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ABSTRACT ARTICLE HISTORY

Urban flood risk assessment requires attention in inland areas Received 29 November 2022
with intensifying climate change and an increasing probability of ~ Accepted 15 February 2023
extreme precipitation. This study describes the developments and
testing of a sub-catchment-based multi-index fuzzy evaluation
app.rqach that can provide adaptatiop guiqance for municipal fuzzy linguistic sets; storm
deC|5|o_n—makers at a local level. We .flrst built a com.prehenswe water management model;
flood risk assessment system considering three categories: hazard, sub-catchment evaluation:
urban system, and social environment. The proposed evaluation local level

system includes hybrid uncertain information that involves ran-

dom indicator sources and hesitant fuzzy judgments from experts.

The storm weather management model combined with geo-

graphic information system tools was then applied to obtain ran-

dom indicators. Subsequently, hesitant fuzzy linguistic sets and

the Euclidean distance method were adopted to solve the prob-

lem of uncertainty and vagueness from subjective hesitant infor-

mation. Therefore, the aggregation method provides a beneficial

way to assess flood risk in a hybrid uncertain environment. In

addition, the proposed approach was applied to the Jinjiang dis-

trict in an inland city in the P. R. of China. This supports efforts to

prioritize locally tailored policies and practical measures for

higher-risk sub-catchments within large urban systems.

KEYWORDS
Urban flood risk; hesitate

1. Introduction

Urban flooding occurs when the excess surface runoff caused by floods or rainstorms
surpasses the capacity of the urban drainage system, which is the most frequent and
serious natural hazard in cities worldwide. Globally, 20% of urban residents are
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exposed to a 100-year flood, and more than 600 cities are likely to be completely
inundated by a 100-year flood (United Nations Human Settlements Programme (UN-
Habitat) 2022). Urban flooding events result in traffic network paralysis (Kogure
2016; Zhou et al. 2021), property damage to residential and public buildings
(Jakoubek 2007), and even casualties (Xu et al. 2022). Globally, coastal cities are hot-
spots that face high economic and non-economic losses from urban flooding.
However, with intensifying climate change and increasing probability of extreme pre-
cipitation, many inland cities in China face more flooding hazards than they have not
previously had the opportunity or rarely encountered (Ministry of Water Resources
of the People’s Republic of China 2019). On July 20 last year, a heavy rainstorm
flooded the whole Zhengzhou city and caused 380 deaths or missing and 40.9 billion
CNY in direct economic losses (State Council Disaster Investigation Team 2022).
Compared with coastal cities, the natural drainage capacity and the standard of urban
drainage infrastructure in inland cities are generally lower. Therefore, it is necessary
to analyze the spatial and temporal distribution of flooding in inland cities, identify
potential high-risk areas at the local level, and develop suitable adaptation strategies
and measures (IPCC 2022; Jia et al. 2022).

Disaster risk is a combination of factors that determine the potential for people to
be exposed to particular types of natural hazard (Wisner et al. 2014). Disaster risk
assessment in the broad sense is conducted in the disaster system consisting of disas-
ter-pregnant environments, disaster-causing factors, and disaster-bearing carriers
(Ding et al. 2020; Shi 1996, 2002). Existing methods for urban flood risk assessment
can be divided into four categories: i) statistically based probability assessment for
future hazard exposure based on flooding event records with long time series (Benito
et al. 2004); ii) multi-attribute decision making (MADM) based on a multi-index
assessment system (Ghosh and Kar 2018; Othmer et al. 2020); iii) geographic infor-
mation system (GIS) that can handle large amounts of spatial data, visualize flood
risk layer by layer, carry out rapid investigation on a large scale (Zhang et al. 2020);
and iv) scenario simulation (SS) analysis using one/two dimensional hydrodynamic
software, such as the storm water management model (SWMM) developed by United
States Environmental Protection Agency and MIKE series developed by Danish
Hydraulic Research Institute (Geng et al. 2020), and determining the most critical fac-
tors that cause flood risk changes by changing input conditions (Gangrade et al.
2019).

Although the above methods are able to produce acceptable results, they cannot
assess a comprehensive flood risk considering aspects of disaster-pregnant environ-
ments, disaster-causing factors and disaster-bearing carriers. Therefore, some scholars
have attempted to use the aggregation approach of the above methods to address the
absence of measured water level and surface flow data, or to solve the hybrid uncer-
tainty caused by hybrid information. Most studies using GIS tools and SWMMs apply
probability assessment to improve the accuracy of the results (Cai et al. 2019; Xu
et al. 2020). However, simulation results based on the assumed rainfall derived from
experience formulas or designed equations present a challenge for the assessment of
risk in the future, especially under climate change and other more local environmen-
tal changes that will impact run-off and other hydraulic variables underlying flooding
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hazards (Dodman et al. 2022). Therefore, it is necessary to build a surface runoff
model with observational rainfall data.

