
Deep learning assessment of syllable affiliation of intervocalic 
consonants

Zirui Liu,1,a Yi Xu1, b

1 Speech, Hearing and Phonetic Sciences, University College London, 

London, WC1N 1PJ, United Kingdom

In English, a sentence like “He made out our intentions.” could be 

misperceived as “He may doubt our intentions.” because the coda /d/ 

sounds like it has become the onset of the next syllable. The nature and the 

occurrence condition of this resyllabification phenomenon are unclear, 

however.  Previous empirical studies mainly relied on listener judgment, 

limited acoustic evidence such as voice onset time (VOT) or average 

formant values to determine the occurrence of resyllabification. This study 

tested the hypothesis that resyllabification is a coarticulatory re-

organisation that realigns the coda consonant with the vowel of the next 

syllable. We used deep learning in conjunction with dynamic time warping 

(DTW) to assess syllable affiliation of intervocalic consonants. The results 

suggest that convolutional and recurrent neural network (CNN-RNN) based 

models can detect cases of resyllabification using Mel-frequency 

spectrograms. DTW analysis shows that neural network inferred 

resyllabified sequences are acoustically more similar to their onset 

counterparts than their canonical productions. A binary classifier further 
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suggests that similar to the genuine onsets, the inferred resyllabified coda 

consonants are coarticulated with the following vowel. These results are 

interpreted with an account of resyllabification as a speech-rate-dependent 

coarticulatory reorganisation mechanism in speech. 
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I. INTRODUCTION

Despite the wide recognition of the syllable as a speech unit among 

speakers and researchers (Browman & Goldstein, 1992; Levelt, Roelofs & 

Meyer, 1999; MacNeilage, 1998), there have been doubts about the role of 

the syllable due to ambiguity associated with syllable boundaries. One 

situation where ambiguity is especially severe is in regard to the syllable 

affiliation of intervocalic consonants. For example, the phrase “escort us” in

British English (/ɛs#kːɔt#əs/) can be syllabified as /ɛs#kːɔ#təs / in 

connected speech, according to observation of a noisy release during the 

word final /t/ (Levelt et al., 1999). The phenomenon is more formally known 

as resyllabification, which usually denotes a shift of syllabification of a coda 

consonant into the onset of the following vowel-initial syllable (Levelt et al., 

1999; Schiller et al., 1997). For English, empirical work examining 

resyllabification goes back as early as 70 years ago, when Stetson used the 

kymograph to investigate CV and VC production at different speech rates 

(Stetson, 1951). He observed that in a sequence of syllables like /bi bi bi…/, 

the CV structure remains stable regardless of speech rate. In contrast, a 

sequence of VC syllables such as /ib ib ib…/, becomes very similar to /bi bi 

bi…/ when repeated at a fast rate, according to kymograph data, indicating 

that the coda /b/ is resyllabified as an onset consonant. The perceptual 

finding was consistent with articulatory patterns recorded by the 

kymograph. Stetson’s findings were later replicated by Tuller and Kelso 

(1990, 1991), with glottal transillumination data, which showed that glottal 

2

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50



movements shifted drastically at a critical rate of speech, and perception of 

the spoken sequences also shifted to be mostly identified as /ip ip ip.../.

In languages such as Spanish and French (Bermúdez-Otero, 2011, Gaskell 

et al., 2002), resyllabification is recognised as a phonological process, 

although there are cross dialect variations according to acoustic evidence 

such as consonantal duration (Strycharczuk & Kohlberger, 2016). Due to 

the lack of clear empirical evidence, the existence of resyllabification in 

English is questioned (Shattuck-Hufnagel, 2011), as mentioned above. 

Furthermore, the status of the syllable is called into question because of 

boundary ambiguity due to resyllabification (Blevins, 2003; Steriade, 1999). 

A major source of the difficulty of determining the syllabification status of 

segments is that it is mainly based on the subjective judgment of listeners 

(Ní Chiosáin et al., 2012; Content, 2001; Goslin & Frauenfelder, 2001; 

Schiller et al., 1997). Even when acoustic measurements are taken, listener 

judgments are still treated as the “ground truth” (de Jong et al., 2004; 

Mullooly, 2003). But as found in de Jong et al. (2004), listeners agree with 

each other well only in cases where a gap between the release of the coda 

consonant and the beginning of voicing for the next vowel can be easily 

detected. In the absence of apparent gaps, listener judgments become very 

diverse. Those authors therefore suggested that the difference between the 

coda and onset consonant is more closely related to how they are 

motorically optimised in production in ways that are too subtle for most 

listeners to detect. 
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What is needed is an alternative definition of resyllabification, that departs 

from conventional definitions that are based on language-specific 

phonotactics (what is phonologically legal), perceptual impression, and 

language-specific acoustic properties (aspiration, voicing, etc.). In this 

study, we consider an articulatory-acoustic definition that specifies the 

affiliation of an intervocalic consonant based on an articulatory definition of 

the syllable. And the definition of the syllable, as will be reviewed next, also 

addresses coarticulation, another essential issue of speech articulation.

A. Resyllabification, coarticulation and the syllable

Resyllabification is closely related to a well-documented asymmetry 

between onset and coda consonants in both phonology and phonetics. For 

languages that allow for coda consonants, codas are more vulnerable than 

their onset counterparts, as they are more susceptible to deletion and 

reduction (Barlow & Gierut, 1999; Xu, 1986, 2020). In contrast, onset 

consonants are often inserted when the syllable is vowel initial, such as 

glottal stop insertion (Birgit, 2001; Garellek, 2012), intrusive /r/s (Gick, 

1999; Uffmann, 2007), and vowel hiatus breakers (Mudzingwa, 2013; Smith,

2001). In terms of canonical syllable structures, CV syllables are also more 

common than both VC and CVC syllables in many languages (Clements & 

Keyser, 1983; Levelt et al., 1999; Xu, 2020).

According to articulatory phonology, the vulnerability of codas is likely 

related to an asymmetry in coarticulation within the syllable. That is, onset 
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consonants are coupled “in-phase” with the vowel, resulting in synchronous 

activation between the vocalic and onset C gestures (Goldstein et al., 2006).

On the other hand, coda consonants are coupled “anti-phase” with the 

vowel, which is a less stable mode of coordination. Resyllabification is 

therefore “analysed as an abrupt transition to a more stable coordination 

mode” that is likely to occur under increased speaking rate (Goldstein et al.,

2006:237). 

An alternative account of resyllabification is provided by the 

synchronisation model of the syllable (Xu, 2020), as shown in Fig. 1, which 

shares some similarities with articulatory phonology but differs from it in 

certain critical details. The model assumes that syllable is a mechanism for 

eliminating most of the temporal degrees of freedom by synchronising 

consonant, vowel and glottal movements at syllable onset (vertical lines), 

whereby each movement (dotted lines) is to approach an underlying target 

within its allocated time interval. The synchronisation makes the initial 

consonant fully overlapped, hence coarticulated, with the initial portion of 

the “following” vowel. In contrast, a coda consonant is articulated 

sequentially after the vowel, because its closing movement directly conflicts

with the opening movement of the vowel (Xu & Liu, 2006). There are two 

differences between this model and articulatory phonology that are directly 

relevant for the current study. First, synchronisation is assumed to be a 

fundamental design of the syllable (likely centrally controlled) rather than 

emerging from the coupling of the gestural planning oscillators as in 
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articulatory phonology (Goldstein et al., 2006). Second, the sequential 

articulation of coda consonant is not modelled in terms of phase relation 

between C and V, because a) individual target approximation movements 

are frequently allocated insufficient amount of times (Nakatani et al., 1981; 

Xu & Wang, 2009), thus disallowing them to from complete movement 

cycles (Xu & Prom-on, 2019), and b) syllables constantly vary their duration,

due to stress, phrasing and other linguistic factor, which makes it difficult 

for syllable sequences, together with their constituent segments, to be 

temporally periodic to make oscillation-based modelling possible.

