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Abstract

Background: There may be a bidirectional relationship between cognition and adiposity,

whereby poor cognition leads to increased adiposity and vice versa. We aimed to deter-

mine whether these findings are causal, by undertaking a bidirectional Mendelian ran-

domization (MR) study.

Methods: A total of 378 877 UK Biobank participants had three adiposity indicators [body

fat percentage (BF%), body mass index (BMI) and waist-hip ratio] and two cognitive func-

tion measures (reaction time, visual memory). We examined observational associations

between each adiposity indicator and cognitive function and vice versa. Using bidirec-

tional inverse-variance weighted MR, we estimated the strength of the adiposity-

cognitive function association using genetic instruments for adiposity indicators as our

exposures, and we repeated this in the opposite direction using instruments for cognitive

function.

Results: In the direction adiposity to cognitive function, MR analyses were generally

directionally consistent with observational findings, but all confidence intervals con-

tained the null. In the opposite direction, MR estimates for all adiposity measures on re-

action time were imprecise and directionally inconsistent. MR estimates for the effects of

visual memory on all adiposity measures indicated worse visual memory was associated

with lower adiposity. For example, a 1-unit worse visual memory score was associated

with a 1.32% [b¼�1.32; 95% confidence interval (CI): �0.77,�1.88] and 3.57% (b¼�3.64;

95% CI: �1.84,�5.15) lower absolute body fat percentage and relative body mass index,

respectively.
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Conclusions: Observational associations of adiposity on cognitive function are likely not

causal. In the reverse direction, our consistent findings that worse visual memory is as-

sociated with three adiposity indicators provide support for a causal link between worse

visual memory and lower adiposity.
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Introduction

The prevalences of obesity (defined as a BMI>30 kg/m2)

and cognitive impairment are high: globally, 15.7% of

females and 11.6% of males are obese1 and 6–12% of

adults have a mild cognitive impairment (MCI).2 The prev-

alence of obesity and MCI increases with age3–6 and,

against a backdrop of an ageing population,7 their health

and economic burdens are likely to continue rising.

In adulthood, obesity has been consistently associated

with lower cognitive function,8,9 notably with poor execu-

tive function,10 intellectual functioning, psychomotor per-

formance and speed, and visual construction.11 However,

as studies primarily employ BMI as a measure of total adi-

posity,10 the role of adiposity location (i.e. central vs pe-

ripheral) in the adiposity-cognition relationship remains

uncertain. Some studies have investigated the relationship

between indicators of central adiposity [e.g. waist-hip ratio

(WHR) and waist circumference (WC)] and cognition,

with inconsistent results.12–17 Additionally, in terms of to-

tal body fatness, studies investigating the association be-

tween body fat percentage (BF%) and cognitive function

have also provided conflicting evidence.17–19

Lower cognitive function has also been associated inde-

pendently with adiposity.20–25 As such, a bidirectional

causal relationship may exist whereby lower cognitive

function causes increased adiposity and conversely, adipos-

ity causes lower cognitive function.10

Mendelian randomization (MR), specifically bidirec-

tional MR, is a strategy that may help unpick the extent to

which the pathways between adiposity and cognitive func-

tion represent a bidirectional causal pathway. Hagenaars

and colleagues26 used a bidirectional MR analysis to ex-

plore the BMI-‘cognitive ability’ (verbal-numerical reason-

ing) relationship and found no causal effect in either

direction. A limitation of their study was a lack of pub-

lished genetic variants for cognitive ability at the time of

publication. Therefore, single nucleotide polymorphisms

(SNPs) for educational attainment were employed as a cog-

nitive ability proxy. Additionally, the use of BMI as a

proxy for total adiposity did not permit an investigation

into whether specific adiposity indicators were differen-

tially associated with cognitive function. Recently, Wang

and colleagues27 performed a bidirectional MR of BMI

and WHR (adjusted for BMI; WHRadjBMI) on cognitive

performance and vice versa. They observed conflicting

findings in both directions, e.g. in the direction of cogni-

tion to adiposity, there was robust evidence that higher

cognitive performance caused lower BMI but little evi-

dence for an effect on WHRadjBMI. In the reverse direc-

tion, there was no effect of BMI on cognitive performance

but some evidence for a detrimental effect of higher

WHRadjBMI. The study predominantly used a single indi-

cator (verbal-numerical reasoning) to represent cognitive

performance and thus it is not known how other indicators

of cognitive performance may relate to adiposity.

