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Abstract: In this paper, we analyze the stability of the system of partial differential equations modelling scalar
image velocimetry. We first revisit a successful numerical technique to reconstruct velocity vectors u from
images of a passive scalar field ¥ by minimizing a cost functional that penalizes the difference between the
reconstructed scalar field ¢ and the measured scalar field i, under the constraint that ¢ is advected by the
reconstructed velocity field u, which again is governed by the Navier—Stokes equations. We investigate the sta-
bility of the reconstruction by applying this method to synthetic scalar fields in two-dimensional turbulence
that are generated by numerical simulation. Then we present a mathematical analysis of the nonlinear cou-
pled problem and prove that, in the two-dimensional case, smooth solutions of the Navier—Stokes equations are
uniquely determined by the measured scalar field. We also prove a conditional stability estimate showing that
the map from the measured scalar field ¢ to the reconstructed velocity field u, on any interior subset, is Holder
continuous.
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transport
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1 Introduction

Scalar image velocimetry (SIV) is the reconstruction of the fluid velocity field u from measurements of a scalar
field ¢ thatis advected by u. This idea, which dates back to the works [10, 23, 24], is applied in weather forecasting
models using, e.g., satellite images of clouds or ocean temperature. For a background of the technique, see for
instance [14] and the references therein.

SIV also finds applications in medical flow imaging and in experimental fluid mechanics. For instance in
the laser induced fluorescence (LIF) technique, a fluid is seeded with fluorescent molecules and laser light is
focused into a thin sheet, where it is absorbed by the fluorescent molecules followed by spontaneous emission
oflight whichis thenrecorded by a camera (see, e.g., [21] and the references therein). Assuming that the recorded
light intensity is proportional to the fluorescence concentration i, the velocity field u := ujey + uzey, with ey, ey
being the Cartesian unit vectors, can be reconstructed by invoking the scalar transport equation

A +u-Vi— AAY =0, (1.1)

where A is the scalar diffusivity. A direct inversion of the scalar transport equation only provides the compo-
nent u* of u that is normal to ¥ isolines:

ut = (-9.y + AAY)VY/ V|2,
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Finding all components of u requires additional constraints, for example, conservation of hydrodynamic
variables.

Inspired by recent developments on computational methods for SIV [13], in this work we study mathemat-
ically the stability of the map from ¥ to u. We show, in particular, that under suitable a priori assumptions the
velocity field is uniquely determined by the measured scalar field, thereby giving a partial theoretical justi-
fication to the computational approaches. The analysis uses conditional stability estimates as a workhorse for
understanding of inverse problems in a spirit similar to that of the seminal work by Bukhgeim and Klibanov [4].

To fix a configuration for the stability analysis, we consider a soap film experiment from [13]. In that work,
a soap film with a thickness of ~ 10y mis formed in the 10 cm gap between two vertical parallel nylon wires. Tur-
bulence in the film is generated by piercing the film with an array of cylindrical obstacles, resulting in chaotically
interacting wake vortices. These perturbations are accompanied by film thickness fluctuations which behave
similarly to those of a passive scalar. The soap film is illuminated and light reflections are recorded at high speed.
The recorded interference pattern depends on the film thickness fluctuations and therefore behaves similarly
to a passive scalar.

Motivated by this experiment, we consider a particular Cartesian geometry Q = (-a, a) x (-b, b), with
a,b > 0, and write Q = Q x (0, T) for T > 0. Our proofs generalize to many other two-dimensional settings, but
the above choice allows for convenient notations. We assume that the flow satisfies the slip or no-slip condi-
tions on the vertical boundaries, x = +a, and that the scalar field satisfies the no-flux condition there, but the
boundary conditions for both the velocity u and the scalar field ¥ on the top and bottom boundaries y = +b are
unknown.