FIG. 1. The synchronisation model of the syllable (Xu, 2020).

According to the synchronisation model of the syllable, resyllabification is 

due to a lack of articulation time, as schematised in Fig. 2, rather than due 

to transition from anti-phase to in-phase articulatory coordination. In Fig. 

2A, the coda consonant (C2) occupies its own time interval because it is 
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sequentially articulated after the first vowel (V1). Meanwhile, the second 

syllable is not articulated as a true VC because it actually starts with a 

glottal stop (Cg). Such glottal stops have been reported as frequently 

occurring at slow speech rate (Birgit, 2001; de Jong, 2001), but would 

disappear as speech rate reached a certain threshold, leading to a 

perceptual shift from /VC#VC/ to /CV#CV/ (de Jong, 2001). As illustrated in 

Fig. 2B, as speech rate increases, less time is allocated to the syllable, 

which would require the duration for both V1 and C2 to be shortened to an 

implausible extent (as indicated by the red cross). The increased time 

pressure (Tiffany, 1980; Xu & Prom-on, 2019) may then lead to the 

replacement of the glottal stop (Cg) with C2 when speech rate approaches a 

certain threshold (e.g. 350 ms per syllable (de Jong, 2001)). C2 now 

becomes the initial consonant of the second syllable, as shown in Fig. 2C. 

This reorganisation gives V1 more articulation time while preserving all the 

segmental composition of the original syllables.
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FIG. 2. Illustration of articulatory resyllabification based on the  

synchronisation model of the syllable.

Based on this account of resyllabification, two predictions can be made: 1) 

Due to similarity in articulatory structure, resyllabified codas spectrally 

resemble their onset counterparts more than their canonical form, and the 

opposite can be observed for the non NN-resyllabified ones. 2) Because a 

resyllabified coda is fully coarticulated with the vowel of the following 

syllable, there is similar amount of vowel information shared between the 

resyllabified onsets and the canonical onsets, but not between canonical 

codas and canonical onsets. These predictions can be tested on English by 

applying machine learning models on acoustic data.
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B. Using deep neural networks with acoustic data to identify 

resyllabification

Given the difficulty of subjectively judging the occurrence of reyllabification 

(de Jong et al., 2004), an alternative is to obtain objective evidence by 

taking advantages of recent development in machine learning technology. 

This study therefore aims to determine the occurrences of resyllabification 

using deep learning models and dynamic time warping in combination with 

continuous acoustic data. The deep learning models used were inspired by 

state-of-the-art automatic speech recognition (ASR) networks (Amodei et al.,

2015). ASR systems without language models are error prone when 

detecting the canonical structure of resyllabified sequences (Adda-Decker et

al., 2002; Mirzaei et al., 2018; Wu et al., 1997). For example, a sequence 

like “fade out” could be recognised as “Fay doubt” if the coda /d/ is 

resyllabified as the onset of the second syllable. We trained recognition 

networks on slow speech data with no resyllabification occurrences and 

used them to classify data from normal rate speech. The reason behind 

using data from the slow speech rate condition for training is to ensure that 

there are no resyllabified sequences in the training data. In other words, for

the model to be able to misclassify a sequence as its onset counterpart due 

to resyllabification, it should not be trained with a resyllabified sequence 

labelled as its canonical version. The misclassified sequences in normal 

speech rate (i.e. “fade out” as “fay doubt”) were further examined to shed 

some light on the articulatory structure of the syllable.
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II. Methods

We trained a deep neural network classifier to identify word sequences such

as “coo part” and “coop art”. The utterances in the slow condition were 

used for training the classifiers. Then, we used the trained classifiers to 

classify the same utterances spoken in the normal rate recordings. A 

/CVC#VC/ sequence such as ‘coop art’ was categorised as resyllabified if 

the classifier “misclassified” it as its counterpart /CV#CVC/ sequence, i.e. 

‘coo part’. These neural network inferred resyllabified sequences are 

referred to as NN-resyllabified to avoid confusion between the cognitive 

process of syllable reorganisation and the inferred syllabification status by 

the classifier. Dynamic time warping was then used to investigate the 

spectral similarities between the NN-resyllabified sequences in the normal 

speaking rate and the sequences in the slow rate (e.g. NN-resyllabified 

“coop art” vs. slow “coo part” or NN-resyllabified “coop art” vs. non 

resyllabified slow “coop art”). Furthermore, to test prediction (2), we built 

binary neural network classifiers to categorise contrastive pairs such as 

“coop art” vs. “coop eat”, whose training data only consisted of the 

intervocalic consonantal portions of the acoustic signal (e.g. aspiration 

for /p/). The closure interval was not included due to very little acoustic 

energy in the data, as /p/ is a voiceless stop. The results were compared 

between speech rates and syllable structures.
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A. Subjects

Eight subjects aged 20-40 participated in this study, whose first language 

was Southern Standard British English (6 female and 2 males). No speaking

or hearing disorders were reported prior to recording. To ensure data 

quality, all potential participants had to submit a short recording on Gorilla.

The experimenters then visually inspected the recordings in the computer 

program Praat (Boersma & Weenink, 2022). Only participants with an 

external microphone and sufficient recording quality took part in the study.

B. Stimuli and data collection

Table I lists the word sequences used in this study. The stimuli include 

three groups of four sequences. For each group, the onset pair and coda 

pair match in terms of segments and differ in syllable structure, e.g. 

/CVC#VC/ vs. /CV#CVC/. This maximises the possibility that if the classifier 

misclassified a coda sequence as its onset counterpart, it is likely due to the 

shift in syllable structure, i.e. resyllabification.

TABLE I. Stimuli. 

Group Onset Coda

1 Lee steal Lee stale Least eel Least ale

2 Do mart Do meet Doom art Doom eat

3 Coo part Coo Pete Coop art Coop eat
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Note that there exist differences other than syllabification between onset 

and coda sequences, such as lexical, syntactic or prosodic properties. For 

example, “doom art” is a noun/verb noun sequence, where as “do mart” is a 

verb noun sequence. The neural network classifier could use information 

such as syllabification, syntactic and lexical differences between the onset 

and coda tokens. Therefore, it is important to minimise the similarities 

between items such as “coo part” and “coop art” due to the following: If the 

classifier misclassified “coop art” as “coo part”, it is important to minimise 

the possibility that the misclassification took place due to prosodic or lexical

similarity between the two, rather than coarticulation between the 

intervocalic C and the second V. Therefore, within each onset and coda pair,

we use word combinations that differ in their morphosyntactic structure 

(e.g. “Lee steal” vs. “least eel”). However, other unknown factors may still 

result in similarities between the onset and coda pairs which could 

contribute to misclassification. The current design can only assume that 

when a coda sequence is misclassified as its onset counterpart, it is due to 

similarity in coarticulation structure rather than other unknown factors.

There is also a vowel minimal contrast in the second syllable for each 

syllable structure condition in each group. The vowel contrast allows us to 

examine the amount of coarticulation in the intervening consonant, by 

assessing the performance of a binary classifier at predicting the second 

vowel identity using only acoustic data from the annotated consonant 

interval. Previous studies have used a minimal pair design and showed that 
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when a consonant is coarticulated with the upcoming vowel, acoustic 

information associated with the vowel can be detected during the consonant

(Liu & Xu, 2021, Liu et al., 2022). Liu and Xu (2021) also show that the 

entire cluster in /clusterV/ syllables in British English is coarticulated with 

the vowel. Thus, a cluster triplet is included in the current study to 

investigate whether the following vowel is coarticulated from the onset of 

the consonant cluster.

