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Abstract
Whereas string diagrams for strict monoidal categories are well understood, and have found

application in several fields of Computer Science, graphical formalisms for non-strict monoidal
categories are far less studied. In this paper, we provide a presentation by generators and relations
of string diagrams for non-strict monoidal categories, and show how this construction can handle
applications in domains such as digital circuits and programming languages. We prove the correctness
of our construction, which yields a novel proof of Mac Lane’s strictness theorem. This in turn leads
to an elementary graphical proof of Mac Lane’s coherence theorem, and in particular allows for the
inductive construction of the canonical isomorphisms in a monoidal category.
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1 Introduction

String diagrams are a rigorous graphical notation for category theory that is proving useful
in a broad variety of application domains, such as quantum systems [9], computational
linguistics [8], digital circuits [12], or signal flow analysis [5]. What the majority of string
diagrammatic notations have in common is that they are devised for monoidal categories in
which the tensor is strict, i.e. the associator and unitor morphisms are identities. As Joyal
and Street explain in their seminal Geometry of Tensor Calculus [16], the choice of using a
strict monoidal category was motivated by convenience (“simplicity of exposition”) and by a
wish to focus on “aspects other than the associativity of tensor product”. Furthermore, they
believed that “most results obtained with the hypothesis that a tensor category is strict can
be reformulated and proved without this condition.”

Indeed, in terms of mathematical power, this statement is true. However, string diagrams
have been used increasingly as a convenient syntax for languages with models in (strict)
monoidal categories. And, when used as syntax, the distinction between strict and non-
strict tensor becomes relevant, if not in terms of mathematical expressiveness then at least
as a mechanism of abstraction. This is why modern programming languages, and even
some modern hardware design languages such SystemVerilog [22], use non-strict features
such as tuples and structs which can nest in non-trivial ways. These non-strict structures
could be manually “strictified” by the programmer by flattening them into arrays. Using
such programmer conventions instead of native syntactic support does not entail a loss
of expressiveness, but a loss of code readability, convenience, and general programmer
effectiveness.
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37:2 String Diagrams for Non-Strict Monoidal Categories

In this paper, we address the problem of expanding the graphical language of string
diagrams with the required features that allow the expression of non-strict tensors. What
makes the language of strict tensors convenient for the graphical representation is that objects
are naturally represented as lists of wires. This suggests that string diagrams make use of
strictness in an essential way and, indeed, naive attempts to define string diagram languages
for non-strict monoidal categories can render the notation so heavy-going as to lose the
intuitiveness that makes it so attractive in the first place. A more sophisticated solution,
which we propose here, is to deliberately use the strictification of a possibly non-strict
monoidal category in order to make string diagrams function in this setting with a minimum
of additional overhead. These points will be illustrated with examples in Section 2.

Concretely, the basic idea is to use new operations to “pack” pairs of wires into single
wires with internal tensorial structure and to “unpack” structured wires into pairs of wires
labelled with the tensor component objects. The repeated application of unpacking can
flatten any wire with an arbitrarily complex tensor structure into a list of wires labelled with
elementary objects. Other new operations are used to “hide” or “reveal” wires labelled with
the tensor unit. These four families of new operations are used to define the associators and
the unitors of the strictified category.

1.1 Contributions
We propose a strictification construction yielding a graphical language for non-strict monoidal
categories. With respect to traditional string diagrams, it provides a more fine-grained
representation of tensoring, whose usefulness we demonstrate in motivating examples drawn
from circuit theory and programming language semantics. The bulk of the paper is then
dedicated to showing that the construction is correct, i.e. the strictified category in which
string diagrams live is monoidally equivalent to the original non-strict category. Our proof
of monoidal equivalence is new: in contrast to Mac Lane’s we do not rely on the coherence
theorem, and instead construct the functors of the equivalence explicitly. Consequently, we
are able to give a new elementary proof of the coherence theorem: we show graphically that
the free monoidal category on a single generator forms a preorder. The remainder of the
coherence result is largely a reformulation Mac Lane’s original corollary, but in a way that
we believe has pedagogical value. For brevity, we reserve discussion of the corollary for an
extended version of the paper [23].

1.2 Related Work
The use of adapter morphisms which can “pack” and “unpack” wires has been explored in
various forms. Our adapters can be recovered as instances of more sophisticated constructs
used in the study of coherence of weakly distributive categories [3]. These categories use two
distinct tensors and an additional kind of wire (“thinning links”) in their string diagram
language. If this additional structure were to be somehow omitted the remaining constructs
would be rather similar to ours. However, this is not explored in [3], and it is not obvious
how this streamlined setting would lead to coherence results for “mere” monoidal categories
as a corresponding simplification of the coherence of weakly distributive categories. A
non-diagrammatic approach giving a type theory for symmetric monoidal categories can
also be found in [21]. The idea also appears in the study of quantum [6] and reversible [7]
circuits, although these do not study the connection to the strictness and coherence theorems.
The distinctive feature of our paper is to show explicitly how introducing adapters allows
non-strict categories to take advantage of graph based datastructures for strict monoidal
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categories such as those of [24]. More concretely, by explicitly defining the functors mapping
between a non-strict category and its “strictified” counterpart, we obtain datastructure-
independent algorithms for translating between strict and non-strict settings. In addition,
we formulate our approach using presentations by generators and relations, which brings
the strictness question much closer to current graphical calculi approaches to circuits such
as [17, 25, 13, 4, 2]. Finally, our approach allows us to give a self-contained proof of Mac
Lane’s strictness theorem that does not rely on the coherence theorem, allowing us to avoid
its associated pitfalls.