Determination of u given ¥ is possible only if ¥ satisfies some non-degeneracy condition. Indeed, a con-
stant ¥ satisfies (1.1) but gives no information on u. To state our main result in a simplified form (see Theorem 4.8
below for the precise formulation), we assume that the spatial derivative of ¢ does not vanish identically on the
left boundary x = —a at any time.

The simplified formulation is as follows. Let u and & be smooth velocity fields satisfying the Navier—Stokes
equations, together with, say, the no-slip boundary condition on x = +a, and let 1 and % be smooth scalar
fields satisfying (1.1) with u and #, respectively, together with the no-flux boundary condition on x = +a. Sup-
pose, moreover, that for all t € (0, T) there is y € (=b, b) such that d,¥(-a, y, t) # 0. Then for every space time
domain w such that w ¢ Q (here and below X denotes the closure of the set X), there exist a € (0,1) and C > 0
such that the following stability estimate holds:

lu = @lz2w) < ClY = Pl g (1.2)

whenever u and @ satisfy an a priori bound. Observe that this estimate in particular shows that the scalar
field ¢ uniquely determines the velocity field u. It also gives an upper bound similar to those applied in [2, 7] to
obtain sharp error estimates for finite element data assimilation methods. Although the estimate (1.2) can not be
directly applied in that context, it is a first step towards an analysis of the error propagation in computational
velocity reconstruction based on SIV.

Our approach combines a stream function formulation for the two-dimensional Navier—Stokes equations,
with the classical pressure velocity formulation. First, using a stream function © to represent the velocity
field u, the convection—diffusion equation for the scalar field ¢ defines a transport equation for 0. Provided the
scalar field satisfies the non-degeneracy condition 0y # 0 on the left boundary, this transport equation can be
solved in a neighborhood of the left boundary. This way we show that u can be reconstructed locally given the
scalar field ¥. Then to extend this local reconstruction to an arbitrary subdomain in the interior of the space
time domain, we apply a unique continuation result for the transient linearized Navier—Stokes equations [16].
Observe that the local reconstruction step is possible whenever the velocity u is known along a curve segment
transverse to the level curves of . In our configuration, this holds on the lateral boundaries thanks to the
chosen boundary conditions. A variant of this local reconstruction approach, using classical techniques, has
recently been applied to SIV in [20].

The outline of this paper is as follows. First, in Section 2, we recall a recent technique for computational
velocity reconstruction, and study its stability computationally in Section 3. Then, in Section 4, we prove the
conditional stability estimate. This paper ends with concluding remarks in Section 5.
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2 An example of a computational method for SIV

In this section, we describe a variational method for the reconstruction of the space and time dependent veloc-
ity field u, pressure field p, and scalar field ¢ from a measured space and time dependent scalar field ¢, also
referred to as the true scalar field. We assume perfect knowledge of 1 over a space time volume of Q x (0, T),
where Q and (0, T) represent the corresponding spatial and temporal dimensions. The reconstruction method
divides (0, T) into segments. Then the i-th segment starts and ends at ty = (i — 1) and ¢; = ty + 7, respectively,
where 7 is referred to as the segment time. The reconstruction scheme solves a sequence of optimization prob-
lems for the unknown state variable w = (u, p, ¢) at the start of each segment, i.e. at t = ty. We use a subscript
on a field variable to indicate a time instance, e.g., wg = w(tp). Finding wy in each segment involves an iterative
scheme, and the initial guess for the iteration is taken from the reconstructed field wq at ¢t = t; obtained in the
preceding segment.