Moreover, MR findings in relation to WHRadjBMI may be

biased and should be avoided.28 In light of recent findings

that SNPs associated with specific distributions of adipos-

ity are differentially associated with a range of cardiometa-

bolic traits [‘metabolically favourable’, i.e. lower levels of

visceral fat and beneficial effects on cardiometabolic

factors, for example high-density lipoprotein (HDL)

Key Messages

• In this pseudo two-sample Mendelian randomization study using genetic instruments from large-scale genome-wide

association studies and individual-level data from UK Biobank, we observed no evidence for a causal effect of

adiposity on cognitive function.

• In the other direction, there was consistent evidence showing that a worse visual memory resulted in lower body fat

percentage (BF%), waist-hip ratio (WHR) and body mass index (BMI).

• Observational associations of adiposity on cognitive function are likely not to be causal. In the reverse direction, we

provide support for a causal link between visual memory and adiposity.
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cholesterol and lower triglycerides, and ‘unfavourable’ var-

iants]29–32 and lower grey matter volume of the brain,33 an

understanding of whether and how body fat distribution

causes poor cognitive function is warranted.

We aimed to address the above identified knowledge

gaps by triangulating findings using two analytical

approaches. First, we performed observational analyses in-

vestigating the relationship between phenotypic measures

of adiposity (BMI, BF%, WHR) and cognitive function [vi-

sual memory (VM) and reaction time (RT)] and vice versa.

Second, we repeated this analysis within a bidirectional

MR framework in which genetic instruments for the adi-

posity indicators [also including metabolically ‘favour-

able’/‘unfavourable’ adiposity (FA/UFA)] were used to

examine the relationship with VM and RT. This was then

repeated in the opposite direction using genetic instru-

ments for RT and VM to examine the relationship with

BMI, BF% and WHR.

Methods

Study participants

UK Biobank (UKB), described in detail elsewhere,34 is a

large, prospective cohort of individuals aged 40–69 years

at recruitment (2006–10) from across the UK.34 The sam-

ple examined here included 378 877 European ancestry

participants with available data on genotypes and all rele-

vant phenotypes (details in Figure 1).

Study design

We employed a pseudo two-sample bidirectional MR de-

sign, using genetic association estimates from individual-

level data of UKB participants and genome-wide associa-

tion study (GWAS) summary statistics (described below),

to estimate the causal effect of five indicators of adiposity

on two indicators of cognitive function and vice versa.

Adiposity measures

Adiposity measures were obtained at baseline following

standardiezd protocols.35 Weight and BF% were measured

using a Tanita BC-418 MA body composition analyser;

height was measured with a Seca-202 height measure; waist

and hip circumferences were measured using a Seca-200

tape measure. BMI (kg/m2) and WHR were derived. BMI

was positively skewed and so was transformed to the natu-

ral logarithmic scale [ln(BMI)] when used as an outcome

(details of all parameterizations used are in Supplementary

Table S1, available as Supplementary data at IJE online).

Cognitive function measures

At baseline, participants undertook cognitive assessments

(described elsewhere36). Briefly, for VM, respondents were

asked to correctly identify matches from six pairs of cards

after they had memorized their positions. The number of

incorrect matches (number of attempts made to correctly

Figure 1 Sample flow diagram and study design illustrating bidirectional approach. QC, quality control; BMI , body mass index; WHR, waist-hip ratio;

%BF, body fat percentage; RT, reaction time; VM, visual memory; SNPs, single nucleotide polymorphisms. *Unfavourable/favourable adiposity not

‘measured’ in UKB
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identify pairs) was recorded. RT (ms) was recorded as

mean time participants took to correctly identify

matches in a 12-round game of ‘Snap’. A greater number

(VM) or time (RT) indicates poorer cognition. Both varia-

bles were positively skewed and were transformed using

natural logs when considered as outcomes (Supplementary

Table S1).

Confounding variables

Potential confounders were identified from a directed acy-

clic graph (Supplementary Figures S1 and S2, available as

Supplementary data at IJE online). They included: the

Townsend index37 (a measure of area-level deprivation),

smoking status, physical activity, age (years), alcohol in-

take, sleep duration, and comorbidities (type 1 diabetes,

stress, depression and chronic fatigue syndrome) (details in

Supplementary Methods and Supplementary Table S2,

available as Supplementary data at IJE online).