1.3 Synopsis

In Section 2 we present our graphical calculus for (non-strict) monoidal categories, in the form
of a strictification procedure. Subsections 2.1, 2.2, and 2.3 illustrate a series of motivating
examples. Section 3 justifies our construction by proving that it yields an equivalence of
categories. Section 4 revisits MacLane’s Coherence theorem and some of its consequences in
light of the approach we presented. Section 5 is dedicated to conclusions and future work.

2 A graphical language for (non-strict) monoidal categories

We assume familiarity with string diagrams for strict monoidal categories, see e.g. [20]. Let
us fix an arbitrary (non-strict) monoidal category C . We construct its strictification as the
strict monoidal category C defined as follows.

▶ Definition 1. (C , •) is the strict monoidal category freely generated by:
1. Objects A for each A ∈ C

2. Generators (1), with f : A → B for each f : A → B ∈ C

3. functoriality equations (2)
4. adapter equations (3), and
5. associator/unitor equations (4)

Note that because C is strict by definition, we are entitled to use string diagrammatic
notation. Thus, a morphism with m inputs and n outputs will have domain and codomain
of the form A1 • · · · •Am and B1 • · · · •Bn, respectively.

Φ
A

B
A⊗B ϕ∗IC

Φ
A

B
A⊗B ϕ∗IC

fA B

(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

idA =
A

f g = f # g
(2)

ΦΦ∗
f

g
= f ⊗ g

Φ Φ∗f ⊗ g =
f

g

ϕ ϕ∗
IC =

ϕϕ∗IC IC = IC

(3)
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37:4 String Diagrams for Non-Strict Monoidal Categories

α = Φ

ΦΦ∗

Φ∗

A⊗B

B ⊗ C

A

B

C
α−1 =

Φ∗

Φ∗ Φ

Φ

A⊗B

B ⊗ C

A

B

C

λ = Φ∗
ϕ∗

λ−1 = Φ
ϕ

ρ = Φ∗
ϕ∗

ρ−1 = Φ
ϕ

(4)

This is a functorial construction, yielding a monoidal equivalence between C and C , as
we will prove in Section 3. Note that although the category C is essentially the same as
that given by Mac Lane [18, p. 257], its construction differs in one key respect. Namely, to
define his equivalent strict category, Mac Lane relies on the coherence theorem to define
both composition of arrows and to ensure the functors in the equivalence are monoidal. In
contrast, the adapter generators and equations of C mean that Definition 1 does not require
use of the coherence theorem, and can therefore be used to prove it.

The functoriality equations are so-called as they ensure functoriality of the construction.
The “adapter” equations and “associator/unitor” equations further ensure this functor is
monoidal and it forms one half of a monoidal equivalence. Sec. 3 will make it clear that these
equations are essentially obtained by freely adding the morphisms required by the definition
of a monoidal functor (2).

Besides its mathematical significance, the interest of this construction lies in providing a
means of manipulating morphisms of non-strict monoidal categories graphically. In particular,
the ϕ and ϕ∗ generators can be used to explicitly summon and dispell the monoidal unit,
while the Φ and Φ∗ generators can be thought of as systematic ways of packing and unpacking
wires into more complex wires with internal structure. The next subsections will showcase
how this additional layer of structure can be useful in categorical models of computation.

2.1 Circuit Description Languages with Tuples
Categorical models of circuit description languages are a prime source of examples of
monoidal categories, for instance combinational [17] or sequential [12] circuits. The graphical
representation of circuits also fits naturally and intuitively the box-and-wire model used by
string diagrams. More precisely, the circuit description languages in loc. cit. (and variations
thereof) are instances of strict monoidal categories.

From the point of view of expressiveness, i.e. realising circuits with certain desired
behaviours, the strict setting does not introduce any limitations. Consistent with this
observation, standard hardware description languages (HDL) such as Verilog can also be
modelled using a strict monoidal tensor. However, larger and more complex designs stand
to benefit from the additional level of structure which a non-strict tensor can offer and,
indeed, more modern HDLs, intended for more complex designs, such as SystemVerilog have
syntactic facilities which require a non-strict tensor: structs.

Consider the following simple example. Suppose that some circuitry is needed to process
network packets, which consist of a header (of size h = 96 bits), a payload (of size p = 896
bits) and an error-correcting trailer (of size e = 32 bits). In the older Verilog language, the
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header and the payload can be combined in a single, wider, data bus of h + p = 992 bits,
but the two components can only be extracted using numerical indexing. This is a primitive
form of “flattening” a data structure into an array, and in the more modern SystemVerilog it
can be avoided by using a struct. This means that a data type of “message” (say m) can
access its components as fields (projections), namely m.h and m.p. Since structs can have
other structs as fields the way in which the components are associated is relevant, which
means that the tensor must no longer be strict.

On the other hand, “flattening” the structure of a data bus to an array of bits can be
useful. In the current example, in computing the error-correcting code e, the way the message
is partitioned into header and payload is no longer relevant, so it is convenient to unpack
the tensor h ⊗ p into a flat array of h + p wires from which an error-correcting code e is
computed by a generic circuit of the appropriate width. Structures that can be flattened like
this are called in SystemVerilog packed structs, and to model them properly both strict and
non-strict tensorial facilities are required in the categorical model.

Finally, the error-correcting code can be packed with the original message into an error-
correcting message with three components. It is obviously important to be able to retrieve
the header, payload, and error-correcting code separately from the message, and it should be
equally obvious that once the internal structure of the message is non-trivial a calculus of
indices would be a complicated, awkward, and error-prone way to access the components.

parity
H ⊗ P H

P
E (H ⊗ P ) ⊗ EΦ

Φ∗

Graphically, this circuit is represented above. In order to make this diagram completely
formal, what we are using here is the C construction described in Sec. 2 applied to one of the
categories C of digital circuits (combinational or sequential) mentioned earlier. This gives
us the best of both worlds: the “non-strictness” of circuits-with-tuples, and the graphical
syntax of string diagrams.