2.1 The cost function and its minimization

Defining the state variable by w = (u, p, ¢), the velocity reconstruction method finds the initial conditions for
the state variable wy in each time segment, by minimizing the deviation between the reconstructed scalar field ¢
and the measured scalar field ¥ integrated over Q x (0, T). The corresponding cost functional for the method

reads:
t

s =g [19-wia @
to
where the norm | - || is based on the L?(Q) inner product, denoted by (-, - ).
Equation (2.1) is minimized under the constraint that wy is related to wy via the conservation equations of
fluid momentum, fluid mass, and scalar field:

Jitu+u-vVu+Vp-vAu
R(w) = V-u =0. 2.2)
0p+u-Ve—2AA¢g
Here v is the fluid kinematic viscosity and A is the scalar diffusivity. Adding constraint (2.2) to equation (2.1) using

the Lagrange multiplier w = (i, p, ¢) results in the following constrained cost functional, which is referred to

as the Lagrangian .Z:
t

1 N
2 = [(6 - ¥1* + (v, R ) de. 23
to
Minimizing . of (2.3) with respect to wy involves computing the gradient of . with respect to wy, i.e.

6.2/ 5wy. Following [13], we obtain
5%

=L _i‘lo
6 5110
L Z - o |. 2.4
Swo 5% y

5y ~¢o

This expression for .7 /8wy contains the Lagrange multiplier W = (i, p, ¢), whose evolution equation and
initial and final conditions read:

—8¢ll—u- (Vit+ V") = Vp — vAlL - ¢V

V.- =0, (2.5a)
~0ip—u-VP - A0+ ¢ - ¢

01=0, ¢1=0, (2.5b)

=0, ¢o=0. (2.5¢)

Equation (2.5a) governs the evolution of the Lagrange multiplier w = (it, p, ¢), showing that i is incompress-
ible and is forced along gradients of ¢, and that both i and ¢ are advected by u and are subjected to diffusion.
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The diffusion coefficients —v and -2 of these transport equations are negative, and therefore these equations
are integrated backward in time from t = ¢t; to t = ;. The ‘starting’ conditions W at t = t; are given by equa-
tion (2.5b), while the ‘final’ conditions 1wy at t = ty define the optimization update direction of wy via (2.4). This
direction approaches zero when wy reaches an extremum of ., which corresponds to the condition of (2.5¢).

To find wy, we use the Polak—Rebiere variant of the conjugate gradient method [18], which updates wq
along a search direction h related to 6.2 /§wy. The initial guess for wy is wy from the previous time segment,
and the step length along h is varied using Brent’s line minimization algorithm [3], until the minimum of
the functional ¢, from (2.1), in this direction is found. The conjugate gradient algorithm is continued until
the relative change in _# between two consecutive iterations drops below 0.01. A reconstruction typically
require ~ 10% conjugate gradient steps and ~ 10 Brent minimization steps per conjugate gradient step. There-
fore the computational effort of both methods is equivalent to that of ~ 10° computational fluid dynamics
simulations.

It was shown in [13] that the reconstruction method produces unstable results when the segment time 7
is larger than the flow correlation time .7, which for the system described above corresponds to 7 > 0.1. The
instability is related to the ill-posedness of the initial value problem for chaotic systems, which corresponds to
the cost functional developing multiple minima, when 7 exceeds .7; see, for instance, [17]. In order to stabilize
the method for these cases, regularization terms may be added to the functional of (2.1). In this work, we restrict
ourselves to 7 < 0.1, which does not require the use of these regularization terms.

3 Numerical investigation of the stability of SIV

3.1 Setup

We apply the computational velocity reconstruction to a two-dimensional, incompressible, decaying turbulent
flow field in a space time domain Q x (0, T). The spatial domain Q = (-7, 7)? is a bi-periodic square with side
length L = 277 and the temporal domain (0, T) has a size of T = 8, which is referred to as the reconstruction time.
The objective is to reconstruct the velocity field u from the measured space and time dependent scalar field . To
distinguish between the reconstructed velocity field and the reference velocity field, giving the advection of ¥,
we denote the former by u and the latter by v. It is re-emphasized that we have access to perfect information
of Yy on Q x (0, 7).

