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Abstract

Current structural MRI-based brain age estimates and their difference from chrono-

logical age—the brain age gap (BAG)—are limited to late-stage pathological brain-

tissue changes. The addition of physiological MRI features may detect early-stage

pathological brain alterations and improve brain age prediction. This study investi-

gated the optimal combination of structural and physiological arterial spin labelling

(ASL) image features and algorithms. Healthy participants (n = 341, age 59.7

± 14.8 years) were scanned at baseline and after 1.7 ± 0.5 years follow-up (n = 248,

mean age 62.4 ± 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric

ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of varia-

tion ROI features were constructed. Multiple combinations of features and machine

learning algorithms were evaluated using the Mean Absolute Error (MAE). From the

best model, longitudinal BAG repeatability and feature importance were assessed.

The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0

± 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 ± 0.4 years, p

< .01). The three most important features were, in descending order, GM CBF,

GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (�1.5

± 6.3 and � 1.1 ± 6.4 years respectively, ICC = 0.85, 95% CI: 0.8–0.9, p = .16). The

addition of ASL features to structural brain age, combined with the ElasticNetCV

algorithm, improved brain age prediction the most, and performed best in a cross-

sectional and repeatability comparison. These findings encourage future studies to

explore the value of ASL in brain age in various pathologies.
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1 | INTRODUCTION

Accelerated biological ageing is associated with cognitive decline and

neurodegenerative disease (Baecker et al., 2021; Franke & Gaser,

2012; Gaser et al., 2013; Hou et al., 2019; Ziegler et al., 2014). There-

fore, assessing the impact and role of malleable factors influencing

brain ageing and the development of neurodegenerative pathology

provides the opportunity for intervention, treatment monitoring, and

secondary prevention (Baecker et al., 2021; Franke & Gaser, 2019).

A machine learning method to assess brain ageing is, appropri-

ately named, brain age (Cole & Franke, 2017). Brain age machine

learning methods were able to estimate the brain age using informa-

tion obtained from T1-weighted (T1w) structural MRI data (Cole et al.,

2018). The difference between the predicted and the chronological

age—the brain age gap (BAG)—can be used to assess deviation from

normative ageing trajectories. A larger BAG, therefore, represents a

proxy parameter of poorer brain ageing, which is associated with cog-

nitive decline (Biondo et al., 2021; Franke & Gaser, 2019). However,

structural brain age makes predictions based on MRI characteristics

detailing late-state changes in brain tissue, therefore focusing only on

the morphological effects of ageing and pathology.

The addition of physiological imaging biomarkers may provide a

more comprehensive assessment of pathophysiological processes

related to ageing. Increasing evidence suggests that declining cerebro-

vascular health plays a major role in the evolution of cognitive dys-

function (Iadecola & Gottesman, 2019). Although the underlying

mechanisms of accelerated cerebrovascular ageing are not yet fully

understood, it is implicated in the accelerating cognitive decline pre-

sent in mild cognitive impairment, vascular dementia, and Alzheimer's

disease (AD) (Iturria-Medina et al., 2016; Plassman et al., 2010) and is

associated with future cognitive decline in the cognitively normal

population (Pettigrew et al., 2020). Therefore, the addition of vascular

MRI biomarkers may complement structural brain age estimation,

potentially improving sensitivity to earlier pathological and cognitive

changes.

Arterial spin labelling (ASL) is a noninvasive perfusion MRI tech-

nique that is capable of measuring changes in cerebral blood flow

which has been shown to correlate with the initial stages of cognitive

pathology (Iturria-Medina et al., 2016). Previous results showed that

adding ASL-derived features, ranging from global to subcortical CBF,

improved brain age prediction (R2 = .77, MAE = 6.4 years) compared

with using only global T1-weighted-derived features (R2 = .72, MAE

= 6.9 years) (Rokicki et al., 2021). Furthermore, as brain age estima-

tion utilising ASL-derived features is rather novel, the optimal machine

learning algorithm needs to be determined.