2.1.0.1 Strictifying Strict Categories

The “strictification” procedure is not just useful for providing a graphical syntax for non-strict
monoidal categories, but can also provide a more ergonomic syntax for monoidal categories
that are already strict. Suppose we wish to work in Lafont’s strict monoidal category of
circuits [17], and suppose we would like to define the “parity” function used earlier. Using
our construction, we can define it recursively as follows:

parity0 = false0 0 1 parityn =
parityn−1

XOR
n

n− 1

1
1

1

Φ∗

Notice that in the “base” language of Lafont’s PROP of circuits we cannot truly depict this
diagram, since there is no way to treat a bundle of n wires as a pair of 1 and n− 1 wires. To
do this formally we require the adapter morphisms as defined in Section 2.

2.2 Programming Languages
Programming languages, largely based on the lambda calculus, commonly include product
formation as a syntactic feature. Therefore, a graphical syntax based on its categorical
model, as used for example in [1], needs to have a non-strict tensor. However, having only

CSL 2023



37:6 String Diagrams for Non-Strict Monoidal Categories

the non-strict tensor leads to an awkward graphical syntax in which all generators have a
single wire going in and a single wire going out. Diagrams in which the interfaces can be
intermediated using lists of wires require mechanisms for strictification. This can be realised
by applying the strictification construction to a Cartesian closed category, which will allow
the expression of examples such as the one below.

Consider the simple task of summing two complex numbers, whose real and imaginary
parts are encoded as floating-point numbers. That is, while we have a primitive type of
reals, we model complex numbers as pairs C = R×R. A natural way to write such a program
in a diagrammatic form is pictured below.

+

+

CC × C

C

C

R

R

R

R

R

R

Φ∗

Φ∗

Φ∗

Φ

Even in categorical models of the simply-typed λ-calculus (STLC) without product, stric-
tification has a role to play. As usual, this role is cloaked in informality which in some
contexts can lead to ambiguity. STLC is interpreting by giving meaning to type judgements
Γ ⊢ t : T with Γ a context, t a term, and T a type. The context Γ = x1 : T1, . . . , xn : Tn is
a list of typed variables which is interpreted as the tensor T1 ⊗ · · · ⊗ Tn, virtually always
treated as if it were strict. This informal strictification can be problematic though when
product types are used, as the objects Ti in the interpretation of the context also contain
tensors. So the strictification must be fine-grained enough to allow only the flattening of
those tensors representing the comma of the context, and not those of the product formation.
Our approach offers this level of granularity.

2.3 Strict vs. Non-Strict String Diagrams
Our final example concerns the usability problems of non-strict diagrams without strictification
and illustrate how our approach to strictification with packing and unpacking wires makes
rigorous the intuition that formulating certain properties in terms of strict monoidal categories
does not entail a loss of generality. Our example uses braided autonomous categories. Here,
each object A has a dual A∗, there exists a family of isomorphisms cA,B : A⊗B → B ⊗A

called braidings, and families of adjunctions ηA : I → A∗ ⊗A, ϵ : A⊗A∗ → I with certain
properties which we may elide in the formulation of the example. Consider the property of
braided monoidal categories to be autonomous if and only if they are right-autonomous [15,
Prop. 7.2]. The proof is formulated in terms of string diagrams in [20, Lem. 4.17], which
makes it more intuitive.

The idea of the proof is to show that isomorphisms bA : A∗∗ → A, b−1
A : A → A∗∗ can be

constructed. They are defined as follows:

bA = A∗∗
ηA⊗id−−−−→ A∗⊗A⊗A∗∗

id⊗cA,A∗∗
−−−−−−→ A∗⊗A∗∗⊗A ϵA∗⊗id−−−−→ A

b−1
A = A

id⊗ηA∗−−−−→ A⊗A∗∗⊗A∗
c−1

A∗∗,A−−−−→ A∗∗⊗A⊗A∗ id⊗ϵA−−−−→ A∗∗.

The fact that bA; b−1
A = id becomes elegantly obvious when the terms are rendered as string

diagrams which can be manipulated graphically:

bA = A∗∗ A
b−1

A
=

A A∗∗
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The exposition includes the standard caveat that “Here we have written, without loss of
generality, as if [the category] were strict monoidal.” We shall now show, graphically, that
this is indeed the case.

First we note that in the non-strict setting (without strictification) all string diagrams
must be equipped with gadgets that make sure that there is a single wire on the left, and a
single wire on the right. These gadgets are of course the bundlers and unbundlers introduced
earlier. Therefore, in the non-strict setting, taking into account all the relevant associators,
the diagram for bA becomes much more complicated, denying the intuitiveness we expect
from a graphical notation (see below).

1 1

2 2 3 3

4 4 5 5

6 67 7

8 8

This is why a naive approach to non-strict string diagram construction is not effective.
However, the complications are only an artefact of the construction of the diagram in a purely
non-strict setting. The strictification equations come to rescue and, in this case, cancel out
all bundler-unbundler pairs in the order indicated by the numerical labels attached to them,
resulting in exactly the same diagram of bA that was constructed in the strict setting. So,
indeed, working in the strict setting implied no loss of generality!

3 Strictness

We now show that C is monoidally equivalent to C , constituting a proof of Mac Lane’s
strictness theorem, since C is an arbitrary monoidal category. Our approach is to define
monoidal functors S : C → C : N , and we begin by recalling the definition of monoidal
functor.

