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ABSTRACT 
Research on performance simulation deployment 
opportunities in the building operation phase has 
recently gained on momentum. Specifically, 
simulation routines have been successfully applied in 
the conception and implementation of predictive 
methods for building systems control. Needless to 
say, the quality of such a predictive control system 
depends on the reliability of the integrated simulation 
models. Thus, to ensure that predictions are 
dependable, the incorporated simulation models must 
be calibrated. Moreover, given the dynamic nature of 
building operation and the boundary conditions, 
some input parameters of the model may have to be 
subjected to calibration more frequently. Hence, the 
calibration task cannot be approached as a one-time 
activity. Rather, it needs to be conducted on a regular 
and systematic basis. Given this background, this 
paper examines the potential of recurrent 
optimization-based simulation model calibration of 
an office area. The results displayed a noticeable but 
not fully consistent improvement of the predictive 
potency of the calibrated model. 

INTRODUCTION 
Numeric performance simulation tools are conven-
tionally used to predict the future performance of 
building designs (Hensen et al. 2011). More recently, 
the potential of simulation routines is being explored 
in the buildings' operation phase. Specifically, 
predictive systems operation approach has shown 
how simulation engines can be incorporated as an 
integral component of a building's control system 
(Mahdavi 2001). Thereby, to arrive at a preferable 
control option, implications of alternative control 
actions for the control task's objective function are 
evaluated proactively via parametric simulation.  

Needless to say, the quality of such a system greatly 
depends on the reliability of the deployed simulation 
model. Thus, to ensure that predictions are 
dependable, applied simulation models must be 
calibrated. Moreover, given the dynamic nature of 
building operation, some input parameters of the 
model may have to be subjected to calibration more 
frequently. This circumstance implies that the 

calibration task cannot be approached as an ad hoc or 
one-time activity. Rather, it needs to be conducted on 
a systematic basis. Consequently, the entire 
calibration process should be preferably automated to 
ensure efficiency and consistency. Given this 
background, the present contribution explores the 
potential of a recurrent optimization-based approach 
to simulation model calibration that is intended to be 
employed in a building's monitoring and systems 
control environment.    

METHODOLOGY 
The monitored building 

To explore the potential of optimization-based 
calibration in a realistic setting, we selected an actual 
office in a building of the Vienna University of 
Technology, which is equipped with a monitoring 
infrastructure. The monitoring infrastructure 
provides various streams of data, including indoor 
climate, weather conditions, energy delivery via the 
heating system, energy use for lighting and 
equipment, occupancy presence, and the opening 
state of windows and doors. Data are regularly 
collected with a variable frequency depending on the 
magnitude of changes in successive recordings.  

The monitored data was used to: i) create a weather 
file based on local data instead of using a predefined 
"typical" year; ii) populate the initial building model 
with dynamic data regarding internal loads, device 
states, and occupancy processes; iii) calibrate the 
initial model (see Table 1). 

The building model 

The building was modeled in the building energy 
simulation program EnergyPlus v7.0 (EnergyPlus 
2012). It was assumed that the floor and ceiling 
surfaces of the office are adiabatic, as the office is 
situated between two occupied floors. In the zoning 
scheme, the open-plan south and north-oriented 
spaces were separated from the central corridor. 
However, using the nework-based multi zone airflow 
model of EnergyPlus (Gu 2007), the airflow between 
these connected spaces was simulated. Figure 1 
illustrates the building floor plan and the thermal 
zoning of the building model. 
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The monitored data was incorporated as simulation 
input information in terms of scheduled variables. 
Since writing schedules manually in EnergyPlus (and 
probably in any other simulation program with text-
based input) is a time-consuming and error-prone 
process, a simple program was written in Matlab 
(Matlab 2012) to generate an event-based "compact 
schedule" for each data point. 
 

