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Abstract: The thermal error of CNC machine tools can be reduced by compensation, where a thermal
error model is required to provide compensation values. The thermal error model adaptive update
method can correct the thermal error model by supplementing new data, which fundamentally solves
the problem of model robustness. Certain problems associated with this method in temperature-
sensitive point (TSP) selection and model update algorithms are investigated in this study. It was
found that when the TSPs were selected frequently, the selection results may be different, that is,
there was a variability problem in TSPs. Further, it was found that the variability of TSPs is mainly
due to some problems with the TSP selection method, (1) the conflict between the collinearity among
TSPs and the correlation of TSPs with thermal error is ignored, (2) the stability of the correlation
is not considered. Then, a stable TSP selection method that can choose more stable TSPs with less
variability was proposed. For the model update algorithm, this study proposed a novel regression
algorithm which could effectively combine the new data with the old model. It has advantages for
a model update, (1) fewer data are needed for the model update, (2) the model accuracy is greatly
improved. The effectiveness of the proposed method was verified by 20 batches of thermal error
measurement experiments in the real cutting state of the machine tool.

Keywords: thermal error; temperature-sensitive points; model update algorithms; adaptive up-
date method

1. Introduction

The thermal error of CNC machine tools is the cutting tool offset caused by thermal
deformation during the working process. It is the main reason for the deterioration of
machine tool accuracy when processing for a long time [1,2]. This problem can be solved by
thermal compensation, in which the value of thermal error is used as a negative feedback
signal for compensation [3]. The thermal error cannot be measured directly during machin-
ing because the tool is rotating at high speed. Therefore, a feasible approach is to predict
thermal error by temperature [4]. However, this also brings a new question: How should
the relationship between temperature and thermal error (known as thermal error model) be
determined? Lo and Ni [5] proposed that thermal error can be predicted only by measuring
the temperature of certain points on the machine tools (called temperature-sensitive points
(TSPs)). The establishment of the thermal error model consists of two main steps:

(1) Selection of the TSPs.
(2) Building a mathematical model between the TSPs and thermal error.
Yang [6] simulated the thermal deformation of the spindle through FEM and also

found that several TSPs are sufficient to predict thermal errors. However, some assumptions
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are made in the material properties, geometry and heat transfer characteristics during the
simulation: the spindle is made of isotropic material, nuts and some holes in the spindle are
ignored, temperature change of the coolant are ignored, etc. Wei [7] found by simulation
that TSPs with a linear relationship with thermal error are better for the thermal error
model, the spindle is treated as a round bar during simulation. Zhang [8] found that the
thermal conductivity of the contact surfaces of the machine tool structures is affected by
the way of assembly. Then, combined with experiments, fractal theory and the hybrid
genetic algorithm were used for modeling the thermal conductivity, which provided a
reference for the design and assembly of the spindle. According to the above studies, the
thermal deformation characteristics are affected by the machine tool structure geometry
and the way of assembly. However, a machine tool is a complex device composed of
multiple parts, and it is very difficult to quantitatively obtain the specific values of the
geometric shape and thermal deformation parameters of each structure. The current related
research has to make some assumptions, but it also leads to a decrease in the accuracy of the
model, and only some qualitative conclusions can be obtained. Therefore, it is challenging
to determine the relationship between machine tool temperature and thermal error in
a purely theoretical way [9,10]. Therefore, data-driven modeling is a commonly used
method. This method measures thermal error and temperatures near major heat sources
while the machine remains idle. Subsequently, it selects TSPs from initial temperature
measurement points and builds the model based on the measured data [11]. To improve
the prediction accuracy of thermal error, there has been much research on TSP selection
methods and modeling algorithms in recent years [12]. However, data-driven methods
can only fit thermal error properties contained in the measured data. If the thermal error
characteristics are changed, the model accuracy decreases. Liu [13] found that the ambient
temperature causes the thermal error characteristics to change, which can only be solved
by remeasuring the data and building a new model. The institute for Machine Tools and
Manufacturing in Switzerland [14–17] also noticed this problem and proposed an adaptive
update method for the thermal error model. It consists of the following steps: setting up
the thermal error online detection system on the machine tool; periodically halting the
machining and measuring the thermal error and temperature; when the difference between
the predicted and measured value of thermal error is beyond the tolerance range, the
No-Good mode is entered, and the thermal error and temperature are remeasured to build
a new model [14,15]. Zimmermann et al. [16] found that the location of TSPs would also
change and added a TSP reselection step in the model update process. Zimmermann [17]
also studied the timing of the model update. The above-mentioned works focus on the
adaptive update method of the thermal error model and research in depth the TSP selection
and thermal error modeling.

Variability of TSP selection results
Zimmermann [17] found that the TSPs will change under different conditions. Miao [18]

carried out several thermal error measurement experiments on a vertical machining center
under different conditions and observed that the selection results of TSPs are variable. At
present, there is much research content on the TSP selection method. However, only one
piece of experimental data is used to select the TSPs, and the consistency of the selection
results of TSPs under multiple experiments has not been studied yet. Therefore, it is
unknown whether the TSPs have really changed or the selection method is problematic.
This is an issue worthy of attention after applying the thermal error model adaptive update
method. Because TSPs are frequently selected in the process of model updating, once the
wrong TSPs are selected owing to an inappropriate method, the prediction accuracy of the
updated model will decrease. This study analyzed the selection method of TSPs from a
large batch of thermal error measurement data and found the methodological reasons for
the variability problem. The two specific problems are as follows:

Note: The correlation mentioned in the following text corresponds to the correla-
tion with thermal error, and the collinearity corresponds to the correlation with other
temperature measurement points.
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(1) The conflict between correlation and collinearity.
In the current research, the selection methods of TSPs are all based on one strategy:

Group selection. First, multiple groups are set up and the initial temperature measurement
points with similar changes are placed in the same group. Then, one TSP is selected from
each group; the selected TSP must have the highest correlation in the group [19]. The
purpose of grouping is to reduce the collinearity of TSPs because the high-collinearity
TSPs may increase the probability of model overfitting and reduce robustness [20]. Fuzzy
clustering is a commonly used grouping algorithm. This method measures the collinearity
by the correlation coefficient. Miao [21], Abdulshahed [22], Zhang [23], Qin [24], and Li [25]
all use this method to select TSPs for different types of machine tools. In addition, there
are some other methods with the same effect as that of the grouping method. Tsai [26]
calculated the collinearity by the condition number of singular value decomposition (SVD)
of the temperature measurement value matrix. Fu [27] measured the temperature field
of the machine tool through an infrared thermal imager and divided the machine tool
into different temperature regions for grouping. Although this reduces collinearity, it
also creates a problem [28]. The primary requirement of TSPs is a high correlation with
thermal errors. If low collinearity is required at the same time, the high correlation of
different TSPs must be intransitive: The TSPs Ti, Tj all have high correlations with thermal
error, but the collinearity between Ti and Tj is low. The temperature at different positions
is inevitably coupled because of heat conduction, and thus it is difficult to meet this
requirement [29]. This means that reducing the collinearity and improving the correlation
of TSPs is a potential conflict problem. Although the grouping method can select the TSPs
with low collinearity, it also makes the correlation low.

(2) The stability of the correlation.
Wei [7] found that good TSPs will show a high linear correlation with thermal

error. Current studies often use correlation coefficients to measure the correlation of
TSPs [21,23–25,27]. Our recent study [30] found that the correlation of TSPs may be
unstable. Errors in the measurement data, changes of machining state, and other factors
can change in the correlation. However, this problem is not considered in the current
correlation calculation process.

The above two problems result in a low and unstable correlation of TSPs. Because
the correlation ranking is the basis for the selection of TSPs, changes in the correlation
may lead to changes in TSP selection results, i.e., variability. This study proposed a new
method for selecting high-correlation and stable TSPs (hereinafter called “the stability
TSPs selection method”).

Adaptive update method of the thermal error model
If model adaptive updating is not considered, thermal error modeling data are suffi-

cient and modeling speed need not to be considered. After applying the model adaptive
update method, the modeling algorithm must be able to learn new information online and
use a small amount of data to build a new model quickly and accurately. Blaser [14] and
Mayr [15] use multiple linear regression for the model updating. When the prediction
error of a model is too large, 12 sets of data are measured and a new model is established.
Simplicity and fast computation are the advantages of multiple regression algorithms.
However, it cannot remember the old model but can only remodel with new data. This
leads to information loss during the model update process. Because machine tool structure
and heat source location are important factors influencing thermal error characteristics, this
information is constant and implicit in the old model. Hence, the old thermal error model
still contains some valid information. Furthermore, how to fuse the old model with new
data to improve the performance of the updated model is a problem worthy of study.

Neural network (NNs) and multiple regression are both commonly used for thermal
error modeling. For adaptive update modeling algorithms, one advantage of NN is the
ability to learn new data based on old models. However, the NN model is difficult to train.
It is easy to overfit or underfit, especially for small sample data modeling. In this regard,
researchers have conducted much work to find optimal model parameters, such as the ant
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colony algorithm [31] and genetic algorithm [32]. Li [33] used the shark smell optimization
method to train the NN model, the thermal error of axial and C-axis of five-axis machining
was modeled and the fitting accuracy was 3 µm. Huang [34] used a bat-algorithm-based
backpropagation NN to model the thermal positioning error of an in-house three-axis
experimental platform, and the residual standard deviation of the model was 3.8 µm. The
above research improves the accuracy of the model by improving the training method.
However, since the loss function of the NN is not convex and cannot be explained, this
problem is difficult to completely solve.

The model built by the multiple regression algorithm is more stable and easier to train
because of the simple structure and convex loss function. Liu [35] compared the long-term
thermal error prediction accuracy of NN and the improved regression algorithm (ridge
regression), and proved that the latter is more accurate and stable. Zhang [23] used sliced
inverse regression to model the axial thermal error of a horizontal machine tool, and the
fitting accuracy was 2.5 µm. Fu [36] used the multiple regression algorithm to model the
axial thermal error of the spindle, and the model prediction accuracy was 2 µm. Chen [37]
used the multiple regression algorithm to model the Y- and Z-axis thermal error of a vertical
machining center, the mean square errors are 3.48 and 4.46 µm, respectively. By comparing
the references [33,34] and [23,36,37], it can be inferred that the regression algorithm can
achieve the same thermal error modeling accuracy as that of the NN. This is because the
relationship between TSPs and thermal error is essentially linear.

In summary, for the model adaptive update method, NN has the advantage of learning
online, but it is unstable and difficult to train. The multiple regression cannot learn online,
but it is simple, stable, and easy to train. Therefore, this study aimed to improve the
multiple regression and endow the regression algorithm with the ability to remember the
old model. It was experimentally verified that the proposed algorithm (hereinafter called
“update regression”) could build a higher precision thermal error model with fewer data.

* In Appendix A, the author’s team’s research history of thermal error is briefly
described, which helps to better understand the intention of this article.

2. Typical Thermal Error Modeling Methods

There has been much research on thermal error modeling algorithms, aiming to
select the TSPs with low collinearity and high correlation and build the thermal model
with high accuracy and robustness. In this section, the typical thermal error modeling
algorithms are introduced.