▶ Definition 2 (Monoidal Functor). Let (C ,⊗, IC ) and (D , •, ID) be monoidal categories.
A monoidal functor is a functor F : C → D equipped with natural isomorphisms ΦX,Y :
F (X) • F (Y ) → F (X ⊗ Y ) and ϕ : ID → F (IC ) such that the following diagrams commute
for all objects A,B,C ∈ C .

(F (A) • F (B)) • F (C) F (A) • (F (B) • F (C))

F (A) • F (B ⊗ C)

F (A⊗ (B ⊗ C))

F (A⊗B) • F (C)

F ((A⊗B) ⊗ C)

αD

idF (A) • ΦB,C

ΦA,B⊗C

ΦA,B • idF (C)

ΦA⊗B,C

F (αC )

(5)

F (A) • ID F (A) • F (IC )

F (A⊗ IC )F (A)

idF (A) • ϕ

ΦA,IC

F (ρC )

ρD

ID • F (B) F (IC ) • F (B)

F (IC ⊗B)F (B)

ϕ • idF (B)

ΦIC ,B

F (λC )

λD
(6)

With this definition it is straightforward to see how to define a monoidal functor from C

to C .

CSL 2023
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▶ Definition 3. Let S : C → C be the strictification functor defined on objects and morphisms
as S(A) := A and S(f) := f , respectively

▶ Proposition 4. (S,Φ, ϕ) is a monoidal functor.

Proof. S preserves identities and composition (and is therefore a functor) by the functor
equations (2):

S(idA) = idA = idA S(f # g) = f # g = f # g = S(f) # S(g)

It is a monoidal functor using the adapter generators Φ = ϕ and ϕ = ϕ from (1). For
this to work, we must have that ϕ is a natural isomorphism and ϕ an isomorphism,
respectively. This is a straightforward consequence of the adapter equations (3): Φ∗ # (f •g) =
Φ∗ # (f • g) # Φ # Φ∗ = f ⊗ g # Φ∗ and ϕ # ϕ∗ = id by definition. Similarly, we require that the
diagrams of (5) and (6) commute. Again, this is precisely what the the associator/unitor
equations (4) state, and so S is a monoidal functor. ◀

▶ Remark 5. Notice that C is defined by freely adding the requirements of Definition 2.
Generators ϕ and ϕ and equations (3) give the natural isomorphism Φ and isomorphism ϕ,
while the commuting diagrams (5) and (6) are precisely the “associator/unitor” equations (4).

We can now define the other half of the monoidal equivalence S ⊣ N . In doing so, we’ll
make use of the fact that morphisms of a monoidal category can be written in a “sequential
normal form” (Appendix A), i.e. as a series of “slices”

(id ⊗ g1 ⊗ id) # (id ⊗ g2 ⊗ id) # . . . # (id ⊗ gn ⊗ id)

where each gi is a generator. We take advantage of this form to define N : our definition is
defined on “slices” idX • q • idY for some generator q, and then freely on composition so that
N (f # g) = N (f) # N (g).

▶ Definition 6. We define the nonstrictification functor N : C → C inductively on objects:

N (IC ) := IC N (A) := A N (A •R) := A⊗ N (R)

And on morphisms we give a recursive definition, with the following base cases:

N (idI
C

) := idIC

N (f) := f

N (ΦA,B) := idA⊗B = N (Φ∗
A,B)

N (ϕ) := idIC = N (ϕ∗)

N (f • idY ) := f ⊗ idN (Y )

N (ΦA,B • idY ) := αA,B,N (Y )

N (Φ∗
A,B • idY ) := α−1

A,B,N (Y )

N (ϕ • idY ) := λ−1
N (Y )

N (ϕ∗ • idY ) := λN (Y )

N (idA • f) := idA ⊗ f

N (id
A

• ΦB,C) := idA⊗(B⊗C)

N (id
A

• Φ∗
B,C) := idA⊗(B⊗C)

N (id
A

• ϕ) := ρ−1
A

N (idA • ϕ∗) := ρA

With a single recursive case, for q ∈ {Φ, ϕ,Φ∗, ϕ∗, idQ}

N (idA • q • r) := idA ⊗ N (q • r)

Finally take N (f # g) := N (f) # N (g).

This definition is well defined with respect to the equations of Definition 1; we give a proof
in Appendix B, where we also note that N(f) is the same regardless of which “sequential
normal form” decomposition we choose for f .
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▶ Remark 7. The definition of N can be explained more intuitively in terms of programming.
If we think of each “slice” of the sequential normal form as a list of primitive arrows of C ,
then the definition of N is essentially a list recursion in which we have a separate case for 1,
2, and n-element lists.

Now we will show that N is a monoidal functor. To do this, we must specify the
“coherence maps”: a natural isomorphism ΨX,Y : N (X)⊗N (Y ) → N (X•Y ) and isomorphism
ψ : IC → N (IC ) as mandated by Definition 2.

▶ Definition 8. We define Ψ, the coherence natural isomorphism for N , in the following
cases:

ΨI
C

,I
C

:= λIC = ρIC ΨX,I
C

:= ρN (X) ΨI
C

,Y := λN (Y )

ΨA,Y := idA⊗N (Y ) ΨA•X,Y := α−1
A,N (X),N (Y ) # (idA ⊗ ΨX,Y )

▶ Definition 9. The coherence isomorphism ψ for N is defined as follows:

ψIC := idIC

▶ Remark 10. Note that both λIC and ρIC have the correct type as a choice for ΨI
C

,I
C

. In
fact, they are equal: unitors coincide at the unit object, i.e. λIC = ρIC , as noted in [10,
Corollary 2.2.5].

▶ Proposition 11. (N ,Ψ, ψ) is a monoidal functor.