Participants were instructed to say the word sequences in isolation in two 

blocks of different speaking rates – first slow, then normal. For the slow 

block, the speakers were instructed to articulate the words clearly and 

fluently, at a slow pace. In the normal condition, speakers were informed to 

speak at a faster pace in a colloquial style. There were no instructions on 

what resyllabification was, or whether they should or should not resyllabify 

anything. The stimuli were read aloud with 20 and 10 repetitions for the 

randomised slow and normal blocks, respectively, yielding 360 tokens per 

speaker (12 × 20 + 12 × 10). Around 3% of the data were excluded due to 

background noise during recording.

The recording took place online over Zoom with the sampling rate of 32 

kHz, with Zoom’s original sound feature turned on, which preserved the 

original recording quality by minimising the amount of audio enhancement. 

All the participants used an external microphone during the experiment and

the recording quality was assessed by the researcher prior to the 
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experiment. For the resyllabification classifiers, the recordings were 

annotated in either [C1V1#C2V2C2] or [C1V1C1#V2C2] format (subscripts 

denote syllable position), with the first boundary being the start of acoustic 

landmark of onset C1 (e.g. lateral murmur for /l/), and the second boundary 

being the end of acoustic landmark of the coda C2. For the binary classifiers,

the consonantal intervals were segmented as the plosive aspiration for /p/, 

nasal murmur for /m/ and frication for /s/. An example is shown in Fig. 3.

FIG. 3. An annotation example of “coo part” from one speaker, with the 

vertical lines indicating the segmentations.

C. Speech rate analysis

As speech tempo can be speaker-specific due to difference in speaker 

characteristic (Jacewicz et al., 2009), participants were free to speak at a 

rate they deemed appropriate as slow or normal. For both the slow and 
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normal rate condition, participants were instructed to speak fluently (i.e. 

without spontaneous pausing). No spontaneous pauses were identified in 

the data during the annotation process. Therefore, speech rate in the 

present study is analogous to articulation rate, which does not include 

hesitation, pausing or emotional expressions. The duration values of 

annotated tokens are presented in Fig. 4. As the figure shows, speech rate 

was faster for the normal condition compared to the slow condition for all 

speakers. On average, speakers produced 2.9 syllables per second for the 

normal rate and 2 syllables per second for the slow rate. According to de 

Jong (2001), resyllabification should take place when articulation rate 

approaches 2.8 syllables per second.

FIG. 4. Annotated sequence duration for 8 speakers.
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D. Neural network classifier for identifying resyllabification

1. Data preparation

To ensure high accuracy, neural networks were trained for each speaker 

individually. The segmented word sequences from the slow condition were 

converted into mel-frequency spectrograms with 40 mel filter-banks with 25

ms as the window length and a hopping interval of 5 ms. We augmented the

data to boost the amount of training data by using common augmentation 

techniques, such as speed augmentation, noise addition and frequency/time 

masking (Ko et al., 2015; Park et al., 2019). First, half of the tokens from 

the speaker were selected and sped up randomly between the factor of 0.3 

to 0.9, by using the Audacity software with a custom Python script (Audacity

Team, 2021). This resulted in 360 samples per speaker. Then, 15% of the 

resultant dataset were reserved as the testing set (N = 54), and 85% as the 

training set (N = 306)1. Note that the samples were randomised before data

splitting. Since the original data are balanced between word classes, the 

train and test split should also contain approximately balanced data, 

resultant of the random sampling process. The training set was then further

boosted by augmenting 30% with random Gaussian noise addition to the 

raw acoustic signal (Pervaiz et al., 2020), or frequency or time masking to 

the spectrograms (Park et al., 2019), yielding 398 samples for the training 

set. Not only does data augmentation improve model generalisation and 

performance, the sped-up samples also familiarise the model with shorter 

acoustic signal such as those in the normal speech rate condition. The 
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motivation for doing noise addition and masking boost after the speed boost

is to provide the benefit of these augmentation techniques for the sped-up 

tokens as well rather than just the original slow sequences.

2. Model architecture

The model architecture is shown in Fig. 52, which was inspired by a 

combination of Deep Speech and ResNet, developed by Baidu (Amodei et 

al., 2015) and Microsoft (He et al., 2015), respectively. Each model was 

trained for 120 epochs, unless the average accuracy across the last 5 

epochs has reached the threshold of 98% for the testing set. For each 

epoch, the spectrograms were padded to the same duration as the longest 

sequence in the batch (N = 32), then fed into the neural network. Note that 

Fig. 5 demonstrates the flow of data through the network by a batch size of 

1. The spectrogram is first passed through a 2D convolutional layer (i.e. 

convolutional neural network (CNN)), which had a 3 × 3 kernel with a 

stride of 1, and 32 channels. The output from the 2D convolutional layer is 

then passed through 3 residual blocks (He et al., 2015), the convolutional 

layers in each residual block had a 5 × 5 kernel with a stride of 1. For both 

the 2D convolutional and residual layers, padding was used to retain the 

shape of the tensors. The motivation behind these two types of 

convolutional layers is for the model to extract features such as dynamic 

information of spectral energy between frequencies or time steps (e.g. 

velocity of energy variation between time steps) (Luo et al., 2018; Sharma 

et al., 2020). To preserve as much acoustic information as possible, no 
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pooling was used. The output from the residual layers was reshaped by 

collapsing the 32 channels, resulting in tensors with the shape of 1280 by n 

timesteps, which was further reduced by a fully connected layer with 512 

units. Five layers of bi-directional Gated Recurrent Units (GRU) were then 

used to process the sequential acoustic features. Only the last timestep’s 

output was used from the GRU. Finally, the output was fed into two fully 

connected layers with a final SoftMax activation which generated the 12-

dimensional probability vector, one for each word sequence in Table I. Due 

to the complexity of the model, we used dropout as the regularisation 

technique to combat overfitting (Semeniuta et al., 2016). A dropout rate of 

0.1 was used throughout the network (see Fig. 5 for dropout locations). 

Furthermore, batch normalisation was applied after each mini batch to 

stabilise learning, as well as provide some regularisation effect (Ioffe & 

Szegedy, 2015). The hyperparameters were tuned by using grid search with

data from the pilot study. The hyperparameters used can be found in Table 

II in the Appendix section.
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FIG. 5.  Model architecture for the resyllabification classifier. The figure 

shows the tensor dimensions for a batch size of 1. The box sizes reflect 

tensor shapes, as annotated above each box. The depth, height and width of

the boxes are not to scale and is for illustration purposes only.

The trained models were used to classify tokens from the normal speech 

rate condition for each speaker. If a coda sequence was misclassified as its 

onset counterpart (e.g. “coop art” classified as “coo part”), we categorised it

as resyllabified.
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E. Dynamic time warping analysis

Dynamic time warping (DTW) was used to measure how similar the NN-

resyllabified and non NN-resyllabified tokens were in relation to the onset 

or coda conditions in the slow speech rate condition. DTW has been 

demonstrated to be effective at measuring similarity between sequences 

such as acoustic signals. For example, it has been widely used for speech 

recognition (Sakoe & Chiba, 1978; Zhang et al., 2014), as well as other 

applications such as bird song recognition (Kogan & Margoliash, 1998), 

speech segment clustering (Lerato & Niesler, 2019), and accent 

quantification (Bartelds et al., 2020). The DTW algorithm is illustrated in 

Fig. 6. First, a cost matrix is computed by measuring the distance between 

the feature vectors (in this case we used mel-spectrograms) between two 

sequences at each time step. We used cosine similarity for the calculation of

distance, as it is not affected by the magnitude of spectral energy, i.e. 

frequency decibels (e.g. the same recording played at different volumes 

would measure 0 in cosine distance but not Euclidean distance). The lower 

right heatmap in Fig. 6 shows the cosine distance between the mel-

frequency vectors in the two sequences at all time steps. DTW works by 

finding the path in the distance matrix that result in the lowest cumulative 

distance (i.e. cost). Therefore, the DTW distance between the two 

sequences in Fig. 6 is the sum of the distance values through the warping 

path shown by the red line.
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FIG. 6. Demonstration of the DTW algorithm. The dotted line shows the 

dynamic warping path. The spectrograms are mel-spectrograms of the 

tokens “coop art” (bottom left) and “coop art” (top). The pixel intensity in 

the lower right heatmap represent feature distances at each time step 

between the two spectrograms.