Table 1 
Use of monitored data in the calibration process 

Use of 
data Data point Unit 

Creating 
local 
weather 
data file 

Global horizontal radiation W/m2 

Diffuse horizontal radiation W/m2 

Outdoor dry bulb temperature oC 

Outdoor air relative humidity % 

Wind Speed m/s 

Wind direction degree 

Atmospheric pressure Pa 

Creating 
the initial 
model 

Electrical plug loads W 

State of openings (open/closed) - 

State of the lights (on/off) - 

Occupancy (presence/absence) - 

Radiators’ surface temperature oC 

Calibration Indoor air dry bulb temperature oC 
 

 
Figure 1 

Building floor plan and thermal zoning of the model 

The heating system model 

To simulate the building's performance during the 
heating season, the heat delivery rate of the hydronic 
heating system had to be calculated and provided to 
the simulation model as input information. Toward 
this end, measured radiator surface temperatures 
were used. The heat emission rate of the radiators 
was obtained using the following equations: 
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Where: 
q heat delivery rate of radiators [W]; 
qR radiative component of heat delivery [W]; 
qC convective component of heat delivery [W]; 
ε emissivity of the radiator [-]; 
σ constant (5.67×10−8 W.m−2.K−4); 
AR effective radiator area for radiation [m2]; 
TS surface temperature of radiators [K]; 
TR room temperature [K]; 
hC convective heat transfer coefficient [W.m-2.k-1]; 
AC effective radiator area for convection [m2]; 
θS surface temperature of radiator [oC]; 
θR room temperature [oC]. 

 

Run periods 

The model calibration and validation process 
involved a monitoring period of nearly six months 
consisting of four 44-day periods. Table 2 
summarizes data on the run periods and Figure 2 
shows the recurrent calibration process of the 
building performance model in these periods. 

 
Table 2 

Specification of run periods 

Run periods Start date End date 

1 15.02.2011 30.03.2011 

2 27.04.2011 09.06.2011 

3 10.06.2011 23.07.2011 

4 24.07.2011 05.09.2011 
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initial model initial model

1st calibrated model 1st calibrated model 1st calibrated model

2nd calibrated model 2nd calibrated model 2nd calibrated model

3rd calibrated model 3rd calibrated model

1st run period 2nd run period 3rd run period 4th run period

Simulation run period

           1st Calibration

           2nd Calibration

          3rd Calibration

 
Figure 2  The process of recurrent calibration 

 
As illustrated in Figure 2, first, the initial model was 
calibrated based on the monitored data from the first 
period (1st calibration). The resulting calibrated 
model was evaluated in the second period by 
comparing its predictions with the monitored data as 
well as the predictions of the initial model. 

Subsequently, this calibrated model was re-calibrated 
twice (2nd and 3rd calibrations) based on monitored 
data from the second and third periods respectively. 
Finally the predictive performance of the 3rd 
calibration was evaluated using monitored data from 
the fourth period.  

Optimization-based calibration approach 

In an optimization-based approach, calibration is cast 
as an error-minimizing process. In this kind of 
optimization problem, the cost function addresses the 
difference between measured and simulated data (in 
the present case, indoor air temperature). The 
variables in the optimization algorithm include a 
number of model input parameters. The attributes of 
these variables will be varied toward minimizing the 
cost function. 

To accomplish the optimization in a way that works 
smoothly with the simulation model, we used 
Genopt, which is a generic optimization program. 
Genopt has been developed to conveniently find the 
attribute range of relevant independent variables that 
would yield optimal system performance. Genopt 
optimizes a user-supplied cost function, using a user-
selected optimization algorithm (LBNL 2011). 

Algorithm used for the optimization was the hybrid 
generalized pattern search algorithm with particle 
swarm optimization algorithm. This is one of the 
recommended generic algorithms for problems, 
where the cost function cannot be simply and 

explicitly stated, but can be approximated 
numerically by a thermal building simulation 
program (LBNL 2011). 

