
Compact Fermion to Qubit
Mappings for Quantum Simulation

Charles Derby
Supervisor: Toby Cubitt

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

February 15, 2023

2

I, Charles Derby, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

Fermions are one of two types of particles that make up matter in the universe,

characterised by many-body wavefunctions that are antisymmetric under particle

exchange. Electrons, which underpin many physical systems of interest, are included

in this group, so the ability to accurately simulate fermionic physics would be a great

asset to research. However, the antisymmetric nature of these particles means that

classical simulation of systems of multiple fermions is, in general, infeasible due

to sign problems. This infeasibility extends even to simplified systems such as the

Fermi-Hubbard model on a 2D grid. Simulation of fermions on a quantum device

would avoid this problem entirely.

A requisite step in simulating fermions on a quantum computer is mapping a

many-body fermionic system onto qubits through a fermionic encoding. Significant

properties of fermionic encodings include their qubit to fermionic mode ratio and

the weight of their encoded fermionic interaction operators. Both affect the runtime

of quantum simulation algorithms so it is ideal to minimise these quantities. This

thesis presents the novel “compact” encoding which outperforms all previous local

encodings in these metrics. The construction of the encoding is shown for a number

of interaction graph structures and its general properties are explored. Special

attention is given to a remarkable feature where low weight undetectable noise on

the encoding corresponds to a natural noise process on fermionic systems, indicating

that it may have utility in simulation even on imperfect, noisy quantum devices.

An interesting feature of the compact encoding and others is an apparent link

to topological error correcting codes like the toric code. Inspection of the compact

encoding for a cubic lattice reveals a link to an apparently novel 3D topological

Abstract 4

code with some unusual properties. This size of its codespace and code distance

are calculated and the exact form of its logical operators and syndromes are shown.

Excitations with fermionic character exist in this code, consistent with the other

codes linked with fermionic encodings, pointing to a possible unifying picture for

local fermionic encodings.

Impact Statement

Quantum computers have the potential for a wide reaching impact. The development

of a fault tolerant quantum computer would allow hitherto infeasible problems to

be tackled computationally. A significant application, which has been a primary

motivator for the field since its inception, is the simulation of other quantum systems.

Systems containing many fermions are of particular interest. Not only because they

are fundamentally difficult to simulate with normal computers but because they

include systems of electrons, the particles which underpin almost all of chemistry.

Simulating these systems on a quantum computer is not a simple task however, as

there must be a procedure to map the physics of many indistinguishable fermions

onto the physics of stationary qubits, two fundamentally different systems. This

procedure is called a fermionic encoding and the main subject of this thesis is an

example of this.

The content of this thesis could benefit researchers in a number of fields. It adds

to the rich zoo of fermionic encodings and may provide inspiration for further results

in the field, it also highlights a possible link between the seemingly disparate local

fermionic encodings which may pave the way to a more unified general theory of

representing fermions on qubits. The encoding presented in this work has favourable

properties for simulation on noisy devices so it may benefit research groups working

on near term quantum hardware by providing the means to perform interesting

fermionic simulation experiments. The content of the last chapter may also be of

interest to the error correction community as it provides an example of an apparently

unclassified topological code, this may lead to the development of new classes of

code.

Impact Statement 6

This research may also yield benefits outside of academia. The quantum

simulation of electronic systems would lead to greater understanding of chemical

reactions such as Nitrogen fixing and materials such as superconductors and batteries.

This understanding could lead to improvements in efficiency or the development

of new substances which would be invaluable to industries including agriculture,

transportation and battery production.

Acknowledgements

First of all, thanks are due to my supervisor Toby Cubitt, for taking me on as one of

his few PhD students and for his guidance and encouragement throughout my studies.

His attentive supervision and helpful advice on research and communication were

indispensable for a young scientist such as myself. I would like to thank Phasecraft

Ltd. for the company’s financial support of my studies and for the opportunity to

work with so many talented researchers.

Special thanks go to Phasecraft employee Joel Klassen for countless insightful

discussions, always hearing me out and for keeping me honest in my writings. I

would like to thank Phasecraft employees Raul Santos and Evan Sheridan for many

helpful conversations about unfamiliar subjects and for strengthening my confidence

in the background material which underpin my work. Phasecraft intern Riley Chien

also deserves thanks for patiently listening as I feverishly brainstormed proof ideas

for chapter 5 at him and for other interesting fermion based discussions. I am

grateful to fellow Phasecraft affiliated PhD student Laura Clinton for her constant

support and companionship. I also want to thank my Quantum Technologies CDT

colleague Tom Scruby, former CDT student Mike Vasmer, UCL research fellow Niko

Breuckmann and Stanford post-doc Dominic Williamson for interesting discussions

about topological codes and braiding.

Contents

1 Introduction and Background 22

1.1 Fermions . 24

1.2 The Fermi-Hubbard Model . 30

1.2.1 The Hamiltonian . 30

1.2.2 Classical and Quantum Simulation of the Model 32

1.3 Hamiltonian Simulation . 36

1.4 Stabilizer Codes: A Brief Review 39

1.4.1 A Simple Example: 3-qubit Repetition Code 42

1.4.2 A More Complex Example: The Toric Code 43

1.5 Fermionic Encodings . 46

1.5.1 N-to-N Encodings . 47

1.5.2 Local Encodings . 50

1.6 NISQ Hardware . 61

2 A Compact Fermionic Encoding on a Square Lattice 64

2.1 Preliminaries . 65

2.2 Construction . 66

2.2.1 Odd Number of Faces . 69

2.3 Connection to the Toric Code . 72

2.4 Discussion . 74

3 The Compact Encoding on Further Lattice Geometries 76

3.1 Local Fermionic Encodings on Graphs 77

Contents 9

3.1.1 Counting Stabilizers . 81

3.1.2 The Compact Encoding on a Square Lattice 83

3.1.3 Particle Species on Fermionic Encodings 84

3.2 Generalizing the Compact Encoding in 2D 88

3.3 Examples of Weight-3 Planar Encodings 91

3.3.1 The Hexagonal Lattice (6.6.6 Uniform Tiling) 91

3.3.2 Diagram Notation . 92

3.3.3 The 4.8.8 Uniform Tiling 94

3.3.4 The 6.4.3.4 Uniform Tiling 95

3.3.5 The 4.6.12 Uniform Tiling 96

3.3.6 The Kagome Lattice (3.6.3.6 Uniform Tiling) 96

3.3.7 The 3.12.12 Uniform Tiling 101

3.4 A Cubic Encoding . 102

3.4.1 Construction . 102

3.4.2 Disparity . 104

3.4.3 Particle Species . 111

3.5 Discussion . 111

4 Mitigating Errors on the Compact Encoding 113

4.1 Natural Noise on Fermionic Lattice Models 115

4.1.1 Derivation of Fermionic Phase Noise 115

4.2 Mapping Physical Errors to Logical Errors 118

4.3 Mitigating Parity Switching Errors on the Square Lattice 120

4.4 Partial Correction of Detectable X and Y Errors 121

4.5 Discussion . 122

5 Code Underlying the Cubic Compact Encoding 125

5.1 Structure and Codespace . 126

5.2 Excitations, Logical Operators and Code Distance 133

5.2.1 Geometrical Pictures . 133

5.2.2 3-Torus . 140

Contents 10

5.2.3 Open Boundary Conditions 146

5.3 Discussion . 153

6 Concluding Remarks and Outlook 156

Bibliography 160

Appendices 169

A Supplemental Material to Chapter 3 169

A.1 Properties of the cycle group CG 169

List of Figures

1.1 Graph representation of the Fermi Hubbard Hamiltonian on a 5×5

2D lattice. Red lines denote hopping interactions between fermionic

sites within a given spin sector and blue lines denote on-site interac-

tions between spin sectors. 30

1.2 The phase diagram of the Fermi-Hubbard model on a 3D cubic

lattice at half filling over values of temperature T and interaction

strength U in units of hopping energy t. At low interaction strengths

relative to temperature (|U |< kbT , upper centre) the particles exist

as a correlated Fermi liquid with density fluctuations as in metallic

materials (CFL). For strong repulsive interactions (U > 0, U > kbT ,

lower right), the system becomes a Mott insulator (MI) with particles

restricted to individual sites. Within this regime a second order

phase transition (solid red line) separates paramagnetic (PM) and

anti-ferromagnetic (AFM) phases at high and low temperatures.

For strong attractive interactions (U < 0, |U | > kbT , lower right),

particles form spin pairs with a second order phase transition (solid

blue line) separating normal fluid (NF) and superfluid (SF) states at

high and low temperatures. 35

List of Figures 12

1.3 Operators on the toric code on a 5×5 torus. (i) A plaquette stabilizer

(ii) a star stabilizer (iii) a single X error with the flipped plaquette

stabilizers highlighted by squares (iv) a string of Z operators with the

flipped star stabilizers highlighted by circles (v) a logical operator.

Both (iii) and (iv) also provide illustrations for pairs of m and e

quasiparticles respectively. 44

1.4 Qubits in a JW encoding of a 5×5 lattice of fermions. Qubits are

numbered in “snake” ordering along the bold line, dashed lines indi-

cate local connections between modes not adjacent in the ordering.

JW encoded hopping terms between neighbouring modes adjacent

(blue) and non-adjacent (purple) in the numbering are shown. Note

that this qubit system encodes a single spin-layer of a Fermi-Hubbard

system on a 5×5 grid. 49

1.5 Qubits in the VC encoding for a 5× 5 lattice of fermionic modes.

Purple: a non-local JW encoded hopping operator, blue: a stabilizer

used to cancel a Z string, green: an encoded hopping operator which

has been localised by a stabilizer. 53

1.6 Operators on the BKSF encoding on a square lattice with edges

around vertex ordered clockwise starting from north. Orange: A

vertex operator, purple: a horizontal edge operator, blue: a vertical

edge operator, green: a loop of edge operators around a lattice face,

this is a stabilizer. 57

1.7 Grid site colouring of the MLSC. Alternating green-purple and blue-

orange rows which shift horizontally. 58

1.8 Vertex operators of the MLSC around all 4 possible coloured vertices. 58

1.9 Edge operators of the MLSC between all possible pairs of coloured

vertices. 59

List of Figures 13

1.10 Edge operators on the Setia code for a square lattice between vertices

i, j, k and l (denoted by dotted circles) in the Majorana picture. The

bulk of a square lattice is degree 4 so each vertex has 4 Majoranas

assigned to it (encoded by 2 qubits), with Majoranas around vertex

i indexed by oi. In this case, oi(j) = 2 and o j(i) = 4 so the edge

operator for (i, j) is the product of the corresponding Majoranas

encoded on vertex qubits. 60

2.1 Qubit assignment, edge orientation, and examples of mapped edge

and vertex operators for a 4×5 square lattice. 67

2.2 Loops of edge operators around faces on the square lattice. Note that

loops around even faces are non-trivial Pauli operators and loops

around odd faces cancel out to identity. Phases have been omitted. . 69

2.3 Single Majorana and hole operators on a lattice with an even number

of faces. Purple: A single particle operator at an odd corner, we

choose this to be the source of encoded single Majorana operators

γ̃ j. Blue: A single Majorana operator in the bulk of the, transported

from the top left odd corner by edge operators. Orange: A Majorana

hole operator in the bulk of the lattice, transported from the other

odd corner by edge operators. 70

2.4 Two possible choices of encoding for a lattice with an odd number

of faces. In case (b) with more odd faces, the corners have important

properties and so are labelled. 71

2.5 The encoded X and Y operators on the extra logical qubit in case (b).

Here the X is formed by fusing a particle of species B with D and

the Y by fusing C with D. 72

2.6 The toric code (dotted purple) embedded in the compact encoding.

Each stabilizer is a tensor product of either a plaquette Πp (red) or

star Πs (blue) operator, with a four qubit Z parity operator (black) . 73

List of Figures 14

2.7 A string of edge operators (black) in the compact encoding corre-

sponds to localized pairs of e (red) and m (blue) particles in the toric

code, i.e. a pair of ε particles. 74

3.1 Graphical representation of the proof of theorem 8. 91

3.2 Edge orientation, qubit placement and edge operators for the hexag-

onal lattice encoding. 92

3.3 The encoding on the above hexagonal lattice has 2 extra qubits and

so its disparity is ∆ = 2. Distinct particle species can be injected

at the corners with only 2 edges pointing to/from them and at the

hanging auxiliary qubits shared by only 2 edges. Orange: A single

particle operator at an injection site along the bottom of the lattice,

green: a single particle operator injected at a corner injection site

and transported by edge operators into the lattice, purple: a single

particle operator injected via an operator on a hanging qubit, note

that this operator corresponds to a particle operator acting on the

circled vertex in the fermionic system, blue: a single particle operator

injected at via a hanging qubit and transported by edge operators

into the lattice. 93

3.4 The 4.8.8 Uniform Tiling and the unit cell of its encoding. 94

3.5 Layout of a spinful fermionic system on a square lattice, embedded

in the 4.8.8 uniform tiling. 94

3.6 The 6.4.3.4 Uniform Tiling and the unit cell of its encoding. 95

3.7 The 4.6.12 Uniform Tiling and the unit cell of its encoding. 96

3.8 (Left) A Kagome lattice with two triangular corners. (Right) The

unit cell of the encoding showing all possible edge operators and faces. 97

List of Figures 15

3.9 (a) Labelling of edge operators and qubits around a triangular face

on the Kagome Lattice encoding. (b) Single particle operators on

the circled vertices. These are all of the same species and may be

transformed into each other by edge operators. On an equivalent

face where the edge operators act on vertices with Y , the particle

operators also act on vertices with Y 100

3.10 Single particle operators on a Kagome lattice at the circled vertices.

Purple: A single particle operator at a triangular corner. Orange: A

single particle operator transported from a triangular corner by edge

operators. Green: A single particle operator defined at a triangular

face as in fig. 3.9. Blue: A single particle operator transported from

a triangular face via edge operators. 100

3.11 Possible stabilizers to restrict the excess Hilert space on a Kagome

lattice encoding, formed by fusing particle species on the circled

vertices. Blue: Fusion of two species injected at adjacent triangular

faces. Green: Fusion of one species injected at a triangular corner

and one injected at the same triangular face. Orange: Same as Green.

The particle species injected at the remaining triangular faces are

then the Majorana and hole operators. 101

3.12 The 3.12.12 Uniform Tiling and the unit cell of its encoding. 101

3.13 Four possible orientations to the edges of the cubic lattice. Odd faces

are coloured blue and have a circle in the center to denote the extra

qubit. The leftmost cell is odd and the remaining three are even. . . 103

3.14 The unit cell of the encoding which includes two odd cells (front top

right, back bottom left) and six even cells in different orientations. . 104

3.15 Edge operators of the cubic encoding along edges aligned in the x, y

and z directions (shown from left to right). If an edge is part of an

isolated odd face then it will only act on one face qubit, if it is only

part of two even faces then it will only act on vertex qubits. 104

List of Figures 16

3.16 Loop operators around odd and even faces in the cubic encoding.

(a) shows the identical loop operators around odd faces opposite to

each other on an odd cell. Loop operators around odd cells aligned

in different directions will have a similar form only with different

Paulis. Loop operators around isolated odd faces are identity. (b)

shows a loop operator around an even face. Similarly, operators

oriented in different directions will have the same shape but different

Paulis. Loop operators around even faces on the lattice boundary

will have “hanging” Paulis omitted. 105

3.17 The possible neighbourhoods of vertices in the bulk, on a face, on a

edge, and on a corner of the cubic lattice. 109

3.18 The possible configurations of even and odd corners on the cubic

encoding, assuming there is at least one odd corner. The letters

denote whether a lattice edge has an even (e) or odd (o) number of

vertices. 110

4.1 Lattice modification to create weight-2 single Majorana/hole op-

erators. (a) The change in edge operators (b) the Majorana/hole

operators on the new corner sites. For a corner face where the arrows

are all pointing in the other direction, the action of the new edge

operator and the new Majorana operators on the vertex qubits will

be X . 121

5.1 The convention used for cardinal directions in this section. All

subsequent diagrams of 3D structures are oriented this way unless

otherwise stated. 126

5.2 (Upper) Odd cells arranged touching corner-to-corner, even cells

lie in the gaps between odd cells. (Lower) An odd cell and all

orientations of even cells. Qubits live on all faces of odd cells,

denoted by circles. 126

List of Figures 17

5.3 Stabilizer generators of the underlying code associated with lattice

faces. An odd face stabilizer operator is identical to the stabilizer

operator associated with the opposite face on the same odd cell. In

later diagrams odd face stabilizers will be denoted by blue squares

with circles in the centre and even face stabilizers by red squares, as

indicated in this figure. 127

5.4 Non-contractible cycles on a 3-torus. Boundaries with matching

arrow labels are joined such that the directions of the arrows match.

There are 3 such cycles that cannot be reduced to one another by

continuous deformation. These are denoted by the solid, dashed and

dotted purple lines between the boundaries. 127

5.5 (Left, centre) Products of parallel edge sets which have no support

on face qubits on an odd cell and an isolated odd face. (Right) An

edge operator that belongs to no odd cells along the edge of the

lattice. All elements of Kµ must be a product of operators of these

types. 130

5.6 Graphical representation of the mappings σ ′, µ ′, and ν ′ = µ ′ ◦
σ ′. An edge on the lattice highlighted in green is transformed by

σ ′ into an edge operator on the cubic compact encoding which is

transformed by µ ′ into a code edge operator on the underlying code,

each highlighted in red. 134

5.7 The lattice of the underlying code (black) and its dual lattice

(blue/red). Dual edges of odd faces are coloured blue and dual

edges of even faces are coloured red. Note that not every dual face

is fully surrounded by dual edges, namely the faces dual to edges at

the boundary of the original lattice. 135

5.8 Illustration of the mapping ∂ . A set of faces highlighted in purple is

mapped to the set of edges highlighted in green. 136

List of Figures 18

5.9 Single Pauli errors on odd cells in the bulk of the underlying code

and their associated domino surface elements on the dual lattice

under the mapping φ . Filled circles denote the qubit the error acts

on, even and odd faces whose stabilizers are flipped by an error are

highlighted in red and blue. Purple filled faces denote the associated

surface on the dual lattice with its boundary highlighted. Errors on

the opposite odd faces to those pictured have mirrored behaviour. . . 138

5.10 The surface picture admits surface interpretations of stabilizers as

closed surfaces. Stabilizers formed from loops around even faces

induce a surface enclosing a 2×2×1 volume. Stabilizers formed

from loops around odd faces induce no surface as their constituent

parts cancel out. 140

5.11 Pauli errors on the Underlying Code on a 2×1×1 lattice with their

syndromes (left) and the surfaces they map to on the dual lattice

(right). The dashed lines on the dual lattices denote “absent edges”.