Using DTW, we can compute the similarity between word sequences, while 

minimising the effect of speech tempo. For this study, we calculated the 

distances between the NN-resyllabified as well the the non NN-resyllabified 

coda sequences and their onset and coda counterparts in the same group 

from the slow rate condition (e.g. NN-resyllabified “coop art” vs. slow “coo 

part”, “coo Pete” or NN-resyllabified “coop art” vs. slow “coop art” and 
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“coop eat”). Note that since the vowel contrast is constant between the 

distance comparisons, it should not confound the analysis.

The DTW analysis was used to compare the similarities between the NN-

resyllabified sequences and the onset and coda sequences in the slow 

condition. In addition, a parallel DTW analysis was conducted for the non 

NN-resyllabified (correctly classified normal rate coda sequences) to assess 

whether they are more similar to their canonical form.

F. Detecting V2 information in the intervocalic consonant

As illustrated in Fig. 3, the researcher manually segmented the canonical 

acoustic intervals from the intervocalic consonant or the first cluster 

component (i.e. nasal murmur for /m/, aspiration for /p/ and frication for /s/),

which were used to investigate the articulatory alignment of the consonant 

and the following vowel. The segmented intervals differ in terms of 

articulatory meaning between groups, as aspiration correspond to the 

consonantal release gesture and the other two correspond to consonantal 

closures. This difference should have an impact on the amount of vowel 

information detected in each group. Similar to methods used in Tilsen 

(2020), Tilsen et al. (2021) and Liu and Xu (2021), to detect vowel 

information in the segmented intervocalic C, we trained a simple recurrent 

neural network to predict the second vowel identity between contrastive 

pairs (e.g. NN-resyllabified “coop art” vs. NN-resyllabified “coop eat”). Liu 

and Xu (2021) showed that for tautosyllabic CnV, binary classifiers are able 
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to detect vowel information in the acoustic intervals of onset C, such as 

during frication or lateral murmur.

For each minimal pair, tokens from all 8 speakers were used. From the 

normal speech rate condition, only the NN-resyllabified tokens and the true 

onset tokens were examined. According to results from the neural network 

classifiers, not all coda tokens were NN-resyllabified, which gave rise to the 

possibility of accuracy scores from the onset conditions being higher than 

the NN-resyllabified codas, due to having significantly more training data. 

For example, a speaker resyllabified 5 out of 10 repetitions of “coop art” 

and “coop eat”, which would result in 10 samples in total for the neural 

network, whereas 20 samples are available for the onset condition (i.e. 10 

repetitions of “coo part” and “coo Pete”). Therefore, we balanced the 

sample sizes between the two conditions by randomly sub-sampling the 

onset condition for each speaker to match the number of NN-resyllabified 

ones. For instance, if a speaker resyllabified 5 out of 10 repetitions of “coop 

eat”, only 5 random selections of “coo Pete” were used from this speaker for

training the binary classifier.

The classifiers were bi-directional recurrent neural networks with Long 

Short-Term Memory (LSTM) units (Soltau et al., 2016). The network details 

are shown in Fig. 7. The hyperparameters were tuned with data from the 

pilot study using grid search, and details can be found in Table III in the 

Appendix section. The segmented tokens were converted into mel-
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spectrogams with 26 filter banks, with 0.025 s as the window length and 

0.005 s as the hop length. Before training, all the spectrograms were 

padded to the same length as the longest one.  As Fig. 7 shows, masking 

was applied in the input layer, which tells the model to ignore the padded 

duration. Due to the absence of CNN, we included delta coefficients (i.e. 

first order differentials) to aid model performance, which resulted in a 52 

dimensional vector at each time step. The data were split into training and 

testing splits with the ratio of 8:2. We randomly shuffled the data for each 

minimal pair and trained a model from scratch 80 times and reported the 

accuracy distribution on the testing sets. The motivation behind examining 

an accuracy distribution is to avoid the issue of accidental above chance 

performance, which could arise with small datasets (Combrisson & Jerbi, 

2015; Ojala & Garriga, 2009).
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FIG. 7. Model architecture of the binary classifiers. The tensor shapes are 

denoted on the right of each box.

1. Bayesian analysis

To test the amount of vowel information in the acoustic signal, we used 

Bayesian analysis with beta likelihood to model the effect of syllable 

structure (i.e. onset vs. coda) on model accuracy. A conventional non-

significant result cannot be used to validate a null hypothesis, as it only 

suggests a failure to reject it. The advantage of using Bayesian statistics is 

that it simply tells us which model is more supported by the evidence in the 

data, and the models do not need to be nested. The motivation behind using 
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beta regression is due to the nature of accuracy rate being bounded 

between 0 and 1. Beta regression assumes that the data generating process 

can be modelled by a beta distribution (Balakrishnan & Nevzorov, 2003), 

where the distribution can be parameterised with the mean-precision (μ-φ) 

parameters, where φ is analogous to the inverse of data dispersion. Since Y 

~Beta(μ, φ), beta regression presumes that the mean μ of the response 

given the predictor X is linear on the logit transformed scale (Douma  & 

Weedon, 2019). In other words, in a beta regression model, the dependent 

variable can be mapped from the bounded space [0, 1] to unbounded real 

numbers with a link function (most commonly the logit function), where an 

ordinary linear regression can be used to model the logit transformed data. 

During Bayesian estimation of the posterior distribution of the model 

parameters, the likelihood function with the μ-φ parameterisation is:

f ( y ; μ , ϕ )= Γ (ϕ )
Γ (μϕ )Γ ( (1−μ ) ϕ )

yμϕ−1 (1−y )(1−μ )ϕ−1                         (1)

and:

μ=logit−1 (Xβ )                                                (2)

Γ is the Gamma function, μ is the inverse logit transformed model 

prediction, y is the observed data bounded between 0 and 1, and φ is the 

precision parameter. Note that model predictions are mapped back to the 

bounded space with the inverse logit function. Our accuracy data contains 

values equal to one. Therefore, the one-inflated beta distribution is needed, 
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which produces a mixture density (Ospina & Ferrari, 2012). The likelihood 

function using the one-inflated beta distribution incorporates a new 

parameter α:

f ( y ;α , μ ,ϕ )={(1−α ) f ( y ; μ , ϕ )
α

(0< y<1 )
( y=1 )

                                    (3)

To construct beta regression models with Bayesian analysis with the one-

inflated beta distribution for the likelihood function, we defined a custom 

response distribution with the brms package in R3. Weakly informative 

Gaussian priors (β ~ N(0, 52)) were used as the priors for the regression 

coefficients. The half Cauchy distribution was used for φ (φ ~ Cauchy[0, 

52)), and the beta distribution for α (α ~ Beta(0.5, 8)). Note that model 

coefficients do not need to be bounded in any way, as model output is 

transformed with the inverse logit function into the bounded space.