Genetic instrument selection

Adiposity

We used 76, 28, 6, 28 and 34 near-independent SNPs for

BMI, WHR, BF%, UFA and FA which achieved genome-

wide significance (P< 5 � 10�8) in the respective GWAS.38–

41 Instrument details are provided in Supplementary Table S3

(available as Supplementary data at IJE online). For BMI,

WHR and BF%, SNPs were obtained from GWAS which did

not include UK Biobank (UKB). For UFA and FA, the GWAS

from which SNPs were obtained was performed on UKB par-

ticipants. Instrument F statistics, obtained from regressions of

each phenotype on the respective genetic instrument, ranged

from 24.8 (FA) to 91.4 (BMI) and the variance explained

ranged from 0.22% (FA) to 1.80% (BMI) (details in

Supplementary Table S4, available as Supplementary data at

IJE online).

Cognitive function

For RT, we used 41 SNPs achieving genome-wide

significance (P< 5 � 10�8) in a recent UKB GWAS on

330 069 European-ancestry participants.42 For VM, we used

30 SNPs that were downloaded from the Neale laboratory

UKB repository43 and were obtained from a GWAS

performed in 361 194 UKB European-ancestry

participants (further instrument details in Supplementary

Tables S3 and S4).

Linkage disequilibrium clumping in PLINK1.9 ensured

that included SNPs were independent (r2 � 0.1, 250 kb,

reference haplotype data originated from the publicly re-

leased Phase 3 data from the 1000 Genomes Project44).

Where necessary, beta coefficients were multiplied by �1

to ensure all betas represented an increase in the respective

traits; allele harmonization was done to ensure alignment

of alleles for SNP-X and SNP-Y associations (details on

SNP genotyping, imputation and quality control are in

Supplementary Methods, available as Supplementary data

at IJE online).

Statistical analyses

Observational

We explored observational associations between measured

adiposity and cognition and vice versa using linear regression,

with and without adjustment for confounders. To ensure

comparability across observational and MR analyses, when

adiposity measures were used as exposures, we rescaled them

so that a 1-unit change represented a 1-standard deviation

(SD) change. This was not done when RT and VM were

exposures of interest, as their original GWAS were performed

on untransformed RT and VM (Supplementary Table S1).

Genetic: Bidirectional MR

The following analyses were performed initially with adi-

posity instruments as exposures and cognitive function

measures (RT and VM) as outcomes and then vice versa.

The inverse-variance weighted (MRIVW) method was our

main MR model. This method estimates the causal effect of

the exposure on the outcome by averaging the genetic instru-

ments’ ratio of instrument-outcome (SNP-Y) to instrument-

exposure (SNP-X) association estimates using a multiplicative

random-effects meta-analysis model.45 We quantify the ex-

tent of heterogeneity between SNP-specific causal estimates

by reporting the I2 statistic. SNP-Y associations were esti-

mated using linear regressions, adjusted for 10 genetic princi-

pal components. SNP-X associations were extracted from the

original GWAS.38–43 We performed two MR sensitivity anal-

yses: Mendelian randomization-Egger (MREgger)
46 and

weighted median estimator (MRWME).47 MREgger yields an

intercept term which indicates the presence of unbalanced

horizontal pleiotropy (i.e. if genetic instruments are associ-

ated with the outcome via pathways other than via the expo-

sure); MRWME provides more robust estimates when up to

50% of the genetic variants are invalid. We report I2
GX which

quantifies the magnitude of regression dilution bias in the

context of MREgger
48 (further details on MR methods are in

Supplementary Methods). To account for the high number of

comparisons being made between adiposity and cognition

(and vice versa) (n¼ 16 tests), we applied a Bonferroni ad-

justment to all P-value thresholds (i.e. P-value threshold/

number of tests (16); P<0.05 corresponds to P<0.003125,

and P<0.01 corresponds to P<0.000625).
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Sensitivity analyses

For results from MR analyses to be valid, three key

assumptions must be met: (i) genetic variants should be ro-

bustly associated with the exposure; (ii) genetic variants

should be independent of confounding factors of the rela-

tionship in question; (iii) the association between genetic var-

iants for the exposure and the outcome must only operate

via the exposure under study. Here we provide brief

details regarding how these assumptions were assessed

(further details in Supplementary Methods). We explored the

validity of our instruments by testing associations between

SNPs and above-described potential confounders, applying a

Benjamini-Hochberg false-discovery rate of 0.05 to account

for multiple testing. Where associations were observed, MR

analyses were re-run excluding potentially invalid SNPs. In

addition, when the MREgger intercept indicated pleiotropy

(P < 0.05), we undertook further analyses. Outlying SNPs

and those with a large influence on the estimates were identi-

fied by (i) funnel plots and (ii) Cook’s Distance.49 We then

reran our analyses removing the identified SNPs.

