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Simple Summary: Leprosy, a chronic infectious disease, leads to blood mineral imbalances: low

levels of zinc, calcium, magnesium, and iron and high levels of copper. Interestingly, in late medieval

Europe, minerals were used to treat leprosy. We investigated physiological responses to leprosy and

possible evidence of treatment in dental tissues of leprosy sufferers from medieval Denmark and

early 20th century Romania when multidrug therapy was not then yet invented. Using Synchrotron

Fluorescence (SXRF) and laser ablation (LA-ICP-TOFMS), we show marked covariations in the

zinc, calcium, and magnesium distributions, which are compatible with clinical studies but cannot

be directly attributed to leprosy. Minerals used historically as a treatment for leprosy show no

detectable intake (arsenic, mercury) or a diffuse distribution (lead) related to the daily consumption

of contaminated water and food. Intense lead enrichments indicate acute incorporations, potentially

through the administration of lead-enriched medication or the mobilization of lead from bone stores

to the bloodstream during intense physiological stress related to leprosy. However, comparisons with

a healthy control group are needed to ascertain these interpretations. The positive correlations and the

patterns observed between lead and essential elements may indicate underlying pathophysiological

conditions, demonstrating the potential of the two techniques for investigating diseases in past

populations.

Abstract: Leprosy can lead to blood depletion in Zn, Ca, Mg, and Fe and blood enrichment in Cu.

In late medieval Europe, minerals were used to treat leprosy. Here, physiological responses to

leprosy and possible evidence of treatment are investigated in enamel, dentine, and cementum of

leprosy sufferers from medieval Denmark (n = 12) and early 20th century Romania (n = 2). Using
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SXRF and LA-ICP-TOFMS, 12 elements were mapped in 15 tooth thin sections, and the statistical

covariation of paired elements was computed to assess their biological relevance. The results show

marked covariations in the Zn, Ca, and Mg distributions, which are compatible with clinical studies

but cannot be directly attributed to leprosy. Minerals used historically as a treatment for leprosy

show no detectable intake (As, Hg) or a diffuse distribution (Pb) related to daily ingestion. Intense

Pb enrichments indicate acute incorporations of Pb, potentially through the administration of Pb-

enriched medication or the mobilization of Pb from bone stores to the bloodstream during intense

physiological stress related to leprosy. However, comparisons with a healthy control group are needed

to ascertain these interpretations. The positive correlations and the patterns observed between Pb

and essential elements may indicate underlying pathophysiological conditions, demonstrating the

potential of SXRF and LA-ICP-TOFMS for paleopathological investigations.

Keywords: dental tissues; mineral imbalances; zinc; calcium; leprosy treatment; lead

1. Introduction

Leprosy (a.k.a. Hansen’s disease) is a chronic infectious disease that is mainly en-
countered today in South-East Asia, Africa, and Latin America [1]. However, during the
medieval period, the disease was highly prevalent in Europe. Caused by two bacteria
(Mycobacterium leprae and Mycobacterium lepromatosis) [2,3], leprosy is expressed through a
range of clinical manifestations, with tuberculoid leprosy and lepromatous leprosy being
the two extremes of the spectrum. They usually represent, respectively, a paucibacillary
(low bacterial load) and a multibacillary (high bacterial load) form [4]. The expression of
leprosy depends on the immune status of each infected individual [5], and several factors
that affect the immune system’s performance, such as poor living conditions, inadequate
diets, and food shortages [6–10], have been considered in relation to the manifestation of
the disease. There is a vicious cycle between malnutrition and infection [11,12]. On the one
hand, nutritional deficiencies of vitamins and minerals lower the immune status, which
increases the susceptibility to infections. On the other hand, however, the micronutrients
are further depleted during infections by the invading pathogens, while the requirements
are increased [13]. Several studies have reported mineral deficiencies or excesses in the
blood serum of individuals suffering from leprosy (e.g., [14–18]).

Using Synchrotron X-ray Fluorescence (SXRF) and Laser Ablation-Inductively Cou-
pled Plasma-Time of Flight Mass Spectrometry (LA-ICP-TOFMS), the present study investi-
gates whether mineral imbalances of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), and
magnesium (Mg) are recorded in dental hard tissues (enamel, dentine, and cementum) of
leprosy sufferers from medieval Denmark and early 20th century Romania; an observation
that could provide an insight into the physiological responses of leprosy sufferers from
past populations. Due to repeated leprosy reactions, which are “acute exacerbations of the
signs and symptoms of leprosy occurring during the natural course of the disease” and
are the result of the body’s immune response to the bacteria [19], periodicity and variation
in strength (depletions and enrichments) in the elemental distributions could be expected.
Additional elements of interest are lead (Pb), mercury (Hg), and arsenic (As) since historical
records attest to the use of these heavy metals to treat skin diseases, including leprosy, in
late medieval and early 20th century Europe [20–22].

Unlike bone, dental tissues do not remodel once formed, constituting a record of
life and health, as well as age at death [23–28]. Having different mineralization pro-
cesses [29,30], enamel and primary dentine complete their formation during infancy and
adolescence, while (cellular and acellular) cementum and secondary dentine develop
throughout an individual’s life [29]. Consequently, when combined, enamel, dentine (pri-
mary and secondary), and cementum may provide information from as early as the first
few months of life until the death of the individual under study. SXRF and synchrotron
X-ray absorption spectroscopy have been widely employed to explore the normal and
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pathological distributions of trace elements in human tissues of modern populations (for
a review, see [31]). By visualizing biochemical variations in thin-sectioned dental hard
tissues, the present study is the first to explore the potential of SXRF and LA-ICP-TOFMS
for the study of pathophysiological changes in past populations.

Mineral Imbalances in Leprosy

Mineral elements are inorganic substances that are essential in living organisms for a
variety of functions, such as the formation and maintenance of bone tissue [32]. They are
classified as major (e.g., calcium, potassium, and phosphorus) or trace (e.g., manganese
and copper) elements based on the required amounts, which are greater and lesser than
100 mg per day, respectively [33]. Mineral deficiencies or excesses, as well as interrela-
tionships between different mineral elements (i.e., covariations with similar or opposite
behaviors) related to diet or disease, lead to disturbances in normal metabolism and tissue
structure [34–36].