Bayes Factors (BF) were used for model comparison (Dienes, 2016; Liu et 

al., 2022; Stone, 2013). There is controversy regarding using BF to 

substitute for null hypothesis testing (Gelman et al., 2013). However, BF is 

used here to compare which model is more likely given the evidence (i.e. 

the data), rather than the likelihood of the observed effect being due to 

chance, as is the case in null hypothesis testing (Morey et al., 2016; 

Wagenmakers et al., 2016). Other popular methods such as the Bayes leave-

one-out (LOO) analysis show limitations when the ground truth is consistent

with the null hypothesis. Gronau and Wagenmakers (2019) demonstrates 
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that when the number of observations consistent with the simpler model 

(i.e. H0) grows larger, LOO’s support for it reaches an upper bound, and this

bound can sometimes be very modest. It was also shown that depending on 

the prior distribution, as more H0 consistent data is added, LOO’s support 

for H0 can decrease. Therefore, to avoid potential bias towards the more 

complex model, we use BF for model comparison.

If BF0 (the BF indicating evidence for H0 over H1) is between 0 and 1/10, the

data strongly supports H1 over H0. Conversely, if BF0 is larger than 10, there

is strong evidence for the null hypothesis (Jeffreys, 1961; Biel & Friedrich, 

2018; Dienes, 2014; Harms & Lakens, 2018; Lakens et al., 2020; 

Schönbrodt & Wagenmakers, 2018; Lee & Wagenmakers, 2014).

For each speech rate condition, a full model was constructed with the main 

effects of syllable structure (onset vs. coda for the slow rate and onset vs. 

NN-resyllabified coda for the normal rate) and group. The null model was 

constructed with group as the only main effect. We also tested whether the 

effect of syllable structure differed between item groups, by including an 

interaction term.

G. Duration analysis of NN-resyllabified and canonical onset 

consonants

Although resyllabified sequences may have become similar to their onset 

counterparts in terms of spectral pattern, there is evidence that resyllabifed

codas retain their underlying coda status through duration (Gao & Xu, 
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2010; Lehiste, 1960). Specifically, the durations of the resyllabified 

consonants are shorter compared to the canonical onsets. To test whether 

duration differs between the two, the same acoustic intervals from the 

previous section were used. Bayesian analysis with linear regression was 

used to determine if duration of the acoustic interval was affected by 

syllable affiliation (i.e. genuine onset vs. NN-resyllabified coda). Duration 

was used as the dependent variable and item group and syllable affiliation 

were used as the predictor. The likelihood function used the normal 

Gaussian distribution. For the regression coefficient priors, we used weakly 

informative Gaussian prior (β ~ N(0, 52)), and for the sigma prior we used 

the half Cauchy distribution (σ ~ Cauchy[0, 52)).

III. Results

A. Resyllabification classifiers

Fig. 8 shows the model performance of the word sequence classifiers. Since 

we trained a model for each speaker separately, the result in Fig. 8 was 

calculated by summing over each speaker’s confusion matrix. As shown, the

classifiers achieved near ceiling accuracy on the test split for the slow 

speaking rate, indicating that the models could distinguish the word 

sequences very well.
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FIG. 8. Confusion matrix of model performance on the testing split of the 

slow speech rate. This is an element wise summation of all the speakers’ 

confusion matrices. The colour intensity of tiles reflects numeric value.

Fig. 9 shows the model performance on the normal speaking rate by 

summing over the results from all the speakers. Table IV list the accuracy 

rate for the onset, coda and all sequences. As can be seen, most of the onset

sequences were classified correctly. Thus, the classifiers trained on the slow

speaking rate data also did well on the onset conditions spoken at a faster 

rate, such as “Lee steal” or “Lee stale”. In the coda condition, the classifiers

30

549

550

551

552

553

554

555

556

557

558



misclassified a large portion of the sequences as their onset counterpart, 

such as classifying “least eel” as “Lee steal”. These misclassified sequences,

presumably due to resyllabification, are examined in detail later.

FIG. 9. Confusion matrix of model performance on the normal speech rate. 

This is an element wise summation of all the speakers’ confusion matrices. 

The colour intensity of tiles reflects numeric value.

TABLE IV. Accuracy summary for the normal speech rate tokens.
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Coda 0.36

Onset 0.90

Overall 0.63

B. DTW analysis

Fig. 10 shows a bar graph of the cosine distance between the NN-

resyllabified tokens and the slow tokens. The NN-resyllabified sequences 

were only compared to slow sequences in the same group. The figure shows

that, when minimising the effect of speech tempo, NN-resyllabified words 

such as “least eel” is more similar to its canonical onset counterpart “Lee 

steal” than to its non-resyllabified version. In other words, when comparing 

the NN-resyllabified condition with the slow onset condition, the cosine 

distance is smaller than when comparing with the slow true coda condition.
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FIG. 10. DTW cosine distance between resyllabifed normal rate sequences 

and slow sequences. The error bars represent 95% of the confidence 

interval. G1 – “least eel”, “least ale”, “Lee stale”, “Lee steel”; G2 – “doom 

art”, “doom eat”, “do mart”, “do meet”; G3 – “coop art”, “coop eat”, “coo 

part”, “coo Pete”.

The result from the DTW analysis can be reflected by the spectrograms in 

Fig. 11.  “doom art” in the middle of Fig. 11 was classified as “do mart” by 

the neural network in the previous section, therefore we treated it as a 

resyllabified token. The NN-resyllabified “doom art” appears to be more 

similar to the canonical onset version “do mart” in the top panel. The 

bottom panel shows “doom art” spoken in the slow condition, likely with a 

glottal stop at the beginning of the second syllable “art”.
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FIG. 11. Mel-spectrograms of three word sequences from one speaker.

Fig. 12 shows the DTW cosine distance between correctly classified normal 

rate coda tokens and the slow tokens. The opposite trend from Fig. 10 can 

be observed: the non NN-resyllabified sequences are more similar to their 

canonical coda form in the slow rate condition, which support the prediction

that correctly classified coda tokens likely have not been resyllabified, 

unlike their misclassified counterparts.
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FIG. 12. DTW cosine distance between non NN-resyllabifed normal rate 

sequences and slow sequences. The error bars represent 95% of the 

confidence interval. G1 – “least eel”, “least ale”, “Lee stale”, “Lee steel”; G2

– “doom art”, “doom eat”, “do mart”, “do meet”; G3 – “coop art”, “coop eat”,

“coo part”, “coo Pete”.

C. Intervocalic consonant alignment analysis

1. Results for slow speech rate

With the consonant intervals described in Section II E, we trained 80 neural

networks for each vowel minimal pair in Table I and obtained an accuracy 

distribution from the test set. Fig. 13 shows the accuracy rate from the slow

speech rate condition. As the figure shows, for /s/ frication in the 

intervocalic cluster (i.e. G1), the vowel classification accuracy is around 

chance, indicating that little to no vowel information was picked up by the 

binary classifier in the frication of /s/ for both the onset (e.g. “Lee stale”) 
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and coda conditions (e.g. “least ale”). For G2, the intervocalic /m/ contains 

more detectable vowel information as the onset of the second syllable, and 

less so when it is the coda of the first syllable. Similar trends can be 

observed for G3, although with overall higher accuracy – the binary 

classifier performs better when /p/ is the onset of the second syllable.

FIG. 13. Vowel classification accuracy by group from the slow speech rate 

condition. G1 – “least eel”, “least ale”, “Lee stale”, “Lee steel”; G2 – “doom 

art”, “doom eat”, “do mart”, “do meet”; G3 – “coop art”, “coop eat”, “coo 

part”, “coo Pete”.