(Upper) A single qubit error has a non-trivial syndrome, it maps to a

surface with boundary on non-absent edges. (Lower) A two qubit

error with no syndrome, the boundary of its corresponding surface

on the dual lattice is purely on absent edges. 141

5.12 (Upper) A single code edge operator along the x direction and maps

to a folded surface. (Lower) An open string of edge operators maps

to an open ended tube-like surface. The syndromes of the Paulis and

the boundaries of the surfaces are highlighted in red. 142

5.13 A logical Z̃x operator is formed by connecting a tube which loops

round the torus. 142

5.14 (Upper) A single Pauli error which induces a domino surface ele-

ment. (Lower) Multiple Pauli errors which induce a tiled surface of

dominos. The syndromes of the errors and the corresponding bound-

aries of the surfaces are highlighted in red for even faces/edges and

blue for odd faces/edges. 143

List of Figures 19

5.15 A logical X̃ operator is formed by spreading a surface out across a

whole plane of the torus. 144

5.16 For any odd cell, a product of an odd number of its associated z-

oriented code edge operators will have weight 2 on the cell’s qubits.

This weight cannot be reduced by multiplying by x or y-oriented

edge operators. 145

5.17 Illustrations of logical operators on the underlying code on an open

lattice with 4 odd corners. (Left) Strings of edge operators between

the odd corners form logical operators. (Right) Pauli operators that

induce surfaces across the whole lattice form equivalent logical

operators. 147

5.18 Illustration of the equivalence between logical operators in string

and surface form. A string of edge operators from corner A to

C is a logical Z̃ operator and in the surface picture, corresponds

to the folded surface shown on the left. Through multiplication by

stabilizer operators this surface can be extruded out into a flat surface

which represents the same logical operator on the codespace. 148

5.19 Odd and even cell layers perpendicular to the z direction on an open

lattice with 4 odd corners. In this case Lx = Lz = 3 and Ly = 2. . . . 149

5.20 Two operators that induce the same flat surface in a 1×2×1 lattice

with 4 odd corners, note that the action on odd cells can be changed

while inducing the same surface. Both these operators are the same

logical operator on this instance of the code as they are equivalent up

to a stabilizer. Orientation has been changed for this diagram such

that it is consistent with the text while still being easy to interpret. . 149

5.21 (Upper) A Pauli inducing a surface consisting of one face parallel

to the z direction in every layer of cells in the dual lattice, it has a

syndrome corresponding to an open boundary parallel to z of length

(2Lz +1)/2 which must be cancelled out by an operator of at least

weight (2Lz +1)/2 (lower). 150

List of Figures 20

5.22 For the underlying code on an open lattice with 8 odd corners, strings

of code edge operators connecting corners as shown correspond to 6

mutually anticommuting logical operators. These can be interpreted

as anticommuting Paulis or as a Majorana basis on the codespace. . 151

5.23 Other logical operator representations on an open lattice with 8 odd

corners. (Left) Strings of code edge operators connecting odd corners

as shown correspond to commuting logical operators, these can be

chosen as logical Z̃’s on the 3 encoded qubits. (Right) Operators

which induce these surfaces spanning the lattice also correspond to

commuting logical Paulis which can be chosen as the logical X̃’s on

each encoded qubit. Strings and surfaces of the same colour denote

operators on the same encoded qubit. 152

List of Tables

1.1 A comparison of local fermion encodings discussed in this chapter

when encoding a Fermi-Hubbard system on an L×L square lattice.

Max weight Coulomb and max weight hopping denote the maximum

Pauli weights of the mapped Coulomb (ñiñ j) and nearest neighbour

hopping (c̃†
i c̃ j + c̃†

j c̃i) terms respectively. Encoded fermionic space

denotes whether the full or even fermionic Fock space is represented.

Graph geometry denotes the other interactions graphs which the

mapping is tailored to. 61

1.2 Several figures of merit for existing NISQ devices as reported by

the companies (gate times for Rigetti were obtained from private

correspondence). The 2-qubit gates used for the associated figures

are CZ for Rigetti,
√

iSWAP for Google and CNOT for IBM. IBM

has several devices available, Peekskill has the greatest T1 to t2q

ratio and Lagos has the greatest 2-qubit gate fidelity. Google’s

documentation gives best, median and worst case values for each

figure, best case is listed here. Separate readout fidelity figures are

given for Google Weber corresponding to the error when measuring

a prepared |0〉 or |1〉 state respectively. 62

2.1 The qubit number and max Pauli weights, for the Fermi-Hubbard

model, of the fermionic encodings presented in this chapter. 65

Chapter 1

Introduction and Background

In a keynote speech in 1982 [1], often cited at the beginning of quantum computation

publications, Richard Feynman discussed the problem of simulating physics, in par-

ticular, quantum physics on computers. He concluded that a deterministic classical

computer would encounter unavoidable exponential explosions in resource require-

ments and that a probabilistic classical machine would be unable to replicate the

non-local behaviour of quantum systems. The only alternative he left the audience

with was to remove all the difficulty of simulating quantum behaviour by using a

machine made of quantum systems itself. This was shown to be a real possibility

in 1996 by Lloyd [2] who presented the first quantum algorithm for simulating the

evolution of a (local) quantum system via Trotter decomposition. Since then the

field of quantum simulation has progressed substantially, with the development of

algorithms with improved scaling in simulated evolution time and error [3, 4, 5],

including methods which scale optimally in both regards [6, 7]; although it has been

argued that approaches closer to Lloyd’s original protocol will be among the first to

produce useful results on real hardware [8].

Better quantum simulation algorithms alone, however, do not immediately

allow us to efficiently simulate the entire quantum world as we please. In fact, in

Feynman’s original talk he admitted he was unsure if a machine composed of local

spin-1
2 particles could efficiently simulate fermions, the family of particles containing

electrons, the objects at the heart of any chemical process one might want to simulate.

Indeed this is a non-trivial problem as one must find a suitable relationship between

23

a many body system of dynamic fermions and a system of stationary qubits before

even beginning to think about simulation algorithms. Such relationships between

fermions and qubits have existed since the early 20th century with the Jordan-Wigner

transformation produced by its namesake duo in 1928 [9] which maps a system

of N fermionic modes onto N qubits1 with fermionic Hamiltonian terms mapping

to Pauli operators of weight O(N). In complexity theoretic terms, this already

is enough to simulate fermionic systems “efficiently”. In fact shortly after the

publication of Lloyd’s first quantum simulation result, he and Abrams presented an

algorithm to simulate the Fermi-Hubbard model with runtime scaling quadratically

with the system size [10] using only Trotter decomposition and the Jordan-Wigner

transformation. This does not however concern itself with the complexities of

working on real, noisy hardware.

Quantum computing devices are currently in what is referred to as the NISQ

era (Noisy Intermediate Scale Quantum) [11]. NISQ devices are characterised by

modest qubit counts (typically < 100), error rates currently above fault tolerant

thresholds (for schemes compatible with their qubit counts) and lack of full error

correcting capabilities. Attempting to execute useful quantum algorithms on these

machines then becomes a race against the clock as irreversible noise gradually creeps

in and renders the output meaningless after a relatively short time. Naturally, it is

in the interest of anyone wanting to get anything interesting from a NISQ device

to do everything they can to minimise resource use, in particular runtime and qubit

count. In the context of simulating fermionic systems these savings can be made by

mapping the system onto qubits in a more efficient manner.

Local fermionic encodings are fermion to qubit mappings which use a greater

number of qubits in order to map fermionic interaction terms to low weight qubit

operators which do not scale with system size. Early examples of these date to the

early 2000s [12, 13] but the field has received a renewed interest in the past few

years [14, 15, 16, 17] with new encodings achieving lower operator weights and

qubit counts, both of which are beneficial for simulation on NISQ devices.

1The original work actually frames this as representing a system of stationary spins on a fermionic
system but the mapping reverses easily.

1.1. Fermions 24

The first two chapters of this thesis concern a new local fermion encoding which

outperforms all others in qubit count and operator weight when simulating locally

interacting fermionic modes on a square lattice, potentially bringing a quantum

simulation of the 2D Fermi-Hubbard model closer to reality. The encoding on a 2D

grid is detailed in chapter 2, generalisations to further 2D lattices and a 3D cubic

lattice are presented in chapter 3 along with some general theoretical results about

fermion encodings.

The remaining two chapters of content concern results that stemmed from

these novel encodings. Chapter 4 discusses the error mitigating capabilities of the

encodings and shows that their low weight undetectable errors map to physically

meaningful noise on the encoded fermionic system. In chapter 5, it is shown

that an interesting topological error correcting code emerges from the cubic lattice

encoding presented in chapter 3 and its logical qubit count, logical operators and

code distance are found for all possible configurations. Furthermore the code is

found to exhibit excitations that are fermionic in nature. As will be discussed later,

numerous encodings in the literature display a link to the fermionic excitations in

Kitaev’s toric code [18], the results in chapter 5 motivate further investigation into a

more general connection between fermionic encodings and topological codes with

fermions.

The remainder of this chapter will review relevant background material, in-

cluding some of the technical information required to understand the results in this

work.

1.1 Fermions

Fundamental particles of a given type, such as electrons, are indistinguishable. More

precisely, this means that no physical observable yields information that allows one

to differentiate between any two of them. This has some interesting implications.

Consider a 2 particle spatial wavefunction Ψ(x1,x2). The probability of finding

particle 1 at position x1 and particle 2 at x2 is given by the absolute square of the

wavefunction |Ψ(x1,x2)|2. In principle, this probability can be physically observed

1.1. Fermions 25

so it must be impossible to tell the particles apart through its measurement. This

means that if the particles labels 1 and 2 are switched then the the probability density

will remain unchanged, i.e.

|Ψ(x1,x2)|2 = |Ψ(x2,x1)|2. (1.1)

This property of the squared wavefunction means that the wavefunction itself

must be either symmetric or antisymmetric under particle exchange, meaning that it

is either unchanged or picks up a minus sign after two particles are switched:

Ψ(x1,x2) =±Ψ(x2,x1). (1.2)

These two behaviours neatly divide all fundamental particles into two camps, bosons

(symmetric) and fermions (antisymmetric). An equivalent definition of the groups

exists in the fact that bosons have integer spin and fermions have half integer spin

although the explicit connection between these two notions is beyond the scope of

this work, the intrigued reader is directed to [19] and the references therein for more

in depth discussion.

Fermions are of particular interest as they include electrons, the particles at

the heart of all chemical processes, so it is important to understand their behaviour.

A good place to start is from the fact that a group of fermions can only exist

in an antisymmetric wavefunction, and the implications which follow from this

restricted form. An arbitrary wavefunction of N fermions Ψ(x1, . . . ,xN) can be made

antisymmetric (up to a normalisation factor) via the operation

A[Ψ(x1, . . . ,xN)] := ∑
p∈P

(−1)p
Ψ(xp(1), . . . ,xp(N)), (1.3)

where P denotes the set of all unique permutations of N labels and (−1)p denotes the

parity of a permutation p that maps i→ p(i) (+1 if it is equivalent to an even number

of exchanges, −1 otherwise). The normalisation factor depends on the overlaps

between the permuted wavefunctions. A basis for antisymmetric wavefunctions can

1.1. Fermions 26

be constructed from Slater determinants, these are antisymmetrised product states of

N fermions each occupying different orthonormal states {α1, . . . ,αN} (often referred

to as orbitals or modes) so called because they can be expressed as a determinant

Φα1,...,αN (x1, . . . ,xN) :=
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

α1(x1) α2(x1) · · · αN(x1)

α1(x2) α2(x2) · · · αN(x2)
...

...

α1(xN) α2(xN) · · · αN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
≡ 1√

N!
A[α1(x1)α2(x2) · · ·αN(xN)].

(1.4)

Slater determinants are unchanged under unitary transforms between their single

particle states up to a phase (multiplication by a unitary only adds a phase to any

determinant) so are really defined over an N-dimensional subspace spanned by the

orthonormal states. Note that the Pauli exclusion principle (one fermion per mode) is

enforced by the wavefunction being 0 if any states are repeated. If the fermions live

in a M-dimensional space then the space of all antisymmetric N fermion states is

f N
M = span

(
Φαi1 ,...,αiN

: ∀{i1, . . . , iN} ⊆ [M]
)
, (1.5)

where Φαi1 ,...,αin
is a Slater determinant as defined in eq. (1.4) with the position

variables dropped. The dimension of f N
M is

(M
N

)
. The total space of possible fermionic

states on an M-dimensional system is the direct sum of the above spaces for all

particle numbers 0 through M

FM =
M⊕

n=0

f n
M. (1.6)

This is called the Fock space and has total dimension ∑
M
n=0
(M

n

)
= 2M.

This gets very complicated when dealing with large numbers of particles,

fortunately things can be made much simpler via second quantised notation. In

multi-fermion wavefunctions, the only point of distinction is whether a mode is

1.1. Fermions 27

occupied by a fermion or not so they can be specified purely in these terms. For

example, the Slater determinant over the first N modes of a basis {α1, . . . ,αM} can

be written as

Φα1,...,αN → |11,12, . . . ,1N ,0N+1, . . . ,0M〉 (1.7)

where 1i and 0i denote occupied and unoccupied modes indexed by i. The main idea

of second quantisation is to define these states via the action of creation operators

on the vacuum state which is simply the case where no fermions exist in a system.

An arbitrary Slater determinant over a given set of modes can then be defined as

|b1,b2, . . . ,bM〉= (c†
1)

b1(c†
2)

b2 · · ·(c†
M)bM |Ω〉 , bi ∈ {0,1}

where |Ω〉 := |0,0, . . . ,0〉
(1.8)

where c†
i is the creation operator for mode i. Considering a one particle state |1i〉=

c†
i |Ω〉 (where unoccupied have been omitted), its overlap with itself must be non-zero

so 〈1i|1i〉= 〈Ω|cic
†
i |Ω〉> 0. This implies that the action of ci, the adjoint of c†

i , is

to remove a fermion from mode i, ci are therefore named annihilation operators and

the vacuum state is fixed such that 〈Ω|Ω〉= 1 ensuring that states created by c†
i are

normalised. Two more simple rules fully define the operators: {c†
i ,c

†
j}= {ci,c j}= 0

captures the antisymmetry of wavefunctions under particle exchange by ensuring that

c†
i c†

j |Ω〉=−c†
jc

†
i |Ω〉 (equivalent to particle exchange, take particle 1 to be the first

created by an operator) and {ci,c
†
j}= δi j preserves the orthonormality of different

basis states, i.e.
〈
1i
∣∣1 j
〉
= 〈Ω|cic

†
j |Ω〉= δi j 〈Ω|Ω〉−〈Ω|c†

i c j |Ω〉= δi j.

One finds that these operators defined for a given basis and the rules

〈Ω|Ω〉= 1 (1.9)

ci |Ω〉= 0, (1.10)

{ci,c j}= {c†
i ,c

†
j}= 0 (1.11)

{ci,c
†
j}= δi j. (1.12)

completely describe the physics across the entire Fock space.

1.1. Fermions 28

An important operator in this formalism is the number operator, defined as

ni = c†
i ci, (1.13)

which simply yields the occupation number of the mode i in a given many-body

state. One other important thing to note is that the ordering of the creation operators

in eq. (1.8) is arbitrary up to a global sign and an ordering of the modes must be

chosen and stuck to for calculations to remain consistent. The algebra generated by

the creation and annihilation operators is called the fermionic algebra.

The precise relationship between the first and second quantised formalisms is

somewhat nuanced and has been glossed over for brevity. A more in depth yet still

accessible discussion can be found in [20], on which the material just presented

is largely based. For some peace of mind, some consistencies between the two

formalisms can be easily shown. For instance, the Pauli Exclusion principle is

enforced by c†
i c†

i = 0, just as it is in a first quantised Slater determinant. As well

as this, the invariance of Slater determinants under a unitary transform over their

subspace is also reproduced in this formalism. Defining creation operators in a new

basis as
N

∑
j=1

d†
i =Ui jc

†
j (1.14)

for some unitary matrix U , it follows from the rules that

N

∏
i=1

d†
i |Ω〉= det(U)

N

∏
i=1

c†
i |Ω〉 (1.15)

amounting to merely a difference in phase, just as in the first quantised formalism.

Note that this only applies if the transform U exclusively applies within the subspace

occupied by the Slater determinant, a transform which maps a single mode to a

superposition of two modes will clearly transform a single particle Slater determinant

to a different many body state. This new state will still be a Slater determinant, but

over a different basis.

Being comfortable with the idea that this formalism does in fact completely

1.1. Fermions 29

describe many body fermionic systems one can write multi-fermion Hamiltonians

(of closed systems) like

H = ∑
i j

M(1)
i j c†

i c j + ∑
klmn

M(2)
klmnc†

kc†
l cmcn + · · · (1.16)

where the first sum contains one body terms (e.g. kinetic energy and external potential

contributions), the second contains two body terms (interactions between pairs of

fermions). From a fundamental point of view, these two terms capture the behaviour

of electrons in most situations. Hamiltonians with higher order interactions can be

defined, but these amount to including higher order processes, which are usually less

likely.

In Hamiltonians of the above form there is an annihilation operator for every

creation operator in each term, meaning that particle number is conserved. More

general Hamiltonians can exist with terms that do not conserve this quantity such as

(cic j + c†
jc

†
i), however they may only contain even fermionic operators, that is sums

of even products of creation and annihilation operators. This is because fermionic

Hamiltonians must follow the parity superselection rule. A superselection rule

prohibits superpositions between particular types of quantum states to exist and

therefore prohibits physical observables (including Hamiltonians) from coupling

them. The fermionic parity superselection rule prohibits the superposition between

many-body fermionic states with an odd and even particle number, limiting fermionic

Hamiltonians to sums of even fermionic operators which preserve parity. Some

intuition can be gained for the reason behind this superselection rule by considering

a single mode fermionic system the superposition state

|ψ〉= 1√
2
(|0〉+ |1〉) (1.17)

in theory one could rotate the lab frame of reference by one full turn and the |1〉 state

would pick up a phase due to fermions having half-integer spin, amounting to an

observable change in the total state without interaction with the system which would

lead to causality violation. This is by no means a rigorous argument. They can be

1.2. The Fermi-Hubbard Model 30

spin up

spin down

(c†
j,↑ck,↑+ c†

k,↑c j,↑)

ni,↑ni,↓

Figure 1.1: Graph representation of the Fermi Hubbard Hamiltonian on a 5×5 2D lattice.
Red lines denote hopping interactions between fermionic sites within a given
spin sector and blue lines denote on-site interactions between spin sectors.

found in [21, 22].

Now it is hopefully clear that many body fermionic systems can be described

in simple terms via the powerful second quantised formalism. However, despite

their simple description, even seemingly basic fermionic Hamiltonians can have rich

properties.

1.2 The Fermi-Hubbard Model

1.2.1 The Hamiltonian

A well known and well studied fermionic Hamiltonian is the Fermi-Hubbard model

[23]. It is considered to be an approximate model of strongly correlated fermionic

systems, in particular, cuprates which are of interest due to their unusual symmetry

breaking behaviour and high temperature superconductivity [24, 25]. The system is

defined on a lattice of M sites with adjacent sites 〈i, j〉 and where each site i has two

fermionic modes of spin-up and spin-down associated with it indexed by i,↑ and i,↓,
there are then N = 2M modes. The Hamiltonian is given by

HFH =−t ∑
〈i, j〉,σ

(
c†

i,σ c j,σ + c†
j,σ ci,σ

)
︸ ︷︷ ︸

HT

+U ∑
i

ni,↑ni,↓︸ ︷︷ ︸
HU

. (1.18)

The HT part, or the kinetic energy part, is a sum of hopping terms over all

1.2. The Fermi-Hubbard Model 31

adjacent pairs of modes with the same spin. See fig. 1.1 for an illustration of the

Hamiltonian on a 2D lattice. The value of the hopping energy t is usually taken to be

positive, but regardless of sign the term can be interpreted as making it energetically

favourable for fermions to be delocalised between lattice sites. Take the sea of

delocalised valence electrons in a metal for example.