Proof. It is clear that Ψ and ψ are natural isomorphisms since they are both composites of
natural isomorphisms. Thus it remains to check the diagrams of Definition 2 commute.

The squares (6) commute because ψ = id, and ΨA,I
C

= ρ and ΨI
C

,B = λ by definition.
Now let us check that the hexagon (5) commutes. Note that in the following we use that

N (αC ) = id, because C is strict, and so the hexagon axiom becomes a pentagon.
We will approach the problem inductively, checking base cases where A = I and A = A,

and finally the inductive step with A = A • R. Let us begin with A = I, and taking the
outer path of the hexagon we calculate as follows:

(idIC ⊗ ΨB,C) # ΨIC ,B•C # Ψ−1
B,C # (ΨIC ,B ⊗ idN (C))−1

= (idIC ⊗ ΨB,C) # λN (B•C) # Ψ−1
B,C # (λN (B) ⊗ idN (C))−1

= λN (B)⊗N (C) # (λN (B) ⊗ idN (C))−1

= αIC ,N (B),N (C)

Wherein we expanded the definition of Ψ, then used naturality of ΨB,C before applying the
monoidal triangle lemma of [10, (2.12)].

Now consider the second base case, where A is the “singleton list” A. In this case,
the hexagon diagram commutes immediately because ΨA,B = idA⊗N (B) and ΨA,B•C =
idA⊗N (B•C). More explicitly, we calculate as follows, starting again with the outer path of
the hexagon and expanding definitions:

(idA ⊗ ΨB,C) # ΨA,B•C # Ψ−1
A•B,C # (ΨA,B ⊗ idN (C))

= (idA ⊗ ΨB,C) # (idA ⊗ ΨB,C)−1 # αA,N (B),N (C)

= αA,N (B),N (C)

CSL 2023
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Finally let us prove the inductive step. Assume that the hexagon commutes for objects R,
B, C, giving us the equation

ΨR,B•C # Ψ−1
R•B,C = (idN (R) ⊗ Ψ−1

B,C) # αN (R),N (B),N (C) # (ΨR,B ⊗ idN (C))

We may then rewrite the following subterm of the monoidal hexagon as follows:

idA⊗(ΨR,B•C #Ψ−1
R•B,C) = idA⊗(idN (R)⊗Ψ−1

B,C)#idA⊗αN (R),N (B),N (C)#idA⊗(ΨR,B⊗idN (C))

We can then rewrite idA ⊗ αN (R),N (B)N (C) using the monoidal category pentagon axiom,
and then use naturality of α to reduce the outer path of the monoidal hexagon until we are
left with αA⊗N (R),N (B),N (C), as required. ◀

Finally, we must check that S and N indeed form an equivalence. First, recall the
definition

▶ Definition 12 (Equivalence of categories).
An equivalence is a pair of functors C

F→
←
G

D and a pair of natural isomorphisms η : idC → G◦F

and ϵ : F ◦G → idD .

We begin by showing naturality of η.

▶ Proposition 13. N ◦ S = idC .

Proof. N (S(f)) = N (f) = f = idC (f) ◀

▶ Remark 14. Note that Proposition 13 shows that the composite N ◦ S is actually equal to
the identity functor, and thus ηA = idA. In fact, this will make the composite of the two
functors a split idempotent.

Now we prove naturality of ϵ. This proof is somewhat more involved: unlike 13, the
composite S ◦ N is merely isomorphic to the identity functor, not equal on the nose. Thus,
we begin with an inductive definition:

▶ Definition 15. We define the (monoidal) natural isomorphism ϵ : S ◦ N → idC for the
composite S ◦ N inductively:

ϵI
C

:= ϕ∗ = ϕ∗

ϵA := idA =

ϵA•R := Φ∗ # (idA • ϵR) = Φ∗
ϵR

(7)

▶ Proposition 16. If ϵ is natural for f and g, then it is natural for f # g.

Proof. Take morphisms f : X → Y and g : Y → Z. By assumption, we have:

S(N (f)) = ϵX # f # ϵ−1
Y S(N (g)) = ϵY # g # ϵ−1

Z

from which we can derive

ϵ−1
X # S(N (fg)) # ϵZ = ϵ−1

X # S(N (f) # N (g)) # ϵZ = ϵ−1
X # S(N (f)) # S(N (g)) # ϵZ

= ϵ−1
X # ϵX # f # ϵ−1

Y # ϵY # g # ϵ−1
Z # ϵZ

= f # g

(8)

as required. ◀
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▶ Proposition 17. ϵ : S ◦ N → idC is a monoidal natural isomorphism.

Proof. We begin by showing naturality inductively, having already proven the inductive step
for composition in Proposition 16. We again use Proposition 36–that each morphism f in C

can be decomposed into “slices” f = t1 # . . . # tn with each ti of the form idX • gi • idY , with
each gi : A → B a generator. It thus suffices to prove that t = ϵ−1

X•A•Y # S(N (t)) # ϵX•B•Y
for an arbitrary “slice” t. One can check this by a second induction whose base case and
inductive step correspond to the definition of N (Definition 6). To be precise, one can check
this property graphically for each base case N (idIC

) . . .N (idA), and additionally for the
inductive step N (idA •q •r). Finally, note that ϵ is indeed a monoidal natural transformation,
which can be verified by another straightforward induction. ◀

▶ Theorem 18 (Mac Lane’s Strictness Theorem). For any monoidal category C there is a
monoidally equivalent strict category.

Proof. S and N are monoidal functors by Propositions 4 and 11, and they form a monoidal
equivalence with η and ϵ by Propositions 13 and 17. Since C was arbitrary, the proof is
complete. ◀

Note that in contrast to Mac Lane’s proof of Theorem 18, we make no reference to the
coherence theorem. We can therefore make use of the strictness theorem to prove coherence,
which is the subject Section 4.

