In terms of robustness, it was observed that the proposed algorithm provides smoother 845 

trajectories with better stability in keypoint tracking for the large excavator, compared 846 

to the IMU-only and camera-only methods. In terms of accuracy, compared to the 847 

results of the medium-sized excavator shown in Table 6, the RMSEs of the large-sized 848 

excavator in Table 8 have a slight increase on all axes. However, according to Table 8, 849 

the average percent error of applying the proposed algorithm to the large excavator 850 

accounts for 1.11% (total travel distance: 74649 mm), which is lower than the error of 851 

the camera-only method at 1.53% and the error of the IMU-only method at 2.07%, and 852 

close to the average percent error of using the medium-sized excavator at 1.20%. 853 

Therefore, the proposed algorithm still obtains the smallest average error of keypoint 854 

tracking and optimized accuracy performance compared to the IMU-only and camera-855 

only methods. This result can be supported by theoretical analysis: the different 856 

excavator models would not import new uncertainty into the proposed algorithm, thus 857 

the effect of optimization on the accuracy and robustness of pose estimation is not 858 

affected by different sizes of excavators. In summary, though the numerical accuracy 859 

may change with the size of the excavator, it can be generalized that compared with 860 

tacking poses using homogenous sensors, the proposed algorithm can improve the 861 

accuracy and robustness of the pose estimation, regardless of different excavator 862 

models. 863 

 864 

In addition to the specification of excavators, varying visual conditions (e.g., changing 865 

backgrounds and lack of illumination in bad weather) also need to be considered in 866 

practice. First, to avoid the impact of background changes on the proposed algorithm, 867 

the image-based motion tracking in Section 3.1.3 uses the binary square fiducial marker 868 
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– ArUco and its pre-defined library, including a wide black border and an inner binary 869 

matrix which is uniquely identified based on the library. As a result, ArUco markers can 870 

be robustly identified regardless of the changing background [35], which ensures that 871 

the proposed framework is able to consistently acquire visual observations in different 872 

backgrounds. It has been also verified by the third case with the large excavator. 873 

According to Table 8, although the third case changes the background and visual 874 

conditions compared to the second case using the medium excavator, the observations 875 

of the large excavator’s motions were steadily obtained by identifying the ArUco 876 

marker attached to its arm. Therefore, it is concluded that the proposed framework is 877 

not affected by the changing background.  878 

 879 

Additionally, bad weather (insufficient illumination) may make the fiducial marker 880 

unrecognizable resulting in losing observations of the cameras. In this case, according 881 

to the principle of EKF [37], the proposed algorithm degenerates into the IMU-based 882 

pose estimation [12]. This degenerated situation has been verified in the 5-10s interval 883 

in case 2. Although the degraded algorithm loses the accuracy improvement brought by 884 

competitive data fusion, it keeps the basic survivability and stability of the pose 885 

estimation system, which is an advantage of the proposed algorithm based on sensor 886 

fusion. There are many studies dedicated to improving the quality of visualization in 887 

bad illumination (e.g., Zheng et al. [39]), which can facilitate the proposed algorithm 888 

to maintain accurate and stable estimation in bad weather. 889 

 890 

4.3. Full-body Pose Modeling of an Excavator 891 

To verify the feasibility of the proposed pose estimation framework for excavators, this 892 

section continuously models the full-body pose of the excavator using MATLAB 2020b 893 

based on the optimal trajectories of the K3 and K4 in the camera reference frame and 894 

data collected from the digging and dumping medium-sized excavator on construction 895 

sites.  896 

 897 

After obtaining the optimal trajectories of the K3 and K4 using the proposed multiple 898 

keypoints localization method, the full trajectories of other excavator keypoints need to 899 

be obtained, i.e., the end of the cabin (K1), the boom joint (K2), and the end point of 900 

the bucket (K5) in the camera reference frame. K1 and K2 are fixed points only related 901 

to the physical parameters of the excavator. The determination of K5 requires the joint 902 
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angle between the bucket and the arm estimated by the IMUs installed on the bucket 903 

and the arm, which is illustrated in Fig. 14 as Theta 2. The physical parameters required 904 

in the determination of the K1, K2, and K5 are listed in Table 9. Then, to reconstruct 905 

all the keypoints from 2D to 3D space, it is necessary to obtain the transformation 906 

matrix in a pre-defined world reference frame. In practice, the world reference frame is 907 

flexibly selected according to the user’s needs, so it usually different from the camera 908 

reference frame and need to be transformed. To show the process, the world reference 909 

frame is defined as a right-hand system, where the y-axis is the rotation axis of the 910 

excavator, the z-axis points to the initial optical axis of the cameras, and the origin is 911 

located on the ground. Thus, the transformation calculation is shown in Eq. (31).  912 