By comparing blood serum levels between leprosy sufferers and a healthy control
group, Rao et al. [37] reported depleted levels of Zn, Ca and Mg but elevated levels of Cu
in the leprosy group. Such mineral imbalances in leprosy sufferers were also reported by
several other studies (e.g., [14,16,38–44]). The depleted Zn levels correlate with an increased
bacterial load [45] and not with the presence or absence of leprosy-related skin lesions [46].
Comparisons of serum levels between leprosy and non-leprosy patients with the same
diet revealed that depleted Zn and Ca levels are associated with the disease and not with
dietary depletions [47,48]. Moreover, by examining the serum Cu and Zn concentrations
of leprosy patients before and during multidrug therapy, Sethi et al. [13] demonstrated
a correlation between low Zn and high Cu serum levels with the severity and type of
leprosy. Specifically, over the course of the treatment, the levels of both trace elements
shifted toward the values of the control group [13].

The progressively depleted blood serum mineral levels in patients suffering from low
to high bacterial loads could indicate the redistribution of the minerals from the blood to
various tissues (e.g., liver), which is induced by the liberation of endogenous leukocyte me-
diators caused by the bacilli [49]. However, this has been reported in relation to acute, and
not chronic, infections [50]. An alternative explanation could be the low absorption of the
elements from the intestine; however, Kumar et al. [51] examined the small bowel in lepro-
matous leprosy patients and reported a normal absorptive function. Bhattacharya et al. [52]
suggest that high blood levels of Cu in leprosy sufferers result from low levels of ascorbic
acid (Vitamin C) that facilitate an increased absorption of Cu by the gut. Additionally,
depleted serum levels of iron (Fe) in leprosy patients seem to result not from a failure to
deliver Fe from Fe stores in the bone marrow but from an impaired circulation of Fe [53–55].
The accumulation of mineral elements in leprosy bacilli suggests that the bacteria retain
elements originating from the host to cover their metabolic needs [13,56]. Furthermore,
the values of oxidative stress in leprosy patients, which are potentially associated with the
utilization of mineral elements by leprosy bacilli, are related to the duration of the infection,
the bacterial load as well as the type of leprosy [57]. The imbalance of elemental levels in
leprosy sufferers may also be related to the defense mechanisms of the hosts. This may
either involve withholding nutrient metals from invading bacteria (known as “nutritional
immunity”; [58,59]) and/or using the toxic properties of the mineral elements against the
bacilli [60–62].

2. Materials and Methods

Material included in this study derives from the cemeteries of two medieval leprosy
hospitals, which were located outside of Næstved and Odense in Denmark (Figure 1). Both
hospitals functioned from around 1260 CE (Næstved [63,64]) and 1270 CE (Odense [65,66])
until their dissolution in 1542 CE [67]. The leprosy hospitals at Næstved and Odense are
historically documented institutions that have been archaeologically investigated [68–72].
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Hundreds of skeletons found in their associated cemeteries have been previously stud-
ied [73–75].

 

Figure 1. Map of Denmark depicting the location of Odense and Næstved (CC0 1.0 Universal; edited).
Graphic programs used: Adobe Photoshop CS5.1 and Adobe Illustrator CS5.1.

Six individuals with osteological evidence of leprosy were selected from each site
(Table S1). A permanent canine (C) and a permanent first molar (M1) was chosen from
each individual (a total of 24 teeth) based on minimal wear and the absence of obvious
pathologies, including carious lesions. These two tooth types were preferred as permanent
first molars record information from as early as the perinatal period, while permanent
canines from the first 4–5 months after birth [76]. Additionally, permanent teeth from two
modern (beginning of the 20th century) Romanian individuals with documented evidence
of a leprosy infection and who predate the advent of multidrug therapy were included for
comparative purposes: the upper right canine and the lower right M1 of individual A1651;
and the upper right canine and the lower right M2 of individual R1386. Authorization to
work on these teeth was provided by the curating institutions (i.e., Odense Bys Museer,
Medicinsk Museion, and the “Francisc I. Rainer” Institute of Anthropology, Romanian
Academy).

Teeth were thin-sectioned using a Buehler Linear Precision Saw Isomet 5000 in the
Histology Laboratory at PACEA (University of Bordeaux, France). Transmitted light
micrographs (TLM) were used to assess the quality of dental tissue microstructure and
select the best teeth for SXRF scanning. The visibility of growth increments was screened in
both acellular and cellular cementum. Additional selection criteria were also considered,
such as minimal visible taphonomic damages, including cracks, as well as tracks left by
fungi. In total, 15 teeth from 10 different individuals (eight medieval—four from each
site and two modern) were selected to undergo SXRF scanning (Table 1). Sex and age
estimations, as well as radiocarbon dates for the eight medieval individuals, are presented
in Table S2.
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Table 1. Medieval and modern tooth samples for SXRF and LA-ICP-TOFMS multiscale imaging.

Site Gr. Nr. Teeth

SXRF Overview Scan SXRF High-Resolution Scan
LA-ICP-
TOFMS

Spot Size
(µm)

Exposure
Time (ms)

Tissue
Spot Size

(µm)
Exposure
Time (ms)

Odense 533 LLM1 10 3
AC − − 2 µm
CC 1 1 1 µm
SD 1 3 2 µm

Odense 896
LLC 10 3 − − − −

LLM1 10 2.5 TC 1.5 3 −

Odense 914 ULM1 10 3 CC 1 3 −

Odense 1149
URC 10 4 AC 1 10 −

ULM1 10 4 CMSC? 1 3 −

Næstved 6 ULC 10 4 AC 1 10 −

Næstved 211
URC 10 3 CC 1 −

20 µm
overview +

2 µm
LRM1 10 2.5 AC 1.5 3 −

Næstved 268 LLM1 10 4 CC 1.5 3 −

Næstved 305
LLC 10 3 − − − −

LRM1 10 2.5 CC 1.5 3 −

Romania A1651
URC 10 3 CC 1 3 −

LRM1 10 2.5 TC 1.5 3 −

Romania R1386 LRM2 10 2.5 CC 1.5 3 −

“Gr. Nr.” stands for “Grave Number.” “AC” stands for “acellular cementum” (on the cervical half of the root),
“CC” for “cellular cementum” (apical half of the root), and “SD” stands for “secondary dentine.” “T” stands for
“transition,” depicting a zone between acellular and cellular cementum, and “CMSC” for “cellular mixed stratified
cementum.” Abbreviations of teeth are designed as follows: “L” or “U” for “lower” or “upper”; “L” or “R” for
“left” or “right”; “C” or “M” for “canine” or “molar”; and finally, the tooth position in Arabic numerals. For
instance, “LLM1” represents “lower left first molar.”