Suppose that there are M initial temperature measurement points, denoted by
T1, . . . , TM, and the thermal error is denoted by E. During the measurement, N times of
measurement data are obtained, and are denoted by,

T1 = (t1,1, . . . , t1,N)
T

...
TM = (tM,1, . . . , tM,N)

T

E = (e1, . . . , eN)
T

(1)

where T1, . . . , TM are the vectors of the measured temperature values, and E is the vector of
the measured thermal error. The symbols in Equation (1) are used in subsequent equations.

2.1. TSP Selection Method

The initial temperature measurement points are divided into different groups. The
collinearity of the same group is high, whereas the collinearity of different groups is low.
The fuzzy clustering is a commonly used algorithm.

(1) Build a fuzzy similarity matrix R =
[
ri,j
]

M×M, where ri,j is the correlation coefficient
of Ti and Tj.
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(2) Convert similarity matrix to equivalent matrix. Perform multiple square fuzzy opera-
tions on fuzzy similarity matrices as follows:

R×R = R2

R2 ×R2 = R4

...
R2v ×R2v

= R2(v+1)

 (2)

The square fuzzy operation is as follows.

R×R =
[
ri,j

2
]

M×M
(3)

ri,j
2 = max

k=1,...,M

(
min

(
ri,k, rk,j

))
(4)

If R2v
= R2(v+1)

, then R2v
is a fuzzy equivalent matrix. The purpose of transforming

the fuzzy equivalent matrix is to make the fuzzy relationship transitive (if F(Ti, Tk) > Λ
and F(Tj,Tk) > Λ, then F(Ti,Tj) > Λ, ∀ i, j, k, F(∗, ∗) is a fuzzy relationship).

(3) Set Λ as the threshold. If Ti and Tj are in the same group, then F(Ti,Tj) > Λ. The
number of groups and the number of TSPs are determined Λ.

The correlations of all temperature measurement points in each group are sorted
from large to small, and the largest is TSP. The correlation is calculated by the correlation
coefficient as follows:

ρTi ,E =
∑n

k=1
(
ti,k − ti

)
(ek − e)√

∑n
k=1
(
ti,k − ti

)2
∑n

k=1(ek − e)2
(5)

where ti and e are the averages of the data Ti and E, respectively.

2.2. Thermal Error Modeling Algorithms

The thermal error model is built from measurement data. The TSPs are the input of
the model, and the thermal error is the output. NN and multiple regression are the most
frequently used algorithms. The structures and training methods of these two algorithms
are different. An NN consists of multiple layers of nodes. The input is nonlinearly processed
at each layer, and the processing result of the last layer is the output. The NN is trained
by continuously adjusting the connection weights between nodes, and a commonly used
method is the steepest descent method. Since the regression algorithm is the main research
object of this paper, the NN will not be introduced in more detail for reasons of space.

The model structure of the multiple regression algorithm is polynomial. Here, two
regression algorithms are introduced: the ridge regression and ordinary multiple regression.
For the ordinary multiple regression, the high collinearity of the model input will increase
the estimated variance of model coefficients, making the model unstable and prone to
overfitting. Ridge regression adds a regularization term to the loss function, which can
significantly reduce variance when there is high collinearity input. The model is expressed
as follows:

Ê = β0 + β1T1 + · · ·+ βSTS (6)

where T1–TS are TSPs, S is the number of TSPs and Ê is the thermal error. Through
ridge regression, the model coefficient β = (β0, β1, . . . , βS)

T can be estimated by the
following equation.

β =
(

ATA + pridgeI
)−1

ATE (7)
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A =


1 t1,1 · · · tS,1
... ...

. . .
...

1 t1,N · · · tS,N

 (8)

where I is the identity matrix, and pridge is the ridge parameter. According to a previous
study [35], the value of pridge is suitable between 10 and 30; this study took 25.

When pridge is zero, it is an ordinary multiple regression algorithm.

3. TSP Selection and Thermal Error Model Update Method
3.1. Stability TSP Selection Method

For TSPs, low collinearity and high correlation are conflicting states. In particular, the
grouping algorithm reduces both the collinearity and the correlation of TSPs. Considering
that the ridge regression algorithm can solve the collinearity problem [38], the correlation
can be considered as the preferred basis for the selection of TSPs. In addition, a high
correlation does not mean that the correlation is stable. The instability of the correlation
means that the connection between TSPs and thermal errors is easily disturbed. Therefore,
adding a method for evaluating the stability in the correlation calculation is beneficial
to improve the quality of TSPs. In this study, the uncertainty was used to determine the
stability of correlation; therefore, when selecting TSPs, the correlation and stability were
considered comprehensively. This method is called “the uncertainty-correlation coefficient
calculation method.” The details are as follows.

The correlation coefficient between Ti and E is shown in Equation (5). The uncertainty
of the correlation coefficient is as follows.