Both ¢ and v start from random initial conditions and the initial conditions are normalized such that
% = vl =1and |[¢| =1 at t = 0. The diffusivity is A = 2 x 1073 and the viscosity is v = 1 x 1073, which cor-
responds to a Reynolds number of Re = % L/v = 6.3 x 10% based on the initial velocity scale % and a Schmidt
number of Sc = v/A = % We furthermore use a segment time of 7 = 8 x 1072,

The true velocity field v and the true (measured) scalar field i are generated on a 256> grid by numerically
integrating (2.2). Subsequently, the scalar measurement is interpolated to a 1282 grid and the reconstruction
fields u and ¢ are obtained on this 128% grid by iteratively integrating equations (2.2), (2.4) and (2.5). On both
the 2562 and 1282 grids, equations (2.2) and (2.5a) are advanced in time using a computational time step of
At = 1073, Spatial derivatives in these equations are computed using the Fourier basis functions. Time inte-
gration is performed using the second-order explicit Adams—Bashforth scheme for the advection terms and
the second-order implicit Crank-Nicolson scheme for the diffusion terms. For further details on the numerical
methods, see [11-13].

3.2 Results

Figure la shows the reconstruction error € = ||u — V|| as a function of time, where it is recalled that u is the
reconstructed velocity and v is the reference velocity field. It is seen that, with time, € first decreases and after
t > 4, the error levels off.



DE GRUYTER E. Burman et al., Conditional stability for SIV === 5

100 T T T T T
o/
1 ),
10 F 3
. o
=107 F -
|
=107k Qo,0‘3 ]
40 O ]
10'5 7 l 6 A, l 5 l 4 l 3 l 2 l
107107107 107" 10~ 10~ 10°
|| — ]|?
(a) Reconstruction error versus time. (b) Variation in reconstructed velocity versus variation in

measured scalar.

Figure 1: Reconstruction error and variation in reconstructed velocity.

Figure 2: (Top) Two ‘measured’ scalar fields, ¢ and {J, at t = 6, that are advected by two ‘true’ velocity fields v and 7. At t = 0 it was
assumed that (/) = and that 7 = v + &v where [|6v[|/[v]| = 10~". (Bottom) The curl of the corresponding reconstructed velocity fields,
uandi,att=6.

Recalling the time segmentation described in the first paragraph in Section 2, the time dependent behavior
in Figure 1a indicates that the reconstruction depends on the quality of the initial guess for the initial condition
at the start of each segment. In the first segment, the initial guess is zero, while in each consecutive segment
the initial guess becomes closer to the reference solution, explaining the observed decrease in € with time. Also,
recall that the stability of the unique continuation problem for parabolic equations degenerates towards ¢ = 0,
so a similar effect is expected also for globally coupled solutions.

We now study the convergence of the reconstructed u as a function of the true (measured) ¥. To this end,
we generate multiple simulations of true scalar fields ¥ that are advected by different ‘true’ velocity fields v.
For these simulations, the conditions at ¢ = 0 for ¢ are identical but the conditions for v differ. Differences in
a quantity q between two simulations are denoted by g — ¢. The relative difference in the initial conditions is
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varied between 10~ and 10~". To study the convergence of u as a function of 1, we plot |u — i||* as a function
of [l — || in Figure 1b. It is noted that we average this norm over a time interval of 6 < t < 8. During this time
interval, the computational method has converged roughly to a steady state, as shown in Figure 1a.

Figure 1b shows that there are two regimes in the dependence of the variation of the reconstructed velocity
lu - @t||* on the variation of the true scalar || — ¢||:

3.1

12— i constant for [[¢ — > < 1075,
ly - 9I? for |y - I 2 10°°.