The HU part (interaction part) is a sum of on-site interactions between pairs

of fermions on the same lattice site. The repulsive (attractive) case where the

interaction strength U > 0 (U < 0) induces an energy cost (benefit) when both modes

at a lattice cite are filled, i.e. ni,↑ = ni,↓ = 1 =⇒ ni,↑ni,↓ = 1. These interactions can

approximate Coulomb repulsion by only considering the energy cost at close range,

alternatively it has been suggested that the U < 0 case can approximate the effective

attraction between cooper pairs of electrons in BCS superconductivity [26, 27].

In the weakly interacting case where U = 0, HFH can be written as

HFH(U = 0) =
1
2

c†Mc+E (1.19)

where E is a constant, c = (c1, . . . ,cM,c†
1, . . . ,c

†
M)T and

M =

A 0

0 −A∗

 (1.20)

with A = A† and 1
2Tr[A] = E. As A is Hermitian then one can easily find a real

diagonal matrix D and unitary matrix V such that D =V †AV . Following from this

we may rewrite the Hamiltonian as

HFH(U = 0) =
1
2 ∑

i
εib

†
i bi (1.21)

where εi = Dii and b†
i = ∑ j Vi jc

†
j . Since U is unitary, the bi and b†

i are creation and

annihilation operators over a new basis. The eigenstates of the weakly interacting

model are then simply Slater determinants over this basis.

In the strongly interacting case where t = 0 the lattice sites are decoupled and the

1.2. The Fermi-Hubbard Model 32

system effectively becomes a collection of single site Hamiltonians. The eigenstates

are then just Slater determinants over the lattice position basis with eigenenergies as

a multiple of doubly occupied lattice sites.

The Fermi-Hubbard model naturally acts on many-body states with any number

of particles but the filling (f = N/M where N is the number of particles) of the

system can be controlled by adding an extra term to the Hamiltonian

HFH−µN = HFH−µ ∑
i
(ni,↑+ni,↓), (1.22)

where N = ∑i(ni,↑+ ni,↓) is operator giving the total number of particles in the

system and µ is the chemical potential, which can be interpreted as the energy cost

/ benefit to adding a particle to the system. Setting the value of µ determines the

number of particles in the system’s thermal equilibrium state. More precisely, the

value of µ determines the expected value of the filling in the thermal Gibbs state

g(β)

〈 f 〉g(β) =
1

MZ
Tr
[
(n↑+n↓)e−β (HFH−µN)

]
. (1.23)

where Z = Tr[e−β (HFH−µN)] and β = 1/kBT where kB is the Boltzmann constant and

T is the temperature. For example, setting µ =U/2 puts the system in a state of half

filling where M electrons are present in the system. Note that changing the values

of t and U would also change the expected filling but altering them is effectively

altering the system itself.

1.2.2 Classical and Quantum Simulation of the Model

Despite the ease with which the separate parts of the Hubbard model can be solved,

the total model has resisted solution2 for decades, with the exception of the exactly

solved case of a 1D chain lattice [28]. Exact numerical diagonalisation has been

performed on the model at higher dimensions but this has been limited to a system of

about 20 sites [29, 30]. Approximate numerical simulations have also been attempted

via the Quantum Monte-Carlo method presented in [31] but they run into so called

2“Solution” here can refer to knowledge of the model’s full spectrum and corresponding eigenstates
or simply knowledge of the state at thermal equilibrium for temperature T (where the equilibrium
state at T = 0 is simply the ground state).

1.2. The Fermi-Hubbard Model 33

sign problems [32].

The full procedure is very involved so it will only be described superficially here,

a thorough explanation can be found in [33]. The aim is to estimate the expectation

of some operator O on a many body system in thermal equilibrium i.e. find an

approximate value for

〈O〉g(β) =
Tr
[
Oe−β (H−µN)

]
Tr
[
e−β (H−µN)

] . (1.24)

This expression can be written as

〈O〉g(β) =
∑x ρ(x)O(x)

∑x ρ(x)
, (1.25)

where {x} is some ensemble of system configurations, O(x) is the value of O in

that configuration and ρ(x) weight the configurations in the sum. If these weights

are all positive, the Monte-Carlo algorithm samples over this ensemble with each

configuration having the probability

P(x) =
ρ(x)

∑x ρ(x)
, (1.26)

yielding an estimate for the expectation of O(x) over the probability distribution P,

〈O〉P = 〈O〉g(β).

In fermionic systems, these weights can be negative and may not map so easily

onto probabilities, if this is the case then the estimation of O suffers from a sign

problem. One can still use the Monte-Carlo algorithm by writing

ρ(x) = |ρ(x)|S(x) (1.27)

where S(x) =±1 and then defining probabilities

P′(x) =
|ρ(x)|

∑x |ρ(x)|
. (1.28)

1.2. The Fermi-Hubbard Model 34

After which eq. (1.25) can be rewritten as

〈O〉g(β) =
〈OS〉P′
〈S〉P′

. (1.29)

The sign problem arises when the value of 〈S〉P′ is very small meaning that small

statistical fluctuations in its estimation can cause the estimated value of 〈O〉g(β) to

vary wildly, making its accurate numerical estimation very costly [32].

In 2004, Troyer and Wiese [34] showed that the sign problem is NP-hard. They

achieved this by constructing a fermionic system in which the estimation of the

thermal energy (which has a sign problem) in polynomial time would constitute the

solution to the NP-complete problem of determining whether a classical spin glass

system has a state energy below a given threshold. The bosonic equivalent of the

system they construct has no sign problem and is efficiently soluble, implying that

the sign problem is the source of the hardness. This result makes a generic efficient

solution to the sign problem unlikely. Some recent developments have been made to

avoid the problem but the improvements only apply to a limited set of models [35].

For the 2D square lattice Fermi-Hubbard model, if the system is set at half

filling (〈 f 〉= 1, µ =U/2) then the sign problem does not cause issues. In fact, the

phase diagram of U/t vs T for the system at half filling is well understood, with

numerical simulations yielding a rich phase diagram in this regime (see fig. 1.2 based

on a figure originally published in [27]). However, as the filling diverges from this

value (apart from a few specific cases [33]) the sign problem makes the numerical

solution for even relatively small 2D models numerically intractable. To illustrate

this point consider the fact that in [30], the authors report that a solution a 22 site

model filled with 17 fermions required over 7TB of memory and 13 TFLOPS on a

512-node supercomputer.

With this grim outlook for classical simulation of the model and the recent

developments in quantum algorithms and devices, researchers have begun to seri-

ously consider the prospect of using these to solve the Hubbard model [36, 25]. One

proposal is to probe the ground state of the Hubbard model for a superconducting

phase by preparing a Slater determinant ground state of a well understood supercon-

1.2. The Fermi-Hubbard Model 35

0 U/t

kBT/t

CFLCFL

MI, PMpairs, NF

MI, AFMSF

k B
T
≈U

kB T ≈ |U |

kBT ≈ 4t 2
/UkBT ≈

4t2 /|U
|

Figure 1.2: The phase diagram of the Fermi-Hubbard model on a 3D cubic lattice at half
filling over values of temperature T and interaction strength U in units of hopping
energy t. At low interaction strengths relative to temperature (|U |< kbT , upper
centre) the particles exist as a correlated Fermi liquid with density fluctuations as
in metallic materials (CFL). For strong repulsive interactions (U > 0, U > kbT ,
lower right), the system becomes a Mott insulator (MI) with particles restricted
to individual sites. Within this regime a second order phase transition (solid
red line) separates paramagnetic (PM) and anti-ferromagnetic (AFM) phases at
high and low temperatures. For strong attractive interactions (U < 0, |U |> kbT ,
lower right), particles form spin pairs with a second order phase transition (solid
blue line) separating normal fluid (NF) and superfluid (SF) states at high and
low temperatures.

ducting Hamiltonian, simulating the slow change of the Hamiltonian to a weakly

perturbed Hubbard model3 such that the state adiabatically evolves to a state close to

the ground state of this perturbed Hubbard Model. Following this, as proposed in

[37], a phase estimation algorithm [38] would be performed using the resulting state

as input and simulated unitary evolution under the (perturbed) Hubbard Hamiltonian

as the unitary after which the measurement of the phase will project the state into an

eigenstate of this Hamiltonian, which, if the overlap is large enough, is likely to be

the ground state. With a ground state prepared the expectations of numerous inter-

esting operators could then be measured, electron density correlations and Green’s

3The weak perturbation ensures that the gap of the Hamiltonian does not close during the change,
without biasing a possible tendency towards superconductivity, see [36] for further details.

1.3. Hamiltonian Simulation 36

functions which would provide evidence of phases with long range orders or indeed

lack thereof.

The above method requires the representation of fermionic Hamiltonians and

states and simulation of unitary dynamics of Hamiltonians on systems of qubits. The

latter can inform the approach for the former so both topics will be reviewed in the

following sections.

1.3 Hamiltonian Simulation

The first published algorithm for Hamiltonian dynamics simulation due to Lloyd [2]

is based off the Suzuki-Trotter expansion. The basic idea is that for a Hamiltonian

that can be expressed as H = ∑
N
i=1 hi where hi are k-local terms then the unitary

dynamics of the Hamiltonian can be approximated as

e−iHt =
(

e−ih1t/me−ih2t/m · · ·e−ihNt/m
)m

+ ε, (1.30)

where ε ∼ O(t2/m). To simulate the unitary evolution within arbitrarily small

error ε , the number of required steps m scales with O(t2/ε). The e−ihit/m steps

themselves are implemented “manually” via small scale circuits; usually one breaks

the Hamiltonian down into k-local Pauli terms which can be simulated with a circuit

of this form (k = 3)

C

• •
C†• •

• •
|0〉 e−iZt/m |0〉

where C denotes a layer of single qubit Clifford gates. On most quantum devices

the 2-qubit gate part of this circuit will dominate the runtime setting the real-time

scaling of the algorithm to O(kt2/ε).

A more general result due to Aharonov yielded a more general algorithm which

could simulate the dynamics of any sparse Hamiltonian with running time scaling as

1.3. Hamiltonian Simulation 37

O(poly(d)t3/2/
√

ε) where d is the sparsity4 of the Hamiltonian matrix. This method

is less easily stated than Lloyd’s algorithm so the reader is instead directed to the

original publication and the explanation presented in this essay [39]. Simulation

algorithms which scale with sparsity rather than locality are desirable because the

Hamiltonian’s locality is not necessarily restricted, however a relationship exists

between a Hamiltonian’s locality k and sparsity d

d ≤ 2kN (1.31)

where N is the number of terms in the Hamiltonian. With this being the case, reducing

the Hamiltonian’s locality will reduce the upper bound on the runtime of such an

algorithm.

Subsequent improvements in Hamiltonian simulation have been made based

on the quantum walk formalism due to Childs [4]. At the heart of these methods

is a quantum walk type operator W with eigenvectors |µ±〉 and corresponding

eigenvalues µ± =±e±arcsinλ , where λ are eigenvectors of H
‖abs(H)‖ with abs(H) =

∑i j |Hi j|. Child’s original paper presents a simulation algorithm based on a modified

version of W with H replaced by δH for some small δ . Repeated application of this

modified walk (conjugated by some isometry) approximates evolution under H by

exploiting the fact that arcsinλ ≈ λ for small values. The resulting algorithm scales

as O(t3/2/
√

ε), simulating the evolution with fidelity (1−ε). A further improvement

was made by combining the walk operator with quantum phase estimation to produce

a scaling of O(t/
√

ε) which is optimal in time due to the no fast forwarding theorem

[40] which precludes a generic Hamiltonian simulation algorithm with sub-linear

scaling in t. A full exposition of the above and further discussion can be found in the

original publication [4].

Berry et al [5] devised another quantum walk based algorithm for the d-sparse

4maximum number of non-zero elements per row

1.3. Hamiltonian Simulation 38

case. They show that

∞

∑
m=−∞

Jm(−td‖H‖max)µm
± = e−iλ t , (1.32)

where Jm are Bessel functions of the first kind and ‖H‖max denotes the maximum

absolute value of the elements of H. Noticing that this sum yields the same value

regardless of the associated sign of µ±, one sees that

∞

∑
m=−∞

Jm(−td‖H‖max)W m (1.33)

effectively applies the time evolution operator of H over the subspaces spanned by

the pairs |µ±〉. Using the linear combination of unitaries method shown in [41] they

implement the truncated sum

k

∑
m=−k

Jm(−td‖H‖max)W m. (1.34)

Choosing the cutoff k that approximates the evolution witin error ε results in scaling

O(τ log(τ/ε)
log log(τ/ε)) with τ = td‖H‖max. This is close to the optimal scaling which is

shown to be Θ(t + log1/ε
log log1/ε) in the same paper.

This optimal scaling was reached by Low with algorithms presented in [6, 7]

which use quantum signal processing [42] a method through which the eigenphases

of a unitary can be transformed like

U = eiθ |uθ 〉〈uθ | → Ũ = eih(θ) |uθ 〉〈uθ | (1.35)

for some real function h using only controlled-U operations, a single ancilla and

single qubit rotations. The optimal scaling of Θ(τ+ log1/ε
log log1/ε) is reached by using this

method to apply the function h(θ) =−τ sin(θ) to the eigenphases of the quantum

walk operator W , thus transforming its eigenvalues to e−iλ t for both |λ±〉 as in the

previous algorithm.

Childs compares the above methods of Hamiltonian simulation (among others)

1.4. Stabilizer Codes: A Brief Review 39

in [8] to investigate which may be the most likely to yield the first example of a

quantum speed-up for this problem. He concludes that, while signal processing had

the best rigorous long-term scaling and guarantees on accuracy, the Trotter expansion

method may be more likely to show results on small near term devices (albeit with

looser, empirical error bounds based off classical simulations of small instances) due

to the large multiplicative constants on the running time of the more sophisticated

methods rendering them out of reach in the near term.

In many Hamiltonian simulation algorithms, including the top picks in [8], the

scaling depends on the Hamiltonian locality or the sparsity, which is itself upper

bounded by the locality of Hamiltonian terms. When simulating fermionic systems

on qubits, the locality is a quantity that one has some degree of control over as

section 1.5 will discuss.

1.4 Stabilizer Codes: A Brief Review
Before discussing fermionic encodings, some essential background on stabilizer

codes should be covered.

Stabilizer codes are a class of quantum error correcting codes described by the

stabilizer formalism, introduced by Gottesman in [43]. Quantum error correcting

codes are a method to protect quantum information against noise by storing it in a

subspace of a larger system. A stabilizer code on n qubits is defined by a stabilizer

group S5 which is an Abelian subgroup of the Pauli group

Pn = 〈i,X j,Yj,Z j : j ∈ {1, . . . ,n}〉, (1.36)

where −I /∈ S . Let m be the size of a minimal generating set for S , this is the rank of

S . As all elements of S commute, they all share the same eigenstates, furthermore it

can be shown that there exists a subspace on which all elements have an eigenvalue

of +1. Let the codespace be

CS := {|ψ〉 ∈ Cn : S |ψ〉= |ψ〉 ∀S ∈ S}, (1.37)

5The symbol S will refer to the stabilizer group of a code and the code itself interchangeably.

1.4. Stabilizer Codes: A Brief Review 40

this subspace has dimension 2n−m, equivalent to n−m qubits. Then the codespace

of S encodes k = n−m logical qubits in the space of n physical qubits. A state on

a logical qubit is denoted by a tilde |ψ̃〉 ∈ Ck with a non-tilded state being on the

physical qubits |ψ〉 ∈ Cn, the physical qubit states that represent logical qubit states

are often called codewords.

The states of the logical qubits encoded by S can be manipulated and differ-

entiated via logical operators. These are elements of the normalizer N(S) of the

stabilizer group which is the set of operators that commute with S and therefore

preserve the codespace but do not necessarily leave states within unchanged. The

most trivial example of these are the elements of the stabilizer group S ∈ S which

by definition (see eq. (1.37)) leave the elements of CS completely unchanged, each

S can then be thought of as a logical identity. Non-trivial logical operators map

between different elements of CS and these are used to define different logical states.

For instance, if 2k Pauli operators are found such that each one anticommutes with

one other and commutes with the rest then these may be identified as logical X̃ j and

Z̃ j operators for all k logical qubits, through which the logical qubit states can be

identified (eigenstates of the Z̃ j). Here the tilde denotes encoded operators. As with

the “logical identities”, there exist multiple versions of non-trivial logical operators.

For a single X̃ j the set of equivalent operators is simply {X̃ jS : ∀S ∈ S}. By

eq. (1.37) these must all have the same action on elements of CS . The minimum

weight6 of any non-trivial logical operator is called the code distance.

The stabilizer group of a stabilizer code is also used to detect errors. As the

codespace is defined as the +1 eigenspace of S then any S ∈ S measured as an

observable will yield a +1 result on a state in the codespace. Conversely, an S

measurement with a -1 results confirms that a state is out of the codespace. To see

this consider a codeword |φ〉 affected by a Pauli error E that anticommutes with S,

so the final state is E |φ〉. By these properties

SE |φ〉=−ES |φ〉=−E |φ〉 (1.38)

6Weight here refers to the number of qubits on which an operator acts non-trivially.

1.4. Stabilizer Codes: A Brief Review 41

so clearly E removes |φ〉 from the codespace. Errors of this form are called detectable

errors as they can be detected by “flipped” stabilizer measurements. Consider now

a Pauli error E ′ which commutes with S, such an error will flip no stabilizers and

is therefore undetectable. These errors can either be stabilizer elements, having

no effect on the encoded state, or they can be logical operators that change the

information encoded by S.

The stabilizer group also aids in the correction of errors. Any detectable error

flips some set of stabilizer elements making their measurement outcome -1, the set of

stabilizer measurement outcomes after an error called the syndrome of the error. This

syndrome can be expressed as simply the results from measuring the elements of a

generating set of S . A syndrome of all +1 measurements is called a trivial syndrome,

stabilizers and logical operators induce trivial syndromes. Error correction on a

stabilizer code is then performed by periodically measuring some generating set of

stabilizers, noting the syndrome, deciding which error is most likely to have caused

it and then applying a correction operator which multiplies with the error to form

a stabilizer element. This procedure is performed by a classical algorithm called a

decoder.

One may wonder why the above analysis was restricted to Pauli errors when

a quantum system will in general be subject to a continuum of possible errors.

Consider the fact that any coherent error on a qubit system is a linear combination of

Paulis which transforms the system into a superposition of states affected by different

Pauli errors. Coherent measurement of the stabilizers will cause this superposition

to collapse into a sector associated with Paulis that give a specific syndrome. If

the error is weight ≤ w and the code can distinguish Pauli errors up to weight w

then the collapsed state will be affected by a single Pauli error which can then be

corrected. This is known as error discretisation, and it applies to more general

quantum processes which can be seen as probabilistic combinations of coherent

processes.