Moreover, the uncertainty of most index systems in MADM methods is not prob-
abilistic but comes from vagueness (Rodriguez et al. 2012). Therefore, fuzzy set theory
was developed and applied successfully to depict imperfect, incomplete, and vague
information. For example, Lyu adopted a series of fuzzy numbers to increase the
accuracy of risk assessment results, including interval fuzzy AHP (Lyu and Shen
2018; Lyu et al. 2019b), triangular fuzzy AHP (Lyu et al. 2020b, 2020c) and trapez-
oidal fuzzy AHP (Lyu et al. 2020a). Nevertheless, the risk assessed by traditional fuzzy
sets is constrained by a lack of transparency arising from the use of diverse informa-
tion sources (Borujeni and Gitinavard 2017). In recent decades, the use of hesitant
fuzzy linguistic sets (HFLS) (Rodriguez et al. 2012), developed from hesitant fuzzy
sets (HFS) (Torra 2010), has become one way forward to bring flexible assessment of
expert knowledge into the analytical approach and decrease the uncertainty and
vagueness of subjective hesitant information (Li et al. 2019¢). Consequently, urban
flooding risk assessment, which considers objective indicators and subjective expert
remarks, is a typical multi-criteria decision-making problem with hybrid information.

Therefore, the objective of this study was to provide a sub-catchment-based assess-
ment of urban flood risk at the local level under a hybrid information environment
by using the MADM method incorporated with SWMM and GIS technique. We
firstly built a new urban flooding risk evaluation system reflecting the characteristics
of hazard (heavy precipitation), urban system (the built environment), and social
environment (people and facilities), in which all indicators are quantitative and the
indicators’ weights come from experts’ subjective assessments. However, it is difficult
to obtain the expected indicator values based on empirical formulas for rainfall inten-
sity and for experts to give judgments precisely. To handle the uncertainty from the
simulated indicator values, observational rainfall data of more than 50 mm in the
study area were used to calibrate the SWMM. To handle subjective vagueness, hesi-
tant fuzziness was employed to describe experts’ linguistic terms. Subsequently, a
novel information aggregation approach was developed for urban flood risk assess-
ment based on sub-catchment simulation using SWMM, GIS techniques, and HFLS.

2. Methodology

A multi-index hesitant fuzzy assessment framework is proposed based on sub-catch-
ment numerical simulation results, which provides an approach to assess the urban
flood risk at the local level, as shown in Figure 1. The assessment flowchart includes
four parts: i) quantitative indicator system consisting of three categories covering
meteorological-hydrological, topographic-landform, land cover, geology, and social
indicators, ii) indicator sources processing from hybrid information based on SWMM
and GIS technique, iii) evaluator and indicator weights determination by a hesitant
fuzzy weighted averaging operator and the Euclidean distance method (Liao and Xu
2014, 2015), and iv) application of weighted index to the study area to obtain risk
levels for sub-catchments in GIS and provide adaptation measures from local levels.
The GIS-SWMM was used to obtain the expected simulation results as random
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Figure 1. Assessment flowchart of sub-catchment-based urban flooding risk. The red box is the
category of disaster-causing factors, the blue box is the category of disaster-pregnant environment,
and the yellow box is the category of disaster-bearing carriers. The rounded rectangle represents
the calculation results.

indicator values using observational rainfall events. The HFLS and Euclidean distance
model were used to decrease the uncertainty and vagueness of the experts’ weights.
The proposed sub-catchment-based multi-attribute fuzzy evaluation approach using
the GIS-SWMM-HFLS method considers both quantitative indicators and hesitant
fuzziness in the urban flood risk assessment for the first time.

2.1. Assessment model

Urban flood risk can be conceptually described as the result of a combination of haz-
ard, urban environment, and social vulnerability. The assessment structure consists of
one evaluator hierarchy containing 14 indicators from the above three aspects. The
general framework for the urban flood risk assessment from local level was as follows:
there are m sub-catchments in a study area to be evaluated, i.e. Sj(j =1,2,..m); n
indicators, i.e. A;(i =1,2,...,n); and f experts, i.e. Vc(c = 1,2, ...,f). The urban flood
risk of each sub-catchment (UFR) is equal to a comprehensive value, which was
obtained by adding the weighted average of all indicators in the three categories, as

shown in Eq. (1). AY, AP and AC represent the values of each indicator; W, W#»
and W/ represent the weights of the indicators.
UFR=Y"" Alfwi £ 30 alwie 37 ACwie (1)
=111 i i=21 i ! i=31""1 !
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2.2. Indicator category

Following the principles of validation, convenience, and adaptation (Li et al. 2019b,
2019c), 14 indicators were selected from three categories of the disaster risk system
theory. First, the disaster-causing factors in our analysis were mainly the runoff
parameters of urban flood, including runoff coefficient, runoff volume ratio, max-
imum inundation depth, maximum runoff rate, maximum inundation time, and max-
imum inundation area. According to previous studies, these parameters reflect the
intensity of rainfall events and the hazard resistance capacity of the study area (Zhou
and Shen 2013). The six indicators have a negative correlation with urban flood risk.

In a sub-catchment §;, the runoff coefficient (Ay;) is the amount of surface runoff (r,)
in a certain period divided by the amount of rainfall (r) in the same period. The runoff
volume ratio (A;;) is the ratio of the surface runoff volume of a sub-catchment (Qsj) to
the average runoff volume of the study area (g*) during the same precipitation event.