These regimes are indicated by the dashed lines in Figure 1b which have a slope of zero and one, respectively.
In these regimes, the variation of the true scalar || — l,~b||2 (and of the true velocity |lv — ¥||?) is smaller and
larger, respectively, than the error of the reconstructed velocity |lu — v||%. Consequently, the variation of the
reconstructed velocity |lu — it]? in these two regimes is set by |lu — v||? (constant) and by Y - {puz, respectively.
The level of stagnation depends on the time and space resolution of the Navier-Stokes solver, which limits
the accuracy of the reconstructed velocity. The second regime of (3.1) corresponds to Lipschitz stability of the
velocities. In view of the classical stability result [8] for data assimilation problems subject to the heat equation,
Lipschitz stability is feasible thanks to the fact that only the initial data of u are unknown in this computational
example. We also show that the local reconstruction step is Lipschitz stable; see Remark 4.6 below. We leave
a precise numerical analysis of the computational error as a topic of a future work; see [7] for such an analysis
of data assimilation problems subject to the heat equation.

For illustration purposes, we show in Figure 2 (top) two true scalar fields, ¢ and ¥, at t = 6, that are
advected by two ‘true’ velocity fields v and 7. At t = 0 it was assumed that 1 = i and that ¥ = v + Av where
Av]l/Iv] = 1071, Figure 2 (bottom) shows the curl of the corresponding reconstructed velocity fields, u and i,
att=6.

4 Stability analysis

In this section, we will derive a stability estimate that gives a mathematical interpretation of the stability illus-
trated by the right plot of Figure 1. Compared to the numerical example, we consider a more challenging setting
where not only the initial data but also the boundary data on parts of the boundary are unknown. While the
stability estimate shows that convergence as in Figure 1 is possible to obtain, it does not imply that the method
in Section 2.1 must converge.

To fix the ideas, we consider a simplified geometric configuration similar to that of a two-dimensional soap
film experiment described above. Let Q = (—a, a) x (-b, b) and write Q = Q x (0, T). The vertical boundaries of
the domain are defined by

L=X_UZ;, Z:={(xy):x=zaandy € (-b,b)}.

Let u be a solution to the Navier-Stokes equations in Q:

ou—vAu+ (u-Vyu+Vp =0,
t ( ) p @1
V.-u=0.
On X we assume that u satisfies either homogeneous Dirichlet conditions
u= 0’ (4.2)
or slip conditions, i.e.
u-n=0, (4.3)

where n is the outward pointing normal on Z. On the top and bottom boundaries, the boundary data are
unknown. The viscosity coefficient v > 0 is known.
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We suppose that a passive scalar  satisfies
0ty +u-Vy—AAY =0 (4.4)
in Q, together with the no-flux boundary condition
Uiy — 05 =0 onkX. 4.5)

Observe that the Dirichlet and slip conditions imply that the first component of u vanishes on X, that is, this
reduces to a Neumann condition in practice. The diffusivity coefficient A > 0 is a known constant.

Recall that the inverse problem to find u given ¥ is clearly unsolvable if ¥ is a constant function, so we
make the standing assumption that this is not the case. More precisely, we will assume that  is non-constant in
space on X.

It is well-known that the Navier—Stokes equations admit smooth solutions in the two-dimensional case; see,
e.g., [22, Remark 3.7, p. 303]. For simplicity, we assume that both u and ¢ are smooth in Qx (0, 7).

Note that smoothness of ¢ in the interior of Q actually follows from the interior Schauder estimates for (4.4)
and smoothness of u; see, e.g., [15, Theorem 8.12.1, p. 131]. However, as we do not assume any boundary conditions
on the horizontal boundaries y = +b, we do not enter into discussion of smoothness properties of ¥.