An error correcting code’s capabilities can be summarised by the triple [[n,k,d]],

where n is the number of physical qubits use by the code, k is the number of logical

1.4. Stabilizer Codes: A Brief Review 42

qubits encoded and d is the code distance, the weight of the lowest weight logical

operator. The ratio between n and k gives a good measure on the efficiency of the

code’s use of resources and the code distance is an important property for quantifying

a code’s error correcting capabilities. The code distance d quantifies the code’s error

correcting ability. To see this recall that in most noise models low weight errors are

more likely. Most decoders will then assume that a syndrome indicates the smallest

possible error that can cause it. Consider a code with a logical operator L = L1L2

with w(L1)> w(L2) where w is the weight of an operator. L1 and L2 will have the

same syndrome as their product is a logical operator but since w(L1)> w(L2), if an

L1 error occurs on the code then a decoder will usually assume that L2 has actually

occurred and attempt to correct by applying an operator of the form SL2 for S ∈ S.

The result of this erroneous correction will then be a logical operator SL and while

the state of the system will be returned to the codespace, the encoded information

will have changed. If a code has a code distance d then the lowest weight error for

which this can happen is dd
2e, so if a code has distance d then it can reliably correct

errors of weight ≤ dd
2e−1.

Another important metric for an error correcting code is its threshold. This term

comes from the quantum threshold theorem [44, 45] which states that if errors occur

on a quantum device below a certain constant threshold probability pth then quantum

circuits can be performed fault-tolerantly to arbitrary depth. Each error correcting

code will have its own value of pth for a given noise model.

1.4.1 A Simple Example: 3-qubit Repetition Code

This code encodes k = 1 logical qubit using n = 3 physical qubits, the logical states

are ∣∣0̃〉= |000〉 ,
∣∣1̃〉= |111〉 , (1.39)

and logical operators can be defined

X̃ = X1X2X3, Z̃ = Z1Z2Z3. (1.40)

This code can also be described with the stabilizer formalism, its stabilizer

1.4. Stabilizer Codes: A Brief Review 43

group is

S = 〈Z1Z2, Z2Z3〉= {I, Z1Z2, Z2Z3, Z1Z3}. (1.41)

The minimal generator shown has 2 elements so S is rank 2 and the code encodes

3−2 = 1 qubits. Operators XXX and ZZZ commute with the stabilizer and mutually

anticommute so they can be chosen as X̃ and Z̃ respectively, the logical states
∣∣0̃〉

and
∣∣1̃〉 can then be chosen as the ±1 eigenstates of Z̃ within the codespace. The

code distance can be found by considering the full sets of logical operators

{X̃} = {X1X2X3, −Y1Y2X3, −X1Y2Y3, −Y1X2Y3},

{Z̃} = {Z1Z2Z3, Z1, Z2, Z3},
(1.42)

the lowest weight logical Pauli that can be constructed is weight 1 so the code

distance is d = 1. This is not a particularly good code because it cannot reliably

correct errors above weight 0. It can detect errors that flip less than 3 bits as they

anticommute with stabilizers but it cannot detect any phase-flip errors (Pauli Z errors)

as they are all logical operators.

1.4.2 A More Complex Example: The Toric Code

The toric code, introduced in [18], is a good example of the stabilizer formalism’s

powerful ability to concisely describe complex code structures.

Consider an L×L square lattice with periodic boundary conditions (i.e. the

lattice lives on the surface of a 2-torus) with sets of vertices, edges and faces V ,

E and F . Place a qubit on every edge of the lattice such that a qubit on edge e is

indexed by e and define the stabilizer

S = 〈∏
e:v∈e

Xe, ∏
e∈ f

Ze : ∀v ∈V, ∀ f ∈ F〉. (1.43)

In words, for every vertex v a “star” operator is defined as X on the qubits of its four

surrounding edges and for every face f a “plaquette” operator is defined as Z on the

qubits of its four surrounding edges. The stabilizer S is generated by these star and

plaquette operators (see fig. 1.3). A minimal generating set for S can be made from

1.4. Stabilizer Codes: A Brief Review 44

X

X

X

X

X

Z

Z
Z Z

X

X
X X

Z
Z Z

X
(i)

(ii)

(iv)

(iii)

(v)

Figure 1.3: Operators on the toric code on a 5×5 torus. (i) A plaquette stabilizer (ii) a star
stabilizer (iii) a single X error with the flipped plaquette stabilizers highlighted
by squares (iv) a string of Z operators with the flipped star stabilizers highlighted
by circles (v) a logical operator. Both (iii) and (iv) also provide illustrations for
pairs of m and e quasiparticles respectively.

stars for all but one vertex and plaquettes for all but one face, the rank of S is then

|V |+ |F |−2 = |E|−2 and the code then encodes n− k = |E|− |E|+2 = 2 logical

qubits regardless of lattice size.

To find the logical operators of the code it is helpful to first consider the error

syndromes. A Z error on a qubit will flip the star operators at either end of its

associated edge, a product of Z errors on 2 edges that share a vertex will flip the two

stars at the vertices they don’t share but their shared star operator will be flipped

twice leaving its outcome as +1. One finds that if Z errors are chained together to

form strings connecting vertices of the lattice, the product will flip the star operators

at each end of each string. More precisely, star operators will be flipped if an odd

number of their incident edge qubits have a Z acting on them and will otherwise not

be flipped. X errors have a similar property only their strings run from face to face

across edges and flip plaquette stabilizers at each end (see fig. 1.3). If a string of X

or Z errors forms a closed loop then there are no end points for flipped stabilizers

and the syndrome is trivial, this means that closed loops of X and Z operators are

either logical operators or stabilizers. It can be shown that trivial cycles, loops that

1.4. Stabilizer Codes: A Brief Review 45

are contractable, correspond to stabilizers and non-trivial cycles are logical operators

(see fig. 1.3). There are 4 non-trivial cycles up to multiplication by stabilizers and

these can be chosen as the X̃ and Z̃ operators for the 2 logical qubits which can then

define the logical qubit states. The code distance is then the total width of the torus

as that is the length of the shortest non-trivial cycle.

The toric code belongs to a class of error correcting codes called topological

codes, named as such because their properties can be described through a topological

lens as in the above discussion.

1.4.2.1 Excitations on the Toric Code

The codespace of the toric code is equivalent to the degenerate ground state of the

Hamiltonian

Htoric =−∑
S

ΠS−∑
P

ΠP. (1.44)

where ΠS are star operators and ΠP are plaquette operators which generate the

stabilizer. A Pauli error (with a syndrome) on the ground state will send the system

into an excited state, increasing the energy by 2 for every ΠS or ΠP that is flipped. A

useful interpretation of this excited state is as quasiparticle excitations on the vertices

and faces of the lattice. These quasiparticles can be divided into two types: “electric”

e particles which appear on vertices where ΠS operators are flipped and magnetic

m particles which appear on faces and are flagged similarly by ΠP operators (see

fig. 1.3 for illustration).

The notion of these particles makes for an intuitive picture for understanding

error syndromes and corrections. Particles are created in pairs by Z and X errors, a Z

(X) error creates a pair of e (m) particles on the vertices (faces) adjacent to the qubit’s

corresponding edge. If two particles are created at a given point, this corresponds

to a stabilizer being flipped twice so no particle will be detected, this implies that

the e and m particles are their own antiparticle. With this property the pair creation

operators also function as “hopping” operators for the particles. For instance a Z

operator on an edge adjacent to an e particle will annihilate it and create another at a

new vertex. With this intuition, one can interpret the resolution of syndromes on the

1.5. Fermionic Encodings 46

toric code as moving pairs of particles together and annihilating them to bring the

system back to the vacuum state.

Another interesting aspect of these particle excitations is that they exhibit

exchange statistics. They can be identified using the formalism for hard-core7

particles provided by Levin and Wen in [46]. The formalism uses “hopping operators”

ti j which remove a hard-core particle from state j and replace it in state i, with the

property

[ti j, tkl] = 0, i 6= j 6= k 6= l. (1.45)

The statistics of identical hard-core particles are then found by finding some sequence

of hops where a re-ordering of the operators amounts to an exchange of two particles.

In particular, one ordering will move a particle from position A to B and another from

C to D where the re-ordering will move from A to D and C to B. The end state will

be identical up to the phase picked up by the exchange of the two particles. Levin

and Wen show that this phase eiθ can be expressed as

tiltkiti j = eiθ ti jtkitil (1.46)

where j,, k, l are distinct neighbours of i (ordered in the clockwise direction for the

2D case). One can use the fermionic hopping operator from the Fermi-Hubbard

Hamiltonian as the hopping operator ti j = c†
i c j and confirm that eiθ =−1. As pointed

out in [46], this formalism also applies to quasiparticle excitations such as the e and

m particles on the toric code, with Z and X operators being their respective hopping

operators. Indeed the e particles display bosonic statistics (eiθ = 1) with each other,

as do m particles. A composite particle ε can also be formed by taking an e and m

together, one can show by the above formalism that these exhibit fermionic statistics.

1.5 Fermionic Encodings
Most quantum computing architectures are composed of distinguishable qubits as

opposed to a system of indistinguishable fermions. These are fundamentally different

7Hard-core means that only one particle may occupy a state, effectively an enforced Pauli exclusion
principle that may apply to non-fermions.

1.5. Fermionic Encodings 47

systems so if one wants to simulate the latter on the former then a mapping must

be found between states and operators on a fermionic Fock space to the tensor

product Hilbert space of qubits; this is known as a fermionic encoding. This section

will review two types of encoding,: N-to-N encodings, the earliest examples of

such mappings, that represent a system of N fermionic modes on N qubits but

result in operators which grow with system size, and local encodings which have

a qubit to mode ratio > 1 but can map local fermionic interactions to local qubit

interactions of constant weight, a desirable property for simulation as explained in

the previous section. Recently there have been developments in encodings which

map systems of N modes to < N qubits by exploiting symmetries such as particle

number conservation, generally at the trade-off of non-local encoded operators, these

will not be reviewed here for brevity but the interested reader may wish to browse

the existing literature [47, 48, 49].

1.5.1 N-to-N Encodings

The first instance of a fermionic encoding, known as the Jordan-Wigner transforma-

tion (JW) [9], was actually proposed as the reverse, a mapping of spin degrees of

freedom onto fermions. This found use for the exact solution of 1D spin-chain mod-

els like the Ising model long before anyone even conceived of a quantum computer.

The transform sees more attention nowadays for its inverse function and despite its

performance issues its simplicity still make it an attractive choice as the encoding

used in proposals for fermionic simulations on quantum devices [36, 25, 50].

The JW transformation is the most direct fermion encoding in a sense. The

starting point is simply assigning a mode to each qubit and having a |1〉 on a qubit

signify an occupied mode. In general a fermionic state maps as

(c†
1)

b1(c†
2)

b2 · · ·(c†
M)bM |Ω〉 → |b1,b2, . . . ,bM〉 , bi ∈ {0,1} (1.47)

with ordering (1,2, . . . ,M) chosen for the modes. The action of a creation operator

1.5. Fermionic Encodings 48

c̃†
i on an arbitrary occupation state can be found using the anticommutation relations

c†
i (c

†
1)

b1 · · ·(c†
i)

bi · · ·(c†
M)bM |Ω〉=∏

j<i
(−1)b j(c†

1)
b1 · · ·c†

i (c
†
i)

bi · · ·(c†
M)bM |Ω〉

=δbi,0 ∏
j<i

(−1)b j(c†
1)

b1 · · ·c†
i · · ·(c†

M)bM |Ω〉 .

(1.48)

In the second line, the c†
i has been commuted through to the ith place in the product,

picking up a minus sign every time it commutes past a creation operator earlier in

the ordering and the third line uses the fact that c†
i c†

i = 0. The action of an encoded

creation operator c̃†
i must be the same on equivalent states, i.e.

c̃†
i |b1, . . . ,bi, . . . ,bM〉= δbi,0 ∏

j<i
(−1)b j |b1, . . . ,1i, . . . ,bM〉

=

(
∏
j<i

Z j

)
σ+

i |b1, . . . ,bi, . . . ,bM〉 .
(1.49)

So a creation operator on mode i maps to a σ+ = (X− iY)/2 operator on the corre-

sponding qubit, multiplied by Z operators on every qubit preceding it in the ordering.

These Z parts are sometimes called Jordan-Wigner strings. The corresponding

encoded annihilation operator is simply the conjugate as in the fermionic system.

These operator mappings are easy to follow but do not maintain operator locality

well when used to simulate all but the simplest of systems. Consider a Fermi-Hubbard

model, shown again here

HFH =−t ∑
〈i, j〉,σ

(
c†

i,σ c j,σ + c†
j,σ ci,σ

)
+U ∑

i
ni,↑ni,↓. (1.50)

The on-site interaction terms simply map to weight 2 operators as a number operator

is a product of a creation and annihilation operator on the same site, which cancel

each other’s Z-string leaving only an operator on their corresponding qubit. Hopping

terms are more difficult. For a 1D lattice one can simply order the modes such that

mode i is neighboured by i±1 and hopping terms between neighbouring sites will

1.5. Fermionic Encodings 49

0 1 2 3 4

σ+
5

σ−
14

Z6Z7Z8Z9

Z10 Z11 Z12 Z13

1516171819

20 23 24σ+
21 σ−

22

c̃†
5c̃14

c̃†
21c̃22

Figure 1.4: Qubits in a JW encoding of a 5×5 lattice of fermions. Qubits are numbered
in “snake” ordering along the bold line, dashed lines indicate local connections
between modes not adjacent in the ordering. JW encoded hopping terms between
neighbouring modes adjacent (blue) and non-adjacent (purple) in the numbering
are shown. Note that this qubit system encodes a single spin-layer of a Fermi-
Hubbard system on a 5×5 grid.

map like

c†
i ci+1

JW−−→ σ+
i σ−i+1 (1.51)

where the z-strings have cancelled out for all qubits < i. However, if the system is on

a 2D square lattice then things get more complicated. Consider the “snake” ordering

on a square lattice as shown in fig. 1.4. An encoded hopping term between modes

adjacent on the lattice and in the ordering will map as in eq. (1.51) but neighbours

who are not adjacent in the ordering will map like

c†
i c j

JW−−→ σ+
i

(
∏

i<k< j
Zk

)
σ−j (1.52)

where the JW encoded operator has a Z-string on all qubits between i and j in the

ordering (see fig. 1.4). In the worst case, a hopping term will have support on 2L

qubits on an L×L square lattice, scaling as O(N1/2) for N modes in big-O notation.

Other N-to-N encodings exist with better scaling for hopping terms, their exact

workings are rather involved and not directly relevant to this work so they won’t

be explained in full detail. The first of these was proposed by Bravyi and Kitaev

1.5. Fermionic Encodings 50

in [12], with a somewhat clearer explanation in [51]. This so-called Bravyi-Kitaev

(BK) encoding works by organising qubits in a binary-tree structure and uses this

structure to choose mutually commuting Paulis with weights that scale with the depth

of the tree, Θ(log2 N). These Paulis can be said to represent Majorana operators,

an alternative basis for fermionic operators. For each mode there are two Majorana

operators

γ j = c j + c†
j , γ j =

c j + c†
j

i
. (1.53)

They are Hermitian, traceless, self inverse and mutually anticommute for all modes

so a set of mutually anticommuting Paulis provides a faithful representation. When

used to represent terms of the Fermi-Hubbard Hamiltonian the encoded operators

also scale as Θ(log2 N). More recently, Jiang et al developed an optimal N-to-N

encoding [52] which uses a ternary tree structure instead to achieve the average

operator scaling of Θ(log3 N), which they also prove to be optimal.

1.5.2 Local Encodings

A fundamental problem with N-to-N fermionic encodings is the fact that their en-

coded fermionic interactions are non-local and grow with the encoded system size.

As discussed in section 1.3, this will cause further runtime scaling of Hamiltonian

simulation with a growing system size, an important component of quantum ap-

proaches for understanding systems like the Fermi-Hubbard Model. These linear and

logarithmic scalings may be “small” in the complexity theoretic sense but as current

quantum devices are troubled by noise that accumulates over time, a problem that

will likely persist in the near future, any savings on runtime allow for longer useful

calculations (more on this in section 1.6). With this being the case, the field of local

fermionic encodings with non-scaling encoded interactions is well motivated.

As alluded to earlier in this section, local encodings use more qubits than the

number of modes of a fermionic system they encode, the Hilbert space of which

will have a greater dimension than the Fock space it is to represent. The reason for

this discrepancy is that local encodings work by representing fermionic states and

operators as codewords and logical operators on a stabilizer correcting code which,

1.5. Fermionic Encodings 51

as discussed in section 1.4, use some n > k qubits to represent a 2k-dimensional

system.

A number of local encodings exist, many having been developed within the past

few years, although they all use one of two methods of construction. They will be

reviewed in this section and organised according to these construction principles.

After this their performance in simulating the Fermi-Hubbard model according to

various measures will be discussed.

1.5.2.1 Jordan-Wigner String Cancellation Encodings

This method for constructing local encodings uses the predictable structure of Jordan-

Wigner encoded operators to cancel out large amounts of Z operators while maintain-

ing the encoded physics. It is easiest to understand when working with the Majorana

operators discussed earlier

γ j = c j + c†
j , γ j =

c j + c†
j

i
, (1.54)

and with the knowledge of how JW encodes these operators

γ j
JW−−→

(
∏
i< j

Zi

)
X j,

γ j
JW−−→

(
∏
i< j

Zi

)
Yj,

(1.55)

which can be verified easily.

The first of these encodings was introduced by Verstraete and Cirac in [13] and

re-examined in [14]. It will be referred to as the Verstraete-Cirac encoding or VC.

It works by introducing auxiliary fermionic modes to the system being encoded,

encodes this total system via Jordan-Wigner, creates a stabilizer group from the

encoded Majorana operators on the auxiliary modes which then defines a codespace

in which the long Z-strings of the JW encoded operators on the “primary” modes of

the encoded system can be cancelled out by the auxiliary Majorana stabilizers. This

allows local fermionic interactions in dimensions higher than 1 to be represented by

1.5. Fermionic Encodings 52

local qubit interactions on the encoding.

It is easiest to understand the above procedure by example so consider an L×L

grid of N fermionic modes ordered as in fig. 1.4 with interactions between adjacent

modes. When encoded via JW, a mode in the lattice bulk has 2 local interactions

and 2 non-local. To begin constructing a VC encoding of the system, introduce for

every mode i an auxiliary mode labelled i′ and define a new ordering with primary

and auxiliary modes interleaved i.e 1, 1′, 2, 2′, . . . , N, N′. Then for every non-local

interaction between primary modes i and j where i < j define

Si j :=−iγi′γ j′ , (1.56)

these operators are self inverse, mutually commute with one another and also com-

mute with any operator on the primary modes. Now encode this expanded system

via Jordan-Wigner using the new ordering such that the encoded versions of these

operators are

S̃i j =−iγ̃i′γ̃ j′ = Xi′

(
∏

i<k< j
ZkZk′

)
Z jX j′. (1.57)

where a tilde denotes an encoded fermionic operator on qubits (see fig. 1.5). Define

a stabilizer group SVC generated by all S̃i j and define a stabilizer code where the

codespace is the mutual +1 eigenspace of all stabilizers.