T
An=— (2)
r

Qs

*

A = 3)

Maximum inundation depth (m, A;3), maximum runoff rate (m®/s, Ai4), max-
imum inundation time (h, A;5), and maximum inundation area (m?, Aq) refer to
the maximum values in a sub-catchment area. According to the SWMM manual
(Rossman and Huber 2016), let C be a coefficient, P be the ordinate against rainfall
volume, d;.be ponded water above the depression storage depth, W be the width (m),
d be the net excess ponds atop the sub-catchment surface to a depth, Ag; be the sur-
face area of the sub-catchment (ha), and n be a surface roughness coefficient; then,
the maximum inundation depth and maximum runoff rate can be expressed as Egs.
(4) and (5). Then, maximum inundation time is the difference between the time
when the flood is dry (T;) and the time when the flood begins to inundate (T;)
expressed in Eq. (6). Maximum inundation area is expressed as the runoff volume of
a sub-catchment (denoted Qs,) divided by the maximum inundation depth (A;3).

A3 = maxC(P — d;) (4)
1.49WS: 5
A14 = maxgis (d — ds)E (5)
Asji’l
As=T;—T; (6)
Qs
A =—2
16 AL (7)

Second, the disaster-pregnant environment refers to elements of the built environ-
ment that influence the likelihood and severity of flooding events. Urban construction
has changed the original topography. The occurrence of urban flooding hazards is
closely related to the terrain of the built environment; in our analysis, this was repre-
sented by four indicators. The slope (A,;), which determines the direction of water
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flow was calculated using the GIS tool as the ratio of elevation to horizontal differ-
ence. The green rate (A;;), building density (A,3), and permeable pavement ratio
(Az4) reflect the permeable and impermeable land use in the study area, which plays
an important role in urban flooding generation. The green rate to permeable pave-
ment ratio has a positive correlation with urban flood risk, whereas slope and build-
ing density have negative correlations.

Using the number of grids extracted by the land use map, we defined the green
rate, building density, and permeable pavement ratio as the percentages of green
grids, building grids, and permeable pavement grids in the total grids for each sub-
catchment. In the jth sub-catchment, the number of total grids is denoted as Gj, the
number of green grids (the lawn, green belt, etc. are included whereas low-impact
development facilities such as green roofs and reservoirs are excluded) is denoted as
Gy, the number of building grid is denoted as G, and the number of permeable
pavement grids is denoted as Gp,.

G&
A21 = 6 X 100% (8)
J
G,
Ay = E X 100% (9)
J
GPJ

J

Within the construction of sponge and resilient cities in China, permeable pave-
ments are widely used and regarded as an effective measure for managing water per-
meability, drainage, and noise reduction functions (Li et al. 2021; Wendling and Holt
2020). According to the technical guidelines for sponge city construction imple-
mented since 2014 (Ministry of Housing and Urban-Rural Development of the
People’s Republic of China 2014) permeable pavements are increasingly used in
China. Permeable pavements allow the model to reflect the most recent innovation in
urban design as part of adapting cities to climate change-associated risks. We use the
difference between the built-up grids minus the hardened grids to estimate the num-
ber of permeable pavement grids. We define Gy, as the number of built-up area grids
and PPR as the pervious pavement rate. Then, the number of permeable pavement
grids (Gp,) is obtained.

Gy, = PPR x (Gp, — Gy,) (11)

Third, disaster-bearing carriers describe exposure and vulnerability. In the Chinese
experience, more populous places have more developed economies, resulting in
denser urban roads and traffic and higher observed impact on people and property
caused by flooding events (Huang 2020). The severity of hazard impacts is closely
related to population size, which has a negative correlation with urban flood risk.
Medical capacity, health management, and disposable income reflect the capacity of
post-disaster emergency response and recovery, which have a positive correlation
with urban flood risk (Idris et al. 2018). For example, areas with advanced medical
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capacity can often minimize hazard losses, whereas under-serviced areas tend to have
more casualties.

We defined the area of a sub-catchment as Ag;, the estimated number of people
per square kilometer as »n*, and the population for each sub-catchment (A;;) was
obtained in Eq. (12). Based on the population for each sub-catchment (Aj3;), medical
capacity (As;) was calculated by multiplying the per capita medical allocation rate of
the study area, which was defined as the number of hospitals (Nj) divided by the
total population (N*), and health management (As;;) was calculated by multiplying
the ratio of the total number of fitness facilities (Njy) and psychological counseling
centers (N,) in the study area to the total population (N*). Disposable income (Az4)
refers to the income obtained by residents in a year and can be used for free disposal
multiplied by the per capita disposable income (PCDI).

A31 =n" x AS}. (12)
N,
Ay = N_i X Az (13)
Ny + N,
33 = = e " P x As (14)
A34 = PCDI x A31 (15)

2.3. Indicator processing by SWMM and GIS tools

The proposed urban flooding risk evaluation system has hybrid information: the indi-
cators of the disaster-bearing carriers were crisp, the indicators of the disaster-causing
factors and disaster-pregnant environment were random, and experts’ remarks on the
indicators’ importance were hesitant and fuzzy. Based on open source data, this study
used GIS tools and SWMM to obtain the expected simulation, which allowed for the
random values to be merged into crisp values.

The first step was hydrological analysis using GIS. The fill tool was used for ter-
rain pre-processing based on the original digital elevation model (DEM) map. The
purpose of the flow direction analysis was to calculate the outlet direction position
of the basin based on the characteristics of water flowing from high terrain to low
terrain. The single drainage direction algorithm was used to generate the numerical
values of [1, 2, 4, 8, 16, 32, 64, 128] in a total of eight directions (O’Callaghan and
Mark 1984).