4.1 Stream function

As Q is a two-dimensional simply connected domain, the vanishing of the divergence V - u = 0 implies that there
is © such that
u=(0y0,-040). (4.6)

Observe that (4.4) implies
ayeaxw - 0x®0y¢ = (:

where ¢ = {y = -0y + AAy. Defining the (time-dependent) vector field
X =Xy =-0yPoy + 0xYdy 4.7

on Q, we can write equivalently
X0 =, (4.8)

viewing the vector field X as the differential operator defined by (4.7).
As 040 = uy = 0 on %, due to the boundary condition on u, and as the stream functions ® and © + ¢, with
¢ € R being a constant, give the same u, we may assume that

O]y =0. (4.9

We can view (4.8)—(4.9) as a transport equation for 8. Observe that the vector field X and the right-hand side ¢
are known as ¥ is known.
Suppose that 9, (pe) # 0 for a point pg € £_ x (0, T). Then, near po, we can rewrite (4.8) as

0,0 + B30 = f, (4.10)

where B = —(8y 1)1 (9x¥) and f = (8y¥)~1{. Together with the boundary condition (4.9), this transport equation
can be solved near py. In particular, recalling (4.6), we see that ¥ determines u near po. We will next study the
continuity of the map ¥ — u near p,. Observe that this map is nonlinear, both g and f depend on .

4.2 On stability of linear transport equations

In this section, we study linear transport equations in an abstract setting, and the meaning of the variables here
are different from those above.
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Consider the equation
oiu+p-vVu=f (4.11)

with the initial condition u|;~o = 0. We are interested in the continuity properties of the map (f, f) — u. How-
ever, let us first recall the standard continuity result for the map f — u with f fixed. The exposition below was
inspired by [9, Theorem 7, p. 131] where more complicated Hamilton—Jacobi equations are considered. Contrary
to this reference, we need to keep track of the dependence on g of the constants in the estimates.

Let T > 0, suppose that f € L*°(0, T; WLeo(RY; RM)), and choose

R = |IBllLeo (0, ) xRE:RY) -

Furthermore, define r(t) = R(T - t), let B(r) ¢ R" be the open ball of radius r, with a fixed center and outward
pointing normal np, and consider the energy

E(t) = I u2(t, X) dx.
B(r(1))
Then for a solution u of (4.11),
9:E<CE+ I £ dx, (4.12)
B(r)
where
C=1+|Blrw,r;wreo@nrry)-
Indeed, using
d.u® = 2udu = —2uP - Vu + 2uf = 2uf - - vu?,

we get

9.E = J 2ududx +r' J u® dx

B(r) 0B(r)
= J 2uf - B-vutdx +r' J u? dx
B(r) 0B(r)
= J 2uf + u?v - Bdx - J ulng-Bdx+r' I u? dx
B(r) 3B(r) 3B(r)
< J 2uf + u?v - B dx,
B(r)

where we used [np - B| <R = -r'.
Now (4.12) follows from the Cauchy-Schwarz inequality. We write

C={te(0,T):x e B(r(t)}
Gronwall’s inequality implies the following lemma.
Lemma4.1. Let f € L®(0, T; W“°(R"; R")). Then there is C > 0 such that
luOlrzee) < Cliflzze), te(0,1),
for all u € C'(C) satisfying (4.11) and u|.—o = 0. The constant C depends only on T and the norm of p.

We need also higher order energy estimates. For notational simplicity, let us now consider only the case n = 1.
Let k € N. If u satisfies (4.11), then v = 6f§ u satisfies
v+ poyv=Ff, f=akf-1[0X poylu.
We write .
Ekz J VZdX, EK= z J (6f§u)z dx.
B(r) k=0p(ry
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Applying (4.12) to v gives

9.Ex < CEx + I f2dx < CEy + J (0%p? dx + CEy, (4.13)
B(r) B(r)

where the constant depends only on the L*°(0, T; Wk (R))-norm of B. The sum of the estimates (4.13) for
k=0,...,K gives

K
dEx < CEg+C ) j (0%p? dx. (4.14)
=0k
Gronwall’s inequality gives the following lemma.

Lemma4.2. Letk >1andf € L>°(0, T; WKk (R)). Then there is C > 0 such that

k
IOl ee@e@)) < Clea)IfﬂhZ(e), te(0, ),
j=0
for all u € C¥*1(@) satisfying (4.11) and u|,—o = 0. The constant C depends only on T and the norm of B.