All JW encoded fermionic operators on the primary system commute with the

Si j so their encoded counterparts also commute and are therefore logical operators on

the codespace. Furthermore since they still behave exactly like fermionic operators

they can be taken to represent logical fermionic operators on an encoded Fock space.

Fermi-Hubbard hopping operators between i and i+1 are weight 3 (having an extra

Z from the i′th mode), however a hopping term c†
i c j between vertically connected,

non-consecutive sites i and j still has a non-local form:

c̃†
i c̃ j = σ+

i Zi′

(
∏

i<k< j
ZkZk′

)
σ−j (1.58)

This is no problem though because as the system is now in a stabilizer codespace,

1.5. Fermionic Encodings 53

0
0′

1
1′

2
2′

3
3′

4
4′

Z6

Z6′

Z7

Z7′

Z8

Z8′

Z9

Z9′

Z10

Z10′

Z11

Z11′

Z12

Z12′

Z13

Z13′

σ+
5

σ+
14

Z5′

1617
16′

23
23′

σ+
15

σ+
24

Y15′

X24′

Z+
19

Z+
20

Z19′

Z20′

Z+
18

Z+
21

Z18′

Z21′

Z+
22

X18′

X21′
S̃18,21

c̃†
5c̃14

S̃15,24c̃†
15c̃24

Figure 1.5: Qubits in the VC encoding for a 5× 5 lattice of fermionic modes. Purple: a
non-local JW encoded hopping operator, blue: a stabilizer used to cancel a
Z string, green: an encoded hopping operator which has been localised by a
stabilizer.

logical operators can be multiplied by stabilizers to change their form without altering

their action, so one can write

S̃i jc̃
†
i c̃ j =−iσ+

i Yi′σ−j X j′, (1.59)

cancelling out most of the Z-string without changing the behaviour of the operator

(see fig. 1.5). This brings the non-local hopping term down to a constant weight

of 4 and also keeps the interactions geometrically local8. This can greatly improve

the performance scaling of simulation algorithms as the locality of the encoded

fermionic Hamiltonian can be kept low and constant regardless of encoded system

size. Note that to encode the total FH model one needs to encode 2 grids of modes

for each spin-layer. However, as the on-site interactions are already local under JW

it suffices to apply VC to the two layers independently without having to define

stabilizers for the on-site interactions.

For a grid of N fermions encoded with 2N qubits the stabilizer has rank < N

by the above procedure, meaning that the codespace has some extra gauge degrees

of freedom in the auxiliary Majorana operators unused in Si j operators. These can

be fixed by simply pairing up the remaining Majoranas in a similar manner to the

8That is, spatially nearby when qubits are physically arranged in the lattice structure.

1.5. Fermionic Encodings 54

Si j and including them in the stabilizer. This brings the dimension of the codespace

down to 22N−N = 2N , thus encoding the full fermionic Fock space for N modes.

In the above example a single auxiliary mode allows for 2 non-local interactions

involving the corresponding primary mode to be made local. This is because each of

the two Majorana operators from the auxiliary mode can used as part of a Si j. This

can be extended to higher degree interaction graphs by adding more auxiliary modes

and therefore more qubits, for example, on a 3D cubic lattice graph a mode in the

bulk would require 2 auxiliary modes and therefore 3 qubits in the VC encoding.

Another protocol for a 2D square lattice was introduced by Steudtner et al. in

[17]. It has a similar working principle so it will only be briefly summarised here.

This encoding introduces extra rows of qubits between the primary rows and uses

the extra degrees of freedom to define string operators that line up with non-local JW

encoded interactions on the primary qubits and then slightly alters the JW operators

to ensure that they commute with these strings. A stabilizer codespace is then defined

in a similar way such that the altered JW interactions can be cancelled down. This

encoding uses 2L fewer qubits than VC when encoding a Fermi-Hubbard system on

a L×L grid but at the cost of weight 6 encoded on-site interactions (as opposed to

2).

1.5.2.2 Loop Stabilized Encodings

The remaining local encodings currently known all follow the same design philoso-

phy first introduced in [12] and differ only in execution. The idea is to define qubit

operators that replicate the behaviour of a certain basis of even fermionic operators

(recall from section 1.1 that these generate all physical fermionic interactions). This

basis is based on Majorana operators

γ j = c j + c†
j , γ j =

c j + c†
j

i
. (1.60)

1.5. Fermionic Encodings 55

It is worth remembering that these are hermitian, self-inverse and anticommute, put

formally

∀i : γ2
i = γ2

i = I, γ†
i = γi, γ†

i = γi,

∀i 6= j : {γi,γ j}= {γi,γ j}= {γi,γ j}= 0.
(1.61)

Consider a fermionic system with modes and local 2-mode interactions indexed

by the vertices V and edges E of a connected graph (a 2D grid, for instance), call

this the interaction graph. For every vertex i and every (ordered) edge (i, j) define

vertex operator Vi and edge operator Ei j

Vi :=−iγiγi

Ei j :=−iγiγ j.
(1.62)

These operators form a complete basis for all even fermionic operators on the system

and have the properties

E2
i j = I, V 2

j = I, E†
i j = Ei j, V †

j =Vj, Ei j =−E ji,

i 6= j 6= k 6= l 6= m : [Vi,Vj] = 0, [Ei j,Vk] = 0, [Ei j,Ekl] = 0,

{Ei j,Vj}= 0, {Ei j,E jk}= 0,

(1.63)

that is, they are self inverse, hermitian, anticommute if they share one vertex index

and edge operators differ by a sign if their order is switched. Another important

property is that for any ordered set of modes L = (i1, i2, . . . , i|L|), with i1 = i|L| so that

L constitutes a cyclic path on the graph

i|L|−1
|L|−1

∏
x=1

Eix,ix+1 = I, (1.64)

i.e. closed loops of edge operators cancel to identity. The properties in eqs. (1.63)

and (1.64) are equivalent to eq. (1.61) and thus completely define the operators

in eq. (1.62). So, if one can define qubit operators Ṽi and Ẽi j that replicate these

properties then they have defined an encoding for a fermionic system on the graph

1.5. Fermionic Encodings 56

restricted to one parity sector9. The parity sector can be defined by the action of the

product of all Ṽi

∏
i

Ṽi = (−1)P (1.65)

where P is 0 for even parity and 1 for odd. For any such encoding, parity can be

switched by simply changing the sign of a single Ṽi without affecting any other

properties. The interactions of the Fermi-Hubbard model can be written in terms of

these operators

c†
i c j + c†

jci =
−i
2
(Ei jVj +ViEi j), nin j =

(
1−Vi

2

)(
1−Vj

2

)
(1.66)

so if local qubit representations of these operators can be defined then a local

simulation of Fermi-Hubbard can be carried out. The encodings in this class aim to

do just that.

These encodings successfully define Pauli operators that satisfy the conditions

in eq. (1.63) but not eq. (1.64) so some of the loops of Ẽi j operators form non-trivial

Paulis. Fortunately these loops form an Abelian subgroup of the Paulis and (so

long as it does not contain −I) can be chosen as a stabilizer group which defines a

codespace on which the loop condition in eq. (1.64) is satisfied as well as all others,

hence the name of this class of encodings.

The first encoding of this kind was defined by Bravyi and Kitaev in the same

paper as the Bravyi-Kitaev encoding discussed earlier [12] and is known as the

Bravyi-Kitaev Superfast encoding (BKSF) (the code was also produced indepen-

dently in [53]). It is constructed by assigning a qubit to every edge of the interaction

graph, such that for a square grid it is reminiscent of the toric code in section 1.4.2.

Encoded vertex operators are Z on all edges around a vertex

Ṽi := ∏
e:i∈e

Ze. (1.67)

Each edge (i, j) must be given an orientation εi j =−ε ji ∈ {+1,−1} and the edges

9This is sufficient for a physical simulation due to the fermion parity superselection rule discussed
towards the end of section 1.1.

1.5. Fermionic Encodings 57

Z Z
Z

Z X

Z
Z

Z

Z
Z

Z
X

Y
Y

X
X

Z
Z

Figure 1.6: Operators on the BKSF encoding on a square lattice with edges around vertex
ordered clockwise starting from north. Orange: A vertex operator, purple: a
horizontal edge operator, blue: a vertical edge operator, green: a loop of edge
operators around a lattice face, this is a stabilizer.

surrounding each vertex must be ordered so that edge operators may be defined

Ẽi j := εi j X(i, j) ∏
e:i∈e,e<(i, j)

Ze ∏
e′: j∈e′,e′<(i, j)

Ze′, (1.68)

that is, X on the edge (i, j), and Z on the edges surrounding vertices i and j which are

before (i, j) in the ordering about that vertex. See fig. 1.6 for an illustration of these

operators on a square lattice. These operators satisfy the relationships in eq. (1.63)

and, as discussed, the group formed by loops of these edge operators is defined as the

stabilizer such that eq. (1.64) is satisfied on the resulting codespace. The stabilizer

rank is equal to the number of independent cycles on the interaction graph, which is

|E|− |V|+1, the dimension of the codespace is then 2|E|−(|E|−|V|+1) = 2|V|−1. This,

paired with the fact that

∏
i

Ṽi = I (1.69)

means that the BKSF encodes only the even parity fermionic subspace, as mentioned

earlier this parity can be switched by adding a minus sign to the definition of one (or

any odd number of) Ṽ .

In [15], Jiang et al show an encoding with a similar construction on a square

1.5. Fermionic Encodings 58

Figure 1.7: Grid site colouring of the MLSC. Alternating green-purple and blue-orange
rows which shift horizontally.

Z

Z
Z

Z
Z Z

Z
Z Z Z

Z

Z

Figure 1.8: Vertex operators of the MLSC around all 4 possible coloured vertices.

lattice which they dub the “Majorana Loop Stabilized Code" (MLSC). This encoding

has the novel property of being able to correct single qubit errors in the lattice bulk,

that is when the stabilizers are measured, all single qubit errors in the bulk have

a unique syndrome. The qubits are assigned to edges of the interaction graph as

in BKSF but edge and vertex operators are dependent on a colouring of the lattice

vertices and are best represented graphically. With the lattice coloured as in fig. 1.7,

the vertex operators are as shown in fig. 1.8 and edge operators are as shown in

fig. 1.9 with an arbitrary ±1 orientation chosen as with the BKSF. Again, as with

BKSF this encodes a single parity sector of a fermionic system. One may notice that

the product of all vertex operators is not identity and leaves 4 Z operators around

each face with an orange top-left corner. This is simply the operator corresponding

to a loop of edges around this face and is therefore a stabilizer, so the product of all

vertices is therefore identity up to stabilizers and the encoding therefore captures the

even subspace if left unaltered by minus signs on the vertices.

Another loop stabilized encoding construction was proposed by Setia et al in

[16] which can be defined on an arbitrary interaction graph of even degree. It is

constructed by associating d(i)/2 qubits with every vertex i where d(i) is the vertex

1.5. Fermionic Encodings 59

Z

Z
X

Y
XZ

Y

Z

X Z
Y

Z

Z
Y

X
Z

XZ Z

X
Z

Z

Z

X

Z

Z
X

Z

Figure 1.9: Edge operators of the MLSC between all possible pairs of coloured vertices.

degree. For each vertex i, the d(i)/2 qubits can be used to encode Majorana operators

{γi
1, . . . ,γ

i
d(i)} using some N-to-N encoding10. Around each vertex i an indexing of

incident edges oi is defined such that each incident edge (i, j) is assigned a unique

index oi(j) ∈ {1, . . . ,d(i)}, edge operators are then defined as

Ẽi j := εi j γ̃
i
oi(j)γ̃

j
o j(i)

, (1.70)

where εi j is the chosen ± orientation of the edge as in BKSF and MLSC and γi
k

is a Majorana encoded on the qubits of vertex i under some N-to-N encoding (see

fig. 1.10). Vertex operators are defined as

Ṽi :=
d

∏
k=1

γ̃i
k. (1.71)

The natural anticommutation relations of the encoded Majoranas at each site ensure

that the relations in eq. (1.63) are satisfied while edge loops are used as stabilizers in

the usual manner. This encoding has 1 qubit for every edge like BKSF and MLSC

so its codespace also corresponds to a fixed parity fermionic subspace. As the

interaction graph is even degree it has an Eulerian cycle ζ which contains every edge

exactly once. The corresponding cycle of encoded edge operators ζ̃ has the property

ζ̃ =±∏
i

Vi (1.72)

10since the mode associations of these Majoranas is unimportant the overline notation has been
dropped in favour of just numbering them 1 to d(i).

1.5. Fermionic Encodings 60

γi
1
γi

2
γi

3

γi
4

γ
j
1
γ

j
2

γ
j
3

γ
j
4

γk
1
γk

2
γk

3

γk
4

γl
1
γl

2
γl

3

γl
4

Figure 1.10: Edge operators on the Setia code for a square lattice between vertices i, j, k
and l (denoted by dotted circles) in the Majorana picture. The bulk of a square
lattice is degree 4 so each vertex has 4 Majoranas assigned to it (encoded by 2
qubits), with Majoranas around vertex i indexed by oi. In this case, oi(j) = 2
and o j(i) = 4 so the edge operator for (i, j) is the product of the corresponding
Majoranas encoded on vertex qubits.

where the sign and therefore the parity sector of the encoding depends on the choice

of εi j for each edge. This encoding can correct single qubit errors if defined on

a graph of minimum degree ≥ 6 and has the novel feature of encoded edge and

vertex operators with weights that scale as O(logd) where d is the maximum degree

of the graph, as opposed to the O(d) scaling of BKSF. This can be achieved by

choosing the Bravyi-Kitaev [12] encoding or the optimal encoding due to Jiang [52]

to represent the Majoranas for each vertex. In the paper, the authors propose a single

qubit error-correcting encoding of a Fermi-Hubbard Hamiltonian by including 2

“dummy“ edges between spin layers at each site, ensuring the interaction graph is

degree 6 (in the bulk) and requiring 3 qubits per mode. A construction can be defined

with only 2 qubits per mode by independently encoding each spin layer as a square

lattice graph but this will be unable to distinguish all single qubit errors.

1.5.2.3 Local Encodings On a Fermi-Hubbard Hamiltonian

Table 1.1 shows the performance of the encodings reviewed in this chapter when

used to simulate a Fermi-Hubbard Hamiltonian on a square lattice. This is a useful

comparison as this is one of the simplest fermionic models that will likely require

a quantum solution as discussed in section 1.2.2. The metrics are relevant as they

quantify the resource efficiency of the encodings, particularly in number of working

1.6. NISQ Hardware 61

Mapping
BKSF
[12]

VC
[13, 14]

MLSC
[15]

Steudtner
[17]

Setia
[16]

Qubit
Number 2L(L−1) 2L2 2L(L−1) 2L2−L 3L2

Qubit to
Mode Ratio 2− 2

L 2 2− 2
L 2− 1

L 3

Max Weight
Hopping 6 4 4 5 4

Max Weight
Coulomb 8 2 6 6 6

Encoded
Fermionic

Space
Even Full Even Full Even

Single Qubit
Error Correction No No Yes No Yes

Graph
Geometry General General

Square
Lattice

Square
Lattice

Even
Degree

Table 1.1: A comparison of local fermion encodings discussed in this chapter when encoding
a Fermi-Hubbard system on an L× L square lattice. Max weight Coulomb
and max weight hopping denote the maximum Pauli weights of the mapped
Coulomb (ñiñ j) and nearest neighbour hopping (c̃†

i c̃ j + c̃†
j c̃i) terms respectively.

Encoded fermionic space denotes whether the full or even fermionic Fock space
is represented. Graph geometry denotes the other interactions graphs which the
mapping is tailored to.

qubits required and time needed for simulation (FH term weights). Hamiltonian

term weights are quoted without accounting for connectivity on hardware which

may increase their effective locality if SWAP gates are required for Trotter based

simulation algorithms.

1.6 NISQ Hardware

Quantum hardware has come a long way since efforts began, however there is still

some distance to go before fault-tolerant quantum computation is a real possibility.

The current generation of quantum devices is known as the NISQ era, a term coined

by Preskill in [11] standing for “Noisy Intermediate Scale Quantum”. These devices

are characterised by relatively low qubit counts of up to about 100, and noise levels

too high to achieve fault tolerance with known error correction procedures compatible

with their qubit counts.

1.6. NISQ Hardware 62

Device
Rigetti

Aspen-9 [54]
Google

Weber [55]
IBM Peekskill

[56]
IBM Lagos

[56]
Qubit
Count 32 54 27 7

2-qubit Gate
Fidelity 92% 99.3% 98.98% 99.32%

Readout
Fidelity 94% 99.5% / 97% 98.33% 98.89%

T1 / µs 30 21 266.14 163.88
T2 / µs 18 n/a 256.61 89.77

2-qubit Gate
Time / ns (t2q) 148 32 413.27 314.074

T1 / t2q 203 656 643.99 521.79
T2 / t2q 122 n/a 620.93 285.82

Table 1.2: Several figures of merit for existing NISQ devices as reported by the companies
(gate times for Rigetti were obtained from private correspondence). The 2-qubit
gates used for the associated figures are CZ for Rigetti,

√
iSWAP for Google and

CNOT for IBM. IBM has several devices available, Peekskill has the greatest T1 to
t2q ratio and Lagos has the greatest 2-qubit gate fidelity. Google’s documentation
gives best, median and worst case values for each figure, best case is listed here.
Separate readout fidelity figures are given for Google Weber corresponding to the
error when measuring a prepared |0〉 or |1〉 state respectively.

A number of companies have produced NISQ hardware available for use by the

public or businesses including Rigetti, Google and IBM. Notably, a Google made

device was used to perform the first successful quantum supremacy experiment [57].

Figures of merit for some of the more recent devices are listed in table 1.2. The

values of T1 / t2q and T2 / t2q are of particular interest as they give a rough figure

of how many layers of 2-qubit gates can be applied before noise washes out any

useful information from the system. The values in the table indicate that these NISQ

devices can only manage a few hundred and that is without accounting for the error

in 2-qubit gate application.

The limitations on circuit depth and lack of proper error correcting capabilities

required to prolong this depth mean that for interesting calculations to be performed

on NISQ devices quantum circuits need to be as shallow as possible. For this reason,

quantum algorithms such as rapid factorisation of large numbers may be out of

reach for the near future given the resources required [58]. However, simulation

1.6. NISQ Hardware 63

of small scale instances of the 2D Fermi-Hubbard model which sit at the limits of

classical quantum simulation [30] could be feasible on relatively small quantum

devices and would represent a significant step towards solving the model and all

research progress that may yield. As discussed, such a simulation would require a

fermionic encoding and it would be beneficial for the encoding to have low weight

FH interactions and also use as few qubits as possible. The main subject of chapters

2 and 3 is a novel encoding which outperforms previous works in these regards.

Chapter 2

A Compact Fermionic Encoding on a

Square Lattice

Having covered the necessary background, the main topic of this thesis can now be

introduced: a novel fermion to qubit mapping, the Compact Encoding (CE), which

maps local fermionic interactions, Fermi-Hubbard Hamiltonian terms in particular,

to local qubit operators while keeping operator weights and total qubit count low.