As the SNPs used to derive the UFA, FA, RT and VM

instruments were constructed using GWAS including UKB, we

calculated the extent to which genetic effect sizes were biased

as a result of ‘winner’s curse’ (i.e. overestimation of causal

effects in a one-sample setting),50 using established methods.51

For the RT and VM instruments, we further investigated the

extent of this bias by employing a split-sample strategy, as has

been done elsewhere.52 We split the data randomly into two

samples: A and B, with NA ¼ 189439 and NB ¼ 189438. We

calculated individual SNPs’ genetic association with the expo-

sure (SNP-X) and the outcome (SNP-Y) by running simple lin-

ear or logistic regressions in each sample. For MR analyses, we

used SNP-X from sample A and SNP-Y from sample B (A on

B) and vice versa (B on A). Finally, we meta-analysed the two

MR estimates (Meta A & B) and compared these with the MR

estimates from our main analysis. It was not possible to employ

the split-sample strategy for analyses involving UFA and FA (as

either exposures or outcomes), as these phenotypes were not

observable in UKB, to derive estimates of either SNP-

X(favourable or unfavourable) or SNP-Y(favourable or unfavourable) betas.

We used Stata16 and PLINK1.9 and 2.0 for data proc-

essing and statistical analyses. MR analyses were per-

formed using mrrobust in Stata.53

Results

Participants’ mean age was 56.7 (SD¼ 8) years (Table 1).

Males had a higher BMI and WHR and lower BF% com-

pared with females. Median RT was 535 ms (25th, 75th

centile: 477, 606) and median number of incorrect matches

(i.e. VM) was 3 (25th, 75th centile: 2,5).

Adiposity to cognitive function

Observational analysis

In adjusted models, a 1-SD higher BF% was associated

with higher, i.e. slower, RT and with a lower number of in-

correct matches, i.e. better VM (Table 2; Supplementary

Figures S3 and S4, available as Supplementary data at IJE

online). Higher BMI and WHR, were associated with

faster RT and better VM, e.g. a 1-SD higher BMI was asso-

ciated with 0.23% faster RT [b¼�0.23%; 95% confi-

dence interval (CI): �0.29%, �0.18%] and 1.83% lower

VM score (b¼�1.83%; 95% CI: �2.03%, �1.63%).

Table 1 Sample characteristics (n¼ 378 877)

Variable N(%)/median (25th,

75th centile)

Sociodemographic characteristics

Sex

Male 174 968 (46.2)

Female 203 909 (53.8)

Age at recruitment (years)a 56.7 (8.0)

Townsend deprivation indexb �2.4 (�3.8, �0.0)

Currently smoking

No 341 833 (90.2)

Yes 37 044 (9.8)

Alcohol consumption

Less than daily 297 061 (78.4)

Almost/daily 81 816 (21.6)

Physical activity

Active (vigorous activity �4x/wk) 70 012 (18.5)

Inactive (vigorous activity <4x/wk) 308 865 (81.5)

Sleep duration per night (h) 7.1 (1.1)

Comorbidities presentc

No 355 781 (93.9)

Yes 23 096 (6.1)

Adiposity indicators

BMI (kg/m2)

Male 27.3 (25.0, 30.0)

Female 26.0 (23.4, 29.5)

BF%c

Male 25.2 (5.8)

Female 36.5 (6.8)

Waist-hip ratioc

Male 0.9 (0.1)

Female 0.8 (0.1)

Cognitive function

Visual memory (number of incorrect matches) 3 (2, 5)

Reaction time (ms) 535 (477, 606)

BMI, body mass index; %BF, body fat percentage; SD, standard deviation;

wk, weeks.
aSummarized as mean(SD).
bA higher index indicates more deprivation;.
cType 1 diabetes, stress, depression and chronic fatigue syndrome (see

Supplementary Methods and Supplementary Table S2, available as

Supplementary data at IJE online for details).
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Table 2 Estimated causal effects of adipositya on cognitive function (n¼ 378 877)

A. Percentage difference (95% CI, P-valuec) in reaction time by adiposity indicators

BF% BMI WHR UFA FA

Observational analyses

Unadjusted 2.02 (1.96, 2.08) <0.001 0.22 (0.16, 0.28) <0.001 0.20 (0.14, 0.26) <0.001 – –