In this study, we investigate the performance of a model combin-

ing structural (T1w and FLAIR) and physiological (ASL) image features

for predicting brain age, which we refer to as ‘Cerebrovascular brain
age’. Using a longitudinal sample of healthy volunteers aged 21 to

95 years, we compared the performance between (1) different imag-

ing features and (2) machine learning algorithms to determine if the

addition of ASL-derived features improves the accuracy of the age

prediction. Finally, (3) we estimated the long-term repeatability of the

best-performing feature set and algorithm.

2 | MATERIALS AND METHODS

2.1 | Methods-study design/data

Structural T1w and FLAIR together with ASL and M0 imaging data of

healthy participants at baseline (n = 341, 38% male, age: 59.7 ± 14.8,

2 DIJSSELHOF ET AL.
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range: 21–95 years) and follow-up after 1.7 ± 0.5 years (n = 248,

37.1% male, age: 62.4 ± 13.3, range: 27–86 years) were drawn from

the StrokeMRI study (Figure 1) (Beck et al., 2022; Richard et al.,

2018). The StrokeMRI study was approved by the Regional Commit-

tee for Medical Research Ethics South-Eastern Norway (2014/64) and

the Norwegian Data Inspectorate. Written informed consent was

obtained from all participants.

All MRI data were collected using a 3 T MR750 scanner

(GE Healthcare), equipped with a 32-channel head coil. Structural 3D

T1w BRAVO images were acquired with the following parameters:

repetition time (TR) = 8.2 ms, echo time (TE) = 3.2 ms, inversion time

(TI) = 450 ms, flip angle (FA) = 12�, 1.0 � 1.0 � 1.0 mm3. Structural

3D FLAIR images were acquired with TR = 8000 ms, TE = 127 ms, TI

= 2240 ms, FA = 12�, 1.0 � 1.0 � 1.2 mm3. ASL was performed

using pseudo-continuous ASL (PCASL) 3D fast-spin-echo interleaved

stack-of-spirals readout with four background suppression pulses at

3.38, 3.1, 2.6, 1.97 s before the readout, 512 points on 8 spirals with

an estimated nominal spatial resolution of 3.8 � 3.8 � 3.0 mm3, TE =

11.1 ms, TR = 5025 ms, labelling duration = 1450 ms, post-labelling

delay (PLD) = 2025 ms, number of excitations = 3, accompanied by

an M0 image without background suppression or labelling, TR = 2 s.

Image processing was performed with ExploreASL version 1.9.0

(Mutsaerts et al., 2020). Briefly, T1w images were segmented into

grey matter (GM), deep white matter (WM), and cerebrospinal fluid

(CSF) volumes using the Computational Anatomy Toolbox 12 (Gaser,

2009). White matter hyperintensities (WMHs) were segmented on

FLAIR images using the Lesion Segmentation Toolbox, and both vol-

ume and count (the number of spatially discrete clusters) were deter-

mined (Schmidt et al., 2019). CBF quantification was performed with

the recommended single-compartment model from the perfusion-

weighted and M0 images (Alsop et al., 2015). To create a deep WM

mask, the WM partial volume map was thresholded at 60% in ASL

native space and subsequently eroding by one voxel to avoid GM con-

tamination, therefore considered to be deep WM (Mutsaerts et al.,

2014). Lastly, CBF values were partial-volume corrected.

All intermediate and final images were rigid-body registered to

the corresponding T1w image, which was then nonlinearly registered

to MNI space. Finally, image quality was checked visually. Twenty-five

participants showing ASL-specific artefacts (movement or arterial

transit time-related) were excluded, resulting in a total of 322 scans at

baseline and 242 at follow-up.

2.2 | Machine learning feature sets, and algorithms

Image features derived from the T1w, FLAIR, and ASL MRI sequences

and their different combinations were used for the brain age training

and prediction. To identify the optimal method, features obtained

from different anatomical and vascular regions, and different machine

learning models were compared in terms of age prediction accuracy,

evaluated by mean absolute error (MAE), and coefficient of determi-

nation (R2). Below, we provide details for all the compared features.