Recalling the discussion from sections 1.3 and 1.6 in the introduction, low weight

encoded operators are desirable as they reduce the runtime cost of Hamiltonian

simulation algorithms, which will be essential if they are to be implemented on near

term quantum hardware. This chapter will cover the encoding of a 2D square lattice

fermionic interaction graph, which yields edge and vertex operators of weight no

greater than 3 and has a qubit to mode ratio of no more than 1.5, outperforming all

other known local encodings in these metrics simultaneously. The encoding does

not correct nor detect all single qubit errors but it does have some error mitigating

properties which will be further explored in chapter 4. See table 2.1 for a summary of

these details. Constructions for further lattice geometries exist and will be discussed

fully in chapter 3, this chapter will serve to familiarise the reader with general design

principles of the encoding and also illustrate some interesting features.

The material from this chapter is largely based off [59] by the thesis author and

Joel Klassen.

2.1. Preliminaries 65

Lattice Type
L×L Square

even face
number

L×L Square
majority

even faces

L×L Square
majority
odd faces

Fermionic
modes 2L2 2L2 2L2

Qubit
Number 3L2−L 3L2−L−1 3L2−L+1

Qubit to
Mode Ratio 1.5− 2

L 1.5− 2
L − 1

2L2 1.5− 2
L +

1
2L2

Max Weight
Hopping 3 3 3

Max Weight
Coulomb 2 2 2

Encoded
Fermionic

Space
Full Even

Full
Plus Qubit

Corrects Single
Qubit Errors? No No No

Table 2.1: The qubit number and max Pauli weights, for the Fermi-Hubbard model, of the
fermionic encodings presented in this chapter.

2.1 Preliminaries
The CE is constructed in a similar manner to the mappings discussed in sec-

tion 1.5.2.2. For convenience some of the key concepts for this style of encoding

will be covered again briefly.

Natural fermionic Hamiltonians are sums of products of even fermionic oper-

ators c†
kck, c†

jck, c jck and c†
jc

†
k . Here c†

k and ck are the standard fermionic creation

and annihilation operators. For modes on a connected graph, the algebra of even

fermionic operators can be generated by the edge operators E jk and vertex operators

Vj associated with each edge (i, j) and vertex i

Vi :=−iγiγi

Ei j :=−iγiγ j.
(2.1)

where γi and γi are the Majorana operators for mode i

γ j = c j + c†
j , γ j =

c j + c†
j

i
, (2.2)

2.2. Construction 66

which are hermitian, self-inverse and mutually anticommuting. The edge and vertex

operators satisfy the conditions

E2
i j = I, V 2

j = I, E†
i j = Ei j, V †

j =Vj, Ei j =−E ji,

i 6= j 6= k 6= l 6= m : [Vi,Vj] = 0, [Ei j,Vk] = 0, [Ei j,Ekl] = 0,

{Ei j,Vj}= 0, {Ei j,E jk}= 0,

(2.3)

and

i|L|−1
|L|−1

∏
x=1

Eix,ix+1 = I. (2.4)

The terms in the Fermi-Hubbard Hamiltonian may be written in terms of these

operators

c†
i c j + c†

jci =
−i
2
(Ei jVj +ViEi j), nin j =

(
1−Vi

2

)(
1−Vj

2

)
. (2.5)

Note that Edge operators between spin layers are not required.

2.2 Construction

Consider fermions living on a square lattice of modes. For each vertex of the lattice,

define a vertex qubit indexed by the fermionic site j. Now label the faces of the

lattice even and odd in a checker-board pattern. For the sake of clarity, assume to

begin with that there are in total an even number of faces, and so an equal number of

even and odd faces. The case of an odd number of faces is examined in section 2.2.1.

Note that the lattice may have unequal side lengths.

Associate a face qubit to the odd faces, as illustrated in fig. 2.1. Give an

orientation to the edges of the lattice so that they circulate around the even faces

clockwise or counter-clockwise, alternating on every row of faces, also illustrated in

fig. 2.1.

Let f (i, j) index the unique odd face adjacent to edge (i, j). For every edge

2.2. Construction 67

Z

V1 E4,3
Y X

Y

E12,17

Y

X

X

E19,20

X Y

1
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 2.1: Qubit assignment, edge orientation, and examples of mapped edge and vertex
operators for a 4×5 square lattice.

(i, j), with i pointing to j, define the following encoded edge operators1.

Ẽi j :=


XiY jX f (i, j) if (i, j) is oriented downwards

−XiY jX f (i, j) if (i, j) is oriented upwards

XiYjYf (i, j) if (i, j) is horizontal

(2.6)

Ẽ ji :=−Ẽi j. (2.7)

For those edges on the boundary which are not adjacent to an odd face, omit the

third Pauli operator which is meant to be acting on the non-existent face qubit. For

every vertex j define the encoded vertex operators

Ṽj := Z j. (2.8)

This specifies all encoded vertex and edge operators, they are illustrated in fig. 2.1.

It is not difficult to see that this encoding satisfies all the conditions in 2.3. The

intuition is that one may think of a directed edge as having an X on the tail and a Y on

the head. Whenever the head of one edge touches the tail of another, then those two

edge operators anti-commute, while if two edges touch head to head or tail to tail,

1The difference in sign between the vertical up and down arrows ensures that closed loops around
odd faces are equal to I and not −I.

2.2. Construction 68

then they commute. By adding a qubit at some faces, and choosing an appropriate

orientation for the edges, one can enforce the additional necessary anti-commutation

relations at the face qubits, as has been done here.

For M fermionic modes, this encoding uses fewer than 1.5M qubits. Most

importantly this construction results in Fermi-Hubbard terms with Pauli weight

at most 3. A critical feature which makes the Pauli weights and qubit numbers

so low is that the face qubits are used extremely efficiently, each one enforcing

anti-commutation relations at four bounding corners.

Just as in the encodings in section 1.5.2.2, the encoding also demands a restric-

tion to a stabilizer code space, in order to satisfy eq. (2.4). The stabilizers S̃p are

indexed by all of the closed loops p on the lattice, and are given by:

S̃p = i(|p|−1)
(|p|−1)

∏
i=1

Ẽpi pi+1 (2.9)

However unlike these encodings, some of these stabilizers are equal to I. Take for

instance the loop of edge operators going around vertices 7, 8, 12 and 13 in fig. 2.1,

the product of those edges is I. This is true for every odd face. On the other hand

the stabilizer loops around even faces are non-trivial. Both cases are illustrated in

fig. 2.2. Therefore the number of independent stabilizer generators is half the number

of faces, while the number of qubits is the number of fermionic modes plus half the

number of faces. Thus the encoded Hilbert space is of the same dimension as the

full fermionic Fock space.

Since the full fermionic Fock space is encoded, single fermions also admit a

representation. It suffices to specify one Majorana operator, and all other fermions

may be constructed using edge and vertex operators, and linear combinations of

Majoranas. A logical Majorana operator γ j must anti-commute with all edges

adjacent to site j and the vertex operator Vj. Consider the corners of the lattice

associated with an odd face. Such a corner j either has arrows pointing into it or

pointing away from it. If the arrows point into the corner then choose the encoded

Majorana operator to be γ̃ j = X j, otherwise choose it to be γ̃ j = Yj. The choice of

2.2. Construction 69

Y X
Y

YX
Y

X

Y
X

X

Y
X =

Z

Z

Z

Z

Y

Y

X X

Y X
Y

YX
Y

Y

X
X

Y

X
X =

I

I

I

I

I

Figure 2.2: Loops of edge operators around faces on the square lattice. Note that loops
around even faces are non-trivial Pauli operators and loops around odd faces
cancel out to identity. Phases have been omitted.

corner is arbitrary. In the case of an even number of faces, there are two possible

choices of corners, and once a corner is chosen, then the equivalent operator at the

other corner corresponds to a Majorana hole operator hi := γi ∏ j Vj, so called as

it is the product of all Majorana operators except for γi at site i, where there is a

“hole”2. Examples are illustrated in fig. 2.3.

2.2.1 Odd Number of Faces

If the lattice has an odd number of faces, then there are two possible checker-board

patterns. In one case (case (a)) there is an extra even face and every corner is even.

In the other case (case (b)) there is an extra odd face and every corner is odd. Once

a choice has been made, then one may proceed with constructing the encoding as

prescribed in section 2.2. This is illustrated in Figure 2.4.

In case (a) there is one more stabilizer than face qubit. Furthermore, it is not

difficult to see that, up to stabilizers, ∏i Ṽi = I, and so in this case the code space

is restricted to the even fermion subspace, just as in the encodings in [12, 15, 16].

This is corroborated by the fact that, unlike for lattices with an even number of faces

where a Majorana can be “injected" into an odd corner, here there are no odd corners

at which to do this, and so odd fermionic operators do not admit a representation in

2The overlined γi also has a corresponding hole, hi := γi ∏ j Vj

2.2. Construction 70

Y
Z

Z

Z

X

Y

Y

Z

Z

X

Z

X

Figure 2.3: Single Majorana and hole operators on a lattice with an even number of faces.
Purple: A single particle operator at an odd corner, we choose this to be the
source of encoded single Majorana operators γ̃ j. Blue: A single Majorana oper-
ator in the bulk of the, transported from the top left odd corner by edge operators.
Orange: A Majorana hole operator in the bulk of the lattice, transported from
the other odd corner by edge operators.

this code.

Case (b) is more interesting. Here the number of face qubits is one more than

the stabilizer rank, and so the encoded space is effectively the full fermionic tensored

with one qubit: C2⊗F. Furthermore, at each of the four odd corners, single qubit X

or Y operators3 inject Majorana-like operators that anticommute with the edge and

vertex operators incident at the corner. They are described as “Majorana-like” as

they behave like Majorana operators with respect to edge and vertex operators but

they do not always anticommute with one another, suggesting some further details.

Label the four “species” of Majorana Ai, Bi, Ci and Di, injected at each of the four

corners A, B, C, and D (as labelled in fig. 2.4) and then translated by edge operators

to site i. These operators satisfy the following commutation and anti-commutation

relations:

{Mi,M j}= 0 ∀M ∈ {A,B,C,D}, i 6= j

[Mi,M′j] = {Mi,M′i}= 0 ∀M 6= M′ ∈ {A,B,C,D}.
(2.10)

3X if arrows point to the corner, Y if they point away.

2.2. Construction 71

(a)
C D

A B

(b)

Figure 2.4: Two possible choices of encoding for a lattice with an odd number of faces. In
case (b) with more odd faces, the corners have important properties and so are
labelled.

That is, a pair of particles of the same species anticommute at different modes like

normal Majoranas while a pair of different species will commute at different modes

yet anticommute at the same mode.

Particles of the same species when translated to the same vertex will “fuse” to

form identity up to a stabilizer, as is expected with self-inverse Majorana operators.

One wonders what would happen if two different species were to be fused in the

same manner. It turns out that pairs of different species fuse into non-trivial string

defects:
A×B≈C×D≈ ε1

A×C ≈ B×D≈ ε2

A×B×C×D≈ I,

(2.11)

where this equivalence is modulo stabilizers and logical edge and vertex operations.

One may privilege one corner (for instance, A) as the Majorana operator on

the fermionic system and the identity on the qubit system. The remaining corners

may then be identified as hole operators on the fermionic system coupled to a Pauli

operator on the qubit system

Ai = I⊗γi, Bi = Y ⊗hi, Ci = X⊗hi, Di = Z⊗hi (2.12)

recalling that hi = γi ∏ j Vj. It then immediately follows that the non-trivial string

2.3. Connection to the Toric Code 72

defects correspond to Pauli operators on the logical qubit system,

ε1 ≈ Y, ε2 ≈ X , (2.13)

and that the “different species” of Majorana are in fact the same species of Majoranas

and holes but dressed with Pauli operators acting on the extra encoded qubit. The

encoded Ỹ and X̃ operators are illustrated in fig. 2.5. They are strings of Zs along the

bottom and right edge respectively, and strings of Y s along the bottommost row of

faces and Xs along the right most column of faces respectively.

Note that if one treats one of these operators as a stabilizer, then one restricts

to the full fermionic code space without an extra logical qubit. In this case, as

one should expect, there are only two corners in which to inject a Majorana, since

injecting a Majorana at either of the other two corners would anti-commute with the

chosen stabilizer. These two species are then the Majorana and its hole counterpart.

Z

Z

Z

Z

X

X

X̃
Z Z Z Z

Y Y

Ỹ

Figure 2.5: The encoded X and Y operators on the extra logical qubit in case (b). Here the
X is formed by fusing a particle of species B with D and the Y by fusing C with
D.

2.3 Connection to the Toric Code
The Pauli operators on the encoded qubit in case (b) of a lattice with an odd number

of faces are string-like and span the length of the system. This structure is reminiscent

of the surface code [60], an open boundary version of the toric code discussed in

section 1.4.2, suggesting a connection between the error correcting code and this

fermionic encoding. With this in mind, one quickly notices that the auxiliary face

2.3. Connection to the Toric Code 73

Z Z

Z Z

Z

Y

Y

X X

Z Z

Z Z

Z

Y

Y

X
X

Figure 2.6: The toric code (dotted purple) embedded in the compact encoding. Each stabi-
lizer is a tensor product of either a plaquette Πp (red) or star Πs (blue) operator,
with a four qubit Z parity operator (black)

qubits are arranged exactly like the qubits of the toric code on a square lattice and

that the non-trivial face loop stabilizers are simply the star (ΠS) and plaquette (ΠP)

operators of the toric code (up to some local qubit rotations) tensored together with

Z operators on 4 vertex qubits. See fig. 2.6 for illustration.

In the bulk, the codespace of the Compact Encoding is the degenerate ground

state of the Hamiltonian

HCE =−∑ΠS⊗ZS−∑ΠP⊗ZP (2.14)

where ZS and ZP are the products of Z operators on vertex qubits surrounded by a

star of plaquette. Similarly to the toric code Hamiltonian in eq. (1.44), HCE admits e

and m quasiparticles on the toric code lattice with an energy cost. However, when

paired with the appropriate operators on the vertex qubits, the pair creation operators

of the composite ε particles commute with HCE allowing them to exist in the ground

space with no energy penalty. In fact, a string of edge operators is exactly this as

shown in fig. 2.7. In this sense, the Compact Encoding can be seen as leveraging

the fermionic exchange statistics of the toric code ε particles to obtain the required

anticommutation relations between edge operators. Similar connections exist in other

fermionic encodings [13, 12] which will be discussed in greater detail in chapter 6.

2.4. Discussion 74

Y

Y

Z

Y

Z

Y

X

Figure 2.7: A string of edge operators (black) in the compact encoding corresponds to
localized pairs of e (red) and m (blue) particles in the toric code, i.e. a pair of ε
particles.

2.4 Discussion

The Compact Encoding constitutes a significant improvement on both the mode to

qubit ratio and the Pauli weights of encoded local fermionic operators. This will give

rise to low weight terms in the Fermi-Hubbard model and any fermionic Hamiltonian

which is local on a square lattice graphs and whose terms are products of small

numbers of vertex and edge operators. The author conjectures that no fermion to

qubit encodings exist which have a smaller upper bound on the Pauli weights of

vertex and edge operators.

Since the encoding has low weight edge and vertex operators, it is necessarily

a low distance code. For example a Z error on any vertex qubit corresponds to a

logical vertex operation. Naturally this means that it does not perform well at error

correction or even detection but in chapter 4 it will be argued that for certain purposes

this may not pose as serious a problem as one might expect.

From the perspective of implementations one downside to this encoding is

that it is not clear that the low weight property can be preserved when restricting

to hardware with a planar interaction graph and including all spins. This is not

something widely considered in most other works, besides [17], and so it may be

that this encoding still performs comparatively well under this restriction.

In [61] Clinton et al propose a novel pulse based scheme for simulating time

evolution of quantum systems. One of the primary bottlenecks for the performance

of this scheme is the Pauli weight of the encoded Hamiltonian terms. By employing

2.4. Discussion 75

the Compact Encoding, simulations using such a pulse based scheme are expected to

see an order of magnitude improvement in circuit depth over Verstraete-Cirac (see

Table 1 of [61]), which has maximum weight 4 terms.

Chapter 3

The Compact Encoding on Further

Lattice Geometries

Having explored the Compact Encoding on a square lattice, this chapter will show

how the same design can be applied to various other lattice geometries. In 2D the

encoding may be applied to all uniform tilings with degree less than 4. In these cases

the generators of the even fermionic algebra are maximum weight 3, and the qubit to

mode ratios range from < 1.25 to < 1.67. Of particular interest is the 4.8.8 uniform

tiling, in which a spinful fermionic system on a square lattice may be embedded,

such as the Fermi-Hubbard model. Additionally the Compact Encoding may be

applied to a cubic lattice. In this case the generators of the even fermionic algebra

are maximum weight 4, and the qubit to mode ratio is less than 2.5, contrasting

with other local encodings which have maximum weights of at least 4 and qubit

to mode ratios of at least 3. As previewed in the odd face numbered cases of the

square lattice encoding, a surprising emergent property of some of the encodings

presented here is the disparity between the size of the code space and the fermionic

space to be encoded. In the cases where the code space is larger, multiple species of

Majorana-like operators emerge in the encoded system. Additional stabilizers may

be defined to remove these species.

To facilitate the analysis of these encodings, this chapter begins with a general

group theoretic explanation of fermionic encodings in section 3.1. The encoding

on a square lattice will then be re-examined through this formalism in section 3.1.2.

3.1. Local Fermionic Encodings on Graphs 77

Section 3.1.3 discusses the emergent particle species in fermionic encodings and

gives a bound on their number. Section 3.2 defines a restricted family of compact

encodings on planar graphs and proves some useful properties, and in section 3.3

this restricted family is applied to all uniform planar graphs with degree less than 4.

Finally the encoding on a cubic lattice is presented in section 3.4.

The content of this chapter is largely based on the work in the preprint [62] by

the author and Joel Klassen.

3.1 Local Fermionic Encodings on Graphs

The aim of any fermionic mapping is to represent fermionic operators by qubit

operators. All such mappings are necessarily restricted to discrete sets of fermionic

modes, since the qubit system is finite dimensional. An important feature of natural

fermionic systems is parity superselection, which forbids observables that do not

commute with fermion number parity. Thus, insofar as one is concerned with

representing natural observables, it suffices for fermionic mappings to represent

operators which preserve parity, even fermionic operators.

The even fermionic operators form a group algebra C[ME] where ME is the

group of even products of Majorana operators, with factors ±1 and ±i:

ME =

{
±i0/1

∏
j
γ

b2 j
j γ

b2 j+1
j | b is an even parity bit string

}
γ j = c j + c†

j , γ j = (c j− c†
j)/i.

(3.1)

Thus a fermionic encoding must at minimum constitute a group representation τ of

ME :

τ : ME → L(H) (3.2)

where L(H) denotes the set of linear operators on the Hilbert spaceH of a system of

qubits.