UρTi ,E =

√√√√UE2
N

∑
k=1

(
∂ρTi ,E

∂ek

)2

+ UTi
2

N

∑
k=1

(
∂ρTi ,E

∂ti,k

)2

(9)

∂ρTi ,E
∂ti,k

=

(
1− 1

N

)
·
(ek−e)

√
∑N

j=1,j 6=k(ti,j−ti)
2
∑N

j=1(ej−e)
2−

(ti,k−ti)∑N
j=1((ti,j−ti)(ej−e))

√
∑N

j=1(ej−e)
2√

∑N
j=1(ti,j−ti)

2

∑N
j=1(ti,j−ti)

2
∑N

j=1(ej−e)
2

(10)

∂ρTi ,E
∂ek

=

(
1− 1

N

)
·
(ti,k−ti)

√
∑N

j=1,j 6=k(ej−e)
2

∑N
j=1(ti,j−ti)

2−
(ek−e)∑N

j=1((xj−ti)(ej−e))
√

∑N
j=1(ti,j−ti)

2√
∑N

j=1(ej−e)
2

∑N
j=1(ti,j−ti)

2
∑N

j=1(ej−e)
2

(11)

where UE and UTi are the measurement uncertainties of thermal error and temperature,
respectively. For thermal error, UE corresponds to the sensor measurement error, which
is known. For temperature, however, in addition to sensor error, there is the influence
of disturbance information. Disturbance information involves too many factors, such as
changes in ambient temperature and heat generated by people. The uncertainty caused
by disturbance information is difficult to obtain, but disturbance information and sensor
error have a common characteristic: they are independent of thermal error. Therefore,
to obtain UTi , a multiple regression model is established, in which the thermal error is
the input and the temperature measurement point Ti is the output. Then, the root mean
square error (RMSE) of the model is calculated. It represents the standard deviation of the
residual data from the temperature measurement data after removing information related
to thermal errors. Afterward, it is multiplied by three to get the expanded uncertainty, UTi .
The specific calculation method is expressed by the following equation.
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UTi = 3

√(
ti,k − t̂i,k

)2

N − 1
(12)

where t̂i,k is the temperature estimate of the model with the thermal error regarded as
the input.

Finally, the uncertainty-correlation coefficient is as follows.

ρTi ,E
U =

ρTi ,E

1 + UρTi ,E

(13)

Through the ranking of uncertainty-correlation coefficients, the temperature measure-
ment points with the highest ranking are selected as TSPs. The stability TSP selection
method shown in Figure 1.
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3.2. Update Method of Thermal Error Model Based on Update Regression

The multiple linear regression algorithm has a simple form, and the loss function
is a convex function with good interpretability and high stability. This study proposed
the update regression, an adaptive update strategy for thermal error models based on
regression algorithms, that can effectively combine new data with old models.

The algorithm principle is expressed as follows:
Loss function:

min : Γ =

(
η

N

∑
i=1

(êi − ei)
2 + (1− η)

S

∑
j=0

(
β j − β j

old
)2
)

(14)

where βold =
(

β0
old, . . . , βS

old
)T

is the old model coefficient, β = (β0, . . . , βS)
T is the new

model coefficient to be solved, and η = [0, 1] is the weight of the old model. The solution
method is as follows.

∂Γ
∂β0

= 0
...

∂Γ
∂βS

= 0

⇒ β =
(

ηATA + (1− η)I
)−1

(ηATE + (1− η)βold) (15)
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According to Equations (14) and (15), update regression is a general form of ridge
regression. If βold = 0, then update regression becomes ridge regression. This study found
that only a small amount of data and a small η are adequate so that the model can be
quickly updated and the accuracy of the model can be significantly improved. In this study,
η = 0.1. To use as litlle data as possible to complete the model update, when the difference
of the model coefficients established with N, N + 1, N + 2 new data are less than 10%, it
is considered that a stable update model has been found. The update method is shown
in Figure 2.
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4. Experimental Verification

The effect of the proposed method was verified by a long-term experiment, where a
specific machine tool was used Leaderway V-450. The Z-axis thermal error was measured
in different machining states because the thermal error is largest on the Z-axis.

4.1. Experimental Plan

The thermal error is measured by an online detection system, as shown in Figure 3.
A cuboid target was installed in the corner of the workbench. To measure the thermal
error, the tool was first replaced with the probe and then the probe was allowed to touch
the target. In addition, 10 locations at the machine tool, donated by T1, T2, etc., were
selected as initial temperature measurement points. T1–T9 were placed near the spindle,
and T10 was placed on the shell (measuring ambient temperature changes). The details of
the temperature sensor are as follows:
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measurement points: (left) Principle of thermal error measurement; (right) Positions of temperature
measurement points.

Model: DS18B20, resolution: 0.125 ◦C, temperature measurement range: −10–80 ◦C.
The temperature sensor is installed by magnetic adsorption: the thermal grease and the
sensor are encapsulated in a cylindrical magnet and installed by magnetic force, as shown
in Figure 4.

The specific locations are shown in Figure 3.
As shown in Figure 5, the measurement process can be divided into two steps:
Step 1: The probe touches the target, records the coordinates in the Z-axis, and records

the values of 10 temperature sensors.
Step 2: The probe is replaced with a cutting tool by the automatic tool change program,

the cutting tool starts cutting. Cutting time does not exceed 4 min. Then stops cutting and
returns to Step 1.

The material of the workpiece is 45# steel. The material of the cutting tool is ordinary
high-speed steel. Steps 1 and 2 take about 4 min. These two steps are repeated for 4 h.
In addition, when cutting, the tool needs to move back and forth, and when changing
direction, it also stops cutting for a short time. Therefore, the wear of the tool is not serious.
In addition, tool wear does not affect the measurement accuracy of thermal errors, because
thermal errors require the tool to be replaced with a probe for measurement. The first
coordinate and temperature measurements were regarded as the initial values. To obtain
the thermal error and temperature change, the initial value was subtracted from each
measurement. Twenty batches of experiments, denoted by B1, B2, etc., were performed.
The experimental parameters are listed in Table 1.
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Table 1. Experimental parameters.