We can apply a similar argument also to the time derivative. We will need only the first derivative in time
v = 0¢u. Then

o +pov=F, f=oif - (0:B)ou.
Writing £ = fB(r) v? dx and applying (4.12) to v gives

a0 E<CE+C I frdx < CE+ j (0.f)% dx + CEy,
B(r) B(r)

where the constant depends only on the W% ((0, T) x R)-norm of . The sum of this and (4.14) with K =1,
together with Gronwall’s inequality, gives the following lemma.

Lemma4.3. Letf € WL((0, T) x R). Then there is C > 0 such that
10 cu(Ol2erey) + lUOlm@er@) < Clflme), te0,T),
for all u e C%(C) satisfying (4.11) and u|.o = 0. The constant C depends only on T and the norm of p.
Corollary 4.4. Let B1, B2 € WH((0, T) x R) and suppose that
1Bjll=(0,nxr) < R, IBjllwreo(0,mxw) < R1.
Let uj € C*(C) satisfy ujle—o = 0 and d,u; + Bjdxu; = f;, j = 1, 2. Suppose furthermore that ||f;jlmn(c) < Ri1. Then
luy — uzllzey < CUIfL = fallmce) + 181 = Ballwreoe))s
where the constant depends only on T and R;.
Proof. The function w = u; — uy satisfies
0w + B10xW = fi — fo + (B2 — P1)dxla,
and from Lemma 4.3 we have

Wiz ey < Clift = fallmey + ClB1 — Ballwreoo @) luzllmce)-

Using [If2lg1(e) < R1, the claim follows from Lemma 4.3. O

4.3 Local recovery

We will now apply Corollary 4.4 to (4.10).

Proposition 4.5. Let ) € H*(Q) and suppose that dyY(po) # 0 for apoint po in £_ x (0, T). Let Uy € Qx (0, T) be
aneighborhood of po. Then there are a neighborhood B ¢ H*(Q) of ¢, a neighborhood U c Uy of po and a constant
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C > 0 such that for all ) € ‘B there holds

18 — Bl () < CIY - Pl w),
where © and 0 are the solutions of (4.8)-(4.9) with (X, {) = (Xy, {y) and (X, {) = (Xib’ { ;p), respectively.

Proof. The Sobolev embedding theorem implies that 1 € C>(Q). In particular, the point value dyY(po) is
well-defined and there are a neighborhood V of py and e > 0 such that [0,y (p)| > € for all p € V. Define
B =—-(0y¥) 1 (ax¥) in V, cf. (4.10), and

R=1+Blre)-

Write po = (-a, Yo, to) and consider the set
U={(x,y,t) e Q:x€(-a,—-a+36), y-Yol <RS- (x+a)), |t -ty <&},

where & > 0 is small enough so that U ¢ V n Up. Choose a small enough neighborhood B ¢ H*(Q) of ¢ so that
B = —(9yP) 1 (axY) satisfies | Bll (v < R for all € B. Now Corollary 4.4 implies the claimed estimate. Indeed,

1B = Blwreow) < ClY = Ylwzeswy < ClY = Pl o).

Writing f = (8y%) "¢, with { = -0,¢ + AAy, and defining f analogously, we obtain

If =l < ClY = Pllwzeswy + CIY = Pllw)-
Here the constants depend on
suplPllgy and (_inf [3y(p)l)”. O
peB peB,peV
Remark 4.6. Using notation from the above proposition, it is immediate from equation (4.6) that

lu - @llr2y < 18 = Ol < CIY - Ylmswy, ¢ € B,

where (¢, u) and (@, it) both satisfy (1.1) together with the boundary conditions (4.5) and u; = 0 on . Hence the
map ¥ — u is locally Lipschitz continuous.