Adjustedb 1.24 (1.19, 1.30) <0.001 �0.23 (�0.29,-0.18) <0.001 �0.79 (�0.85, �0.74) <0.001 – –

MR analyses

Number SNPs 6 76 28 28 34

IVW �1.28 (�2.29, �0.25) 0.02 �0.63 (�1.33, 0.07) 0.08 �0.06 (�0.82, 0.70) 0.08 �0.96 (�2.30, 0.39) 0.16 �0.20 (�1.94, 1.58) 0.83

I2 0.14 0.70 0.20 0.62 0.58

WME �0.93 (�2.09, 0.26) 0.13 �0.29 (�0.98, 0.41) 0.42 0.08 (�0.87, 1.04) 0.87 �0.69 (�2.04, 0.68) 0.32 �1.39 (�3.29, 0.54) 0.16

MR-Egger 0.60 (�3.58, 4.95) 0.78 0.54 (�1.18, 2.30) 0.54 �0.27 (�3.66, 3.23) 0.88 1.82 (�2.67, 6.52) 0.43 �0.14 (�4.87, 4.83) 0.96

P-pleiotropy 0.37 0.15 0.90 0.21 0.98

I2
GX 0.69 0.89 0.64 0.91 0.88

B. Percentage difference (95% CI, P-valuec) in visual memory by adiposity indicators

BF% BMI WHR UFA FA

Observational analyses

Unadjusted 0.59 (0.38, 0.79) <0.001 �1.29 (�1.49, �1.09) <0.001 0.51 (0.31, 0.71) <0.001 – –

Adjustedb �0.43 (�0.63, �0.22) <0.001 �1.83 (�2.03, �1.62) <0.001 �0.98 (�1.18, �0.77) <0.001 – –

MR analyses

Number SNPs 6 76 28 28 34

IVW �2.53 (�9.00, 4.39) 0.46 �0.41 (�2.54, 1.76) 0.71 �1.09 (�4.14, 2.05) 0.49 �3.55 (�7.30, 0.35) 0.07 0.62 (�4.94, 6.51) 0.83

I2 0.77 0.63 0.44 0.47 0.51

WME �2.79 (�7.34, 1.99) 0.25 �1.05 (�3.30, 1.25) 0.37 �2.67 (�6.08, 1.01) 0.16 �3.14 (�7.51, 1.43) 0.18 �0.54 (�7.30, 6.72) 0.88

MR-Egger �16.64 (�36.09, 8.73) 0.18 0.24 (�5.00, 5.77) 0.93 �15.92 (�25.90, �4.60) 0.01 5.75 (�7.16, 20.45) 0.40 �1.22 (�15.51, 15.48) 0.88

P-pleiotropy 0.23 0.80 0.01 0.15 0.80

I2
GX 0.69 0.89 0.64 0.91 0.88

IVW, inverse-variance-weighted; WME, weighted median estimator; MR-Egger, Mendelian randomization Egger regression; %BF, body fat percentage; BMI, body mass index; WHR, waist-hip ratio; UFA, unfavourable

adiposity; FA, favourable adiposity; MR, Mendelian randomization; SNPs, single nucleotide polymorphisms.
aAssociations between measured and genetically predicted increases in one standard deviation in adiposity and percent difference in reaction time (ms) and visual memory (number incorrect matches).
bAdjusted for deprivation, age at recruitment, smoking status, alcohol consumption, physical activity, sleep duration and comorbidities.
cP-values need to be considered after correcting for multiple testing using a Bonferroni adjustment (number of tests¼ 16; i.e. P<0.05 corresponds to P<0.003125 and P<0.01 corresponds to P<0.000625).
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MR analysis

In contrast to observational findings, two of the three

MR analyses (MRIVW and MRWME) found higher BF% was

associated with faster RT (Table 2; Supplementary Figures S3

and S4, available as Supplementary data at IJE online). For

all other adiposity-cognitive function associations, at least

two of the three MR analyses agreed with adjusted observa-

tional findings, although in most situations confidence

intervals were wide and included the null. For example, a

1-SD higher BMI was associated with 0.63% faster RT

(b¼�0.63%; 95% CI: �1.33%, 0.07%) (MRIVW analy-

sis). Estimates from at least two of the MR analyses using

‘unfavourable’ and ‘favourable’ adiposity instruments indi-

cated higher adiposity was associated with faster RT and

lower VM score, again with wide confidence intervals

which included the null.