The sub-catchment division was the main step in SWMM, as well as the basis of the
urban flood risk assessment model. The quality of the division had a considerable impact
on the accuracy of the results. Two approaches are often used to divide the study area:
manual and Thiessen polygon divisions. The former artificially divides the study area
based on the direction of the drainage pipe network and the distribution of buildings
and streets, which is suitable for cases with a small research scope, simple pipeline net-
work, and clear flow direction. Accuracy depends on the experience of the experimenters.
In theory, the high precision and good effect of the model are ensured by the actual
drainage conditions. However, when facing the data scarcity of pipeline networks,
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specifically referring to the pipeline diameter and the pipeline bottom elevation, in old
build-up areas, manual division is impossible. The classic Thiessen polygon method
(Brassel and Reif 2010) is widely used in the division of urban sub-catchments and delin-
eates sub-catchments based on pipe network nodes or water outlets (Yang et al. 2022).
Compared with the manual division method, the urban storm water model constructed
using the Thiessen polygonal division method was more suitable for simulating storm
flooding scenarios in the study area (Li et al. 2019a). In this study, Thiessen polygons
were generated in GIS, and the division results were adjusted manually, which is rela-
tively simple, time-saving, and suitable for district research areas.

Parameter (including measured and non-measured parameters) preparation and
model calibration are described in Section 3.3 when testing the proposed framework
in the Jinjiang district.

2.4. Indicator weights using HFLS and Euclidean distance

We applied a hesitant fuzzy weighted averaging operator and the Euclidean distance
method to determine the indicator weights. The experts were free to interpret these
terms. Individual judgments were converted into numeric scores, which were summed to
provide weights for individual model variables. Based on hesitant fuzzy set theory, the
linguistic variable was connected to a real number in the interval [0, 1] through a com-
patibility function. In this study, a 7-scaled linguistic term set (extremely unimportant,
very unimportant, unimportant, medium, important, very important, and extremely
important) was used for urban flood risk assessment: {0,0.17,0.33,0.5,0.67,0.83,1}.

The number of options for the importance of the indicator given by experts, which was
defined as the length of the evaluation linguistic terms can be different. To ensure compar-
ability, shorter values must be extended until all values are equal in length (Liao et al.
2014). Thus, an attitude-neutral extension method was adopted. The extension value was
d=mnd"+ (1 —n)d", where n(0 <n<1) is the parameter determined by the experts’
attitudes, and d* and d~ are the maximum and minimum values, respectively. This study
assumes that all experts were neutral towards values, which means n = 1/2.

In decision-making problems, determining expert weights is complex, as it is diffi-
cult to account for the experience and knowledge of each expert. Traditional evalu-
ation methods usually provides random or the same weight to each expert, which
limits the sensitivity of the evaluation (Kumar and Kumar 2021). The expert weight
in this study was determined by using the Euclidean distance model to maximize
group consensus and minimize expert differences (Li et al. 2019b). The Euclidean dis-
tance between two experts’ judgments represents the degree of divergence, and the
hesitancy degree represents the fuzziness of the expert when describing the import-
ance of the UFR indicators.

First, the experts provided judgments for the importance of UFR indicator. Hesitant
fuzzy linguistic elements were then used to describe the experts’ judgments and were
then transformed into the corresponding value and expanded to the same length E. A, ;
is denoted as the hesitant fuzzy number of expert ¢ towards indicator i, then:

hei={hle=1,2,.Ec=12,.fi=12,..,n} (16)
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The optimal evaluator weight was calculated using the optimized Euclidean dis-
tance model. To evaluate the importance of indicator A;, the Euclidean distance
between h.; and h;;, namely the judgment divergence between expert ¢ and expert
d, was expressed as:

d(heishai) = \/% ST ZZ)#C (he; —he,)? (17)

If W) represents the weight of expert ¢, the weighted hesitant fuzzy number of
expert evaluation with the same length is expressed as WYh¢,. Then, the weighted
sum of the Euclidean distance from expert ¢ judgment score to expert d for the indi-
cator is expressed as

Al ) — \/ > » (Wc‘/hﬁ,ifWE‘l/hg,i)z (18)

When the degree of disagreement between the weighted hesitant fuzzy numbers is
the smallest, the degree of group consensus can be maximized, and the evaluation
results obtained are more objective. Therefore, the minimum Euclidean distance
between experts is

2
mind(he,, ha,;) —mln\/ S d# (Wc"hi)i—W(}’hfi,i)
hei= {h Je=1,2.Ec= 1,2,...f,1 = 1,2,...,n}
ai={Mle=12.Ec=12.fd#ci=12..n) (19)
Zc:lwy =1
W WY >0, ¢d=1,2,...f

The relative importance of each indicator was determined using hesitant fuzzy
evaluation given by experts. The weighted calculation adopted the hesitant fuzzy
weighted average operator method (Li et al. 2017). To ensure comparability, the
original hesitant fuzzy evaluation value x.;={x{,Je=1..,Ec=1,..fi=
1,2,..,n} of each expert was extended to the same length E. h =
{WYK¢ le=1,..,E,c=1,...f,i=1,2,..,n} represents the weighted value of the
expert weight and the expanded hesitant fuzzy number. The parameters ¢;, 0;, g; of
the weighted average algorithm were calculated as follows:

~1
:E{ﬂh i
9_261E2<hc1+hc1+ +}~lfjl) (20)
Gl:Zc:lh

The weights of the three aspects were calculated: disaster-causing factors (denoted
W), disaster-pregnant environment (denoted W#*), and disaster-bearing carriers
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(denoted WI?AC). The weighted average algorithm was adopted based on the three

parameters &;, 0;, ;.