4 Coherence

We can now give an elementary proof of Mac Lane’s coherence theorem. In [18], Mac Lane
gives his theorem in two parts: Theorem 1 [18, p. 166] and its corollary [18, p. 169]. The
“meat” of the proof is in the former part, corresponding to our Section 4.1. We do not give a
proof of Mac Lane’s corollary here, but the interested reader may find a graphical exposition
in the extended version of this paper [23].

Mac Lane begins by defining a certain preorder W , which he then shows enjoys the
following property:

▶ Theorem 19 (Mac Lane’s Coherence Theorem [18, p. 166]). Let M be an arbitrary monoidal
category, and let M be an object of M . Then there is a unique strict monoidal functor
W → M such that W 7→ M .

In contrast, we will define W so this unique functor is easy to construct, and then use W

to give a graphical proof that W is a preorder. Note that the monoidal functor in question is
strict, so its coherence maps are identities.

4.1 The free monoidal category on one generator
We begin by defining W . Again, recall that our definition differs from Mac Lane; we will
later show that this definition indeed yields a preorder in order to guarantee that we indeed
prove the same theorem.

▶ Definition 20. We define W as the monoidal category freely generated by a single object
W and no morphisms except those required by the definition of a monoidal category. 1

1 Mac Lane denotes the generating object as (−) to suggest an “empty place”. We follow Peter Hines’
convention [14] and use W instead.
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▶ Remark 21. The objects of W are IW , W , and their tensor products. The arrows are
id, ρ, λ, α and their composites and tensor products.

It is now clear that the statement of Mac Lane’s Theorem 1 holds for our definition of W :

▶ Proposition 22. Given an arbitrary monoidal category M and object M ∈ M , there is a
unique strict monoidal functor W → M with W 7→ M .

Proof. Suppose U : W → M is such a (strict) monoidal functor. Then we must have that
U(W ) = M by assumption, and

U(I) = I U(A⊗M) = U(A)⊗U(M) U(f) = f, f ∈ {α, λ, ρ, id} U(f⊗g) = U(f)⊗U(g)

because U is strict. But this accounts for all objects and morphisms of W , and so U must be
unique. ◀

However, to constitute a proof of the coherence theorem we must now prove that W is a
preorder. Our argument proceeds in three main steps. We will show the following:
1. For any monoidal category C , If C is a preorder, then so is C

2. W is generated solely by adapters {Φ, ϕ} and their inverses.
3. W is a preorder (which we prove graphically)

The first two steps are straightforward; we address them now. The third requires more
work, and is contained in Section 4.2.

▶ Proposition 23. If C is a preorder, then so is C .

Proof. Let f, g : C (A,B). Recall that N ◦ S = id, and so we can derive f = N (S(f)) =
N (S(g)) = g where we used that S(f) = S(g) because C is a preorder. ◀

Another lemma shows we can reason about W by considering only adapters:

▶ Proposition 24. W is generated by Φ, ϕ and their inverses.

Proof. Arrows of W are by definition either adapters Φ, ϕ, their inverses, or morphisms f
for some f ∈ W . But note that all such f ∈ W are either id, ρ, λ, α or their composites. It is
clear that each of λ, ρ, α can each be written as adapters by equations (4), so it remains to
show that composites of such morphisms can also be written this way.

That is, we must show that S(f ⊗ g) can be expressed using only adapters and their
composites. This can be proved inductively: if S(f),S(g) can be expressed using adapters,
then so too can compositions S(f #g) = S(f)#S(g) and tensors S(f⊗g) = Φ#(S(f)•S(g))#Φ∗.

Thus every morphism of W can be expressed in terms of adapters, and so the category
can be said to be generated by (only) adapters. ◀

4.2 Graphical proof that W is a preorder
We can now prove graphically that W is a preorder using a normal form argument. Our
approach is as follows:
1. Define for each object a size in N (Definition 25)
2. Prove all morphisms in W go between objects of the same size (Proposition 26)
3. Define a canonical arrow can(A,B) between any two objects of the same size (Definition 31)
4. Show that any arrow is equal to the canonical one (Proposition 33)
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Note that we make heavy use of Proposition 24, which lets us reason about W inductively
in terms of adapters and their tensors and composites.

We begin–following Mac Lane–by defining the size of an object (the same as Mac Lane’s
notion of length [18, p. 165]) as follows:

▶ Definition 25. We define the size of an object as the number of occurrences of W , defined
inductively:

size(IW ) := 0 size(IW ) := 0 size(W ) := 1
size(A⊗B) := size(A) + size(B) size(X • Y ) := size(X) + size(Y )

▶ Proposition 26. W morphisms preserve size:
If f : A → B is a morphism in W , then size(A) = size(B).

Proof. Induction on morphisms. ◀

We will define the canonical arrow can(A,B) in two halves, pack and unpack. To do so,
we will first need some additional definitions.

▶ Definition 27. We define the “packing” and “unpacking” morphisms pack and unpack
in terms of objects of W . Let A ∈ W be an object. Then pack(A) is the morphism defined
inductively as follows:

pack(IW ) := pack(IW ) := pack(W ) :=
W

pack(A⊗B) :=
pack(A)

pack(B)
pack(X • Y ) :=

pack(X)

pack(Y)

And define unpack(A) as pack(A)−1.

▶ Remark 28. It can be more intuitive to define unpack first, thinking of it as the adapter
which removes extraneous IC objects and “normalises” the object into a flat array of W
objects. In this view, pack is the adapter morphism taking a fixed number of W objects and
assembling them into a certain bracketing, with unit objects inserted as appropriate.