Cognitive function to adiposity

Observational analysis

In adjusted models, higher (i.e. worse) RT was associated

with higher BF% and lower WHR and BMI; higher

(worse) VM was associated with lower BF%, WHR and

BMI (Table 3; Supplementary Figures S5–S7, available as

Supplementary data at IJE online). For example, a 1-ms

higher RT was associated with a 0.003% lower BMI

(b¼�0.003%; 95% CI: �0.003%, �0.002%).

MR analyses

MR estimates of the RT-adiposity associations generally in-

dicated that a higher (i.e. worse) RT was associated with

lower BF% and BMI, but estimates had wide confidence

intervals which included the null. All three MR analyses

were directionally consistent with the observational analysis

for the association between RT and BMI (Table 3;

Supplementary Figures S5–S7). For example, a 1-ms higher

RT was associated with a 0.86% (b¼�0.86%; 95%

CI: �3.26, 1.60) lower BMI (MRWME analysis). For the

RT-BF% and RT-WHR associations, although MR associa-

tions generally agreed with each other, they were direction-

ally inconsistent with adjusted observational findings. All

three MR analyses for the effect of VM on BF%, WHR and

BMI were directionally consistent with each other and with

the adjusted observational analyses, indicating that higher

(worse) VM resulted in lower adiposity. For example, a

1-unit worse VM score was associated with a 1.32%

(b¼�1.32%; 95% CI: �1.88, �0.77) and 3.57%

(b¼�3.57%; 95% CI: �5.15, �1.84) lower absolute BF%

and relative BMI, respectively (MRIVW analyses). Whereas a

higher (worse) VM score also resulted in a lower WHR in all

three MR analyses, confidence intervals included the null.

Sensitivity analyses

When removing SNPs associated with confounders from

instruments, associations from adiposity to cognition (in

particular for VM) changed direction (Supplementary

Table S5, available as Supplementary data at IJE online).

In the other direction, whereas some associations from

cognition to adiposity (e.g. VM to BF% and BMI) were

consistent with the main MR analysis, others (e.g. RT to

BF%) were not (Supplementary Table S6, available as

Supplementary data at IJE online). In addition, as per the

main analyses, many of the confidence intervals were wide

and included the null.

There was one instance of horizontal pleiotropy: for the

effect of WHR on VM (MREgger P-valueintercept¼ 0.01).

This pleiotropic effect remained after removing 11 SNPs

which were associated with confounding variables

(MREgger P-valueintercept ¼ 0.003) (Supplementary Table

S5). Funnel plots and the calculation of Cook’s Distance

identified four potentially pleiotropic SNPs (rs1121980,

rs12549058, rs2075650 and rs9491696). When the analy-

sis was rerun without these SNPs, there was no evidence of

pleiotropy (MREgger P-valueintercept ¼ 0.42), but associa-

tions were directionally inconsistent with those reported in

the main analysis (both observational and MR estimates),

though confidence intervals remained wide and

included the null (Supplementary Table S7, available as

Supplementary data at IJE online).

Estimated biases due to sample overlap were small:

absolute bias<0.005; type-1 error rate¼ 0.05 for all

outcomes (Supplementary Table S8, available as

Supplementary data at IJE online). Results from the split-

sample strategy in which RT and VM were the exposures

are presented in Supplementary Table S9 (available as

Supplementary data at IJE online). The meta-analysis of

estimates from MR (A on B) and MR (B on A) were

smaller, but in line with those reported above.

Discussion

We investigated evidence for causal links between adipos-

ity and cognitive function in UK Biobank using several

complementary approaches, and found important differen-

ces in terms of the postulated direction of association.

Using a bidirectional MR design, we show the effect of adi-

posity on cognitive function is likely not to be causal. In

the other direction, we found little evidence to support

causal links between RT and adiposity; however, our find-

ings do strengthen the evidence base for causal links be-

tween poor VM and lower adiposity.

In the direction adiposity to cognition, observational

estimates for the effect of adiposity on RT were either
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attenuated (BF%) or flipped direction (BMI, WHR) upon

adjustment for confounders, which likely reflects the im-

pact of confounding in the unadjusted estimates. MR esti-

mates were imprecisely estimated and, in almost all

instances, included the null. Furthermore, estimates

changed direction in the main compared with the sensitiv-

ity analyses. The lack of effect of adiposity on cognition

agrees with the null MR findings between BMI and verbal-

Table 3 Estimated causal effects of cognitive functiona on adiposity (n¼378 877)