W ?H B &to; (ﬁi—’gl)

WAP _ &+ (1«’:,_1()1)

i S°% Lo (5]
Zi:ZI [Si+gi (ﬁ+“i)]

whce — Grtai (Fx:_ll’x)

: ZZSI [s,-Jra,- (511_'0,)]

16 A
Zi:ll Wit =1

24 Ap
i W' =1

34 Ac
i Wic=1

3. Testing the proposed methodology

3.1. Background

_m

21)

The Jinjiang district is one of the five central urban areas of Chengdu (Figure 2),
located in the southeast of the city. It has the smallest total area of 62km?> and the
second largest population density among all districts in Chengdu (Zhou and Xiong
2021). The city has a humid subtropical monsoon climate with warm and humid sea-
sons throughout the year. The northwest area of the district is flat, and the southeast
has occasional shallow hills, with an average elevation of approximately 500m
(Chengdu Jinjiang District Local Chronicle Compilation Committee Office 2020).
According to the Chengdu Water Resources Bulletin and local yearbook, there were
30 serious inundation events from 2000 to 2020. One of the highest impact events by
heavy rainfall occurred on August 12, 2020, which flooded 365 roads, paralyzed traffic
for nearly 12 h, affected 107,000 people, and caused 1.65 million in economic loss.
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Figure 2. Location of the study area: (a) Chengdu boundary; (b) the remote sensing image of the
Jinjiang district with a 4 m resolution ratio.
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As the oldest commercial centre, the Jinjiang district was built in 1990. With a
continuously increasing urbanization process during the past three decades in
Chengdu, the urban built-up area of the Jinjiang district covers 37km®.
Characterized by complex water systems, a narrow downstream outlet section, and
poor urban drainage conditions, the Jinjiang district has become one of the most
severely affected areas under extreme rainfall conditions. In addition, the local gov-
ernment has vertical governmental relations but follows territorial management
when dealing with urban flood risk management. The administrative divisions in
the Jinjiang district correspond to 11 sub-districts covering 75 neighbourhood
committees after adjustment in 2020. Therefore, we think it is necessary to assess
the urban flood risk based on sub-catchments from the local level to give specific
adaptation measurements.

3.2. Data collection

The data used in the proposed framework included topography and geomorphology
as well as automatically generated drainage boundaries, calculated slopes, and
regional boundaries in GIS tools. DEM data with 30-meter resolution came from
the geospatial data cloud platform (Computer Network Information Center of
Chinese Academy of Sciences 2020). The data identifier was ASTGTM_N30E104,
the central longitude was 104.5, the central latitude was 30.5, the stripe number was
104, and the row number was 30. Land use data with 10-meter accuracy were
downloaded from Finer Resolution Observation and Monitoring of Global Land
Cover (Gong et al. 2020) (with file name 100E40n.tif). Hourly rainfall data for three
rainfall events on August 12, 2020, August 16, 2020, and September 14, 2021, were
provided by the Huiju Environment Platform (Huiju Data 2020), and a total of 60
rainfall datasets were downloaded at an interval of one hour, as shown in Figure 3.
Statistical data, such as population, per capita disposable income, number of hospi-
tals, number of fitness facilities, and number of psychological counselling centres,
were collected from the statistical bulletin of the national economic and social
development of Jinjiang district, Chengdu in 2020 (Jinjiang District Bureau of
Statistics 2021).

3.3. Indicator value processing

The location of the drainage boundary and the outlet was determined by the terrain,
flow direction, and river network, which is the basis for the sub-catchment division
in the Jinjiang district. The simulation results provided indicator values for disaster-
causing factors and disaster-pregnant environments.

3.3.1. Hydrological analysis and SWMM establishment

The flow direction calculation results are shown in Figure 4(a). The flow calculation
does not refer to a specific water flow calculation, but to the cumulative calculation
of each grid of flow analysis results. Its purpose is to determine the flow path accord-
ing to the flow direction data and obtain the accumulative amount of regional
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Figure 3. Hourly rainfall process of three urban flooding events in Jinjiang district.

confluence. When the accumulated flow value reaches a certain value, surface runoff
occurs. The river network is composed of these flow paths. Using stream definition and
stream link tools, a river network diagram was obtained. Based on hydrological analysis,
224 sub-catchments were obtained using the Thiessen polygon after artificial adjustment.

The measurement parameters, including the area, width, impervious ratio, and
slope of each sub-catchment, were prepared for SWMM construction through GIS
calculation. The 224 area values were automatically counted in the attribute table
using the zonal geometric statistics tool, among which the maximum area was 131ha
and the minimum area was 1ha. Because the length of the surface flow was difficult
to determine accurately, the square root of the sub-catchment area was used to deter-
mine the width of the sub-catchment, assuming that each sub-catchment is a square
region (Bisht et al. 2016). In addition, the average slope in each sub-catchment was
spatially obtained, as shown in Figure 4(b).