Batch Rotating Speed (rpm) Feed (mm/min) Cutting Depth (µm)

B1 1000 400 100
B2 500 600 100
B3 1500 600 50
B4 1500 600 100
B5 1500 600 100
B6 1000 600 50
B7 1000 600 150
B8 1500 400 150
B9 500 400 50

B10 1000 600 100
B11 500 400 50
B12 1000 600 150
B13 1500 800 100
B14 1000 600 150
B15 1500 800 100
B16 1000 400 100
B17 800 500 150
B18 1500 600 50
B19 1000 400 100
B20 1500 800 100
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4.2. Experimental Result

To save space, only the experimental data of B1, B10, and B20 are shown in Figure 6.
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Figure 6. Measurement data of B1, B10, and B20.

In Figure 6, the horizontal axis represents time, and the vertical axis represents the
variation of temperature (left) and thermal error (right) of the 10 sensors, respectively.
Variation means the increment of each measurement relative to the initial measurement.
It can be seen that with the change of time, the temperature and thermal errors change
obviously at first, and then gradually become stable and reach thermal equilibrium.

4.2.1. Comparison Results of TSP Selection Methods

Each batch of experimental data was used for the selection of the corresponding
TSPs. Furthermore, according to previous test results on the machine tools, there is no
obvious difference in the effect of two and more TSPs [22]. Thus, for the convenience of
analysis, this study reduced the number of TSPs to two. There are two TSP selection
methods for comparison.

(1) Fuzzy clustering and correlation coefficient. First, the initial temperature measurement
points are divided into two groups. Then, for each group, the point with the highest
correlation is selected as a TSP.

(2) Stability TSP selection method. The two points with the highest uncertainty-correlation
coefficients are selected as TSPs.

The TSP selection results are presented in Table 2.
According to Table 2, for the fuzzy clustering and correlation coefficient, the most

frequent TSP of the first group is mainly T1 or T5, followed by T7 or T4; for the other group,
the most frequent TSP is T10, followed by T6, T7 or T8. For the stability TSP selection
method, the most frequent TSP combinations are T1 and T5, followed by T1 and T4. The
TSPs selected by the stability TSP selection method have less variability.
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Table 2. TSP selection results.

Batch TSPs Selected by Fuzzy Clustering
and Correlation Coefficient

TSPs Selected by Stability
TSP Selection Method

B1 T1, T10 T1, T5
B2 T5, T10 T1, T5
B3 T7, T4 T1, T5
B4 T1, T7 T1, T5
B5 T4, T10 T1, T4
B6 T1, T10 T1, T5
B7 T4, T10 T1, T4
B8 T7, T10 T1, T5
B9 T7, T10 T1, T5

B10 T4, T10 T1, T4
B11 T5, T10 T1, T5
B12 T1, T10 T1, T5
B13 T5, T10 T1, T5
B14 T1, T10 T1, T5
B15 T5, T10 T1, T5
B16 T1, T8 T1, T5
B17 T1, T4 T1, T5
B18 T5, T8 T1, T5
B19 T1, T6 T1, T5
B20 T5, T10 T1, T5

4.2.2. Comparison Results of Modeling Accuracy of TSP Selection Methods

Afterward, the modeling accuracy of the TSPs selected by the two methods were
compared. The thermal error model was built for each batch of data of B1–B20. The models
established by B1–B20 data are recorded as M1–M20. The prediction accuracy of M1–M20
was calculated. Six modeling methods were involved in the comparison. That is, the model
Mi established by different methods is also different.

(1) Clustering + Correlation coefficient + Rig: Fuzzy clustering and correlation coefficient
for TSP selection, and ridge regression for modeling.

(2) Stability TSP selection method + Rig: Stability TSP selection method for TSP selection,
and ridge regression for modeling.

(3) Clustering + Correlation coefficient + Reg: Fuzzy clustering and correlation coefficient
for TSP selection, and ordinary multiple regression for modeling.

(4) Stability TSP selection method + Reg: Stability TSP selection method for TSP selection,
and the ordinary multiple regression for modeling.

(5) Clustering + Correlation coefficient + NN: Fuzzy clustering and correlation coefficient
for TSP selection, and neural network for modeling.

(6) Stability TSP selection method + NN: Stability TSP selection method for TSP selection,
and neural network for modeling.

The NN structure was 2-4-3-1, one input layer with two input nodes, two hidden
layers with four and three nodes, respectively, and one output layer with one output node.
The activation function of the hidden layer was sigmoid, and the activation function of
input and output layers was purely linear.

Based on the RMSE, three levels of prediction accuracy indicators were calculated,
and the calculation method is as shown in Equation (16). For ease of understanding, the
relationship between the three levels of accuracy indicators is shown in Figure 7.
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Level 1: RMSEMi→Bj is the RMSE of Mi predicting data Bj.
Level 2: RMSEMi is the mean value of the RMSEMi→Bj for each model, reflecting the

accuracy of a model.
Level 3: RMSEA is the mean value of the RMSEMi for each modeling algorithm,

reflecting the accuracy of a modeling methods.

RMSEMi→Bj =

√
∑N

k=1(ek − êk)
2

N
RMSEMi =

∑20
j=1 RMSEMi→Bj

20
RMSEA =

∑20
i=1 RMSEMi

20
(16)

where ek is the k-th measurement in the Bj and êk is the corresponding predicted value.
The comparison results are shown in Figure 8 and Table 3.
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Figure 8. RMSEMi of models established by different methods (for TSP selection effect comparison).

Among the three modeling methods, the accuracy of the TSPs selected by the
stability TSP selection method is better than that of the fuzzy clustering and correlation
coefficient. The accuracy of the ridge regression is better than the NN and the ordinary
multiple regression.
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Table 3. RMSEA of different modeling methods (for TSP selection effect comparison).