A. Difference (95% CI, P-valuec) in BF% by cognitive function

RT VM

Observational analyses

Unadjusted 0.01 (0.01, 0.01) <0.001 �0.01 (�0.01, 0.003) 0.24

Adjustedb 0.005 (0.004, 0.005) <0.001 �0.05 (�0.06, �0.04) <0.001

MR analyses

Number of SNPs 41 30

IVW �0.29 (�1.77, 1.20) 0.71 �1.32 (�1.88, �0.77) <0.001

I2 0.81 0.75

WME �0.76 (�1.91, 0.39) 0.17 �1.45 (�1.93, �0.96) <0.001

MR-Egger �8.51 (�24.18, 7.16) 0.29 �2.49 (�6.21, 1.23) 0.19

P-pleiotropy 0.30 0.54

I2
GX 0.61 0.00

B. Difference (95% CI, P-valuec) in WHR by cognitive function

RT VM

Observational analyses

Unadjusted 1*10�5 (8*10�6, 1*10�5) <0.001 4*10�4 (3*10�4, 5*10�4) <0.001

Adjustedb �3*10�5 (�3*10�5, �3*10�5) <0.001 �2*10�4 (�3*10�4, �2*10�4) <0.001

MR analyses

Number of SNPs 41 30

IVW �0.0004 (�0.01, 0.01) 0.95 �0.005 (�0.01, 0.002) 0.15

I2 0.68 0.80

WME 0.001 (�0.01, 0.01) 0.82 �0.002 (�0.01, 0.003) 0.43

MR-Egger 0.001 (�0.13, 0.13) 0.99 �0.01 (�0.05, 0.03) 0.67

P-pleiotropy 0.99 0.83

I2
GX 0.61 0.00

C. Percent difference (95% CI, P-valuec) in BMI by cognitive function

RT VM

Observational analyses

Unadjusted 0.001 (0.001, 0.002) <0.001 �0.11 (�0.13, �0.10) <0.001

Adjustedb �0.003 (�0.003, �0.002) <0.001 �0.16 (�0.18, �0.15, <0.001

MR analyses

Number of SNPs 41 30

IVW �0.39 (�4.07, 3.43) <0.84 �3.57 (�5.15, �1.84) <0.001

I2 0.89 0.90

WME �0.86 (�3.26, 1.60) 0.49 �2.71 (�3.70, �1.63) <0.001

MR-Egger �7.58 (�38.19, 38.20) 0.70 �11.01 (�20.42, �0.48) 0.04

P-pleiotropy 0.71 0.15

I2
GX 0.61 0.00

IVW, inverse-variance weighted; WME, weighted median estimator; MR-Egger, Mendelian randomization Egger regression; %BF, body fat percentage; BMI,

body mass index; WHR, waist-hip ratio; RT, reaction time; VM, visual memory; MR, Mendelian randomization; SNPs, single nucleotide polymorphisms.
aAssociations between measured and genetically predicted increases in reaction time (ms) and visual memory (number incorrect matches) on adiposity.
bAdjusted for deprivation, age at recruitment, smoking status, alcohol consumption, physical activity, sleep duration and comorbidities.
cP-values need to be considered after correcting for multiple testing using a Bonferroni adjustment (number of tests¼ 16; i.e. P<0.05 corresponds to

P<0.003125 and P<0.01 corresponds to P<0.000625).

International Journal of Epidemiology, 2023, Vol. 52, No. 4 1081

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/52/4/1074/7111258 by U

niversity C
ollege London user on 07 August 2023



numerical reasoning observed by Hagenaars and col-

leagues26 and also a recent bidirectional MR study by

Wang et al.27 who observed no effect of BMI on verbal-

numerical reasoning in both European and Asian popula-

tions. The authors did conclude that an inverse relationship

between WHRadjBMI and cognitive performance was evi-

dent, though covariable-adjusted summary associations

such as WHRadjBMI should be interpreted with caution as

such instruments have been found to introduce bias into

MR analyses.28 Here we consolidate and extend previous

work, providing evidence of a null effect, on two different

measures of cognitive function (reaction time and visual

memory), of total (BMI, BF%) and central (WHR) adipos-

ity, as well as adiposity associated with favourable and

unfavourable metabolic profiles. The consistency of find-

ings across MR studies using different adiposity and cogni-

tive function measures supports a likely null effect of

adiposity on cognitive function.