To test hypothesis via model comparison, we use the Bayes Factor, which 

can offer support for a model based on the observed data (Dienes, 2014, 

Harm & Lakens, 2018). The posterior distributions of the model parameters 

are not very informative as predictions need to be transformed with the 
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inverse logit function, and their details are included as supplementary 

materials4. Therefore, the predicted distribution from 100 random samples 

is shown in Fig. 14. As the figure shows, the model with an interaction term 

shows the best predicative power. BF0 was very close to zero (i.e. BF1 is 

larger than 10). Therefore, the data indicate that the alternative model, i.e. 

onset and coda conditions are different, is highly more likely, because 

model accuracy differs greatly. We also constructed a model with an 

interaction effect between item group and syllable structure. BFinteraction (the 

BF indicating support for the interaction model over the full model) is larger

than 10, which provides strong support for the interaction model. To 

conclude, the data shows strong evidence for the effect of syllable structure,

which differs greatly between groups. In other words, there is robust effect 

of syllable structure for G2 and G3, but likely not for G1.
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FIG. 14. Model predictions against 100 random samples for the slow rate, 

where y refers to the observed data and yrep refers to predictions. The 

columns correspond to item groups and the rows correspond to model type.

2. Results for normal speech rate

The accuracy distributions from the normal speech rate condition are shown

in Fig. 15. Note that the coda condition only contained NN-resyllabified 

sequences. Fig. 15 shows that the amount of vowel information detected 

during the acoustic consonantal intervals (e.g. /s/ frication in “Lee stale”) 

was very similar between the NN-resyllabified coda and onset sequences. 

The item group wise trends are similar to the slow rate condition in Fig. 13. 
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The aspiration from the plosive onset /p/ contains the most vowel related 

energy, and the nasal murmur from /m/ contained enough vowel information

for the classifier to perform above chance. For /s/ in G1, the accuracy 

distributions are centered at chance level (i.e. 50%), indicating that little to 

no vowel information was detected by the binary classifiers during the 

frication intervals.

FIG. 15. Vowel classification accuracy by group from the normal speech 

rate condition. The coda condition here refers to the NN-resyllabified coda 

sequences in the normal speech rate condition. G1 – “least eel”, “least ale”, 

“Lee stale”, “Lee steel”; G2 – “doom art”, “doom eat”, “do mart”, “do meet”;

G3 – “coop art”, “coop eat”, “coo part”, “coo Pete”.

The predicted distributions from the Bayesian analysis results are shown in 

Fig. 16. The posterior distributions of model parameters can be found in the

supplemented materials5. Visually, the predicted distributions do not differ 
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too much from one another. BF0 was larger than 10, signifying that the data

provides more support for the null model. Fig. 15 indicates that model 

accuracy might differ slightly between the NN-resyllabified coda and the 

onset sequences for G1. In other words, there might be an interaction 

between the effect of syllable structure and group. BFinteraction (the BF 

indicating support for the interaction model over the null model) is smaller 

than 1/10, therefore, there is little to no evidence suggesting that accuracy 

differs between onset and NN-resyllabified coda tokens for G1.

FIG. 16. Model predictions against 100 random samples for the normal rate,

where y refers to the observed data and yrep refers to predictions. The 

columns correspond to item groups and the rows correspond to model type.
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D. Duration of intervocalic consonants

The duration of the acoustic intervals for the canonical and NN-resyllabified

onsets are shown in Fig. 17. Congruent with previous findings (Gao & Xu, 

2010; Lehiste, 1960), NN-resyllabified codas are shorter than the canonical 

onsets. Predictions of the Bayesian analysis are shown in Fig. 18, and the 

parameter posterior distributions are included as supplemented materials6. 

The effect of syllable structure was estimated to be around 0.01 (μ = 0.008 

[0.005, 0.012]). BF0 is smaller than 1/10, which indicates that duration 

differs between syllable structures.

FIG. 17. Duration of onset and NN-resyllabified consonants from the normal

speaking rate condition.
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Fig. 18. Model predictions against 100 random samples for the duration 

results, where y refers to the observed data and yrep refers to predictions. 

The columns correspond to item groups and the rows correspond to model 

type.

IV. Discussion

Previous debates on the phenomenon of resyllabification have mainly relied 

on phonotactic analysis, listener judgment or phonetic properties such as 

voicing and aspiration. In this study we tested an alternative approach that 

examines articulatory coordination, and coarticulation, as reflected in the 

spectral patterns, using machine learning models with acoustic data. The 

findings have offered a new perspective on the nature of resyllabification.
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A. Overall findings

The results of computational analysis have largely confirmed the two 

predictions laid out in the introduction. The deep learning models trained 

on slow speech rate data misidentified coda sequences by classifying them 

as their onset counterparts, and DTW analysis showed that for all three 

consonants (i.e. /st/, /p/ and /m/), the sequences identified as resyllabified 

were more similar to their onset versions than the original coda versions. 

Moreover, the correctly classified sequences are more similar to their 

canonical coda version, which indicate that they likely have not undergone 

resyllabification. Therefore, the first prediction — codas in the NN-

resyllabified sequences spectrally resemble canonical onsets more than 

their canonical coda version, was supported. The results from the binary 

classifiers confirm the second prediction by showing that there was a 

similar amount of vowel information detected in the NN-resyllabified onsets 

and canonical onsets, but not between the true codas and onsets from the 

slow condition. This suggests that the underlying articulation was alike 

between the NN-resyllabified and canonical onsets. Therefore, the results 

confirm previous findings of resyllabification in English (de Jong, 2001; Gao 

& Xu, 2010; Stetson, 1951). In connected speech, resyllabification can 

happen when a coda consonant is followed by a vowel initial syllable, and it 

applies to both singleton consonants and consonant clusters. The coda 

status of the NN-resyllabified consonants, however, seem to be partially 

retained through duration: Resyllabified codas are shorter compared to 
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canonical onsets. This is consistent with the findings of Lehiste (1960) and 

more recently Gao and Xu (2010). Whether or not listeners can perceive the

durational cues, however, need to be tested in future studies. Furthermore, 

future studies can investigate the effect of resyllabification and syllable 

position on consonant duration by examining both NN-resyllabified and non 

NN-resyllabified consonants.

It is also interesting to note the relation between resyllabification and 

speech rate. When syllable duration is around 350 ms in the current study, 

the rate of inferred resyllabification already reaches above 50%. At 2.86 

syllables per second, this speech rate is rather slow, compared to the typical

normal articulation rate of 5-7 syllables per second in connected speech 

(Eriksson, 2012; Tiffany, 1980). But this is consistent with the finding of de 

Jong (2001) that resyllabification start to take place as speech rate 

increases to around 350 ms per syllable, and resyllabification rate 

approaches 100% at 150 ms per syllable. The implication is that the 

tendency for resyllabification must be very strong so that it would be 

difficult to avoidat normal speech rate.

The finding of resyllabification align with the syllable model shown in Fig. 1 

based on which the predictions illustrated in Fig. 2 were derived. That is, 

once a coda consonant is resyllabified as the onset of the next syllable, as 

determined by the deep learning model and DTW analysis, its articulation is

overlapped with the vowel of the next syllable, as determined by the binary 
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classifiers. This is consistent with the recent finding that the movements 

towards the vowel and onset C are synchronised at syllable onset (Liu et al.,

2022; Liu & Xu, 2021; Xu et al., 2019), which is denoted by the rime and 

onset tiers in Fig. 1.

B. Coarticulation resistance and dimension-specific sequential 

target approximation (DSSTA)

CV synchronisation does not mean that vowel information is always 

detectable from the syllable onset or at the same time point, however, 

partly due to coarticulation resistance, i.e. the ability of a segment to 

restrain coarticulatory effects from adjacent segments (Bladon & Al-

Bamerni, 1976; Recasens, 1984). Recasens (1984) proposes that the degree 

of coarticulation resistance is dependent on the amount of constraint that a 

consonant or vowel places on the tongue body. Xu (2020) further proposes 

that the phenomenon is a mechanism that resolves the articulatory conflicts

between consonants and vowels when they both involve the same 

articulator while being co-produced to achieve C-V co-onset (Fig. 1). 