[

𝑥𝑤
 

𝑦𝑤
 

𝑧𝑤

1

] = [

𝑐𝑜𝑠𝜃𝑡 0
0 1

𝑠𝑖𝑛𝜃𝑡 −𝑥𝑠

0 −𝑦𝑠

−𝑠𝑖𝑛𝜃𝑡 0
0 0

𝑐𝑜𝑠𝜃𝑡 −𝑧𝑠

0 1

] ∗ [

𝑥𝑐

𝑦𝑐
𝑧𝑐

1

] (31) 

where 𝜃𝑡 denotes the cabin’s angle of rotation at time t (shown in Fig. 14 as Theta 1); 913 

(𝑥𝑤
 , 𝑦𝑤

 , 𝑧𝑤
 )  denote the coordinates of the keypoint in the world reference frame; 914 

(𝑥𝑐
 , 𝑦𝑐

 , 𝑧𝑐
 )  are the coordinates of the keypoint in the camera reference 915 

frame;(𝑥𝑠
 , 𝑦𝑠

 , 𝑧𝑠
 )  are the coordinates of the cameras in the world reference frame, 916 

which are listed in Table 9. Then, the full-body poses of the excavator are represented 917 

by the motion trajectories of all keypoints determined in the pre-defined, world 918 

reference frame. Fig. 15 shows two examples of the full-body pose modeling of the 919 

excavator at two time slots. Additionally, considering the requirement of operational 920 

safety monitoring on response time in practice, the proposed framework was conducted 921 

a timing-test on the laptop (model name: Lenovo Legion Y7000P2021, CPU: i7-922 

11800H, GPU: GeForce RTX 3050Ti). The average response time of full-body pose 923 

estimation at each time slot based on the proposed framework is 0.038s, i.e., such data 924 

inference stage will cause a negligible delay in practice to track the pose of an excavator. 925 

Hence, this proposed framework can meet the needs of real-time data processing of 926 

operational safety monitoring in practice. It is proved that the proposed full-body pose 927 

estimation framework of excavators is feasible and reliable on construction sites. 928 

 929 

Table 9 Physical parameters of the excavator used in the 3D modeling 930 

Physical parameters Length (mm) 

Length of the cabin 1950 
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Length of the bucket 890 

x-coordinate of the camera (𝑥𝑠
 ) 100 

y-coordinate of the camera (𝑦𝑠
 ) 975 

z-coordinate of the camera (𝑧𝑠
 ) 100 

 931 

 932 

Fig. 14 Trajectories of the cabin’s angle of rotation (Theta 1) and the angle between the arm and 933 

the bucket (Theta 2) 934 

 935 

 936 

Fig. 15 Examples of the full-body pose modeling of the excavator in the world reference frame 937 

5. Conclusions 938 

This study proposes a full-body pose estimation framework for excavators that uses 939 

data fusion of multiple onboard sensors. In this framework, a non-invasive onboard 940 

visual-inertial system is developed to track the excavator motions on construction sites. 941 

Then, through competitive and complementary data fusion, the keypoints describing 942 
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full-body poses of the excavator are tracked in 3D space. In particular, an EKF-based 943 

multiple keypoint localization algorithm is developed to merge the pose information 944 

obtained from IMUs and cameras and optimize estimations of multiple keypoints of 945 

excavators simultaneously. A real case study verified that the proposed multiple 946 

keypoint localization algorithm effectively improved the robustness and accuracy of 947 

tracking pre-defined excavator keypoints. The experimental results show that, 948 

compared with using homogeneous sensors, the trajectories estimated by the proposed 949 

algorithm are smoother and more stable, and it has stronger survivability in complex 950 

situations on construction sites (e.g., data loss and strong vibration). The average 951 

RMSEs of the tested medium excavator between the estimated results based on the 952 

proposed algorithm and the ground truth is 82 mm in value. The average percent error 953 

of the proposed algorithm accounts for 1.21% of the total travelled distance, which is 954 

lower than 2.38% for the IMU-based method and 1.65% for the camera-based method. 955 

The proposed framework based on data fusion of multiple onboard sensors provides the 956 

theoretical basis for developing an accurate and robust 3D full-body pose estimation of 957 

excavators on real construction sites to monitor the motions of machinery in real-time 958 

and improve the operational safety. 959 

 960 

The limitation of the proposed framework is that the lack of the specific noise model of 961 

the excavator working on construction sites limits the accuracy of the proposed sensor-962 

fusion-based multiple keypoint localization algorithm. In future works, based on further 963 

analysis of the error sources of the visual-inertial sensor system, the noises of a working 964 

excavator, such as strong vibration caused by inertia and environmental interferences, 965 

can be modeled, which will improve the accuracy of the proposed algorithm. 966 

 967 
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