SXRF experiments were performed on the P06 Beamline [77,78], Petra III, at DESY
(Deutsches Elektronen-Synchrotron, Hamburg, Germany). The scanning strategy followed
a multiscale approach for each tooth (Table 1). First, a fast overview scan with a step
size of 200 or 100 µm (dwell time: 10 ms) was acquired to check that the tooth section
was well-centered in the field of view and to assess the overall signal-to-noise ratio of the
elemental signature. Second, a higher resolution overview scan (10 µm; integration time:
2.5–4 ms) was used to visualize the elemental variation within the entire tooth section (i.e.,
enamel, dentine, pulp cavity, and cementum). Finally, based on prior observations of the
tooth sections under the microscope and on the SXRF signal quality in the 10 µm scans, a
small region of interest was selected in the cementum of 14 teeth and the secondary dentine
of one tooth (Odense 533M) for scanning at 1–1.5 µm (integration time of 3 ms or 10 ms).

All dental tissues of permanent canines and first molars were targeted with the aim
of acquiring elemental values reflecting the entire life period of the individuals under
study. Indeed, while enamel and primary dentine start developing shortly before birth in
permanent first molars or within the first 4–5 months of postnatal life in permanent canines,
both tissues complete their formation between 7 and 10 years of age [79]. Secondary dentine
and (cellular and acellular) cementum start forming incrementally once the root dentine
area is completed and continue slowly developing until the death of the individual [29,30].

Two teeth that showed the best SXRF signal in cellular cementum (especially regarding
the Zn pattern) were selected for comparative LA-ICP-TOFMS. LA-ICP-TOFMS offers
high-speed multiplexed nuclide imaging [80,81] and quantitatively reliable images of the
distribution of elements that were not quantifiable or reliably detectable with the SXRF setup
(notably Pb). LA-ICP-TOFMS imaging was performed at the Department of Chemistry,
Ghent University (Belgium) with an Iridia 193 nm ArF* excimer-based laser ablation system
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(Teledyne Photon Machines, Bozeman, MT, U.S.A.) coupled to an icpTOF 2R (TOFWERK
AG, Thun, Switzerland) TOF-based ICP-MS instrument. During the calibration of the
LA-ICP-TOFMS data, limits of detection (LOD) and quantitation (LOQ) were calculated,
both in ppm, for each captured isotope (see [82]). LOD and LOQ values are reported in
Table S3 for the isotopes selected to represent the chemical element it belongs to, based on
their natural abundance, ionization potential, and lack of spectral interferences, which can
induce some bias in the data. In summary, the isotope providing the cleanest signal was
selected to represent each element of interest. Note that, compared to SXRF, LA-ICP-TOFMS
shows better detection power in the higher-mass range, since detection power for SXRF is
poor in the high-mass range. These are used as a guide for interpreting the results and for
comparison with previously published studies. Note the LA-ICP-TOFMS scans left only a
barely visible mark (a slight rectangular shadow) on the tooth section as a result of laser
ablation. This was corrected with a fine polishing at 1 µm to recover an artefact-free thin
section. Visualization and analysis of the SXRF and LA-ICP-TOFMS data were performed
in HDIP v-1.3.3.1073 (Teledyne CETAC Technologies, Bozeman, MT, USA). With the aim to
denoise the images, a 2D Gauss filter was applied, the kernel size of which is indicated in
the Supplementary Information (Files S2 and S3).

To assess whether pairs of elements vary together or in opposition within statistical
significance, Pearson’s r and Spearman’s ̺ correlation coefficients were calculated on
the concentration data measured along a transect on the high-resolution LA-ICP-TOFMS
scans. The raw data for the transect of each LA-ICP-TOFMS scan are reported in Tables
S4–S7. Note that Spearman’s “̺” is henceforth spelled “rho” to avoid confusion with
p-values. Statistical tests and graphs were performed in RStudio (version 1.3.1093 [83])
and Excel; p-values were computed with a significance level of α = 0.05. An extensive
description of the statistical analysis, as well as of the tooth thin section preparation, the
SXRF data acquisition and processing, and the LA-ICP-TOFMS imaging, is provided in the
Supplementary Information (File S1).

3. Results

3.1. Copper (Cu) and Iron (Fe)

No distinct pattern was observed in the Cu and Fe distributions in the SXRF overview
maps of the modern and archaeological teeth. In overview and high-resolution SXRF maps
(Figures 2 and 3, File S2), Cu shows a uniform distribution within all tooth tissues, with
baseline levels at ~100 ppm. In all teeth, the enamel is depleted in Fe, and dentine and
cementum show values similar to the epoxy bond of the thin section, presumably reflecting
a negligible Fe content close to ~0 ppm. Fe enrichment on the root surface and within
dental cracks and the pulp chamber indicates exogenous contamination from the burial
environment. High-resolution LA-ICP-TOFMS scans (File S3) reveal that in Odense 533M,
Fe is at ~0 ppm in the acellular cementum, probably also in the cellular cementum, where
the concentration is at ~600–700 ppm, which is similar to the epoxy of the thin section.
Copper is <5 ppm in acellular cementum and probably at ~0 ppm in cellular cementum
(concentrations similar to epoxy: ~10–20 ppm). The cellular cementum of Næstved 211C
shows a considerable Fe enrichment of the surface (1400 ppm) and Fe and Cu enrichment
of the sub-surface (Figure 4), respectively, of 200 ppm and ~15 ppm. The secondary dentine
of Odense 533M has Cu levels close to ~2–4 ppm, while Fe reaches ~220 ppm, although
this could be contamination as the epoxy shows similar values.

3.2. Calcium (Ca) and Magnesium (Mg)

The SXRF overview maps of the medieval Danish and modern Romanian teeth show
the well-established pattern of Ca-rich enamel (Figure 2, File S2). The enriched Ca levels
in enamel (ranging from ~370,000–400,000 ppm) reflect its higher calcification levels com-
pared to dentine (ranging from ~300,000–~380,000 ppm). Dentine has a homogenous Ca
distribution with slightly depleted Ca levels around the pulp cavity due to the presence
of secondary dentine, as well as within the cementum and at the junction between cemen-



Biology 2023, 12, 184 7 of 23

tum and primary dentine. Some teeth, among which the modern Romanian A1651C and
R1386M2, and the archaeological teeth Næstved 6C, 305M and C and Odense 533M, present
accentuated lines reflecting variations in the Ca levels, often located (and best visible) in
the dentine above the roof of the pulp chamber. The higher resolution Ca maps reveal
subtle alternating enrichments and depletions in the cementum of three teeth (Næstved
211M, Odense 533M, and R1386M; see also Figure 4 showing calibrated LA-ICP-TOFMS
high-resolution maps in the cellular cementum of Næstved 211C).