According to this mechanism, namely, dimension-specific sequential target 

approximation mechanism, different (e.g. vertical or horizontal) dimensions 

of an articulator can be engaged in executing only a single target, which is 

either consonantal or vocalic, during C-V coproduction. This mechanism 

maximises the degree of C-V synchronisation while allowing individual 

articulator dimensions to be engaged in only sequential target 

approximation movements, i.e. without gestural blending (Saltzman & 
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Munhall, 1989) given its computational difficulty (Tilsen, 2019). The 

following discussion will offer an account of the differences in the detected 

vowel information in the present results that includes DSSTA as a critical 

mechanism.

The amount of detectable vowel information in the consonant interval 

follows the order of Group 1 (/s/) < Group 2 (/m/) < Group 3 (/p/). This order

may result from two different sources. The first, which is more obvious, is 

the differences in their relative timing. The frication in Group 1 and nasal 

murmur in Group 2 both correspond to the articulatory closure of the 

consonants, whereas the aspiration in Group 3 corresponds to the 

articulatory release, which occurs after the closure. This could partially 

explain why more vowel information was detected in Group 3 than in the 

other two groups. The second source is coarticulation resistance due to 

DSSTA. The consonant /s/ in Groups 1 involves the tongue body to form a 

groove needed to direct the airflow toward the front teeth (Borden, Harris 

and Raphael, 2003). The involvement of the tongue body would generate 

serious coarticulation resistance in /s/ in Group 1 because the horizontal 

and vertical dimensions of the tongue body are likely both involved in 

approaching the target of the sibilant (Recasens & Espinosa, 2009). In 

contrast, the articulation of /m/ in Group 2 requires only lip closure without 

constraints on the tongue. This would account for the greater amount of 

detectable vowel information in Group 2 than in Group 1. The lack of tongue

involvement in labial consonants is true of /p/ in Group 3 as well. But there, 
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it is added on top of the fact that aspiration, where the binary classification 

was performed, occurs after the stop closure, thus giving rise to the 

maximal vowel information detected by the classifier. Note that had one of 

the syllables in Group 1 contained a rounded vowel such as /u/, DSSTA 

would predict that vowel information would be better detected, because lip 

movements are not in direct conflict with the articulation of /s/. This 

possibility can be tested in future research.

C. Chance level performance of the binary classifier for G1 

sequences

The lack of detectable vowel information in /st/ even in normal speech rate 

may seem to contradict the recent finding that vowel articulation could be 

detected at the same time as the onset of a consonant cluster (Liu & Xu, 

2021). That study found that for a minimal triplet such as “slit” vs. “slot” vs.

“flot”, the difference between “slit” and “slot” could be detected around the 

same time as “slot” and “flot”, before the frication onset. But we have noted

three major differences between Liu and Xu (2021) and the current study. 

First, Liu and Xu (2021) only looked at clusters such as /sp/ and /sl/, but 

not /st/ as in the current study. /p/ does not require any tongue movement, 

thus is less coarticulation resistant than both /l/ and /t/. In terms of /l/ and 

/t/, both being alveolars, Iskarous et al. (2013) found that /t/ is more 

coarticulation resistant than /l/ in the vertical dimension for the jaw and the 

tongue blade. This could be due to the requirement of a full closer for /t/ as 

a plosive but not for the approximant /l/. /t/ being more coarticulation 
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resistant means that it may have delayed much of the vowel movements. 

Second, much larger vowel contrasts were involved in Liu and Xu 

(2021)—/slit/ vs. /slot/ than those in the present study—/steal/ vs. /stale/. 

The greater the vowel contrast, the greater the magnitude of tongue 

movement in the articulatory dimensions not essential for the consonant 

articulation, and the more detectable the vowel information during the 

frication interval. Third, the target words were produced with a carrier in 

Liu and Xu (2021), which made the speech more fluent than the isolated 

word sequences said in the present study. The average speech rate in Liu 

and Xu (2021) was about 140 ms per syllable, compared to 350 ms per 

syllable in this study. It is hard to tell, however, if any of these factors is 

decisive, or all of them jointly contribute to blocking the vowel information 

from being present in the /s/ frication.

D. Above chance performance of the binary classifier for the slow 

coda sequence in G2

One of the most surprising results of this study is the finding that, as shown 

in Fig. 13, for the slow speaking rate, there is information of the upcoming 

vowel in the intervocalic consonants when they are in the coda position of 

the first syllable (e.g. “doom art”; “coop art”), albeit less than when they are

in the onset position. The detection of vowel information in a non 

resyllabified coda may seem particularly striking given the clear temporal 

gap or glottalisation between the two syllables, as can be seen in Fig. 19 

and Fig. 20. But the glottal component, as can be judged both auditorily and
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spectrally, corresponds to a glottal stop or glotallisation (which is also a 

form of glottal stop: Redi & Shattuck-Hufnagel, 2001; Garellek, 2013), that 

serves as the onset of the syllable /art/. A glottal stop, just like other stops 

such as /b, d, g/, would be fully coarticulated with the following vowel (Xu, 

2020), as illustrated in Fig. 2. This means that the target approximation 

of /a/ must have started some time well before the glottal closure (Liu et al.,

2022; Xu and Liu, 2007). This can indeed be seen in Fig. 19, i.e. the brief 

yet clearly visible labial release after the nasal murmur of /m/, and the F2 

transition from “doom” to “eat” during and right before the glottalised 

interval in Fig. 20. The high vowel detection rate of around 80% for /p/ and  

65% for /m/ means that the vowel target approximation may have started 

during (though probably not before) the closure of the coda. Exactly when 

during the closure, however, awaits future investigations.

FIG. 19. Spectrogram of “doom art” from a male speaker.
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FIG. 20. Spectrogram of “doom eat” from a female speaker.

E. Broader implications

The finding of a clear tendency toward resyllabification in this study 

provides further support for the synchronisation model of the syllable (Xu, 

2020) beyond recent findings (Liu et al., 2022; Liu & Xu et al., 2021). 

According to the model, there is a strong demand for onset consonants to 

synchronise (i.e. fully overlap) with the vowel, and a high time pressure 

against the preservation of coda consonants. This is partially consistent with

the maximum onset principle (Pulgram, 1970; Selkirk, 1982), but offers 

specific articulatory details that can be tested in the acoustic signals as 

done in the present study. Because the syllable is both essential and highly 

controversial for theoretical models in linguistics as well as 

psycholinguistics, the current results may have implications for many 

broader issues about speech production, but here we focus only on two 

major ones. The first is about the influential psycholinguistic model of 
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speech production (Levelt et al., 1999), which proposes a step-by-step 

model of how speech production proceeds from lexical selection to 

articulation. The results of the present study are relevant for the 

phonological encoding to articulation stages in the model. The most 

relevant result is probably the corroboration of previous findings that 

resyllabification is contingent on local articulation rate: highly likely at 

normal rate, but optional at slow rate (de Jong, 2001; Stetson, 1951). This 

means that until local speech rate is known, the articulatory affiliation of 

coda consonant is undetermined, which would suggest that either syllables 

retrieved from memory (during phonological encoding) are incomplete in 

terms of segment affiliation, or the retrieved syllables are reorganised by 

resyllabification, and that this reorganisation would occur after the phonetic

encoding stage, just before articulation. 

The finding of rate-dependency of resyllabification is further relevant to any 

psycholinguistic model of speech production given the known extensive use 

of speech timing by linguistic functions. Specifically, local articulation rate, 

which is jointly determined by syllable duration and pause duration, is used 

to encode multiple levels of boundary strength (Lehiste, 1972; Klatt, 1976; 

Nakatani, O’Connor & Aston, 1981; Wagner, 2005; Wang & Xu, 2019). Thus 

resyllabification is likely a regular variable of connected speech beyond 

word-level phonetics. In fact, it is likely part of the process of producing 

connected speech that involves many other phonetic reorganisations, 

including deletion of intervocalic coda (as opposed to resyllabification in 
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some languages) (e.g. tone sandhi (Chen, 2000), intrusive /r/ (Gick, 1999), 

and vowel hiatus breakers (Mudzingwa, 2013), etc). There is already 

evidence that some of these reorganisations may be cognitively real, at least

in the case of tone sandhi (Zhang, Xia & Peng, 2015). These phonetic 

reorganisation tactics could therefore be included in an enhanced 

psycholinguistic model of speech production, and their cognitive reality 

could be experimentally investigated.