Typical structural and physiological image features were extracted

from T1w, FLAIR, and ASL images using ExploreASL (Figure 2a). Structural

T1w features (Cole, 2020; Cole et al., 2020), were total brain tissue vol-

umes (GM, WM, CSF) and intracranial volume (ICV), and GM/ICV and

(GM + WM)/ICV ratios. Here, ICV was defined as the sum of GM, WM,

and CSF volumes. Structural FLAIR features (Cole, 2020), were WMH

count and volume derived from their respective partial volume maps,

where WMH volume was derived as the ratio of WMH to total WM vol-

ume. ASL features included regional CBF in total GM, deep WM, vascular

territories, and ASL-derived spatial Coefficient of Variation (CoV) values

from the same regions (Mutsaerts et al., 2017). The vascular territories

included the regions perfused by the anterior cerebral artery (ACA), mid-

dle cerebral artery (MCA), and posterior cerebral artery (PCA) (Tatu et al.,

2012). All features were normalised by removing the mean and scaling to

unit variance. Various feature sets were constructed by combining all

T1w, FLAIR, and ASL features in all possible combinations (Figure 2b).

A variety of linear-based (simple and regularised), kernel-based

(linear and radial basis), clustering-based (Minkowski), and tree-based

F IGURE 1 Male (a) and female (b) baseline (orange) and follow-up (blue) age distributions.

DIJSSELHOF ET AL. 3
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ensemble (boosting and bagging) algorithms—available within Python

packages scikit-learn version 0.23.1, xgboost library version 1.2.0, and

sklearn_rvm library version 0.1.1—were implemented using default

settings (Figure 2c).

2.3 | Training and validation sets

To create data sets for training (training set) and validating (validation

set) the brain age models, two training-validation splits were created;

both divided the participants into a 70:30 (n = 232, n = 100) training

and validation sets, respectively:

• Split I: to assess feature set and algorithm performance, and keep a

sufficiently large sample size, all participants were randomly

assigned to either the training or the validation set (resulting in

their baseline only or both baseline and follow-up scans are

assigned to the same set).

• Split II: to assess longitudinal robustness, the validation set con-

tained participants exclusively having both the baseline and the

follow-up scan. The training set consisted of the remaining

participants.

2.4 | Comparison of machine learning algorithms
and image features

For every feature set and algorithm combination (referred to as

models), 300 Monte-Carlo cross-validation simulations (MCCVs) of

Split I were generated, brain age models were trained on each of the

F IGURE 2 Systematic overview of different features (a), feature sets (b) with N showing the number of features, and different algorithms
(c) used to predict brain age. ACA, anterior cerebral artery territory; CBF, cerebral blood flow; CoV, coefficient of variation; CSF, cerebrospinal
fluid; GM, grey matter; GPR, Gaussian process regression; ICV, intracranial volume; KNN, k-nearest neighbour regression; MCA, middle cerebral
artery territory; PCA, posterior cerebral artery territory; RVM, relevance vector machine; RVR, relevance vector regression; SGDreg, stochastic
gradient descent regressor; SVR, support vector regression; WM, deep white matter; WMH, white matter hyperintensity.

4 DIJSSELHOF ET AL.
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training data sets, and then predicted on the corresponding validation

data set. The amount of MCCVs was empirically chosen, based on the

MAE not improving after a number of simulations. MAE was calcu-

lated across the 300 MCCVs as the mean of absolute BAGs—

predicted minus chronological brain age—for each participant in the

validation data set. Secondly, the proportion of variance (R2) was cal-

culated. The average MAE and R2 across the validation data set were

then compared between every algorithm and feature-set combination.

Next, the best-performing algorithm per feature set was selected

based on the lowest MAE, and compared with the best-performing

algorithm using T1w + FLAIR and ASL-only features to determine dif-

ferences between the distribution of MAEs between the best-

performing models, averaged per subject for all MCCVs, then aver-

aged per model. Lastly, the feature importance of the best-performing

model across 300 MCCVs, using Split I, was assessed by determining

the weights of the input features (Ishwaran, 2015).