 

Figure 2. SXRF overview maps of Næstved 305C depicting the distributions of elements potentially
impacted in leprosy, i.e., Ca, Zn, Fe, and Cu. The Sr map is shown for comparison with the Zn map
since it also shows a pattern of alternating enrichments and depletions visible in the primary dentine.
Ca, Fe, and Cu present uniform distributions. Contamination of Fe is visible on the surfaces of the
tooth and within cracks. The Zn map reveals a rich pattern of enrichments and depletions in the
primary dentine and a substantial enrichment at the outer enamel surface, the secondary dentine,
and the cementum. Graphic programs used: Adobe Photoshop CS6 and Adobe Illustrator CS6.

The uncalibrated LA-ICP-TOFMS overview map of Mg acquired in Næstved 211C
reveals that cementum is strongly Mg-depleted in comparison to dentine (File S3). At high-
resolution (calibrated LA-ICP-TOFMS data), the Mg content in primary dentine ranges
from 2000–2200 ppm, while the cellular cementum shows values fluctuating between
1000–1800 ppm (Figure 4). Interestingly, the Mg distribution generally follows the Ca
and Zn distributions (rho = 0.45 and 0.19, respectively, p < 0.05, File S1). In Odense
533M, the cellular cementum contains Mg between ~1000–~1400 ppm, and these covary
positively with Ca (rho = 0.47, p < 0.05; File S1) and Zn (rho = 0.50, p < 0.05). The secondary
dentine is at ~1000 ppm Mg content, with no visible pattern of fluctuations. Ca and Zn
show a moderate positive correlation with Mg in secondary dentine (rho = 0.79 and 0.55,
respectively, p < 0.05; File S1). On the LA-ICP-TOFMS scan for acellular cementum of
Odense 533M, the primary dentine contains 1000–1300 ppm, while the acellular cementum
is Mg-enriched at 1800–2200 ppm. Note that this area of acellular cementum is affected by
cracks, which, however, do not affect the reported concentrations, as they contain no Mg,
thus, attesting to an endogenous origin of the Mg detected in the tooth tissues.
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Figure 3. Distributions of elements potentially affected in leprosy (Ca, Zn, Cu, Fe) and Sr in Næstved
268M. The region of interest in the cellular cementum (green frame on the Zn overview map (a))
shows few identifiable increments in TLM (b). The SXRF data were collected on a scan at 1 µm,
for each element of interest, along the green path (c–g). Elemental concentrations (in ppm) were
then plotted against distance along the path in µm. As depicted on the Zn map, the path starts in
the air (“Air”), reaches the root surface (RS), the cellular cementum (CC), the cementum-dentine
junction (CDJ), and ends in the primary dentine (PD). Calcium (c) shows little variation, although a
slight regular pattern may be visible on the Ca map. The Zn map (d) displays the clearest pattern of
alternating enrichments and depletions, while Cu (e) and Fe (f) show uniform levels throughout the
cementum. A subtle pattern recalling that of the Zn map can be observed in the Sr map (g). Note
that a logarithmic scale was used to plot Fe, as the root surface enrichment at ~3000 ppm obscured
the visibility of the pattern within the cementum at ~40–100 ppm. Graphic programs used: Adobe
Photoshop CS6 and Adobe Illustrator CS6.
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Figure 4. Calibrated LA-ICP-TOFMS high-resolution (2 µm) maps of the cellular cementum of
Næstved 211C (See File S3) depicting the distributions of elements potentially impacted in leprosy,
i.e., Ca, Zn, Mg, Fe, and Cu, as well as Sr. Note the weak signal in the Mg map, showing the same
enrichment and depletion events as in the Ca, Zn, and Sr maps, with a positive, although weak,
correlation to the Mg variations (rho = 0.45 for Ca, rho = 0.19 for Zn, and rho = 0.27 for Sr). Graphic
programs used: Adobe Photoshop CS6 and Adobe Illustrator CS6.

3.3. Zinc (Zn)

In all teeth, Zn content follows a similar distribution, with an enriched layer at the
outer enamel surface and an accumulation in cementum and secondary dentine (Figure 2,
see overview SXRF maps in File S2). In enamel, Zn is ~100 ppm with an enriched layer
at ~650 ppm within the first tens of microns of the enamel surface, which has been inter-
preted in light of the process of enamel mineralization and maturation [84–86]. In dentine,
the Zn baseline fluctuates between ~150–350 ppm, with marked alternating enrichments
and depletions following the direction of the long-period growth increments. At higher
resolution, a clear banding pattern is seen in the SXRF and LA-ICP-TOFMS Zn maps of
cellular cementum (Figures 3 and 4, Files S2 and S3). The secondary dentine seems to
record this pattern slightly less clearly (range: ~200–600 ppm; File S2). In TLM, the border
between secondary and primary dentine is visible due to the difference in orientation of the
long-period growth lines in both tissues (Figure 2). However, due to their similar chemical
composition, this border is difficult to identify in elemental mapping when looking at the
Ca, P, and Sr maps (File S2). As seen by the Zn map in the secondary dentine of Odense
533M, Zn is the only element that allows this border to be identified with confidence
(Figure 2, Files S2 and S3). No differences in the Zn (as well as Cu, Fe, Ca, and Mg) content
and distribution are observed between sex and age groups or across chronological periods
(Table S2).

3.4. Strontium (Sr)

Another observation concerns Sr (Figures 2–4), which appears to covary positively
with Ca, Mg, and Zn, although Sr is not an element known to bear any significance
regarding leprosy. The strongest positive correlations are between Sr and Ca (in the cellular
cementum of Næstved 211C, rho = 0.88, while in Odense 533M rho = 0.57, p < 0.05 for both;
File S1) as well as Sr and Zn (cellular cementum: rho = 0.77 for Næstved 211C and rho = 0.78
for Odense 533M, p < 0.05 for both). Sr is slightly less strongly correlated with Mg (rho = 0.69
for Odense 533M and rho = 0.27 for Naestved 211C in the cellular cementum, rho = 0.86
and rho = −0.34 for the secondary dentine and the acellular cementum of Odense 533M).
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The correlations of Sr with these elements (also for all other pairs of elements concerned)
are weak (although significant) in the acellular cementum since the growth increments and
accentuated markings are harder to resolve and much more tightly packed in this tissue
(File S1). In general, Sr shows a clear pattern of variation, mostly in the primary dentine
and in the cellular cementum (Figure 3), which is attested to be an authentic biological
signal since these Sr variations follow the direction of the growth increments.