Rainfall infiltration and surface runoff in the study area largely depended on
imperviousness, which is one of the most sensitive factors to surface runoff in the
SWMM (Barco et al. 2008). The actual impermeability value should be calculated
based on the measured ratio of the roof, concrete pavement, and other actual areas
in the study area. However, this measurement was not easy to obtain. The
weighted runoff coefficient method was used in this study. If there are I types of
land use in the j sub-catchment, and let A; and y; represent the area of I land types
and its runoff coefficient; then the impervious ratio of each sub-catchment can be
defined as:

> A
Aj

I= (22)
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Figure 4. Data processing results: (a) the flow direction; (b) the slope; (c) the land use map; (d)
the 224 sub-catchments.

The study area was divided into three categories: green, water, and impervious areas,
as shown in Figure 4(c). Based on the land use data, the areas were represented by the
number of grids, including the region, green, roof, road, and water, obtained through the
grid calculator in GIS. The different runoff coefficients were graded according to
the standard for the design of the building water supply and drainage (Ministry of
Housing and Urban-Rural Development of the People’s Republic of China 2019).

The non-measured parameters included Manning’s N of overland flow for pervious
and impervious areas, depth of depression storage for impervious and pervious areas,
and percentage of impervious areas with no depression. Because the simulated area
belongs to a small watershed, the Horton model was selected as the infiltration
model, dynamic wave was selected as the confluence model, and the initial parame-
ters were selected by referring to the SWMMS5 user manual (Rossman 2010). The
other initial values of the non-measured parameters were selected based on the actual
conditions of the study areas.
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As the monitoring system of the pipeline network in the study area was imperfect,
the numerical simulation lacked calibrated measured data. To verify the reliability
and accuracy of the model, the comprehensive runoff coefficient method was adopted
to ensure that the simulated values obtained by the established model were within the
value ranges of the study area (Liu 2009). First, the range of the comprehensive run-
off coefficient for the Jinjiang district was determined. Referencing the standard for
the design of outdoor wastewater engineering (Ministry of Housing and Urban-Rural
Development of the People’s Republic of China 2021), the Jinjiang district in
Chengdu is a population agglomeration area; therefore, the average comprehensive
runoff coefficient of the simulation results should be between 0.6 and 0.7. Second, a
closer value of the comprehensive runoff coefficient of the Jinjiang district was calcu-
lated according to the type of underlying surface cover. The green, road, and roof
grids in the study area were obtained by GIS, and their runoff coefficient values were
obtained according to the code for design of outdoor wastewater engineering revised
in 2016. The weighted value of the comprehensive runoff coefficient close to the
actual condition of the Jinjiang district was 0.601.

Taking the comprehensive runoff coefficient of the Jinjiang district as the objective
function, the non-measured parameters were constantly adjusted until a target runoff
coefficient value of 0.601 was reached. An optimization process for the non-measured
parameters was conducted. The simulation results of the six rounds were taken as the
optimized parameters to build the model. The visualized sub-catchments, points,
pipes, discharges, and rainfall events were built in the SWMM as shown in
Figure 4(d).

3.3.2. Model calibration

The coefficient of variation method was used to calculate the degree dispersion
between the simulated and actual runoff coefficients. Five rainstorm scenarios with
recurrence intervals of 0.5, 1, 3, 5, and 10years (Figure 5) and three observational
rainfall datasets (Figure 3) were selected to calibrate the model. The intensity of the
rainfall series in five return periods was derived from the following formula for
Chengdu:

. 44.594(1 4 0.65log P) (23)
b= (t +27 346)0.95310g,,—0.017

where i is the rainfall intensity (mm/min), t is the rainfall duration (min), and P is
the recurrence interval (year).

Based on the target value of the comprehensive runoff coefficient (0.601), we cal-
culated the variation surface runoff coefficient (CV,) in Table 1. The simulated run-
off coefficient fluctuated around the value of the target comprehensive runoff
coefficient, and the coefficient of variation under rainfall in different return periods
was lower than 15%, indicating that the established model reflected the actual situ-
ation well.
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Figure 5. The intensity of rainfall series in five return periods (t =220 min, r=20.4).

3.3.3. Indicator classification

To reduce the differences at the same level, it was necessary to determine the appro-
priate classification criteria for different index assignments (Ji et al. 2013). The Jenks
natural breaks classification method (Jenks and Caspall 1971) is a data clustering
method that was used to determine the best arrangement of median values of differ-
ent classes, minimize the intra-class variance and maximize the inter-class variance
(Mo et al. 2010). Based on the quantification values of 14 indicators for 224 sub-
catchments (Table Al in Supplementary Material), the GIS classification tool was
used in this study to classify each indicator into four levels, as shown in Table A2 of
the Supplementary Material.