2.5 | Comparison of ASL regions of interest

ASL-derived CBF results are commonly averaged across structural

regions of interest, for example through the use of the MNI structural

atlas (Alisch et al., 2021; Mazziotta et al., 2001). Although effective at

detecting structural changes based on anatomically defined areas, vas-

cular changes may not occur in specific anatomical regions but instead

in areas fed by larger and smaller branches of the cerebral

vasculature.

To test this hypothesis and to add more vascular information to

the prediction model, ASL features obtained from the vascular terri-

tories were added to the model (Tatu et al., 2012). Desikan-Killiany

template (DKT) derived ASL features, previously used in a study by

Rokicki et al. using a similar data set, and vascular-territory derived

features, both using the best-performing model (ElasticNetCV with

T1w + FLAIR + ASL features, Split I) were compared using a paired t-

test. The DKT atlas includes 35 (sub)cortical regions of interest

(Desikan et al., 2006; Rokicki et al., 2021).

2.6 | Comparison with brainageR

We compared our methods with a previously often-used pre-trained

model called “brainageR, which was trained on GM, WM, and CSF

volumes segmented from T1w-images of 3337 healthy individuals,

age: 40.6 ± 21.4 years, age-range 18–92 years (Biondo et al., 2021).

Brain age prediction was compared between the ElasticNetCV algo-

rithm with T1w + FLAIR + ASL features and brainageR using Split II.

2.7 | Model repeatability

The best-performing model was selected based on the lowest average

MAE and used Split II to predict brain age across 300 MCCVs. To

assess model robustness, the repeatability of the BAGs between

baseline and follow-up scans was examined. BAGs were calculated

and averaged for all MCCVs for baseline and follow-up and tested for

statistical difference between these two sessions using the paired t-

test and intraclass correlation coefficient (ICC) using a two-way

mixed-effects model, absolute agreement, and multiple measurements

model. The ICC of the best-performing model was then compared

with the two ICCs of the best-performing algorithm and T1w

+ FLAIR, and ASL-only feature sets. Next, average BAG differences

between baseline and follow-up for the best-performing feature set

and algorithm were compared with the best-performing algorithm

using T1w + FLAIR features and ASL features only, using the paired t-

test. Lastly, the equality of variances between the same models was

compared using Levene's test.

3 | RESULTS

3.1 | Comparison of machine learning models

In the cross-sectional analysis, GM CBF decreased with

0.37 mL/100 g/min per year (Figure 3). Comparing all models, the

ElasticNetCV algorithm with the T1w + FLAIR + ASL feature set per-

formed best (MAE = 5.03 ± 0.34 years, R2 = .79 ± .03), which outper-

formed the T1w + FLAIR feature set (MAE = 6.01 ± 0.39 years, R2

= .70 ± .04, p < .01) and ASL-only feature set using the same algo-

rithm (MAE = 6.04 ± 0.39 years, R2 = .70 ± .04, p < .01) (Figure 4).

Compared with the best-performing model, the GPR algorithm also

used by brainageR performed poorly (feature set T1w + FLAIR +

ASL, MAE = 8.64 ± 0.62 years, R2 = .39 ± .05; data not shown in the

figures). Comparing the best model performance per feature set, the

ElasticNetCV and T1w + FLAIR + ASL model (MAE = 5.05 ± 3.95

years) significantly outperformed the GradBoost algorithm using T1w

+ FLAIR (MAE = 5.4 ± 3.93 years, p = .01) features and Ridge algo-

rithm using ASL-only features (MAE = 6.03 ± 4.64 years, p < .01).

MAE and R2 scores for all the remaining feature sets and algorithms

are shown in Tables S1 and S2. The three most important features,

from highest to lowest absolute average weights, were GM CBF (6.2

± 1.18), GM/ICV (5.34 ± 0.6), and WM CBF (4.16 ± 0.36; Figure 5).

3.2 | Vascular territorial and structural ASL
features

The model using vascular-territory-derived ASL features (MAE =

5.03 ± 0.34) performed better than using DKT-derived ASL features

(MAE =5.28 ± 0.35 years, p < .01).