Modeling Methods RMSEA µm

Clustering + Correlation coefficient + Rig 14.95
Stability TSP selection method + Rig 8.65

Clustering + Correlation coefficient + Reg 28.7
Stability TSP selection method + Reg 18.6

Clustering + Correlation coefficient + NN 21.9
Stability TSP selection method + NN 16.4

4.2.3. Comparison Results of the Adaptive Model Update Algorithm

To verify the effect of the proposed model update method, the following three methods
were compared by RMSEMi. The three methods differ in whether and how to update the
model with new data.

(1) No update model (“No update” in Figure 8): Models M1–M20 are established by
B1–B20, respectively. The modeling method is “Stability TSP selection method + Rig”.
No updates are made when predicting the new data.

(2) Update model by new data + old model (“New data + old model” in Figure 8): When
predicting the data Bj, the old model and new data are both used to build the model.
The old model refers to M1–M20 of the “No update” model. A segment of data Bj
from beginning is used for the updating model as new data. The model updating
algorithm is update regression. The Mi of RMSEMi means old model.

(3) Update model only by new data (“New data-N” in Figure 8, where N is the length of
the new data): When predicting the data Bj, a segment of data Bj from the beginning is
used to build the model as new data. The lengths of the new data are 3, 5, 7, 9, 11, ..., 25,
60, respectively. The modeling method is “Stability TSP selection method + Rig”. Since
no old model is involved in prediction, RMSEM1 = RMSEM2 = · · · = RMSEM20.

The result is shown in Figure 9.
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The “Update model by new data + old model” requires an average of six new data for
model update. In Figure 9, the accuracy of the “Update model by new data + old model” is
higher than that of the “No update” model and close to that of the “Update model only
by new data” with 60 new data lengths. The 60 data length means that all the predicted
data are used for modeling. The RMSEMi does not indicate the prediction accuracy but
the fitting accuracy. This means that the model can almost have the highest accuracy a
regression model can achieve after updating.
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4.3. Validation of the Proposed Model

According to the measurement data of B1–B20, the update effect of the model in
application is validated. In addition, the computational difficulty of the model update
is tested.

4.3.1. Model Precision

The goal is to keep thermal errors within 10 µm. The model update needs an old
model and the old model was built by data of B1. The data of B2~B20 are concatenated as a
data of 76 h and used for predicting. Then start predicting from time 0. When it is detected
that the residual error of the model prediction is greater than 7 µm, the model is updated
and the prediction is continued to the end. The result is shown in Figure 10.
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Figure 10. Model precision validation.

The thermal error measurements and residual error after model prediction and com-
pensation are shown in Figure 10. It can be seen that the residual error is significantly
reduced by model updating when it is too large, and the prediction error of the model in
the whole process does not exceed 10 µm. During the whole period, it lasted for a total of
4560 min, and 10 updates were carried out, which consumed a total of 184 min, accounting
for 4% of the total time.

This model verification is reliable because the thermal error compensation technology
is mature. Compensation can be performed quickly through the built-in origin offset
function of the CNC system. Compensation accuracy depends only on the accuracy of the
thermal error model.

4.3.2. Computation Time of Model Update

In order to reduce the cost as much as possible, the embedded platform is chosen
to test the calculation time of the model update. In the model update process, the most
complex operation is the update regression algorithm, because it involves the operation of
the matrix. According to previous experimental results, each update requires an average of
six batches of data. Based on this, the entire process of the model update is rewritten in
C language. The TMS320F28335 DSP processor is used as an embedded platform to run
the program, and the CPU clock frequency is 150 Mhz. During the calculation process, the
timer is used for timing, and the timing resolution is 0.1 ms. The results show that the time
for each model update is about 130 µs running in FLASH, which can be negligible. The
computation time can be further shortened if the program is moved to RAM. Therefore,
the computational difficulty of updating the model is very low, and it can be completed by
ordinary embedded platforms.

Relevant project files will be uploaded together with the paper as Video S1
(Supplementary Materials): Running time test on DSP processor.
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5. Discussion

In this section, the above experimental results are discussed and analyzed.

5.1. Discussion of Comparison Results of TSP Selection Methods

The TSPs selected by the “Stability TSP selection method” were more stable than those
selected by the “Fuzzy clustering and correlation coefficient.” To analyze the reasons, the
three kinds of data were calculated.

(1) For each temperature measurement point, the mean correlation of all batch data was
calculated by two correlation calculation methods shown in the following equation.
This process indicates the long-term correlation. The results are shown in Figure 11.
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Mean uncertainty-correlation coefficient:

∑20
j=1
(
ρTi ,E

U
Bj
)

20
(17)

Mean correlation coefficient:
∑20

j=1
(
ρTi ,EBj

)
20

(18)

(2) For each temperature measurement point, the standard deviation (Std) and mean
uncertainty of the correlation coefficient of all batch data were calculated. The specific
calculation methods are expressed by the following equation. The results are depicted
in Figure 12. This process indicates the stability of the correlation.
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Std of the correlation coefficient:

Std20
j=1
(
ρTi ,EBj

)
(19)

Mean uncertainty of the correlation coefficient:

∑20
j=1
(
UTi Bj

)
20

(20)

(3) The fuzzy clustering results of T1–T10 in B1–B20, are listed in Table 4.

Table 4. Grouping results of temperature measurement points of B1–B20.

Batch Group1 Group2 Batch Group1 Group2

B1 T1–T9 T10 B2 T1–T9 T10
B3 T1, T5, T7, T8, T10 T2–T4, T6, T9 B4 T1–T5 T6–T10
B5 T1–T9 T10 B6 T1–T9 T10
B7 T1–T9 T10 B8 T1–T9 T10
B9 T1–T9 T10 B10 T1–T9 T10

B11 T1–T9 T10 B12 T1–T9 T10
B13 T1–T9 T10 B14 T1–T9 T10
B15 T1–T9 T10 B16 T1–T7, T9 T8, T10
B17 T1–T7, T9 T8, T10 B18 T1, T5, T7, T8, T10 T2–T4, T6, T9
B19 T1–T5, T7–T10 T6 B20 T1–T9 T10

The following conclusions can be drawn from the above calculation data.