In Definition 27 we implicitly used that W is a groupoid to define unpack, which we now
prove:

▶ Proposition 29. W is a groupoid.

Proof. Generators and identities have inverses by Definition 1, which allows an inductive
definition for tensor and composition, i.e. (f # g)−1 = g−1f−1 and (f • g)−1 = f−1 • g−1

respectively. ◀

Now, in order to define the canonical arrow as a composition of pack and unpack, we
will need the following lemma which states that for objects of the same size, we can compose
their unpack and pack morphisms.

▶ Proposition 30. pack(A) : W size(A) → A.
In other words, for an object A of size n, the domain of pack(A) is the n-fold •-tensoring
of W .
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Proof. Simple induction on objects (the domain of each pack(A) is either IW , W k or a
tensoring of terms) ◀

▶ Definition 31. To each pair of objects A, B of the same size, we can define a canonical
arrow as follows:

can(A,B) := unpack(A) # pack(B)

Note that the composition of Definition 31 is well-typed because size(A) = size(B) by
Proposition 26: cod(unpack(A)) = W

size(A) = W
size(B) = dom(pack(B))

▶ Example 32. The canonical arrow between W ⊗ (IW ⊗ W ) and (W ⊗ IW ) ⊗ W is
. Note that this is equal to the associator αW,IW ,W .

We can now show that every morphism f : A → B in W is equal to can(A,B).

▶ Proposition 33. f = unpack(A) # pack(B) for all f : A → B in W .

Proof. By induction. On the base case–generators–the proof is straightforward; we give it
for identities and generators ϕ and ϕ , with the proofs for inverse generators following by
a symmetric argument.

can(X,X) = unpack(X) # pack(X) = pack(X)−1 # pack(X) = idX

can(IW , IW ) = unpack(IW ) # pack(IW ) = # =

can(A •B,A⊗B) = unpack(A •B) # pack(A⊗B) =
unpack(A)

unpack(B)
=

The composition of canonical morphisms is canonical:

can(X,Y ) # can(Y,Z) = unpack(X) # pack(Y ) # unpack(Y ) # pack(Z)
= unpack(X) # pack(Y ) # pack(Y )−1 # pack(Z)
= unpack(X) # pack(Z)
= can(X,Z)

And so is the tensor product:

can(X1, Y1) • can(X2, Y2) =
unpack(X1)

unpack(X2)

pack(Y1)

pack(Y2)

= unpack(X1 •X2) pack(Y1 • Y2)

= can(X1 •X2, Y1 • Y2) ◀

▶ Proposition 34. W is a preorder.

Proof. By Proposition 26 we know that all morphisms f : A → B have the property that
size(A) = size(B). We then define for any such objects a canonical morphism can(A,B)
in Definition 31. This canonical isomorphism is unique by Definition 33, and so W is a
preorder. ◀

Since we have now proven that W is a preorder, it is now straightforward to prove
Theorem 19. Note that this is essentially the opposite of the approach taken by Mac Lane,
who defines a preorder, and then shows the existence of a unique strict monoidal functor.
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Proof of Theorem 19. By Proposition 22 there is a unique, strict monoidal functor from
W to an arbitrary monoidal category M with W 7→ A for some A ∈ M . Moreover, W is a
preorder, and so by Proposition 23, so is W . ◀

A first consequence of the coherence theorem is that N is a strict inverse to S for
morphisms f : A → B in W .

▶ Proposition 35. If f : A → B then S(N (f)) = f .

Proof. We know that for any A ∈ W that N (A) = A. Thus for f : A → B we have N (f) :
A → B and thus S(N (f)) : A → B. But W is a preorder, so we have S(N (f)) = f . ◀

Proposition 35 guarantees that any morphism of this type formed from adapters genuinely
represents a specific morphism in C built from associators and unitors; we can use this fact
in to restate the coherence theorem in terms of adapter morphisms. Mac Lane’s corollary
then follows straightforwardly: the basic idea is to “export” commuting diagrams from W to
an arbitrary monoidal category by interpreting the objects of W as functors, and arrows as
natural transformations. We provide a graphical exposition of this proof in the extended
version of our paper [23].

5 Conclusions

The body of work on string diagrams in general is broad and growing rapidly. It is therefore
slightly surprising that the fundamental issue of non-strict tensorial composition has been
neglected for so long. On the one hand, this is reasonable. The assumption of strictness
does not entail a loss of generality, as indeed we have confirmed via an example in Sec. 2.3.
However, non-strict tupling is a basic feature of programming languages, and even hard-
ware description languages, and modelling it using string diagrams requires the proper
mathematical framework.

This framework, the main contribution of the paper given in Def. 1, shows a way to
strictify a possibly non-strict monoidal category. The body of the paper proves that the
definition has all the desired properties and, in the process, we discuss two new proofs for
Mac Lane’s strictness and coherence theorems, respectively. We believe that, as is usually the
case, the string-diagrammatic perspective has pedagogical value, lending concrete intuitions
to what otherwise seems like an abstract symbolic exercise.

5.1 Further work
Lack of support for non-strict tensor limits the range of many applications of string dia-
grams. The first immediate question to study is whether the strictification recipe we give is
compatible with hierarchical string diagrams (“functorial boxes” [19]) which can be used in
the representation of monoidal-closed and cartesian-closed categories. This, in turn, makes
them useful for applications to programming languages with higher-order functions, such
as high-level circuit synthesis [11] or automatic differentiation [1], which currently do not
offer support for product. Similar considerations motivate the study of strictification of trace
monoidal categories, which can be used as models of digital circuits [12].