Calibration variables 

The problem of large search space and multiple 
possible solutions has been addressed in previous 
research (see, for example, Coffey 2008). Methods 
such as sensitivity analysis have been proposed to 
limit the number of variables in the optimization 
process (Reddy et al. 2007). In the present research, 
the authors selected the pertinent variables for 
calibration based on their previous experiences. In 
the first calibration, five input variables were 
selected (see Table 3), which address the heat 
transfer processes in the building, namely 
conduction, convection (air infiltration and 
ventilation), and solar radiation. In case of external 
walls of the building, only the thermal properties of 
this component's dominant layer (brick) were 
subjected to variance and a variation range of 20% 
was applied to these parameters. Note that all 
variables of Table 3 may be seen as independent 
variables with the exception of the last two variables, 
namely the thermal conductivity and the density of 
the brick layer. To prevent the optimization process 
to arrive at physically unrealistic combinations of 
these two variables, a simplified relationship between 
them was postulated, which is derived from 
information in the relevant literature (Gösele et al. 
1996): 
 

λB = 0.0005 · ρB – 0.12               (5)  
 

In the above equation,  λB is the thermal conductivity 
of brick in [W.m-1.K] and ρB is the density of brick in 
[kg.m-3]. 
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For the "Air Mass Flow Coefficient" through cracks, 
a wider range was selected based on the template 
libraries introduced for EnergyPlus (DesignBuilder 
2008). For external windows, the entire possible 
range of the "open factor" was allowed. The 
variables of the first optimization-based calibration 
and their variation ranges are given in Table 3. 

In the subsequent model calibration runs, only the 
first two input parameters presented in table 3 were 
subjected to calibration. The obtained variable values 
at each calibration were used as the initial values of 
the variables in the following calibration.   

 
Table 3 

The variables in the first calibration 

Variables Unit Initial 
value 

Lower 
band 

Upper
band 

Closed windows: 
Air mass flow coefficient kg.s-1.m-1 1.4×10-4 1.4×10-5 0.003 

External windows: 
Open factor - 1.0 0.0 1.0 

External windows: 
Solar transmittance - 0.837 0.670 1.000 
External walls (brick): 
Thermal conductivity  W.m-1.K-1 0.73 0.56 0.90 

External walls (brick):  
Density  kg.m-3 1700 1360 2040 

 

Calibration cost function 

For the purpose of building performance analysis, 
error can be defined as the difference between a 
predicted value and a measured value (Polly et al. 
2011). In the present case, the error was calculated 
for the indoor air temperature averaged over all 
office zones. To minimize this error, and to maintain 
the "goodness of fit" of the model at the same time, a 
weighted function of two different indicators was 
defined as the cost function. The first indicator is the 
"Coefficient of Variation of the Root Mean Squared 
Deviations" (Equations 6 & 7). CV(RMSD) serves to 
aggregate the individual (time interval-specific) 
errors into a single dimensionless number. 
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The other indicator used in the cost function is the 
"coefficient of determination" denoted by R2. This 

indicator has been deployed because the main 
purpose of the developed model is the prediction of 
future outcomes and R2 provides a measure of how 
well future outcomes are likely to be predicted by the 
model. In other words, R2 is a statistic that will give 
some information about the goodness of fit of a 
model. The coefficient of determination ranges from 
0 to 1. An R2 of 1.0 indicates that the regression line 
perfectly fits the data. Therefore, it is preferable to 
maximize the R2 value in the optimization process. 
While there are different definitions of R2, here it has 
been calculated via Equation 8: 
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In Equations 6 to 8, mi is the measured air 
temperature (averaged over all office zones) at each 
time step, si is simulated air temperature at each time 
step, n is the total number of time steps, and m  is 
the mean of the measured values. The defined cost 
function  f  takes into account the CV(RMSD) and R2 
in an equally weighted manner (Equation 9). 
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In Equation 9, CV(RMSD)i is the coefficient of 
variation of the RMSD at each optimization iteration, 

2
iR  is the coefficient of determination at each 

optimization iteration, CV(RMSD)ini is the 
coefficient of variation of the RMSD of the initial 
model, and 2

iniR  is the coefficient of determination of 
the initial model. 