3.5. Arsenic (As) and Mercury (Hg)

In the SXRF data, the fitting of the As signal was not good enough to provide reliable
data (the second emission peak was missing to safely identify the elemental signature). In
the uncalibrated high-resolution LA-ICP-TOFMS map of the cellular cementum of Næstved
211C (File S3), the As level in cementum and primary dentine is close to ~1 ppm with
noisy values at ~2–4 ppm. Similarly, in Odense 533M, high-resolution maps (File S3) in the
acellular cementum and secondary dentine show a background noise in the tooth tissues
at 3–5 ppm (as opposed to ~0 ppm in epoxy), while As is not detected in the cellular
cementum. However, with a LOD ≈ of 380 ppm and a LOQ ≈ of 1250 ppm (Table S3),
this cannot be considered a reliable biological signal. Additionally, neither the SXRF nor
LA-ICP-TOFMS setups were sensitive enough to detect Hg concentrations.

3.6. Lead (Pb)

The SXRF datasets for Pb are uncalibrated and, thus, no quantitative values can be
provided; instead, “arbitrary units” (“a.u.”) give an idea about the relative Pb distribution
across specimens. Qualitative values are hereafter reported from direct measurements in
the software HDIP, while the contrast has been adjusted in the Pb maps (File S2) to better
reveal the Pb banding pattern. Overview SXRF maps (Figure 5, File S2) show that primary
dentine (50–60 a.u.) is slightly enriched in Pb compared to enamel (~30–40 a.u.), while
secondary dentine and cementum reach, overall, higher levels (60–70 a.u.). In Næstved
211C and 6C, the primary dentine contains 40–50 a.u. of Pb, while cementum and secondary
dentine reach ~80 a.u.. Lead accumulation increases between dental tissues in Odense
914M (40–50 a.u. in enamel, ~60 a.u. in primary dentine, > 60–80 a.u. in cementum, and
120–140 a.u. in secondary dentine). The modern Romanian teeth show the greatest Pb
accumulation with ~40–60 a.u. in enamel, 50–60 a.u. and 80 a.u. in the primary dentine of
A1651M and R1386M, respectively, 80–100 a.u. in the secondary dentine of A1651M, while
in R1386M it reaches 300 a.u. R1386M seems to concentrate Pb in cementum (Figure 5) with
values of ~300 a.u. and peaks at 400 a.u., while in A1651M, the cementum is at ~100 a.u.
with peaks at 120 a.u. An alternation of Pb enrichments and depletions is visible within the
cementum and secondary dentine of R1386M (Figure 5, File S2). A consistent enrichment of
Pb, probably linked to post-eruptive remineralization processes [87], is observed within the
first 10 µm of the outer enamel surface in some of the teeth, reaching maximum amounts
from ~500–700 a.u. in the M2 of R1386 and weaker values in the archaeological specimens
(~80–100 a.u.). No obvious pattern could be observed between sexes or chronological
periods in the specimens (Table S2) besides the strong enrichment seen in the modern teeth.
The data do not reveal an accumulation of Pb in older individuals, as was suggested by
Bercovitz and Laufer [88].

Using LA-ICP-TOFMS, quantitative Pb concentrations were measured in areas of
interest in the cellular cementum of Næstved 211C (Figure 5), in the acellular and cellular
cementum, and in the secondary dentine of Odense 533M (Table 1). The limits of the
current instrumentation are 5 ppm (LOD) and 16 ppm (LOQ) (Table S3). Both teeth show a
substantial Pb enrichment at the surface of the cellular cementum, at ~10 ppm in Næstved
211C and at 40–100 ppm in Odense 533M (File S3). No cracks are visible on the surface of
the scanned area for Odense 533M, while the three cracks seen in the cementum of Næstved
211C do not show any diffusion of Pb in the inner layers, suggesting that these surface
enrichments are biogenic and not taphonomic. Further Pb surface enrichment in Odense
533M involves the surface of the acellular cementum at ~60–80 ppm and the surface of
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secondary dentine (facing pulp cavity) at ~2–7 ppm (File S3). In Odense 533M, average
background Pb levels range from ~0.1–0.3 ppm in primary dentine, ~0.2–0.4 ppm (with
peaks at ~2–4 ppm) within the secondary dentine, to ~1.1–1.5 ppm (with a peak at ~8 ppm)
in acellular cementum and ~1 ppm (peaks at ~2 ppm and a maximum at ~7 ppm) in cellular
cementum.

 

Figure 5. Uncalibrated SXRF Pb maps (detection of the Pb L lines) for the modern R1386M, Odense
914M, Næstved 305M, and 6C showing a preferential accumulation of Pb in the slow-forming
secondary dentine and cementum (top row). Relative SXRF Pb enrichments and depletions are
expressed in arbitrary units (“a.u.”). A very light alternation pattern of Pb is visible in the primary
dentine of R1386M. This is confirmed at high-resolution (bottom row), where the cellular cementum
of R1386M2 scanned in SXRF reveals a well-defined Pb pattern. In Næstved 268M, the surface of
the cellular cementum is enriched in Pb, with a decreasing gradient involving an alternation of
enrichments and depletions within the sub-surface. This Pb content fades away within the cellular
cementum. Note that SXRF is not sensitive enough to resolve the Pb variation in the cellular cementum
of Næstved 211C, while LA-ICP-TOFMS can quantify these variations with a high level of detail.
“CC” stands for “cellular cementum,” “CDJ” for “cementodentine junction,” and “PD” for “primary
dentine.” Graphic programs used: Adobe Photoshop CS6 and Adobe Illustrator CS6.