3.4. Indicator weight calculation

A questionnaire was designed to obtain expert judgment regarding the importance of 14
indicators (https://www.wjx.cn/vj/YNndJwé.aspx). Five experts were invited, including
two senior engineers from the municipal design institute and three senior researchers
from the risk assessment field. The original values transformed from expert judgment
and the importance matrix after attitude-neutral extension are presented in Tables A3
and A4 of the Supplementary Material. Calculated using the equations in Section 2.4,
the expert weights W) were {0.216,0.221,0.183,0.194,0.186}, the weights of the haz-
ard-causing factor indicators Wf‘H were {0.156,0.197,0.131,0.132,0.189,0.195}, the
weights of the hazard-pregnant environment indicators W were {0.224,0.307,

1

0.252,0.217}, and the weights of the hazard-bearing carriers indicators W/ were
{0.330,0.255,0.194,0.221} (Table A5 of the Supplementary Material). Among the disas-
ter-causing factors, the runoff volume ratio, maximum inundation area, and maximum

inundation time were ranked as the top three important indicators. Slope was the most
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Table 1. The coefficient of variation results.

Return period Rainfall (mm) Runoff coefficient U \TJ Ay Wy,

0.5 85 0.582 0.019 3.03%
1 89.81 0.621 0.020 3.18%
3 100.96 0.604 0.003 0.48%
5 113.01 0.643 0.042 6.69%
10 125.41 0.662 0.601 0628 0.061 9.71%
August 12, 2020 71.2 0.602 0.001 0.16%
August 16, 2020 186.4 0.660 0.059 9.39%
September 14, 2021 107.8 0.650 0.049 7.80%

important indicator of the disaster-pregnant environment, whereas population was the
most important indicator of disaster-bearing carriers.

3.5. Assessment results

The urban flood risk values for 224 sub-catchments in the Jinjiang district were calcu-
lated using Eq. (1), and visualized using GIS tools, as shown in Figure 6. We used
the Jenks natural break classification method to classify the sub-catchment risk values
into five levels: higher, high, medium, low, and lower. The four natural turning points
were 6.87, 7.31, 7.73, and 8.18. There were 34 lower-risk, 60 low-risk, 47 medium-
risk, 56 high-risk, and 27 higher-risk sub-catchments. The higher-risk and high-risk
areas are located in the north of the Jinjiang district, which are mainly residential
and commercial buildings with poor permeability and relatively low terrain. Urban
parks and farmlands are distributed in the south of the Jinjiang district with strong
water absorption capacity and green drainage facilities, in which low- and lower-risk
areas are mainly located. Medium-risk areas are distributed in each densely built area.

In addition, the average risk values of disaster-causing factors, disaster-pregnant
environment, and disaster-bearing carriers for 224 sub-catchments were 2.05, 2.73,
and 2.71, respectively, which indicates a higher risk in the urban system and social
vulnerability than the heavy rainstorm as shown in Figure 7(a). In the hazard cat-
egory, the risk from the runoff volume ratio (A;,) accounted for the most, followed
by the runoff coefficient (A;;), as shown in Figure 7(b). In the disaster-pregnant
environment, the risk from the green rate (A,;) accounted for the most, as shown in
Figure 7(c). Among the disaster-bearing carriers, the risk from medical capacity (As;)
accounted for the highest in Figure 7(d).

3.6. Interpretation of higher-risk sub-districts

The 27 sub-catchments with risk values higher than 8.18, listed in Table A6 of the
Supplementary Material, cover 11 sub-district offices and 19 neighbourhood commit-
tees in the Jinjiang district. The main contributors to higher-risk areas include dense
buildings with aging drainage pipes that cannot withstand heavy rainfall, and varying
slopes ranging from 6.5 to 18.2 that are greater than twice the average slope of 3.4 in
the study area. In addition, there are cases where multiple risk sub-catchments are
located in the same neighbourhood committee. Thus the percentages of 27 higher-
risk sub-catchments in the 19 neighbourhood committees and 11 sub-districts
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Figure 6. Urban flood risk levels for the sub-catchments in Jinjiang district.

provides a ranking approach for the risk hotspots at the local level. Chenglong road and
Shizishan sub-districts had 17.24% of the higher-risk sub-catchments, followed by
Longzhou road with 13.79%, Shuanggui road, Donghu, and Shuyuan with 10.35%,
Lianxin with 6.90%, and Liujiang, Sansheng, Shahe and Jinguanyi with 3.45%. At the
local level, the Shiniuyan neighbourhood committee had 13.79% of the higher-risk sub-
catchments (SUBs;, SUBs;, SUBss, and SUBss), followed by the Jiahong road and
Huangjing neighbourhood committees, which include three higher-risk sub-catchments.

4 Discussion
4.1. Validation

To validate the assessment results, we first compared the distribution of higher-risk
sub-catchments with the results of Specialized Planning for Drainage Projects in the
Central Urban Areas of Chengdu, completed by Chengdu Municipal Engineering
Design and Research Institute in 2018. With the return period of 0.5~ 1.5year, the
flood risk points in Jinjiang district were mainly located in six sub-districts, in which
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Figure 7. Percentage contribution of indicators to urban flood risk: (a) the three categories;
(b)~(d) the indicators in each category (indicator numbers are consistent with Table A2 of the
Supplementary Material).

the Chenglong road, Shizishan, Shahe and Shuyuan sub-districts were consistent with
the higher-risk sub-districts identified in Section 3.5 based on sub-catchment flood
risks. Moreover, we compared the assessed flood areas with historical records of
August 12-16, 2020, posted on the website of the Jinjiang district government. Public
information shows that the Chenglong road and Sansheng sub-districts have suffered
from flood events (Chengdu Municipal People’s Government 2020). Using the pro-
posed method, Chenglong road sub-district was assessed as the highest risk area with
the most higher-risk sub-catchments (Section 3.6), which indicates that the assessed
results are reliable. In addition, we extracted the risk indicators of SUBg;, SUB,¢s,
SUB,11, SUBy 3, and SUBy 6 covered by the Chenglong road sub-district, and found
that the slope (A,,) in the disaster-pregnant environment had the greatest impact.