The second broad issue is whether the present results can be interpreted in 

terms of ambisyllabicity. The original proposal of ambisyllabicity was 

motivated by the lack of phonetic means to clearly determine syllable 

boundaries, so the affiliation of intervocalic segments had to rely on 

phonotactic well-formedness, and for cases where ill-formed syllables would

occur if an intervocalic consonant can only have a single affiliation, e.g., 

happy, attic, hobby, the solution is ambisyllabicity, i.e., simultaneously 

affiliation to both adjacent syllables (Kahn, 1976). Exactly how such double 

association is realised phonetically, however, has remained unclear. Gick 

(2003) has proposed that some intervocalic segments, e.g. /l/ and /w/, 

actually consist of a C-gesture and a V-gesture, which are simultaneously 

phased to the surrounding syllables, therefore ambisyllabified. The phonetic

evidence is in terms of different time delays in the achievement of the 

respective C and V gestural goals, which differs from the onset alignment 

the current study has examined. Although the present study is not designed 

for examining ambisyllabicity, at least one phonetic cue is shown to have 
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the potential to indicate the original coda status of a consonant, namely, the

shorter duration of NN-resyllabified coda than the original onset consonant 

(also c.f. Lehiste, 1960). However, if CV onset coarticulation is considered 

as the sole indicator, the NN-resyllabified codas are unambiguously 

overlapped with the following vowel according to the present data.

F. Caveats

Two of the resyllabification classifiers satisfied the early stopping criteria, 

which meant that their training epochs were determined with the test split 

rather than the pilot data. This could have slightly inflated the overall 

accuracy reported for the slow condition in section III A. However, the use 

of the classifier is to classify normal rate sequences, which is the focus of 

the study and their accuracy has not been inflated as the normal rate data 

were not used in any way during training.

The possibility of false negatives cannot be completely ruled out regarding 

the chance level performance of the binary classifier for G1. Providing that 

upcoming vowel related acoustic information exist during frication, two 

scenarios could result in false negative detections:

1. Chance performance due to chance.

2. The neural networks are not powerful enough to detect the subtle 

difference.
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The first scenario refers to the opposite of what is described in Combrisson 

and Jerbi (2015), namely, the model achieved chance performance by 

chance. This could be due to the randomised nature of the data split and/or 

model parameter initialisation (not hyperparameters). However, this 

possibility is accounted for in the current study, by repeatedly training 80 

classifiers on randomised train and test data and analysing the resultant 

accuracy distributions. For the second scenario, despite tuning the 

hyperparameters with data from pilot recordings, the neural network was 

not tuned for each speaker and consonant type separately. In practice, it is 

very difficult to construct a perfect network regardless of the type of data in

question. Therefore, there is a small possibility that the binary classifier 

could not detect a difference between groups in G1 due to the lack of 

robustness. Future studies could incorporate articulatory data, as it might 

provide more detailed information than acoustic data in the current study 

(Tilsen, 2020).

On the other hand, the possibility of false positives cannot be ruled out 

either. Providing that the test dataset is large enough, machine learning 

models cannot always achieve 100% accuracy. The same applies to the 

word sequence classifiers in this study. This is evident in the results from 

the slow speech rate in section III A. Although overall accuracy is high, 

there were still coda sequences classified as their onset counterpart, as well

as cases where onset sequences were classified as their coda counterpart. 

At the slow speech rate (2 syllables per second on average), is it unlikely 
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that resyllabification occurred, so these misclassifications are likely genuine

incorrect classifications (i.e. not due to syllabification). As for the normal 

rate results, there should also exist genuine misidentifications like the slow 

rate, which is likely why there are onset sequences classified as their coda 

counterparts. This means that a small number of the NN-resyllabified 

sequences might be genuine misidentification as well. However, the normal 

rate results show that onset sequences reached an accuracy rate of 90% 

and only 36% was achieved for the coda ones. Therefore, a large portion of 

the NN-resyllabified tokens are likely due to syllabification structure and 

not just simple false positives.

Also, the study did not conduct a parallel analysis of V2 binary classification 

for the correctly classified coda tokens. Unlike the DTW analysis, there are 

too few correctly classified coda sequences in the normal rate for training 

neural network classifiers, especially for G1 and G2. This issue is 

exacerbated by the imbalance of speakers in the data, i.e. some speakers 

had zero or a very small number of correctly classified tokens in certain 

item groups. Future study can potentially avoid this issue by increasing the 

number of repetitions in the normal rate condition.

Finally, as noted in section IV B, the lack of detectable vowel information in 

Group 1 might have been avoided had one of the syllables in each pair 

contained a rounded vowel. This is because, despite its involvement of the 

tongue-body, the articulation of /s/ is not in direct conflict with the lip 
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movements of the co-produced vowel. This possibility can be investigated in 

future research.

V. CONCLUSION

We used deep learning models with acoustic data to investigate the 

phenomenon of resyllabification. The models trained on slow speech data 

can be used to infer resyllabified sequences in normal speech rate data. 

This was verified by DTW analysis, which revealed that, compared to slow 

speech, NN-resyllabified sequences were more similar to the true onset 

sequences than their original coda productions. The acoustic intervals of 

intervocalic consonants were examined with bi-directional recurrent neural 

network models. We found that similar amount of vowel information was 

detected in the intervocalic consonants between the NN-resyllabified codas 

and the genuine onsets, suggesting that the coarticulation structure of the 

former resembles that of the latter. For slow speech rate, the results show 

that the articulatory structures likely differed between the onset and coda 

sequences. Surprisingly, however, vowel information can still be detected 

from the closure and release of labial coda consonants, indicating that the 

articulation of the vowel has started during the acoustic interval of a coda 

consonant even when it is not resyllabified.

APPENDIX

The hyperparameter details for the multi-class classifier and the binary 

classifiers are shown in Table II and Table III, respectively.
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TABLE II. Hyperparameters for the multi-class classifiers.

Hyperparameter Value

Number of residual blocks 3

Number of GRU layers 4

Number of units in the GRU layers 512

 Number of units in the linear layers 512

 Dropout rate 0.1

 Number of channels for the CNN 
layers 32

 Batch size 32

 Learning rate 0.0001

 Optimiser RMSprop

 Epoch number 120

TABLE III. Hyperparameters for the binary classifiers.

Hyperparameter Value

Number of units in the first LSTM 60
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layer

Number of units in the second 
LSTM layer 30

Dropout rate for the first LSTM 
layer 0.1

 Dropout rate for the second LSTM 
layer 0.2

 Number of units in the linear layer 50

Merge mode Summation

 Batch size 16

 Optimiser Adam

 Learning rate 0.001

 Epoch number 70

1During data splitting, correlated samples due to augmentation were not 

included in the same dataset. e.g. the original “coo part” and its augmented 

version always ended up in the same split.

2The full detail of models and data processing can be found at 

https://github.com/Clara-liu/deep_speech_resyllabification
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3The details of implementation of custom one-inflated-beta-distribution are 

available at 

https://github.com/Clara-liu/deep_speech_resyllabification/blob/main/

one_inflated_beta.R

4See supplementary materials at [URL] for details on the posterior 

distributions for the slow rate condition.

5See supplementary materials at [URL] for details on the posterior 

distributions for the normal rate condition.

6See supplementary materials at [URL] for details on the posterior 

distributions for the duration analysis.
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