(1) The low collinearity and high correlation of TSPs are conflicting, resulting in a low
correlation for one of the TSPs selected by the “Fuzzy clustering and correlation
coefficient”. There is no grouping process in the “Stability TSP selection method”,
so high correlation TSPs can be selected. According to Figure 11, it can be seen that
the correlation of T1–T9 is significantly higher, and the correlation of T10 is lower.
According to Table 4, in most cases, the “Fuzzy clustering and correlation coefficient”
method will group T1–T9 into the same group, indicating that the collinearity between
T1 and T9 is also high. This confirms the theoretical analysis in the introduction that
the correlation of temperature measurement points is transitive. Therefore, reducing
the collinearity of TSPs and improving the correlation at the same time are in conflict.
This results in the “Fuzzy clustering and correlation coefficient” method always
grouping T10 alone, eventually causing one of the TSPs to have a low correlation.
According to Figure 12, the correlation of temperature measurement points with low
correlation is also more unstable. Since correlation is the basis for the selection of
TSPs, low correlation is one of the reasons for the variability of TSPs. The “Stability
TSP selection method” directly selects TSPs with a strong correlation, so this problem
does not exist.

(2) The uncertainty of the correlation coefficient is an effective indicator to evaluate
the stability of the correlation of the temperature measuring points, and it can be
used to select TSPs with more stable correlation. According to Figure 12, the Std
and uncertainty of the correlation coefficient have the same effect on measuring
stability. However, there is an important difference between them. In particular, the
Std calculation of the correlation coefficient needs all batches of data, which means
multiple long-term experiments with the machine. The uncertainty of the correlation
coefficient can be calculated only by one batch of data. This means that the uncertainty
of the correlation coefficient can calculate the stability of the correlation in a short
time. Furthermore, according to Figure 11, when the correlation of temperature
measurement points is similar, the uncertainty-correlation coefficient promotes the
selection of TSPs with a stable correlation, thereby significantly reducing the variability
of TSPs.
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5.2. Discussion of Comparison Results of Modeling Accuracy of TSP Selection Methods

The TSPs selected by the “Stability TSP selection method” have high correlation
and stability, but also high collinearity. For unbiased estimation algorithms, such
as ordinary multiple regression, high collinearity will amplify the variance of model
coefficient estimates, resulting in model instability. However, with biased regression,
such as ridge regression, the collinearity problem can be significantly suppressed [38].
According to Figure 8 and Table 3, the long-term prediction accuracy of the thermal
error model built by stable TSPs is higher. The reason can be revealed by the model
coefficients. Figure 13 exemplifies the coefficients of the models established with stable
TSPs (T1, T5) and unstable TSPs (T6, T10) based on the experimental data of B1–B20.
The modeling algorithm is ridge regression. The model coefficients of stable TSPs vary
slightly around the value 5. The model coefficients of unstable TSPs vary between the
values 0 and 10, with significantly larger changes. This means that the connection of
unstable TSPs with thermal error is more unstable.

Machines 2022, 10, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 13. Model coefficients of stable TSPs (𝑇1, 𝑇5) and unstable TSPs (𝑇6, 𝑇10). 

5.3. Discussion of Comparison Results of the Adaptive Model Update Algorithm 
In this section, the reason why the update regression can complete the model update 

with six data is analyzed. To illustrate this, the following data need be calculated. 
Models M1–M20 (TSPs: 𝑇ଵ, 𝑇ହ, ridge regression, 60 data) were used to predict the 

first six data of B1–B20, and the RMSE, donated by 𝑅𝑀𝑆𝐸6→ was calculated. The ther-
mal error model built by 60 data represents the thermal error law in one experiment, and 𝑅𝑀𝑆𝐸6→ represents the fit degree between the first six data and the thermal error 
model. The results are presented in Figure 14. 

 
Figure 14. 𝑅𝑀𝑆𝐸6→ of M1–M20 (TSPs: 𝑇1, 𝑇5, ridge regression, 60 data) for the prediction of 
the first six data of B1–B20. 

In Figure 14, the diagonal line is 𝑅𝑀𝑆𝐸6→(𝑖 = 𝑗), which was calculated by the 
model predicting the first six modeling data. For ease of description, it is referred to as 
“self-fit degree”. Obviously, for the first six data, the self-fit degree is generally higher 
than the fit degree of other models. This shows that the thermal error information con-
tained in the first six data is closer to the thermal error data of the same batch. Therefore, 
in theory, as long as an appropriate mathematical algorithm is selected, the thermal error 
law can be extracted from the first six data to update the model and improve the predic-
tion accuracy. However, the sample size is very small, which is not conducive to model-

Figure 13. Model coefficients of stable TSPs (T1, T5 ) and unstable TSPs (T6, T10 ).

5.3. Discussion of Comparison Results of the Adaptive Model Update Algorithm

In this section, the reason why the update regression can complete the model update
with six data is analyzed. To illustrate this, the following data need be calculated.

Models M1–M20 (TSPs: T1, T5, ridge regression, 60 data) were used to predict the
first six data of B1–B20, and the RMSE, donated by RMSE6Mi→Bj was calculated. The
thermal error model built by 60 data represents the thermal error law in one experiment,
and RMSE6Mi→Bj represents the fit degree between the first six data and the thermal error
model. The results are presented in Figure 14.