4.4 Global recovery

We recall the three cylinders inequality for the linearized Navier-Stokes equation from [16]; see also [1] for
an earlier related result. Let u € H'(0, T; HIZOC(Q)) be a nontrivial solution of (4.1) with associated pressure
p € L*(0, T; HY(Q)). Let B(x, R) c R? denote the ball of radius R with the center x.
Theorem 4.7 ([16]). Let Cp, T > 0,0 < R1 < Ry < R3/3 <1, xg € Q, and let € > 0 be small. Suppose B(xo, R3) c Q.
Then there are C > 0 and a € (0, 1) such that

T—e T T

a 1-a
lul? dx dt < c(J lul? dxdt) (J I luf? dxdt)
0 0

€ B(xo,Rz) B(xo,R1) B(xo,R3)

for all solutions to

oru—vAu+A-VYu+((u-vV)B+Vp =0,
{t (4-Viu+(u-V)B+Vp 4.15)

V-u=0,
inQ and all A, B € L*°(Q) satisfying | Allz~(g) < Co and ||B|z=(g) < Co.

This together with the local recovery implies the following global recovery. Recall that both for Dirichlet and
slip conditions, i.e. (4.2) and (4.3), we have u; = 0 on X.
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Theorem 4.8. Let U c R? be open and suppose thatU c Q. Let Co > 0, tg € (0, T), and yg € (-b, b). Define
U = {u € C*®°(Q) : usatisfies (4.1), uy = 0 on L, and ||ullz(g) < Co}.

Let u € U and let ¥ € H*(Q) satisfy (4.4)-(4.5) and 0yY(po) # 0, where pg = (-a, Yo, to). Let Uy C Qx(0,T) be
a neighborhood of pg. Then there are a neighborhood B ¢ H*(Q) of Y and constants a < (0,1) and C, s > 0 such
that if it € Wand if Y e B satisfies (4.4)—(4.5), with u replaced by i, then

"u - a"LZ((to—s,tO+s)xU) < C||¢ - {P”?{‘*(Uo)'

Proof. Proposition 4.5 implies that there are a neighborhood B ¢ H*(Q) of ¢ and a neighborhood U; ¢ Uy of pg
such that

lu - @2, < CIY - Ylgs,y, ¥ € B.

The difference e = u — i1 satisfies (4.15) with A = u and B = it. Indeed,
A-Ve+(e-V)B=W-VYu-)+(u-a)-V)it=(u-Vyu-(it-v)i.

We can then apply Theorem 4.7 to e. Taking B(xo, R1) C Uy, it follows that for R; > 0 as in Theorem 4.7 there
holds

€

T-
[ ] reraxde < e - B ) iy gy + 1 )"
€ B(x,R;)

The claim follows by iterating Theorem 4.7 finitely many times (see for instance [19]). O

5 Concluding remarks

We have shown that, for the SIV problem, the velocity field u is uniquely determined by the measured scalar
field ¥, and u depends continuously on . The stability is of Holder type for the interior estimates considered
here. Due to the nonlinearity of the map ¢ +— u, the scalar field in the right-hand side of the stability estimate
of Theorem 4.8 is measured in the H*-norm. This is much stronger than the L?-norm of the velocities in the
left-hand side, but it seems unlikely that it can be improved by much in the framework exposed here. The
consequence of this lack of balance in the estimate is that computationally we must expect the error in the
velocity to be larger than that in the scalar field, even if a = 1.

An outstanding challenge is to further develop the analysis so that it allows for error estimates for a com-
putational method. Several building blocks for such a development are available, for convection-diffusion
equations and transport in [5, 6], for parabolic problems in [7] and for the stationary linearized Navier—Stokes
equation in [2]. In those references, finite element methods are considered, but the arguments can be reinter-
preted in the context of spectral or Fourier methods that we considered here.

Funding: The first author was supported by EPSRC grants EP/T033126/1 and EP/P01576X/1. The second author
was supported by the EPSRC grant EP/N024915/1. The third author was supported by EPSRC grants EP/L.026473/1
and EP/P01593X/1.
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