4. Discussion

4.1. Exploring Leprosy-Induced Mineral Imbalances in Dental Tissues

Studies conducted on blood samples of modern leprosy patients revealed depleted
levels of Zn, Ca, Mg and Fe and elevated levels of Cu compared to healthy control
groups [37,39,41,44,55]. These mineral imbalances appeared to be correlated with the
severity and type of leprosy but returned to the normal values of the control groups dur-
ing multidrug leprosy therapy [13]. Here, SXRF and LA-ICP-TOFMS elemental mapping
was used to determine if mineral imbalances in leprosy sufferers are imprinted within
dental hard tissues. Whether induced by the invading bacteria and/or by the defending
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host [13,58,62], detected mineral imbalances in blood samples of leprosy sufferers may be as-
sociated with recurrent leprosy reactions since, in clinical studies, oral zinc therapy has been
shown to reduce the frequency, duration, and severity of reactions [89]. Leprosy reactions
may occur as type 1 (or reversal reactions) in borderline leprosy and type 2 (or erythema
nodosum leprosum) in lepromatous leprosy, the latter of which may lead to “widespread
and recurrent lesions which continue to appear for months or even years” [90]. Due to
repeated leprosy reactions, therefore, periodicity and variation in strength of elemental
depletions and enrichments may be expected in dental tissues.

Using SXRF, distributions of elements potentially affected by the disease (i.e., Cu,
Fe, Zn and Ca) were mapped on the whole teeth, while high-resolution scans were also
taken in areas of cementum (Figures 2 and 3, File S2). The observed Ca-enriched levels
in enamel and homogenous Ca distributions in dentine were also reported as a normal
pattern in human teeth by Cool et al. [91], Dean et al. [84], and Martin et al. [92,93].
Moreover, the alternating Ca enrichments and depletions seen in the higher resolution
Ca maps of some teeth (e.g., Næstved 211M, Odense 533M and R1386M) have also been
observed by Dean et al. [94] in the acellular cementum of a Pongo incisor and in the cellular
cementum of a Pan incisor. Besides the normal physiological Ca distribution and the
slight fluctuations within the tissues of the scanned teeth, no significant Ca variations were
observed that could be related to the leprosy infection of these medieval and early 20th-
century individuals. Alternating enriched and depleted concentrations are also present in
the Zn maps (Figures 2–4). The dentine of Næstved 305M and Odense 896M and 914M, for
example, shows some marked accentuated bands with strong and broad Zn depletions. A
very clear banding pattern of Zn is also visible in the cementum of both medieval and early
20th-century leprosy sufferers (File S2).

Using synchrotron X-ray fluorescence and X-ray diffraction mapping, Stock et al. [95]
investigated the Zn intensities in cementum annual growth bands of Beluga whale teeth
and reported that Zn is a sensitive indicator of mineralization, with higher and lower
levels corresponding, respectively, to the light and dark bands that are visible in TLM.
Dean et al. [94] also reported an alignment between high Zn concentrations with light
cementum bands, and vice versa, in great ape and fossil hominin teeth and suggested that
cementum layers rich in Zn are either indicative of a proliferation in apposition and/or
mineralization, or of a decrease in the mineralization rate, which could result in more Zn
exchanging with calcium over time. Indeed, the presence of high zinc levels in areas with
mineralization activity, such as peritubular dentine, suggests that zinc is involved in the
mineralization process [96]. The role of Zn in mineralization was also suggested in relation
to high Zn concentrations observed in outer enamel areas [85]. An accumulation of Zn
is observed at the outer enamel surface as well as in the cementum and the secondary
dentine of all scanned teeth (File S2). The Zn enrichment of the latter two tissues may
result from their slow growth rate and prolonged direct contact with tissue fluid during
formation [84,94]. Similar results were previously documented in modern and fossil
primate teeth [84,92–94,97–99].

Overall, no distinctive pattern in elemental distributions can be clearly attributed to
the leprosy infection. Although enamel and primary dentine develop during childhood,
the slow and annual growth of cementum and secondary dentine during adulthood, when
these individuals were not only infected by the mycobacterium but had also manifested
the disease, could potentially capture the blood mineral imbalances experienced by the
leprosy sufferers. However, no significant variation in Fe and Cu is seen in the medieval or
20th-century teeth that could be interpreted as resulting from leprosy. Although studies
have reported Fe and Cu concentrations in human teeth (e.g., [97,99,100]), dental hard
tissues may not imprint the Fe and Cu variations documented in blood due to the naturally
low content of these two elements in teeth. The alternating pattern of Zn (and, to a lesser
extent, Ca) enrichments and depletions observed in the cellular cementum is presumably
natural and a physiological marker of tooth tissue incremental growth. Although, one
cannot exclude that these patterns may also be related to recurrent leprosy reactions
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and the associated mineral imbalances documented in blood serum. For example, the
homeostatic control of Ca by vitamin D [101] may indicate that blood Ca levels would
need to drop significantly for a depleted Ca concentration to be imprinted in dental tissues.
However, it is noteworthy that in the cellular cementum of Næstved 211C, as well as in
the cellular cementum and the secondary dentine of Odense 533M, Zn and Ca have a
positive correlation (File S1), also with Mg (see File S1). These trends are in agreement
with clinical studies on the blood serum elemental levels of modern leprosy sufferers
(e.g., [37,39,41]). Nonetheless, the correlations in dental hard tissues between Cu and Fe
with the other elements (Zn, Ca, Mg) do not show the expected strength, direction, or
significance compared to blood (e.g., [37,44,55]).

Considering the different homeostatic and metabolic factors that may influence the
absorption and distribution of different elements from blood to body tissues, such as
intestinal absorption [102,103], age [104], and pregnancy [105], it becomes evident that a
direct and proportional link between blood and dental tissue elemental levels may not be
applicable.

4.2. Exploring Evidence of Leprosy Treatment by Heavy Metals in Dental Tissues

Being influenced by the Hippocratic theory of humourism, medieval physicians be-
lieved that good health depended on a humoural balance in the body of the four principal
substances (i.e., black bile, yellow bile, phlegm, blood), and, thus, the different types of treat-
ment employed to cure an individual aimed at restoring the lost humoral equilibrium [106].
For example, bloodletting, which enabled the removal of excessive humours from the
body [107], occurred four times every year at the leprosy hospital of Salle-aux-Puelles in
Normandy, France, and was accompanied by a period of rest and special provisions [108].
Diet was also considered important for maintaining and restoring the humoral balance
in the body. In medieval England, for example, mild and moist foods, such as poultry,
eggs, and fresh fish, were considered appropriate for restoring the balance of the digestive
system of leprosy sufferers [22], while in Spain, a special diet of chicken, mutton, sugar,
dried fruits, and nuts proceeded the consultation by a physician [109].