To efficiently manage the repetitive process of 
varying the input variables' attributes, the calculation 
of the cost function was tightly integrated with the 
simulation application. To accomplish this, the 
monitored indoor air temperatures were incorporated 
into the input stream and the EnergyPlus runtime 
language (DOE 2011) was used to calculate the cost 
function by the EnergyPlus engine after each run of 
the model. 

RESULTS 
The optimized values of the model input variables in 
the recurrent calibrations are given in Table 4. Table 
5 presents the values of the indicators used in the 
weighted cost function, for the initial and calibrated 
models. Note that these results are based on the 
comparison of measured and simulated indoor 
temperatures as aggregated over all office zones.  
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Table 4  The variables’ values in initial and calibrated models 

Variables Unit Initial 
model 

1st calibrated 
model 

2nd calibrated 
model 

3rd calibrated 
model 

Closed windows: 
Air mass flow coefficient kg.s-1.m-1 1.4×10-4 4.0×10-5 1.5×10-5 2.75×10-5 

External windows: 
Open factor - 1.0 0.36 0.18 0.43 

External windows: 
Solar transmittance - 0.837 0.717 0.717 0.717 

External walls (brick): 
Thermal conductivity  W.m-1.K-1 0.73 0.65 0.65 0.65 

External walls (brick): 
Density  kg.m-3 1700 1462 1462 1462 

 
 

Table 5  Values of R2 and CV(RMSD) in the initial and calibrated models 

 1st run period 2nd run period 3rd run period  4th run period 

 R2 CV(RMSD)  R2 CV(RMSD)  R2 CV(RMSD)  R2 CV(RMSD) 

Initial model 0.38 4.13% 0.68 6.97% - -  - - 

1st calibrated model 0.81 2.15% 0.89 3.30% 0.73 1.86%  - - 

2nd calibrated model - - 0.88 2.17% 0.60 2.53%  0.70 3.39% 

3rd calibrated model - - - - 0.76 2.11%  0.83 2.78% 

 
 
To further illustrate the performance of the calibrated 
model, Figures 2 and 3 depict monitored office 
temperatures together with both inital and first 
calibrated model simulation results. This is done here 
for 9-day periods within the first and second periods. 

DISCUSSION 
As it can be seen from Table 5, the first and third 
automated calibrations significantly improved the 
model performance (during the second and forth run 
periods respectively) in terms of R2 and CV(RMSD). 
The second calibration, however, slightly decreased 
the predictive model performance.   
From these results, we conclude that the 
optimization-based simulation model calibration has 
a promising potential toward improving the run-time 
performance of embedded simulation engines in 
buildings' control and automation systems. However, 
the calibration process requires further improvement 
in terms of efficiency and consistency. Toward this 
end, future research will explore the possibilities to 
further enhance the recurrent calibration process via 
a more detailed process for the determination and 
interpretation of the cost function and associated 
weights.  
Note that the convergence-based approach to the 
definition of the values of model input parameter in 

the course of the optimization process does not mean 
that ''true values'' for such parameter are found. 
Rather, optimization exploits the uncertainty 
potential in our knowledge of the exact values of 
such parameter to provide a better fit to the 
monitoring results. It is thus important, that care is 
taken while defining the permissible variations from 
the initial values of model input parameter. 

CONCLUSION 
We demonstrated a recurrent optimization-based 
calibration of the thermal performance model of an 
office building. Data obtained via the monitoring 
system is deployed to both populate the initial 
simulation model and to maintain its fidelity through 
a systematic optimization-based calibration process. 
To perform the optimization-based calibration, a cost 
function was proposed, which equally weighted an 
error and a goodness of fit indicator. The results 
displayed a noticeable but not fully consistent 
improvement of the predictive potency of the 
calibrated model. Hence, the optimization-assisted 
simulation model calibration method represents a 
promising opportunity for performance enhancement 
in applications pertaining to building automation, 
diagnostics, facility management, and model-based 
systems control.  
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Figure 2 Monitored & simulated office temperature in 1st period: initial model (left), 1st calibrated model (right) 
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Figure 3 Monitored & simulated office temperature in 2nd period: initial model (left), 1st calibrated model (right) 
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