In Figure 14, the diagonal line is RMSE6Mi→Bj(i = j), which was calculated by the
model predicting the first six modeling data. For ease of description, it is referred to as
“self-fit degree”. Obviously, for the first six data, the self-fit degree is generally higher than
the fit degree of other models. This shows that the thermal error information contained in
the first six data is closer to the thermal error data of the same batch. Therefore, in theory,
as long as an appropriate mathematical algorithm is selected, the thermal error law can be
extracted from the first six data to update the model and improve the prediction accuracy.
However, the sample size is very small, which is not conducive to modeling. If a modeling
algorithm with high fitting accuracy is used, such as multiple regression, neural network,
errors in the data may cause severe overfitting. The partial regression algorithm can solve
the overfitting problem by adding a regularization term to the loss function. The typical
algorithm is ridge regression (as shown in Equation (14), where βold = 0). However, the
regularization term of ridge regression makes the model coefficients tend to zero. For small
sample data, this trend is more severe, because the proportion of the regularization term in
the loss function will relatively increase and cause underfitting. According to Figure 13,
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with a change in the machine processing parameters, the thermal error model coefficient
changes but not significantly. Therefore, even if the old model fails, its model coefficients
do not deviate too much from the accuracy coefficients. Hence, in the loss function, it is
obviously a better choice to make the model coefficients tend to the old model coefficients.
This can solve the overfitting problem through the regularization term. Simultaneously,
it greatly reduces the risk of underfitting. As shown in Figure 15, the effect of update
regression can be intuitively understood by the model coefficients. Figure 15 includes the
coefficients of two kinds of models: (1) the model built by ridge regression with 60 data
and (2) the model built by the update regression with six data. The model coefficients of
the two algorithms are very close. This shows that update regression can extract accurate
thermal error laws from six data.
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6. Conclusions

This study investigated the selection of TSPs and the adaptive update method of the
thermal error model of CNC machine tools. The conclusions are as follows.

(1) When selecting the TSPs, the grouping method could cause the conflict of the collinear-
ity and correlation of the TSPs and result in the low correlation of the selected TSPs.
The stability of the correlation should also be considered when performing the corre-
lation calculation in TSP selection. These two problems lead to the variability of TSPs,
which reduces the prediction accuracy of thermal error models. This means that the
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TSPs selection method is unstable and may lead to inappropriate TSPs. In this regard,
a stability TSP selection method was proposed in this study. In the proposed method,
the correlation is the primary basis for the selection of TSPs. Furthermore, when
calculating the correlation, the stability of correlation is calculated simultaneously so
that the TSPs with high and stable correlations can be selected. After experimental ver-
ification, the variability of TSPs selected by the proposed method almost disappeared.
In addition, for a variety of thermal error modeling algorithms, higher thermal error
prediction accuracy could be obtained.

(2) This study proposed a new thermal error model adaptive update method. This
approach adds a regularization term that tends to the old model coefficients in the loss
function of the regression algorithm. Based on the new loss function, the new data
can be fused with the old model. Many experiments verified by that the proposed
method could complete the update of the thermal error model with an average of six
new data. Moreover, the prediction accuracy was close to the highest accuracy (fitting
accuracy) of the linear regression algorithm, which greatly reduced the model update
time and improved the accuracy of the updated model.
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Appendix A

In 2014 [18], we adopted a fuzzy clustering algorithm to select TSPs, which was con-
sidered mature at the time. With a large batch of thermal error experiments, in 2015 [15], we
found that the variability of TSPs and the variability can lead to changes in the collinearity
of TSPs, making the model unstable. Furthermore, we also found that the partial regression
algorithm is not sensitive to the change of collinearity, so a principal component regression
algorithm is proposed to establish a thermal error model, and the stability of the model can
be improved. In 2017 [35], we further studied the collinearity and found that the model
built by TSPs with high collinearity and the ridge regression algorithm has higher accuracy
and stability. At this time, we have been focusing on the improvement of the modeling
algorithm, but since then, we have tried many algorithms and found that the improvement
effect is not obvious. Until 2020 [10], we found that no matter what algorithm we used,
it was impossible to predict all the thermal error data with one model. Furthermore, we
believe that the continuous updating of the model is necessary, and the variability of TSPs
cannot be ignored. Therefore, we made an in-depth study of the TSPs. Then we found
that there is some connection between the correlation and collinearity of TSPs, and the

https://www.mdpi.com/article/10.3390/machines10060427/s1
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correlation is very important for the selection of TSPs. In addition, we have studied the
stability of the correlation calculation results and published the literature [28]. In the
following research, we found that there are two reasons that lead to the problem of TSPs
variability: (1) the conflict between correlation and collinearity; (2) the correlation stability.
In addition, these are two mathematical problems, that is, the TSPs are not really changed,
but the selection method is problematic. Finally, in the research on the thermal error model
adaptive update method, this paper systematically studies the reasons for the variability
of temperature sensitive points, and proposes a new selection method for temperature
sensitive points.

In addition to the research on the selection of TSPs, we simultaneously carried out
research on the model update algorithm. We first chose the neural network algorithm
because it can learn online. However, the training of a neural network is difficult, because
the loss function of a neural network is non-convex, and it is impossible to know in advance
whether the training of new data will converge. If some global optimization algorithms
are used, such as ant colony and genetic algorithm, it will lead to a significant increase in
the amount of calculation and the difficulty of training. In addition, numerous studies on
regression models and our experimental results show that the relationship between thermal
error and TSPs is dominated by linearity. Therefore, we turn the focus of our research
to linear models and propose an update regression algorithm. The update regression
algorithm gives the linear model the ability to update online, which is the algorithm used
in this study.
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