The few historical sources that provide information about the treatment of leprosy in
medieval Denmark date to the 16th century and mention mainly the use of different plants
and animals [110–112]. An exception was the following recipe, mentioned in Christian Ped-
ersen’s book En nøttelig legebog [110], specifically for wealthy individuals, which included
gold as an ingredient. Nevertheless, medicinal preparations that included minerals were
used in other areas (e.g., England) as a treatment for leprosy (as well as other diseases)
towards the end of the medieval period when the Odense and Næstved leprosy hospitals
were still in operation [22,113–116]. For instance, mercury and lead were mixed with animal
products and plants and administered epidermically [114,117,118]. The use of minerals
in medicinal preparations during that time is also attested to archaeologically, as mineral
residues were discovered in an infirmary at the medieval priory and hospital of St Mary
Spital in London [119]. Mineral preparations of mercury as well as arsenic were still used
for the treatment of leprosy during the 19th and early 20th centuries; now administered
also by fumigation, as well as orally and intravenously [20,21,120].

Previous work conducted by Rasmussen et al. [121] on bone samples of individu-
als from three medieval monastic sites in Denmark (Øm Kloster, Franciscan friaries in
Odense and Svendborg) demonstrated a fourfold Hg increase in individuals with leprosy
lesions (~200 ppb) compared to the control group (34 ± 15 ppb), suggesting that mercury-
containing medicine was administered in 79% (11 out of 14) of the cases. Moreover, in
medieval Danish rural populations, Rasmussen et al. [122] showed Hg background expo-
sition levels at 80 and 300 ppb in cortical and trabecular bone, respectively. Regarding
As concentrations, there are no published values measured in the bones or teeth of lep-
rosy sufferers. Rasmussen [123] reports the range of the arsenic content in the enamel of
individuals from medieval Denmark as being <0.001–0.239 ppm, while Hg ranges from
0.046–1.88 ppm. Moreover, Rasmussen et al. [124] interpret the 0.4–120 ppm As content
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of bones from medieval and post-medieval individuals from Denmark as resulting from
diagenesis, while the 7–78,730 ppb Hg concentration is interpreted as reflecting medicinal
treatments. Here, neither the SXRF nor LA-ICP-TOFMS setups were sensitive enough to
detect Hg concentrations, while the low As concentrations visualized by LA-ICP-TOFMS
in the cellular cementum of Næstved 211C as well as in the secondary dentine and in the
cellular and acellular cementum of Odense 533M is not considered a reliable biological
signal. If any Hg and/or As intake, therefore, was intentionally occurring for medicinal
purposes by our scanned individuals, this remains well below the detection limit of the
two techniques used here.

Lead concentrations, on the other hand, are well detected, with SXRF overview maps
showing an accumulation of Pb in the slow-forming secondary dentine and cementum
and high-resolution maps (SXRF and LA-ICP-TOFMS) depicting a well-defined pattern
of alternating enriched and depleted Pb concentrations (Figure 5). Exposure to lead (Pb)
was common during the medieval period [125–128], also in relation to medical treat-
ment [115,129,130]. In medieval rural populations from Denmark, Rasmussen et al. [122]
measured a Pb background level of 5 and 7 ppm in cortical and trabecular bone, respec-
tively. Nielsen et al. [131], however, document much higher Pb concentrations in bones
from two early medieval Danish sites (means of 30 and 105 ppm). In another study, Ras-
mussen et al. [124] interpreted the Pb content in human bone (range: 0.8–426 ppm) as being
related to the increased use in Denmark, from 1400–1700 CE, of Pb-glazed ceramics for
the storage of food. The skeleton is known to accumulate Pb due to the low solubility of
lead phosphate; teeth and bones contain 94% of the total Pb body burden [87,131]. Because
Pb2+ has the same chemical affinities as Ca2+, Zn2+, and Sr2+, Pb is expected to substitute
for Ca and P in the hydroxyapatite crystalline structure since it has a small enough ionic
radius [132–134]. The storage and release of Pb involve the same molecular mechanisms
and hormones as Ca metabolism [134].

Under constant exposure, Pb incorporation in permanent teeth increases with age
until reaching a plateau [135,136]. There is substantial variation of Pb levels in modern
urban human teeth (e.g., [97,137]), with the element being preferentially deposited in
cementum [92,99], especially at the root apex, where the presence of cellular cementum and
the larger surface area may favor Pb exchange from blood to tooth tissues [138]. Secondary
dentine was also identified as the dental tissue storing most of the Pb [139,140] due to the
proximity of blood in the pulp chamber [137,141]. This tissue, therefore, may provide direct
insight into Pb exposure, Pb plasma levels, and Pb intake until the death of an individual
or the cessation of tooth function [142,143]. This Pb enrichment may be favored by the slow
growth or crystal size in secondary dentine [143].

Here, the overview SXRF maps show consistently higher Pb levels in both the sec-
ondary dentine and cementum of all scanned teeth. However, the greatest accumulation
of Pb is seen in the modern Romanian teeth. According to the records of the “Francisc I.
Rainer” Institute of Anthropology, individual R1386 was male and died in 1926 at 36 years
of age at the Colentina Hospital (Bucharest, Romania). This individual was a blacksmith
and, thus, experienced daily exposure to metals during his adult life (Pb is accumulated in
cementum and secondary dentine) and probably as early as his adolescence (Pb increases
from the mid-root of his M2; see Figure 5 and File S2). Pascu [144] reports that in the 1920s,
industrial production was flourishing in Romania and was especially focused on exploiting
Pb, among other metals. Although concentrations in Pb cannot be calculated from the SXRF
data for R1386M, his Pb content is clearly higher than that of the other modern Romanian
individual and well above that of all the Danish archaeological teeth.

Quantitative Pb concentrations were measured by LA-ICP-TOFMS for two medieval
teeth (Næstved 211C and Odense 533M). The results found a moderate to strong correlation
between Pb and Zn (as well as Ca and Mg) variations within tooth tissues formed during
adult life (File S1). In Odense 533M, a single strong Pb enrichment occurs close to the
CDJ (at ~10 years of age; estimation from root formation stage in [79]). This Pb peak is
preceded by two long and strong Zn depletions (Figure 6), also seen in Ca, P, Sr, Mg, and
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Na (File S3). These depletions in essential elements may have favored Pb incorporation
and, thus, increased its toxicity. In Næstved 211C, a major Pb peak occurs at the CDJ at the
time of formation of the first cellular cementum layers (~12 years of age; estimation from
root formation stage in [79]) and is followed by two strong peaks registered a little later
during adult life (~17 years and early 20s, rough estimation based on Zn map). These Pb
enrichments seem to be systematically followed by Zn-depleted bands (Figure 6), which
could result from a reduced Zn absorption due to the increased load and toxicity of Pb in
the body.