3.3 | Comparison with brainageR

The ElasticNetCV algorithm with T1w + FLAIR + ASL features (MAE

= 5.07 ± 4.01 years) performed slightly better than brainageR (MAE

= 5.56 ± 4.33 years), although not statistically significantly different

DIJSSELHOF ET AL. 5
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F IGURE 3 GM, WM, and
vascular territory-based partial
volume corrected CBF per age.
ACA, anterior cerebral artery;
CBF, cerebral blood flow; GM,
Grey Matter; MCA, middle
cerebral artery; PCA, posterior
cerebral artery; WM, deep White
Matter.

F IGURE 4 MAE in years for
various algorithms and different
feature sets after 300 rounds of
MCCV. GPR is not shown as it
performed poorly. GPR, Gaussian
process regression; KNN, k-
nearest neighbour regression;
RVM, relevance vector machine;
RVR, relevance vector regression;
SGDreg, stochastic gradient
descent regressor; SVR, support
vector regression.

6 DIJSSELHOF ET AL.
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(p = .11). Lastly, brainageR showed an opposite estimation bias to the

ElasticNetCV model (Figure 6).

3.4 | Repeatability in follow-up data

The best-performing model, the ElasticNetCV algorithm with T1w

+ FLAIR + ASL features, average baseline, and follow-up BAGs were

similar, respectively �0.44 ± 0.85 and �0.39 ± 0.86 years, ICC = 0.97

(95% CI: 0.96–0.98), p < .01 (Figure 7). ICC for the ElasticNetCV algo-

rithm using either T1w + FLAIR or ASL-only features were respec-

tively 0.98 (95% CI: 0.97–0.98) and 0.98 (95% CI: 0.97–0.98).

Longitudinal stability of the average BAGs (the average difference

of BAGs between baseline and follow-up) was similar 0.06

± 0.21 years) between the T1w + FLAIR + ASL feature set and the

T1w + FLAIR feature set (0.05 ± 0.20 years, p = .23), and between

the T1w + FLAIR + ASL feature set and the ASL-only feature set

(0.04 ± 0.21, p = .16). The average standard deviations of the longitu-

dinal BAG stability were lower in the T1w + FLAIR + ASL feature set

(2.49 ± 0.7 years) than in both the T1w + FLAIR feature set (2.70

± 0.73 years, p < .01) and the ASL-only feature set (2.73 ± 0.71 years,

p < .01). The variances of the BAGs did not differ between T1w

+ FLAIR + ASL (0.04 years) and T1w + FLAIR feature sets

(0.04 years, p = .13) or ASL-only feature sets (0.04 years, p = .78).

4 | DISCUSSION

The main findings of this study were as follows. The added value of

ASL was observed by showing that the ElasticNetCV algorithm with

the combined multi-modality feature set (T1w + FLAIR + ASL) had

the lowest MAE and highest R2, outperforming T1w + FLAIR. Fur-

thermore, ASL features showed high importance in brain age predic-

tion. Lastly, longitudinal consistency and repeatability of brain age

predictions were demonstrated for the full set of features and for

T1w + FLAIR and ASL feature sets alone.

4.1 | Feature sets

Comparing structural and physiological feature sets separately, T1w

features performed best, ASL intermediate, and FLAIR worst, which is

in line with other literature (Cole, 2020; Rokicki et al., 2021). Follow-

ing this trend, the best-performing algorithm (ElasticNetCV) using

combined features was the T1w + FLAIR + ASL model, followed by

the T1w + ASL model, with the T1w + FLAIR model performing

worse.