4.2. Assessment efficiency

In dealing with flood risk assessment problems with hybrid uncertainties, access to
indicator sources and the processing of experts’ weighting information are critical.
The SWMM and GIS tools integrated with the HFLS were used in a general MADM
framework to address the closest evaluation result to the actual situation. Compared
with the index system proposed by (Li et al. 2019¢), the indicators in our study were
quantitative with random and crisp values, whereas the experts’ information was
fuzzy, which removed uncertainty from the indicator source. Furthermore, the
SWMM built on heavy rainfall events and calibrated by five rainstorm scenarios was
used to obtain the random indicator values instead of using historical data. This pro-
vides evaluation results that are consistent with the actual situation. However, com-
pared with the SWMM-GIS approach used in (Lyu et al. 2019a), SWMM and GIS
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tools were applied following common simulation principles and focus on the novelty
of aggregation with HFLS. Compared with our previous work using interval-valued
terms (Ying et al. 2021), the integrated SWMM-GIS-HFLS approach provided a more
accurate distribution of flood risk area in the Jinjiang district under the same scenario
simulation condition. Moreover, the proposed approach can provide detailed spatial
variability of urban sub-district flood risk rather than from the regional or city scale
(Zhang et al. 2020), which is more in line with the territorial mode of emergency
management of local governments in China.

4.3. Adaptation measures

Urban flooding prevention and control measures can be planned at the local sub-dis-
trict level based on the risk evaluation results and the targeted neighbourhood com-
mittee analyzed above. First, reconstruction of the pipeline network should be
prioritized according to the number of higher-risk areas covered in the sub-districts
and neighbourhood committees. For example, elements such as the key nodes in the
completed rainwater pipe network in Shiniuyan, Jiahong Road, and Chenglong Road
should be further considered for municipal funding support. The end of the rainwater
outlet from the 1** Ring Road, Yixingiao South Street, and Haijiao Road drainage to
the Jinjiang River should be optimized.

Second, a combination of nature-based solutions can be applied in residential and
commercial areas (Sichuan Provincial Department of Housing and Urban-Rural
Development 2017). For higher-risk areas with denser residential and commercial
buildings, such as the Feicuicheng court in the Feicuicheng neighbourhood commit-
tee, Beverly court in the Jiahong road neighbourhood committee, Huangjing garden
court in the Huangjing neighbourhood committee, green roofs accounting for 40% of
the building roof area can be applied. In addition, permeable materials can be used
for road reconstruction in the higher-risk areas, combined with the ecological grass-
land on the roadside to increase the water permeability of the road surface.

Third, hazard prevention education and physical-mental construction for residents
in higher-risk areas should be strengthened by posters, brochures, WeChat, and other
online ways to improve residents’ awareness of flood prevention and their ability to
provide interpersonal assistance. The impact of urban flooding hazards on economic
loss and physical damage may cause mental illnesses that last for a long time and
cannot be quantified. High- and higher-risk areas are characterized by densely popu-
lated residential and commercial buildings. The capacity of medical and health man-
agement in the 19 neighbourhood committees, including hospitals, fitness facilities,
and psychological counselling centres, needs to be reassessed.

5. Conclusion

The proposed sub-catchment-based multi-index fuzzy evaluation approach aims at
flood risk management decision making at a local level. The aggregation method inte-
grating SWMM, GIS techniques, and HFLS provides a beneficial way to assess urban
flood risk in a hybrid uncertain environment. In this way, some insights for
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adaptation measurements to urban flood events in inland cities were derived. The
main contributions of this paper are as follows: (1) an integrated comprehensive
urban flood risk assessment indicator system was proposed that had random indica-
tors in the categories of disaster-causing factors, disaster-pregnant environment, and
crisp indicators in the category of disaster-bearing carriers; (2) SWMM built on the
observational rainfall data from urban flood events and calibrated by five rainstorm
scenarios can provide experimental values close to the real characteristics of the
assessment areas for the random indicators; (3) use of HFLS in the experts’ judg-
ments solves the problem of the uncertainty and vagueness from the subjective hesi-
tant information; and (4) derivation of practical management priorities for local level
decision-makers. The 224 sub-catchment risk assessment results show that, under
conditions of heavy rainfall on August 12, 2020, the factors that contribute the most
to flood risk are the green rate in the urban system and the medical capacity in the
social environment. Based on the ranking of higher-risk sub-catchment percentage,
the 11 sub-districts in the Jinjiang district were classified into five levels, in which the
practical measures on reconstruction, LID application, and risk perception should be
given priority planning and funding. Nevertheless, most areas in the Jinjiang district
lack pipeline network data. In addition, the sub-catchment division cannot exactly
match the neighbourhood committee boundaries. More data sources, such as the
digital surface model, should therefore be applied.
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