In the direction cognition to adiposity, MR estimates

were generally consistent in their direction as to the effects

of RT and VM on adiposity traits, such that worse RT and

VM resulted in lower BF% and BMI. For RT, however, all

confidence intervals included the null. Our findings are in

contrast with previous observational findings suggesting

an association between worse cognitive function and sub-

sequent higher BMI,20,22,23 and this may be related to the

different periods of observation across the studies (e.g.

childhood vs adulthood). Estimates from MR studies ex-

ploring the effect of cognitive ability on adiposity are con-

flicting. Whereas Wang et al.27 reported a that higher

cognitive function caused lower BMI, the study by Davies

et al.54 concluded that there was no direct effect of intelli-

gence on BMI. That we observed some evidence suggesting

that poorer visual memory (i.e. lower cognitive function)

caused lower BMI and BF%, could reflect the different

indicators of cognitive ability and thus the cognitive phe-

notype being examined (e.g. both Wang et al. and Davies

et al. used verbal-numerical reasoning).

Our findings do, however, concur with a recent longitu-

dinal study that observed that those with lower cognitive

function at age 50 years demonstrated greater reductions in

BMI over the subsequent 40 years.55 Furthermore, as poor

VM and/or RT are precursors of Alzheimer’s disease

(AD),56 our findings extend a previous bidirectional MR

study which observed no effect of a genetic predisposition to

higher BMI on risk of AD but found that those with in-

creased risk of AD had lower BMI.57 Poorer VM, in particu-

lar, may represent an early expression of AD decades prior

to diagnosis,56 and thus our findings of poorer VM resulting

in a lower adiposity (including BMI) suggests that the effect

of cognitive abnormalities on reduced adiposity may mani-

fest at much less severe levels of cognitive impairment.

The major strength of our study is that by using a bidirec-

tional design, we have been able to establish the direction of

causal effects between adiposity and cognitive function. By

performing both observational and MR analyses and via the

use of multiple indicators of adiposity and cognitive function,

we have also been able to triangulate findings to more compre-

hensively explore the adiposity-cognitive function relationship.

Within our bidirectional MR framework, we used three differ-

ent methods which have distinct strengths and assump-

tions.46,47 The general agreement across these different

analytical approaches, particularly for the VM-adiposity rela-

tionship, strengthens the causal interpretation of the findings.

We acknowledge some limitations. Our observational

analysis was cross-sectional; direction of causality cannot

be inferred from such study designs. The genetic variants

included in our UFA, FA, RT and VM instruments were

obtained from GWAS that contained UKB participants,

potentially leading to an overestimation of genetic associa-

tions (‘winner’s curse’51). We investigated the extent of the

bias resulting from sample overlap51 and found it to be

small. Furthermore, when we investigated the extent of

this bias (for the RT and VM instruments) by employing a

split-sample strategy, we observed estimates which were

directionally consistent with those from the full sample.

Relatedly, in attempting to mitigate the risk of sample

overlap, for our BMI, BF% and WHR instruments we only

included genetic variants obtained from GWAS excluding

UKB participants. This resulted in a smaller number of

SNPs in our instruments than otherwise would have been

possible, which likely reduced the power of our MR analy-

ses and may have contributed to some weak instrument

bias.58 Another consideration is measurement error in our

phenotypic data. The VM assessment performed less well

in terms of reliability, compared with the other cognitive

function assessments in UKB.36 Additionally, VM was sub-

ject to a ‘floor’ effect.59 Finally, there is evidence of selec-

tion bias into UKB,60 which has to the potential to induce

collider bias and produce biased estimates.61

Our results have important public health implications.

In light of our finding of a potential causal effect of poorer

cognitive function over a lifetime on lower adiposity levels

in mid-to-late adulthood, practitioners should be vigilant

to unexplained reductions in adiposity in mid/later adult-

hood as these may represent a symptom of reductions in

cognitive function.

Conclusions

We demonstrate that the effect of adiposity on cognitive

function is likely not to be causal. In the reverse direction,

whereas we had little evidence to support causal effects of

RT on adiposity, we observed a consistent effect of VM on
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adiposity, such that worse VM resulted in lower BF%,

WHR and BMI. Findings should be interpreted in the con-

text of the limitations of the study and should be triangu-

lated using other cognitive outcomes and complementary

methods to determine their robustness.
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61. Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G.

Collider scope: when selection bias can substantially influence

observed associations. Int J Epidemiol 2018;47:226–35.

International Journal of Epidemiology, 2023, Vol. 52, No. 4 1085

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/52/4/1074/7111258 by U

niversity C
ollege London user on 07 August 2023


	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5
	tblfn6
	tblfn7
	tblfn8
	tblfn9
	tblfn10
	tblfn11
	tblfn12