This suggests that both ASL, and FLAIR in a lesser sense, add

value to brain age prediction based on T1w features, supporting the

idea that these modalities reflect different mechanisms of brain age-

ing. The worse performance when using FLAIR-only or FLAIR com-

bined feature sets could be explained by vascular lesions only starting

at a late age. In other words, FLAIR images may appear similar across

ages except for relatively high age. It is assumed that in healthy age-

ing, brain volume decline measured by T1w and physiological changes

measured by FLAIR and ASL follow a similar pattern on average. How-

ever, because of a relatively low prevalence of WMH lesions in a

healthy population, FLAIR might be less sensitive to detect these

changes and transform them into brain age predictions. Therefore, the

performance of FLAIR in brain age models might differ in pathologies

F IGURE 5 Box plots showing
absolute feature weights
(arbitrary units) across
300 MCCVs per test subject for
the ElasticNetCV algorithm using
the T1w + FLAIR + ASL feature
set. T1w, FLAIR and ASL features
are shown in blue, purple, and
orange, respectively. ACA,

anterior cerebral artery territory;
CBF, cerebral blood flow; CoV,
coefficient of variation; CSF,
cerebrospinal fluid; GM, grey
matter; ICV, intracranial volume;
MCA, middle cerebral artery
territory; PCA, posterior cerebral
artery territory; WM, deep white
matter; WMH, white matter
hyperintensity.
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F IGURE 6 Brain age
predictions for our best-
performing model (ElasticNetCV,
T1w + FLAIR + ASL) model
(orange) and the brainageR (blue)
model.

F IGURE 7 BAGs (predicted age
minus chronological age), averaged per
MCCV, at baseline and follow-up sessions
obtained with the ElasticNetCV algorithm
using the T1w + FLAIR + ASL features.
The dotted line represents the line of
identity.
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associated with WMHs and aberrant cerebral perfusion, such as vas-

cular dementia. FLAIR features have been shown to correlate with

structural change, cognitive decline, and Alzheimer's disease

(AD) (Haller et al., 2013; Prins & Scheltens, 2015).

Although ASL features perform better than FLAIR, T1w features

outperform all other single-modality feature sets. ASL-measured CBF

changes have been correlated with cognitive decline and AD (Iturria-

Medina et al., 2016). In such diseases, CBF and WMH changes might

precede volumetric T1w changes. This might compensate for the

higher instrumental and physiological variability of ASL, as appreciated

in the large spread of feature importance per MCCVs, and lower prev-

alence of WMH lesions and lead to a higher prognostic value of cere-

brovascular brain age in early disease stages. However, to investigate

what information cerebrovascular brain age models provide in cogni-

tively declining or fully impaired cohorts (such as AD), and to disen-

tangle the influences and staging of FLAIR and ASL-measured brain

changes upon cognitive decline, training in a healthy control data set

using T1w + ASL or T1w + FLAIR features can be a start.

4.2 | ASL features

Diving deeper into the role of ASL features in brain age prediction can

provide insight into the role of cerebrovascular change in healthy age-

ing. Interestingly, the third most important ASL feature was deep WM

spatial CoV, which is a surrogate of arterial transit time (ATT), which

has been coined as a potential surrogate marker of cerebrovascular

health (Mutsaerts et al., 2017), This is in line with previous reports of

ATT prolongation in healthy ageing (Dai et al., 2017). Spatial CoV in

WM with longer ATT than GM might be even more sensitive to ATT

changes (Keil et al., 2018). Although the spatial CoV of WM only looks

at the distribution of ASL signal, it still remains unclear if the SNR in

WM is high enough. To overcome this possible limitation in the

future, the vascular territories used in this study could be divided into

proximal, medial, and distal regions of interest. The CBF differences

with respect to their distance from the labelling plane may reflect the

arrival of the label and act as a surrogate of ATT, making deep WM

spatial CoV redundant. Furthermore, pathological accelerated ageing

may include more complex regional ATT changes than global ATT pro-

longation seen in healthy ageing. Therefore, feature importance

should also be determined for multi-PLD ASL that provides voxelwise

ATT estimates and ATT-corrected CBF quantification. The relevance

of cerebrovascular brain age prediction also has to be validated in cog-

nitively or (cerebro)vascularly impaired cohorts with respect to dis-

ease severity. Following WM CoV in feature importance, the ACA

CBF feature provides relatively more information on ageing compared

with the remaining regions. This is in accordance to the literature,

which show the anterior region correlating most (negatively) with age

(Lee et al., 2009; Zhang et al., 2018). Although the remaining regions

do not account for a high feature importance, it is important to retain

them as pathological developments, for example, parietal atrophy in

AD, are mostly local instead of generalised across the brain.