The group ME , and by extension the group algebra C[ME], are generated by the

“edge” Ei j and “vertex” Vj operators defined for every mode i and every ordered pair

3.1. Local Fermionic Encodings on Graphs 78

of modes (i, j)

Ei j :=−iγiγ j, Vj :=−iγiγ j, (3.3)

and phases {±1,±i}, which satisfy the established relations

E2
i j = I, V 2

j = I, E†
i j = Ei j, V †

j =Vj, Ei j =−E ji,

i 6= j 6= k 6= l 6= m : [Vi,Vj] = 0, [Ei j,Vk] = 0, [Ei j,Ekl] = 0,

{Ei j,Vj}= 0, {Ei j,E jk}= 0

(3.4)

and for any ordered set of modes L = (i1, i2, . . . , i|L|), with i1 = i|L| so that L consti-

tutes a cyclic path, the relation

i|L|−1
|L|−1

∏
x=1

Eix,ix+1 = I. (3.5)

These relations completely fix the group structure of ME and thus the group repre-

sentation σ is completely specified by qubit operators satisfying these relations. The

edge and vertex operators are self-inverse, hermitian, and only mutually commute or

anticommute. This makes multi-qubit Pauli operators natural candidates for their

representation. Indeed every existing fermionic mapping represents edge and vertex

operators as Pauli operators – in some cases projected onto a subspace to ensure that

all conditions are met.

There are two notions of locality which a design of a local fermionic encoding

may wish to pursue: algebraic locality, wherein the number of qubits an encoded

operator acts upon is bounded by some (monotonically increasing) function of the

number of modes the fermionic operator acts on; and geometric locality, wherein the

maximum distance (for some distance measure) between qubits an operator acts upon

is bounded in a similar fashion. The compact encoding, and generalizations presented

here, aims to preserve the geometric locality of operators, while minimizing the

algebraic locality on qubits. The distance measure on a fermionic system used here

is represented by a connected graph, dubbed the interaction-graph, whose vertices

3.1. Local Fermionic Encodings on Graphs 79

correspond to fermionic modes, with distance given by the minimal path between

modes. In the encodings considered the qubit systems are embedded in real space,

and so proximity in real space is used as the distance measure on the qubit system.

To this end it suffices to encode the vertex and edge operators associated with the

edges and vertices of the graph to local edge and vertex operators on qubits, all other

operators may be decomposed into these edge and vertex operators in a way that

inherits this locality.

In general it is not feasible to assign local Pauli operators to the edges and

vertices of the fermionic graph which satisfy all of relations in eqs. (3.4) and (3.5).

This is because Relation (3.5) has a highly non-local character. Instead the strategy

is to assign local Pauli operators which satisfy relations (3.4) and project via the

stabilizer formalism into the subspace which respects eq. (3.5). In this case the

stabilizers are the products of closed loops of edges in the fermionic graph. In this

way, one is constructing a representation of a group structure on the graph, defined

by relations (3.4), and quotienting out the subgroup corresponding to the cycle space

of the graph.

Formally, given an undirected, connected graph G = (V = {vi},E = {{vi,v j}})
define the finitely presented group MG whose presentation comprises the vertices V,

the directed versions of the edges ED := {ei j = (vi,v j),e ji = (v j,vi) | ∀{vi,v j} ∈ E}
and {±1,±i}, along with the relations

e2
i j = I, v2

j = I, ei j =−e ji,

i 6= j 6= k 6= l 6= m : [vi,v j] = 0, [ei j,vk] = 0, [ei j,ekl] = 0,

{ei j,v j}= 0, {ei j,e jk}= 0

(3.6)

In the notation of group presentations:

MG := 〈V∪ED∪{±1,±i}|Eqs. 3.6〉 (3.7)

Then define the abelian normal subgroup of directed cycles CG / MG (see ap-

3.1. Local Fermionic Encodings on Graphs 80

pendix A.1 for details)

CG =

{
i|L|−1

|L|−1

∏
x=1

eix,ix+1 | L = (i1, i2, . . . , i|L|), i1 = i|L|,eix,ix+1 ∈ ED

}
(3.8)

Note that CG is isomorphic to the cycle space of G (see appendix A.1), and its

elements are invariant under a choice of first and last element, or total orientation.

Appendix A.1 shows that given a fermionic system, and a corresponding con-

nected fermionic graph G, the group of even Majorana operators ME is isomorphic

to the quotient group MG/CG via the invertible mapping

f : MG/CG→ME . (3.9)

Thus if one can identify a representation

σ : MG→ L(H) (3.10)

such that all elements of σ(CG) have a common +1 eigenspace U ⊆H, then one can

construct a representation τ of ME by considering the projection of σ into U i.e.

σU := ProjU ◦σ . (3.11)

Noting that CG ⊆ ker(σU) the action of τ may be defined

τ(µ) = (τ ◦ f−1)(mCG) = σU(m),

∀µ ∈ME , m ∈MG : µ = f (mCG)
(3.12)

which constitutes a faithful representation of ME . Choosing a representation σ which

maps into the n qubit Pauli group

Pn = {±1,±i}×{I,X ,Y,Z}⊗n, (3.13)

then since CG is abelian, and provided that −I 6∈ σ(CG), U automatically exists [63]

3.1. Local Fermionic Encodings on Graphs 81

and corresponds to a stabilizer code space of the stabilizer group S := σ(CG).

To summarize, given a connected fermionic graph G, corresponding to some

fermionic system, to construct a local fermionic encoding it suffices to specify a

local mapping σ of the edges and vertices of the graph to multi-qubit Pauli operators,

satisfying the relations 3.6, such that no element of CG is mapped to −I. An example

is the Jordan Wigner encoding, where the fermionic graph is a line, there are no

cycles and so CG is trivial, and σ(ei j) = σU(ei j) = XiYj, σ(vi) = σU(vi) = Zi.

As in the previous section, a tilde denotes the representation of an operator,

ie ẽi j := σ(ei j) and Ẽi j := τ(Ei j). In cases where Ẽi j or Ṽi j is set as equal to a

Pauli operator, it is implicit that this Pauli operator is projected into the subspace U .

Thus in the case where ei j is defined for some edge (i, j), Ẽi j and ẽi j may be used

interchangeably (similarly for Ṽi and ṽi), as was the case in chapter 2. Nevertheless

it is worth emphasising the conceptual difference between ei j, vi and Ei j, Vi. The

former are elements of an abstract group MG corresponding only to edges and vertices

of a particular graph, while the latter are elements of the group of even Majorana

monomials ME , which has no particular graph structure.

3.1.1 Counting Stabilizers

Using the construction described in the previous section, one specifies a representa-

tion σ of MG which prescribes how the even Majorana monomials ME of a fermionic

system are encoded into a stabilizer code space U . However the group algebra

generated by the logical operators that act on U – the operators which commute with

the stabilizer group S := σ(CG) – may be larger than the group algebra C[ME]. In

other words the codespace may encode more than just parity preserving fermionic

states, there may be additional structure.

This additional structure will be indicated by the dimension of the code space.

The dimension of a fermionic system with M modes is 2M. Fixing parity reduces the

dimension by half, ie 2M−1. The dimension of the code space dim(U) will depend

on the dimension of the original Hilbert space and the size of the minimal set of

generators of S and may diverge from this value.

Recalling that for a group X , the minimum size of a set of generators is the rank

3.1. Local Fermionic Encodings on Graphs 82

of X , denote this by D(X). For an encoding employing N qubits, the dimension of

the code space is dim(U) = 2N−D(S). When working with fermionic encodings it is

most useful to consider how the degrees of freedom in the encoded space differ from

the usual degrees of freedom of the fermionic space:

dim(U) = 2M+∆, (3.14)

where ∆ is the disparity

∆ := N−M−D(S). (3.15)

When the disparity is −1 the code space encodes only the even fermionic states.

When the disparity is 0 the code space encodes the full fermionic Hilbert space.

When the disparity is positive, the code space encodes ∆ additional qubit degrees of

freedom.

Here and throughout an important subgroup of MG is the group of all cycles

that are mapped to the identity under σ , ie ker(σ |CG), where σ |CG is the restriction

of the representation σ to the subgroup CG. For notational ease define

K := ker(σ |CG) (3.16)

Theorem 1. Given a fermionic encoding σ for a connected fermionic graph G, the

rank of the stabilizer group S is D(S) = D(CG)−D(K).

Proof. S corresponds to a faithful representation of the quotient group CG/K, and so

|S|= |CG/K|. Furthermore, by Lagrange’s theorem

|CG/K|= |CG|/|K|.

Because a2 = I , ∀a∈ CG, the elements of CG correspond to the elements of the vector

space ZD(CG)
2 so that |CG| = |ZD(CG)

2 | = 2D(CG). Similarly for S and K: |S| = 2D(S)

and |K|= 2D(K). Thus

D(S) = D(CG)−D(K) (3.17)

3.1. Local Fermionic Encodings on Graphs 83

Corollary 2.

∆ = (N−M)− (D(CG)−D(K)) (3.18)

Proposition 3. D(CG) = |E|− |V|+1

Proof. Recalling that CG is isomorphic to the cycle space of G, D(CG) is equal to

the circuit rank of G, which satisfies:

D(CG) = |E|− |V|+β0 (3.19)

β0 is the 0th Betti number, ie the number of connected components of the graph, in

this case 1.

3.1.2 The Compact Encoding on a Square Lattice

The Compact encoding introduced in chapter 2 can be understood through the

concepts explained in the previous sections. This encoding uses the fermionic graph

formalism from section 3.1, where the graph is a square lattice, with each vertex

corresponding to a fermionic mode. It defines qubit representations of the edge and

vertex operators from eq. (3.3) such that any local interaction term has a Pauli weight

no greater than 3 and does this with a qubit to mode ratio of < 1.5.

The definitions of the edge and vertex operators given in eqs. (2.6) and (2.8)

strictly only specify the action of the mapping σ(ei j) = ẽi j and σ(vi) = ṽi as they

only satisfy the relations in eq. (3.6). The definitions of Ẽi j and Ṽi are obtained by

projecting into the +1 eigenspace of σCG on the square lattice graph.

The cycle group CG of a planar graph is minimally generated by the cycles

around faces. However the cycles around odd faces are mapped to the identity under

σ . Thus K is minimally generated by the cycles around odd faces, and so

D(K) = OF (3.20)

where OF denotes the number of odd faces on the lattice. The stabilizer group is

then generated by the even face cycles (see Theorem 8 in Section 3.2).

3.1. Local Fermionic Encodings on Graphs 84

From eqs. (3.18) and (3.20) and the fact that N−M = OF and D(CG) = EF +

OF , where EF is the number of even faces, one has

∆ = OF−EF (3.21)

for the encoding on a square lattice.

3.1.3 Particle Species on Fermionic Encodings

Different values of the disparity ∆ cause an encoding to have different properties.

In cases where ∆ > 0 one can define distinct particle species. These find use in

defining stabilizers to restrict excess space in these encodings and to detect errors.

To illustrate this we will first recall the effects of different disparities on the square

lattice encoding and then present a result on particle species for general values of ∆.

On a square lattice with a checkerboard pattern there are either equal numbers

of even and odd faces or one more even/odd face so the disparity ∆ may take the

values -1, 0, 1. In the ∆ = −1 case the codespace has dimension 2M−1, the even

fermionic operators on M modes provide a faithful representation of the set of linear

operators on a space of this size so no other operators may be defined. The fact that

only even fermionic operators are represented implies that this is a fixed fermion

parity sector. The operator ∏ j Vj is equal to identity up to stabilizers in this case,

identifying the parity sector as even. The odd parity sector may also be simulated by

flipping the sign of one vertex operator (or indeed any odd number).

In the ∆= 0 case the codespace has dimension 2M. The even fermionic operators

do not fully represent all linear operators over this space, the representation is only

complete with the inclusion of odd (parity violating) fermionic operators. It suffices

to define a representation of a single Majorana operator, since all other subsequent

odd operators may be generated by applying edge and vertex operators. A single

3.1. Local Fermionic Encodings on Graphs 85

Majorana operator γ j satisfies the relations

{γi,γ j}= 0 , {Vi,γi}= 0 , [Vi,γ j] = 0 j 6= i

{Ei j,γi}= 0 , [Ei j,γk] = 0 k 6= j k 6= i

γ2
i = I , Ei jγ j = γi , Viγi = iγi.

(3.22)

Consider the corners of the lattice associated with an odd face. Such a corner j

either has arrows pointing into it or pointing away from it. If the arrows point into

the corner then define the encoded Majorana operator γ̃ j := X j, otherwise define it to

be γ̃ j :=Yj (the encoded Majorana of the second kind, γ̃ j, is given, up to a phase, by

multiplying by a vertex operator). These single Majorana operators may be moved

around the lattice by multiplication with strings of edge operators as shown in fig. 2.3.

From this it is clear that encoded single Majorana operators {γ̃i, γ̃i} take the form of

strings of Paulis anchored at one end to their corner of origin. Denote this corner

the injection point of the Majorana operators. On the ∆ = 0 square lattice, there are

two equally suitable injection points from which single Majorana operators may be

defined. If one is chosen to be the injection point for single Majorana operators then

the single particle operators injected at the other corner will correspond to encoded

Majorana hole operators {h̃i, h̃i}, where hi := γi ∏ j Vj and hi := γi ∏ j Vj.

The encoded single Majorana operators {γ̃i, γ̃i} and {h̃i, h̃i} are examples of

distinct particle species.

Definition 4 (Particle Species). Given a fermionic encoding, a set of Pauli operators

M = {Mi,Mi}, indexed over vertices is called a Particle Species if it satisfies

the algebraic relations of single Majorana operators with respect to the encoded

fermionic operators, i.e.

{Mi,M j}= 0 , {Ṽi,Mi}= 0 , [Ṽi,M j] = 0 j 6= i

{Ẽi j,Mi}= 0 , [Ẽi j,Mk] = 0 k 6= j k 6= i

M2
i = I , Ẽi jM j =Mi , ṼiMi = iMi,

(3.23)

with equalities up to stabilizers where relevant.

3.1. Local Fermionic Encodings on Graphs 86

Definition 5 (Distinct Particle Species). Particle SpeciesM andM′ are said to be

distinct if

{Mi,M′
i}= 0 , [Mi,M′

j] = 0 , j 6= i. (3.24)

In the ∆ = 1 case the codespace is larger than the fermionic system with

dimension 2M+1, this is interpreted as simulating the full fermionic system and an

extra logical qubit degree of freedom, i.e. F ⊗C2. As with ∆ = 0, single particle

operators may be “injected” at the odd corners but instead there are four choices,

meaning that four distinct particle species may be simultaneously defined. One may

always choose one of these species to be the encoded single Majorana operators

of the fermionic system {γ̃i, γ̃i}. The other three Majorana species correspond

to hi⊗X , hi⊗Y , hi⊗Z where the Paulis act on the extra logical qubit degree of

freedom. The Paulis may be assigned to species arbitrarily so long as they form an

anticommuting set. These Pauli operators can be isolated by fusing pairs of these

Majorana species on the same vertex such that the fermionic part cancels to identity.

As shown in fig. 2.5, the Paulis have a non-local string like form across the lattice.

Having isolated these non-local Pauli operators, one of them may be taken as a

stabilizer such that only the fermionic space is encoded.

It may be desirable to restrict this excess Hilbert space via this stabilizer as it

reduces the number of logical operators that act nontrivially on the fermionic space

and therefore reduces the number of possible errors. In particular, restricting via one

of these stabilizers on the ∆ = 1 square lattice means that single X and Y errors may

only occur on two of the corners rather than 4.

Other encodings introduced in this chapter have ∆ > 1. This greater disparity

precipitates more particle species.

Theorem 6. For any fermionic encoding, the number m of distinct Majorana species

is bounded from above by

m≤ 2∆+2, (3.25)

Proof. The earlier arguments for the ∆ = −1,0 cases on the square lattice apply

generally and the number of particles in each case is consistent with eq. (3.25).

3.1. Local Fermionic Encodings on Graphs 87

Consider the ∆≥ 1 case, in which the encoding represents a Hilbert space of

dimension 2M+∆ which may be taken to be a fermionic system of M modes composed

with ∆ qubits, F ⊗ (C2)⊗∆.

Consider a set of m different simultaneously defined species {M(k)
i }m

k=1. Any

one of these may be chosen to be the encoded single Majoranas, chooseM(1) =

{γ̃i, γ̃i}. For any given vertex, consider the set of operators

{Pi
k}m

k=2 = {iM
(1)
i M

(k)
i ∏

j
Ṽj}m

k=2 = {−i h̃iM(k)
i }m

k=2. (3.26)

Note that for any two vertices i and j, Pi
k and P j

k are related by a loop of edge

operators and are therefore in fact the same operator, accordingly the vertex index is

now redundant and will be dropped.

By the relations in definitions 4 and 5, each operator Pk commutes with every

fermionic operator, including our chosen single MajoranasM(1) and so each element

only acts non-trivially on the excess (C2)⊗∆ space. All Pk are Pauli operators as

they are the product of Pauli operators (all single particle operators must be Paulis

otherwise they could not be mapped to Majorana operators). Finally all Pk are

mutually anticommuting.

Combining the above properties we see that {Pk}m
k=2 is a set of mutually anti-

commuting Paulis acting only on the (C2)⊗∆ with an element for each defined single

particle species exceptM(1). The maximum size of such a set is 2∆+1 by Lemma

4.5 from [64] and by Corollary 4.6 from the same paper, a set of this size exists so

there can therefore be a maximum of 2∆+1 Pk operators and the maximum number

of single particle species is 2∆+2.

From the above proof one can see that particle species not chosen to be encoded

Majoranas are in fact the same Majoranas/holes but dressed with Pauli operators on

the excess space which can be isolated by fusion of differently dressed species on

the same vertex. Thus in the case where a maximal set of these particle species can

be identified they may be used to define stabilizers which restrict the code space to

3.2. Generalizing the Compact Encoding in 2D 88

one with ∆ = 0.

3.2 Generalizing the Compact Encoding in 2D
The essential form of the compact encoding is as follows. A graph is supplied, and

every edge of the graph is assigned an orientation. A vertex qubit is associated with

every vertex of the graph. The vertex operators are defined to be Z operators on their

associated vertex qubits, and the edge operators are tentatively defined to act with an

X operator on the vertex which the edge is pointing away from, and a Y operator on

the vertex which the edge is pointing towards. Finally, auxiliary qubits are introduced,

and the edge operators are made to act additionally on these auxiliary qubits in order

to resolve any instances where pairs of edge operators sharing a vertex do not yet

commute. The essential feature which makes the compact encoding compact is that

the vertex operators are weight 1, and the tentative edge operators are weight 2,

with an increase in weight bounded by the number of remaining anti-commutation

relations needing to be resolved. An important additional feature which appears in

the particular implementation of this encoding procedure is that the auxiliary qubits

may be used to resolve many anti-commutation relations, thus significantly reducing

the number of auxiliary qubits required.

In the square lattice encoding, the auxiliary qubits are confined to faces adjacent

to the edges, and edges are only permitted to act on those adjacent auxiliary qubits.

However in principle there is no reason why this must be the case. auxiliary qubits

could be used to resolve anti-commutation relations between edges not sharing a

face. Furthermore, in the square lattice encoding, each face is associated with at most

one auxiliary qubit. This is also not essential. However, one valuable consequence

of imposing these kinds of constraints is that it makes the design and analysis of the

encoding simpler. This motivates introducing a particular subclass of the compact

encoding which lends itself well to analysis, and to which the square case belongs.