Further, our construction expands the use of datastructures and algorithms currently
limited only to the strict case (e.g., [24]). Such datastructures are typically based on graph
or hypergraph representations for performance reasons; applying our construction allows
us to leverage those benefits essentially for free. In cases where such datastructures and
algorithms are proven correct, it may be beneficial to reproduce the proofs in this paper in a
formal theorem prover in order to provide end-to-end verification of applications.
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Finally, a formal understanding of non-strict monoidal categories may open the door to
more graphical approaches for theorem proving. Interactive graphical theorem provers using
string diagrams for strict monoidal categories such as homotopy.io represent a refreshingly
new approach to the design of proof assistants. Since models of, for example, intuitionistic
logic are non-strict, the novel string diagrams in this paper could be used perhaps to develop
similar graphical proof assistant for more conventional logics.
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A Sequential Normal Form

The following proposition is well-known (see for example [17]) and straightforward to prove,
but we provide a proof anyway for completeness.

▶ Proposition 36. let C be a monoidal category presented by generators Σ and some equations.
Then any (finite) term t representing a morphism of C can be factored into “slices”:

(id ⊗ ϵ1 ⊗ id) # (id ⊗ ϵ2 ⊗ id) # . . . # (id ⊗ ϵn ⊗ id)

where each ϵi is a generator.

This factorization can be diagrammed as follows:

#ϵ1 ϵ2 . . . ϵn# #
X1

A1

Y1

X1

B1

Y1

X2

A2

Y2

X2

B2

Y2

Xn

An

Yn

Xn

Bn

Yn

Note that in general Xi ̸= Xi+1 and so on- i.e., the generators need not be “aligned” in
this factorization. For example, we can have morphisms like the following:

▶ Example 37.

ϵ1

ϵ2
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Proof. We proceed by induction on terms. Let S0 denote the set of terms consisting of
identities and generators, Then let

Sn = S0 ∪ {t # u|t, u ∈ Sn−1} ∪ {t⊗ u|t, u ∈ Sn−1}

It is clear that terms in S0 are already in sequential normal form, so it remains to prove
the inductive case, beginning with composition. Let v be a term in Sn+1. Now by inductive
hypothesis, any term in w ∈ Sn has an equivalent term in sequential normal form, which
we’ll denote ŵ. Now there are three cases:
1. If v ∈ Sn, then we have v̂ by inductive hypothesis.
2. If v = t # u, then t̂ and û exist by inductive hypothesis, and we can form v̂ = t̂ # û.
3. If v = t⊗ u, then v̂ = (t̂⊗ id) # (id ⊗ û)
and the proof is complete. ◀

B N is well-defined

In this appendix we verify that N is well-defined. This amounts to two things: first that N
is well-defined with respect to the interchange law, and second that it respects the equations
of Definition 1.

In the former case, sequential normal forms are only unique up to interchange, so it
must be verified that N preserves this property. This is a straightforward if tedious exercise,
which can be done by verifying each of the cases in Definition 6. Essentially, the only axioms
required are naturality and equations [10, 2.12, 2.13].

Finally, we need to verify the equations of 1. Specifically, for each of the monoidal,
adapter, and associator/unitor equations lhs = rhs, we show that N (lhs) = N (rhs). We
give derivations for these below. Using these derivations one can also tediously check that
the equations hold for cases id • lhs • id = id • rhs • id, and so N is equal under any rewrite
involving those equations; the only cases of interest are for associator and unitor equations,
which require the use of the pentagon and triangle axioms, respectively.

We begin with the functor equations (2)

N (idA) = idA = N (idA) N (f # g) = N (f) # N (g) = f # g = N (f # g)

Now the adapter equations (3):

N (Φ # (f • g) # Φ∗) = N (Φ) # N (f • g) # N (Φ∗)
= N (f • g)
= N (f • id) # N (id • g)
= (f ⊗ id) # (id ⊗ g)
= f ⊗ g

= N (f ⊗ g)

N (ϕ # ϕ∗) = N (ϕ) # N (ϕ∗)
= idIC # idIC

= idIC

= N (idI
C

)

N (Φ∗ # f ⊗ g # Φ∗) = N (Φ∗) # N (f ⊗ g) # N (Φ)
= N (f ⊗ g)
= f ⊗ g

= (f ⊗ id) # (id ⊗ g)
= N (f • id) # N (id • g)
= N ((f • id) # (id • g))
= N (f • g)

N (ϕ∗ # ϕ) = N (ϕ∗) # N (ϕ)
= idIC # idIC

= idIC

= N (idIC )
= N (idIC

)
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Finally the associator/unitor equations (4):

N (Φ∗ # (id • Φ∗) # (Φ • id) # Φ)
= N (Φ∗) # N (id • Φ∗) # N (Φ • id) # N (Φ)
= id # id # α # id
= α

= N (α)

N (Φ∗ # (Φ∗ • id) # (id • Φ) # Φ)
= N (Φ∗) # N (Φ∗ • id) # N (id • Φ) # N (Φ)
= id # α−1 # id # id
= α−1

= N (α−1)

N (Φ∗ # (ϕ∗ • id)) = N (Φ∗) # N (ϕ∗ • id)
= id # λ

= λ

= N (λ)

N ((ϕ • id) # Φ) = N (ϕ • id) # N (Φ)
= λ−1 # id
= λ−1

= N (λ−1)

N (Φ∗ # (id • ϕ∗)) = N (Φ∗) # N (id • ϕ∗)
= id # ρ

= ρ

= N (ρ)

N ((id # ϕ) # Φ) = N (id # ϕ) # N (Φ)
= ρ−1 # id
= ρ−1

= N (ρ−1)

Thus N is well-defined with respect to the monoidal equations.
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