By removing the effects of partial tissue volumes upon ASL fea-

tures, CBF and CoV features showed a large improvement in MAE as

compared with nonpartial-volume-corrected features. This is an inter-

esting observation as PV effects were believed to overestimate the

ASL-measured CBF decline with age by volume loss changes intensi-

fying the pure GM-CBF changes (Chappell et al., 2021). Our current

findings suggest that PVC, even when used together with structural

features, might increase rather than decrease sensitivity to age-

related changes in ASL and potentially also to earlier physiological

pathological developments. However, ASL is very sensitive to physio-

logical fluctuations, for example, caffeine intake changes CBF signifi-

cantly in grey matter, and may therefore complicate brain age

prediction (Vidyasagar et al., 2013). This physiological variability may

explain why (MacDonald et al., 2020; Rokicki et al., 2021), CBF in

itself is not very accurate to predict brain age (MacDonald et al.,

2020; Rokicki et al., 2021), while the use of PV-corrected ASL may

increase the accuracy of brain age prediction when combined with

other modalities.

4.3 | Vascular territorial and structural ASL
features

Interestingly, using fewer features aimed at vascular regions instead

of a large number of anatomical regions slightly improved brain age

prediction. This might imply healthy ageing happens more uniformly

across the brain and a larger amount of smaller ASL features does not

improve prediction, or that a bigger training data set is required. How-

ever, pathologically accelerated ageing might occur at a smaller local

level and therefore, model performance in pathological cohorts should

be investigated further.

4.4 | Algorithms

The best model consisted of the T1w + FLAIR + ASL feature set and

ElasticNetCV algorithm, suggesting this algorithm is most suitable for

brain age estimation using multiple and different modalities. However,

when sufficiently rich feature sets are used performances become

reasonably stable across all algorithms. This suggests feature selection

is of more importance than algorithm choice. The best-performing

algorithm on average across different feature sets was the RVM. Rele-

vance vector regression is an algorithm commonly used in brain age

estimation and also utilised inside the RVM package (Franke & Gaser,

2019; Tipping, 1999). GPR performs worst in all feature sets. Contrary

to these results, GPR combined with structural features performed

well in previous applications to determine brain age, however, this has

been performed on far larger data sets (n = 2001) (Cole et al., 2017).

The poor performance of GPR in this data set might be explained by a

limited number of features and GPR performance improved drastically

when combinations of multiple features were used, instead of only

structural (T1w and FLAIR) features.
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4.5 | Comparison with brainageR

The nonsignificant difference in BAG predictions between the best-

performing model and brainageR might be explained by the large dif-

ference in training data present. Furthermore, as Split II was used,

results may vary for multiple runs. Secondly, our model showed an

opposite prediction bias compared with the brainageR model.

Although the brainageR model did not correct for this (Biondo et al.,

2021), the overestimation at younger ages and underestimation at

younger ages of our model is in line with the literature and can be cor-

rected for with different approaches (de Lange & Cole, 2020).

4.6 | Repeatability

Previously, most brain age methodological studies and applications

focused on improving the cross-sectional age estimation accuracy.

However, individual anatomical and physiological differences together

with the uncertainty of the MRI measurements set a limit on the theo-

retically achievable prediction accuracy; and at some point, it becomes

questionable if a lower MAE is desirable—because instrumental vari-

ability is removed—or if even higher MAE can improve brain age's per-

formance in disease—because meaningful physiological variability is

added. Within-subject longitudinal brain age changes, as a proxy for

brain age repeatability, assuming the intra-individual ageing is negligi-

ble compared with the inter-individual age differences, take the inter-

individual variations out of the equation and might therefore achieve

more accurate predictions of age changes across time both for healthy

participants, and have accrued interest lately (Aamodt et al., 2022;

Franke & Gaser, 2019; Gautherot et al., 2021).

The combined feature set showed similar averaged BAGs, but less

averaged variability in individual age gaps across time than the T1w

+ FLAIR feature set. This suggests that the model's robustness in lon-

gitudinal assessment and the detection of subtle pathological changes

is increased compared with the T1w + FLAIR and ASL-only models.