Previous studies have also observed a positive correlation between Pb and Zn. This
covariation has been suggested to represent a biological signal reflecting the bloodstream in
the pulp cavity and the metabolism of dentine-forming cells [92,145,146]. Talpur et al. [147]
showed that compared to well-nourished children, the blood and hair of malnourished
children have Pb levels that are two times higher and levels of essentials elements (e.g., Ca,
Fe, and Zn) that are one to twofold lower. When the diet is of insufficient quality, there-
fore, the correlation between Pb and Ca, Fe, or Zn becomes negative [147]. This may be
explained by the increased urinary Zn excretion according to the duration and level of
Pb exposure [148]. Bartón [149] also reported a strong negative correlation between hair
Pb and Zn levels in preschool children. The incorporation of Zn and Pb in dental tissues
may depend on formation rates and permeability [150]. Experiments found that Pb is
incorporated almost instantaneously in forming dentine [151,152]. In modern humans, root
formation (dentine) slows down towards completion [153]; this leaves a longer time period
for incorporating Pb at the root apex, more specifically into the mineralizing matrix of the
forming cementum [138].

The overall Pb background level measured in the cementum of the scanned medieval
leprosy sufferers from Denmark may be related to daily Pb exposure through the consump-
tion of contaminated water and food (lead-tiled roofs and glazed ceramics [124,154]). The
few strong Pb enrichments, however, correspond to a marked exposure to the element. A
possible explanation for the Pb peaks could potentially be the administration of Pb in the
form of medication. Although no historical record survives that attests to the treatment of
leprosy using Pb in medieval Denmark, this element was used in medicinal preparations
during the later Middle Ages (cf., [22]). The administration of Pb-containing medicine
would indicate that the mineral was used for medical purposes in Denmark already from
the late 12th to mid-13th centuries, according to the radiocarbon dates of the two leprosy
patients from Næstved (211) and Odense (533) (Table S2).

Nevertheless, during physiological events, such as pregnancy (e.g., [155,156]) or patho-
logical events, such as severe illness [157], Pb (along with other major and trace elements)
is mobilized from the bone matrix into the bloodstream due to disruptions in skeletal home-
ostasis. The elevated blood Pb levels are then incorporated into the mineralizing dental
tissues and are recorded as Pb-enriched bands [157]. Consequently, the Pb enrichments
imprinted in the dental tissues of the leprosy sufferers could indicate a period of intense
physiological stress, possibly a period of exacerbated leprosy reactions. This could also be
true for the cementum root surface Pb enrichment of Næstved 211C and Odense 533M,
which is surprising by its intensity and duration, and which lasted until the death of both
leprosy sufferers. Although it would be tempting to interpret this high Pb intoxication as
being related to the occurrence of death, more research needs to be done to confirm this
hypothesis. Nonetheless, the maximum Pb concentration that is found at the root surface
of Odense 533M is ~100 ppm. Several public health studies report a positive correlation
between Pb content in blood and teeth and further document a Pb blood concentration of 6
µg/dL for a Pb content in teeth of ~100 ppm [149,158,159]. The incorporation of Pb from
the blood into dental tissues is a complex matter, yet one may speculate that following
these clinical data, the degree of impairment induced by this Pb intoxication could have
reached a level affecting development and health [160,161].
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Figure 6. Covariation of Pb and Zn in the cellular cementum of Næstved 211C (left) and Odense
533M (right) (LA-ICP-TOFMS data used for the correlation tests, File S1). Note that two Zn depletions
(black star on the graph, white star on the map) are followed by a Pb enrichment (black cross on the
graph, white cross on the map) in Odense 533M, while three Pb enrichments (green cross) are followed
by Zn depletions (green star) in Næstved 211C. The range of the y-axes has been adapted to best
present the fluctuations of Zn and Pb in the two teeth. The root surface is enriched in Pb over the first
~30µm, which were avoided here to best represent the elemental covariations. Error bars represent
1 SD on either side. “CC” stands for “cellular cementum,” “CDJ” for “cementodentine junction,”
“PD” for “primary dentine,” “RS” for “root surface,” “Ck” for “crack” in the cellular cementum of
Næstved 211C. Graphic programs used: Adobe Photoshop CS6 and Adobe Illustrator CS6.

5. Conclusions

This study investigated markers of elemental blood fluctuations in the archaeological
teeth of leprosy sufferers. The moderate to strong positive correlation between Zn, Ca, and
Mg distributions seen in the dental tissues of Næstved 211C and Odense 533M corresponds
to the results of clinical studies on blood samples of modern individuals suffering from
leprosy. However, no distinctive pattern is observed in the concentration distributions
of the elements that could be directly linked to the leprosy infection. Future studies on
teeth and blood samples of modern leprosy sufferers with a recorded medical history could
elucidate whether elemental blood imbalances related to leprosy are imprinted in dental
tissues or if the elemental concentration and correlation patterns seen here indicate natural
and physiological markers of tooth tissue incremental growth.

This is the first study using laser ablation to perform continuous mapping without
having to extrapolate data from line scans, thus providing a true and reliable elemental
mapping of the dental tissues. LA-ICP-TOFMS results reveal a constant exposure to Pb,
which most likely reflects the ingestion of contaminated water and food. Although the
administration of Pb in the form of medication cannot be excluded, the few strong Pb
enrichments may be related to periods of intense physiological stress and to the enrichment
of blood with Pb from bone stores. This is perhaps supported by the Pb enrichment seen
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in the last deposited cementum growth layers of Næstved 211C and Odense 533M. The
positive correlation that is observed between Pb and Zn concentrations, as well as the
patterns that emerge when there is relatively high incorporation of Pb in the dental tissues,
may indicate underlying pathophysiological conditions that promote or are induced by
an increased Pb incorporation. A similar study on a larger sample size as well as on a
non-leprosy control group from the same geographical regions and time period, however,
is needed in order to ascertain these interpretations.

This study is the first to investigate mineral element distributions in dental tissues of
leprosy sufferers, demonstrating the potential of SXRF and LA-ICP-TOFMS for paleopatho-
logical investigations. By targeting all dental tissues and by employing a methodology that
allows different degrees of resolution, we have explored elemental distributions spanning
the entire life of the individuals under study.
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