Compared with the ASL-only feature set, the combined feature

set had on average similar BAGs on both sessions, but a significantly

lower variability. This implies that physiological changes in healthy

ageing are stable in the long-term, however, subject to short-term

fluctuations. However, this might also partly be due to ASL MRI's sen-

sitivity to physiological change by itself. This, however, needs to be

confirmed in an independent data set containing healthy controls and

patients.

Although differences in BAGs between baseline and follow-up

were significant and did not show high variance, individual BAGs did

show high variance for a single run (Figure 6). This further confirms a

prediction bias is present in our models, as discussed in Section 4.5,

and should be investigated and compensated for in the future. To fur-

ther assess longitudinal repeatability in healthy ageing adults, and in

order to compare pathological developments on an individual level,

further studies are recommended, including multiple follow-ups and

considering a range of lifestyle, health, and environmental variables to

determine within and between participant changes in predicted ages

(Aamodt et al., 2022; Høgestøl et al., 2022).

4.7 | Limitations and future directions

Our limitations include the relatively small, single-site sample, reduc-

ing generalisability of the trained model. The age range of the Stro-

keMRI sample included subjects was large (21–95 years) but were not

represented equally. To improve both model prediction accuracy, gen-

eralisability, and repeatability, future efforts could be aimed at

increasing the sample size by including multiple (longitudinal) cohorts.

Although measurement reproducibility of ASL MRI is high (Baas et al.,

2021; Mutsaerts et al., 2015), care should be taken when combining

multiple cohorts differing in MRI vendor or ASL sequence parameters

in order to maintain high reproducibility in brain age prediction.

Furthermore, algorithm parameters were not optimised for this

specific data set. This will have adverse effects on brain age predic-

tion, however, it will also increase applicability and generalisability

when comparing predicting brain age across multiple cohorts.

In the comparison between brainageR and our best-performing

model, training of our model in Split II has been performed only once

with randomisation in subject allocation, therefore results will differ

per run and might not be representative of the average performance.

Current features used were based on literature and experience.

The best-performing model (ElasticNetCV with T1w + FLAIR + ASL

features), was overestimated at a younger age, while it was underesti-

mated at an older age. While a limitation, this is a common trend in

predicting brain age prediction and in-line with similar with other

studies showing similar results, bias correction can be performed to

correct for this (de Lange & Cole, 2020).

Further investigation into the use of WM CBF division and

upcoming WMH features (based on location and morphology), and

additional structural features (thickness and surface) might

improve brain age estimation further (Bauer et al., 2021;

Bethlehem et al., 2022; Gunning-Dixon et al., 2009; Lombardi

et al., 2020). Other normative modelling methods, for example, by

Bethlehem et al., offer different approaches to achieve the same

goal in determining healthy brain ageing patterns and pathological

deviations. While the methods by Bethlehem et al. utilise single-

modality data and single-feature nonlinear models linearly com-

bined to determine pathological deviations, multi-modality

machine learning methods such as brain age uses more advanced

statistical models while also determining the importance of the

features (e.g., GM and WM volume) for predicting normal ageing

trajectories, which might provide more accurate measurements of

deviation in pathology. Further study is required to determine if

both methods should be combined to utilise the nonlinear models

of brain charts and feature importance determination of machine

learning methods to estimate normal ageing trajectories and

pathology (Bethlehem et al., 2022).

5 | CONCLUSION

We coined cerebrovascular brain age as the combination of structural

and physiological features for brain age prediction. The ElasticNetCV

algorithm combined with T1w + FLAIR + ASL gave the most accurate
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brain age prediction, suggesting that the addition of physiological fea-

tures in the form of ASL improves brain age estimation. This model also

proved robust in longitudinal repeatability, showing less variance com-

pared with using structural or ASL features alone. However, results

showed that algorithm choice is less important than feature selection.

Further improvements in brain age estimation may be achieved by

increasing the training set by combining multiple cohorts and through

the use of other structural and ASL-derived physiological features.
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