This subclass aims to preserve the geometric locality and extremely low Pauli weight

of the edge and vertex operators.

Definition 7 (Weight 3 Planar Encoding). A fermionic encoding on a planar

3.2. Generalizing the Compact Encoding in 2D 89

fermionic graph where:

• Every vertex has one vertex qubit assigned;

• Every auxiliary qubit is associated with a unique face;

• Every face is associated with at most one auxiliary qubit;

• Every vertex operator is a single Pauli Z on the assigned vertex qubit;

• Every edge operator is composed of a Pauli X or Y on each incident vertex

qubit and a Pauli X, Y or Z on at most one face qubit from an adjacent face.

The following theorem allows the disparity of codes that fit definition 7 to be

easily determined by counting faces. Note here that for conceptual simplicity the

“unbounded” face surrounding the graph is excluded when considering faces, but it

may be included with minor modifications.

Theorem 8. Given a Weight 3 planar encoding, K = ker(σ |CG) is minimally gener-

ated by face cycles.

Proof. The full set of face cycles on a planar graph form an independent basis of the

cycle space so any subset of these will also be independent. It suffices now to prove

that any element of K can be reduced to identity by application of face cycles in the

kernel.

For a planar graph, every cycle has a unique decomposition into a product of

face cycles. It is first necessary to show that for a cycle in K, at least one of the

face cycles in its unique decomposition must be in K. Consider a cycle c ∈ K, for

any vertex in the cycle, the edge operators in σ(c) must cancel to identity on the

corresponding vertex qubit. Let one of the edge operators act on this qubit with X ,

label this operator Ẽ1. Since edge operators may not apply Z to vertex qubits the

only way to cancel this is with another edge operator that applies X , label this Ẽ2.

These edge operators must anticommute so they must share a face and each act on

the qubit with different Paulis (X and Y). The product E1E2 then applies a Z to this

face qubit which can only be cancelled by other edge operators around the associated

face.

3.2. Generalizing the Compact Encoding in 2D 90

The Z may be cancelled by a single edge operator acting with a Z or two acting

with X and Y . Let EZ be an edge operator applying Z to the face qubit. EZ must

anticommute with E1 and E2 so it must share vertex qubits with both, forming a

3-edge loop (to commute with either of them it would also need to share vertex

qubits but this would require it to anticommute anyway), furthermore it would need

to act with the same Paulis as E1 and E2 on their respective shared vertex qubits. The

product i3E1E2EZ (with the appropriate orientation) must be identity, meaning the

associated face cycle is in K (see fig. 3.1).

For the other case, let EX and EY be edge operators around the face that act with

X and Y on the face qubit respectively. For similar reasons to above, EY (EX) must

anticommute with E1 (E2) meaning they will share a vertex qubit, as well as that,

EX and EY must anticommute and share a vertex themselves with the edges forming

a 4-edged loop. As above, the edges that share vertex qubits will act on them with

the same Paulis and the product i4E1E2EX EZ (with appropriate orientation) will be

identity and the associated face cycle is in K (see fig. 3.1 for illustration).

Consider a cycle c ∈ K, which admits a decomposition into a set of face cycles

F 6⊆ K

c = ∏
f∈F

f . (3.27)

One can construct a new cycle c′ by removing all cycles in F ∩K

c′ =

(
∏

f∈F∩K
f

)
c (3.28)

However c′ must be in K, which is a contradiction since it includes no face cycles in

K.

The fact that face qubits may only be cancelled to identity in two ways yields

the following corollary.

Corollary 9. The face cycles in K of a Weight 3 planar encoding may only be around

3 sided or 4 sided faces.

3.3. Examples of Weight-3 Planar Encodings 91

X
E1 E1

E2

X
X

Y
X

E1

E2

XX

X

X

X

X

Y
X

Z

EZ

E1

E2

EX

EY

XX

XX

X

X

X

X

Y
X

Y
X

Figure 3.1: Graphical representation of the proof of theorem 8.

Corollary 10. The disparity of a Weight-3 Planar Encoding is given by:

∆ = FK−EF, (3.29)

FK denoting the number of face cycles in K, and EF denoting the faces without a

qubit.

Proof. Recalling that ∆ = N −M− (D(CG)−D(K)) we note that N −M is the

number of faces with a qubit, and D(CG)−D(K) = F−FK where F is the number

of faces. Thus D(CG)−D(K) = EF +N−M−FK , and so ∆ = FK−EF .

3.3 Examples of Weight-3 Planar Encodings
This section presents weight 3 planar encodings for every possible uniform tiling

of degree ≤ 4, except for the square tiling which has already been thoroughly

investigated. Listed with each encoding is the qubit to mode ratio and how their

disparity ∆ scales with lattice size and shape.

3.3.1 The Hexagonal Lattice (6.6.6 Uniform Tiling)

For the hexagonal lattice, orient every edge except for the bottom edge of every face

so that they circulate clockwise on even columns of faces and counterclockwise on

odd columns, as illustrated in fig. 3.2. This ensures that heads touch tails for all

edges except for the bottom edge of every hexagon. Add an auxiliary qubit for every

face. As in the square lattice case, encoded vertex operators are Z operators on the

3.3. Examples of Weight-3 Planar Encodings 92

X

Y X

YX

Y

Y

XX

Y

X X

XY

Y

X

YX

Figure 3.2: Edge orientation, qubit placement and edge operators for the hexagonal lattice
encoding.

corresponding vertex qubit. Encoded edge operators are as illustrated in fig. 3.2 with

the sign orientation chosen arbitrarily for each edge. Note that along the top of the

lattice, “hanging” auxiliary qubits must be included to maintain anticommutation

relations between edges. The qubit to mode ratio is ≤ 1.5.

The stabilizer S is generated by the loops of encoded edge operators around the

hexagonal faces. As none of these are identity, the kernel must be trivial by theorem 8

and the stabilizer rank is the number of faces. As every face has an auxiliary qubit

associated, the disparity ∆ is simply the number of extra qubits along the top of the

lattice which, depending on the exact lattice, is between C−1 and C−2 where C is

the number of columns.

Different species of Majorana may be injected into the code as X or Y operators

on vertices along the bottom of the lattice from which edges are either uniformly

pointing towards or away. As well as this, in the case where a hanging auxiliary

qubit along the top is used by only 2 edge operators, a single particle operator can be

injected as a Z on the hanging qubit, this operator corresponds to a single particle

vertex shared by the two edge operators (see fig. 3.3 for illustration).

3.3.2 Diagram Notation

The encodings for the remaining lattice structures are more consistent in their struc-

ture so the following shorthand is used to simplify their illustration. An edge

incidence on a vertex will either be an arrow or a blank line. As has been standard

3.3. Examples of Weight-3 Planar Encodings 93

Z

Z

X

Y

Z

Z

Z

Y

Z

Figure 3.3: The encoding on the above hexagonal lattice has 2 extra qubits and so its
disparity is ∆ = 2. Distinct particle species can be injected at the corners with
only 2 edges pointing to/from them and at the hanging auxiliary qubits shared
by only 2 edges. Orange: A single particle operator at an injection site along
the bottom of the lattice, green: a single particle operator injected at a corner
injection site and transported by edge operators into the lattice, purple: a single
particle operator injected via an operator on a hanging qubit, note that this
operator corresponds to a particle operator acting on the circled vertex in the
fermionic system, blue: a single particle operator injected at via a hanging qubit
and transported by edge operators into the lattice.

thus far, an arrow denotes that the corresponding edge operator will act on that qubit

with a Y and a blank line denotes an X .

= X

= Y (3.30)

With these choices of Pauli acting on the vertex qubits, the vertex operators Vj on

these codes are represented by Z on the corresponding qubit as in previous cases.

All the encodings in the following sections have odd faces (faces with a qubit

assigned) of only two forms. The following shorthands denote how their surrounding

edge operators act on the face qubit

=

X Y

Y X

X

Y

Y

X

X

X
Y Y =

X X
X

X

X

X

X
Z

Y

(3.31)

3.3. Examples of Weight-3 Planar Encodings 94

Edge incidences may be switched arbitrarily provided that incidences on the same

vertex qubit commute and anticommute in the same manner. The Paulis acting on

face qubits may also be changed provided that opposite edges act with the same

Pauli in the square case and that all three are different in the triangular case.

3.3.3 The 4.8.8 Uniform Tiling

The 4.8.8 uniform tiling and the associated encoding are illustrated in Figure 3.4.

This tiling has the notable property that it may be readily used to represent a spinful

fermionic system on a square lattice, as illustrated in Figure 3.5. Using the compact

encoding on a 4.8.8 uniform tiling, a spinful fermi-hubbard model on a square lattice

may be represented on a planar hardware interaction architecture, with weight-2

spin-spin interactions, and weight-4 hopping terms.

Figure 3.4: The 4.8.8 Uniform Tiling and the unit cell of its encoding.

Loops around octagonal faces are non-trivial Paulis and generate the stabilizer,

loops around square faces are identity. The qubit to mode ratio is < 1.25.

This tiling pattern has the same even/odd face pattern as the square lattice with

octagons in place of the even square faces and so the disparity follows the same rules.

Figure 3.5: Layout of a spinful fermionic system on a square lattice, embedded in the 4.8.8
uniform tiling.

3.3. Examples of Weight-3 Planar Encodings 95

That is, for a rectangular shaped lattice such as the one shown in fig. 3.4 the disparity

is given by

∆ = OF−EF (3.32)

and may take values of -1, 0 or 1.

3.3.4 The 6.4.3.4 Uniform Tiling

Figure 3.6: The 6.4.3.4 Uniform Tiling and the unit cell of its encoding.

See fig. 3.6 for the lattice structure and the unit cell of the encoding. Loops

around triangular and hexagonal faces are non-trivial Paulis and generate the stabi-

lizer, loops around square faces are identity. The qubit to mode ratio is < 1.5.

Proposition 11. For a connected 6.4.3.4 lattice without holes and with all hexagonal

faces fully surrounded by square and triangular faces (e.g. fig. 3.6), the disparity is

∆ =−1.

Proof. Consider a 6.4.3.4 lattice with a single fully surrounded hexagonal face.

Clearly the disparity is -1 in this case as there are seven even faces and six odd faces.

Consider constructing a lattice by adding fully surrounded hexagonal faces. Each

hexagonal face added will amount to adding one of the following combinations of

faces:

3.3. Examples of Weight-3 Planar Encodings 96

These combinations all have the same number of even and odd faces and will not

change the disparity from -1.

The lattice can be made to simulate the full fermionic algebra by adding a single

square face to the outer edge where single particle operators may be injected at its

corners.

3.3.5 The 4.6.12 Uniform Tiling

Figure 3.7: The 4.6.12 Uniform Tiling and the unit cell of its encoding.

See fig. 3.7 for the lattice structure and the unit cell of the encoding. Loops

around hexagonal and dodecagonal faces are non-trivial Paulis and generate the

stabilizer, loops around square faces are identity. The qubit to mode ratio is < 1.25.

This tiling has the same odd/even face pattern as the 6.4.3.4 tiling and so

its disparity follows a similar rule in that a 4.6.12 lattice with no holes and fully

surrounded dodecagonal faces will have disparity

∆ =−1.

3.3.6 The Kagome Lattice (3.6.3.6 Uniform Tiling)

The Weight-3 Planar encodings shown so far do not have a disparity which grows

with the lattice bulk, this is because the unit cells have as many faces in K as they

do faces with no auxiliary qubits. However the Weight-3 planar encoding for the

3.3. Examples of Weight-3 Planar Encodings 97

Kagome lattice does not have this property.

Figure 3.8: (Left) A Kagome lattice with two triangular corners. (Right) The unit cell of the
encoding showing all possible edge operators and faces.

See fig. 3.8 for the lattice structure and the unit cell of the encoding. Loops

around hexagonal faces are non-trivial Paulis and generate the stabilizer, loops

around triangular faces are identity. The qubit to mode ratio is < 1.67.

Proposition 12. The disparity of the encoding for a connected Kagome lattice of

any shape without holes is given by

∆ = HF +TC−2 =
1
2
(T F +TC−2) (3.33)

where HF is the number of hexagonal faces, T F is the number of triangular faces

and TC is the number of triangular corners, that is, the number of vertices on the

lattice boundary which belong only to a triangular face.

Proof. Consider a triangular face, the product of any two encoded edge operators

around the face gives the third one up to some phase, therefore if an encoding on a

lattice includes two edge operators around such a face (e.g. on the lattice boundary),

then the third is included in the lattice automatically (illustrated below).

Automatically

includes

From this we can see that for a lattice of any shape, the triangular faces between

hexagonal faces are automatically included in the encoding.

Now consider adding a Hexagonal face to the boundary of an existing lattice

with no triangular corners. No matter where it is added, it will create two “slots”

3.3. Examples of Weight-3 Planar Encodings 98

between itself and other hexagonal faces which induce a triangular face as shown

above. All contexts in which a Hexagonal face can be added are shown below to

illustrate this (the fifth is captured in the previous diagram), the extra vertices and

edges forming the new hexagon are shown in blue and the third edge of the induced

triangle face is shown in red.

Any Kagome lattice without triangular corners may be constructed this way, begin-

ning with a single hexagonal face and adding further hexagons one at a time.

From Corollary 10 the disparity of this encoding is

∆ = T F−HF (3.34)

where T F is the number of triangular faces and HF is the number of hexagonal

faces. A single hexagonal face has ∆ =−1. A hexagonal face added to it will change

the ∆ by +1 as it will bring two triangular faces with it as shown earlier. From this it

is clear that ∆ = HF−2 for a lattice with no triangular corners.

A lattice with triangular corners may be constructed by simply adding triangular

faces to the boundary of a lattice with no such corners. Each added triangular corner

will increase ∆ by 1 so the general formula is therefore ∆ = HF +TC−2.

For the equivalent expression in terms of T F rather than HF consider the lattice

with no triangular corners once more. When constructed as before it is clear that

every Hexagonal face added also adds two triangular faces except for the first one so

in this case:

T F = 2HF−2. (3.35)

If triangular corners are added to such a lattice then they will each necessarily add

another triangular face so in general the relationship is

T F = 2HF +TC−2. (3.36)

3.3. Examples of Weight-3 Planar Encodings 99

Solving for HF and substituting into the first expression in eq. (3.33) yields the

second.

From the above one can see that the disparity of the encoding on a Kagome

lattice actually grows with the lattice size and so, by theorem 6, does the number

of distinct single particle species one can simultaneously define. As discussed in

section 3.1.3 the appropriate fusions of these species can produce any Pauli operator

on the extra (C2)⊗∆ space attached to the encoding. To reduce errors, this space

can be restricted to a single state by finding a set of commuting Paulis to act as a

stabilizer, all that remains is to find a maximal set of particle species which can be

fused to form stabilizer generators.

As with the square lattice encoding, vertices on which edge operators act with

only one type of Pauli operator can serve as injection points for distinct species.

These are only found on triangular corners on the lattice boundary and some lattices

may not even have these so there must be other ways to define single particle species.

These other injection points take a more involved form. Consider a triangular

face, the three edge operators around a triangular face will act on their vertex qubits

with Pauli, X and each of them will act on the face qubit with a different Pauli

(see (3.31)). This argument also applies to triangular faces where edge operators

act with Y on vertex qubits, simply substitute X with Y where appropriate. Label

these edge operators EX , EY and EZ according to their face qubit support. Also label

the vertex qubits qX , qY and qZ according to the edge operator opposite, so qX is

opposite EX etc. Now define an operator which acts with an X on qZ and with a Z

on the face qubit. This operator will anticommute with the vertex operator on qZ ,

all edge operators incident on qZ and will commute with all other edge and vertex

operators. By definition 4 this is a member of a single particle species. Consider a

single operator defined similarly on qX (X on qX and X on the face qubit), it is also a

single particle operator but it anticommutes with the particle on qZ , by definition 5

this makes them members of the same species. This is confirmed by seeing that the

two are related by the edge operator EY . See fig. 3.9 for illustration.

From this one can see that, as well as triangular corners, distinct single particle

3.3. Examples of Weight-3 Planar Encodings 100

X X
X

X

X

X

X
Z

Y
EX

qX
EZ

(a)

qZ

EY

qY

Z

X

X

X

(b)

Y

X

Figure 3.9: (a) Labelling of edge operators and qubits around a triangular face on the
Kagome Lattice encoding. (b) Single particle operators on the circled vertices.
These are all of the same species and may be transformed into each other by
edge operators. On an equivalent face where the edge operators act on vertices
with Y , the particle operators also act on vertices with Y .

species may be associated with any triangular face and injected at any of its vertices

(including triangular faces that contain a triangular corner). Particles injected at

different triangular faces and corners satisfy definition 5 as distinct species so a set of

distinct species for every triangular face and triangular corner can be simultaneously

defined. Substituting the second expression in eq. (3.33) into eq. (3.25) reveals that

this set is maximal and so the species may be used to define any operator on the

excess Hilbert space. See fig. 3.10 for examples of single particle operators on a

Kagome lattice encoding.

X

Z Z

X

Y Z Z

Z

Y

Y

Y

Figure 3.10: Single particle operators on a Kagome lattice at the circled vertices. Purple:
A single particle operator at a triangular corner. Orange: A single particle
operator transported from a triangular corner by edge operators. Green: A
single particle operator defined at a triangular face as in fig. 3.9. Blue: A single
particle operator transported from a triangular face via edge operators.

With a maximal set of single particle species, stabilizers may be defined to

restrict the excess Hilbert space of the encoding. To do this, simply group 2∆ of the

particle species into ∆ disjoint pairs and fuse each pair on any vertex. The resulting

∆ operators will commute and act trivially on the encoded fermions so they can be

3.3. Examples of Weight-3 Planar Encodings 101

added to the stabilizer. It is preferable to pair up particles with injection sites that

are close to each other, that way the stabilizer formed by their fusion will have a

low Pauli weight, making its measurement less costly (see fig. 3.11 for illustration).

Pairing up 2∆ of the species will cut the Hilbert space such that the full fermionic

Fock space is encoded. The remaining pair of particle species then represent the

single Majorana operators and the hole operators. It may also be desirable to pair

these up to form a stabilizer equivalent to the product of all vertex operators, fixing

the parity sector of the encoded space.

Z

Z

Z

Z

Y

Z

Y

Figure 3.11: Possible stabilizers to restrict the excess Hilert space on a Kagome lattice
encoding, formed by fusing particle species on the circled vertices. Blue:
Fusion of two species injected at adjacent triangular faces. Green: Fusion
of one species injected at a triangular corner and one injected at the same
triangular face. Orange: Same as Green. The particle species injected at the
remaining triangular faces are then the Majorana and hole operators.

3.3.7 The 3.12.12 Uniform Tiling

Figure 3.12: The 3.12.12 Uniform Tiling and the unit cell of its encoding.

See fig. 3.12 for the lattice structure and the unit cell of the encoding. Loops

around dodecagonal faces are non-trivial Paulis and generate the stabilizer, loops

3.4. A Cubic Encoding 102

around triangular faces are identity. The qubit to mode ratio is < 1.34.

This tiling has the same even/odd face pattern as the Kagome lattice, with

dodecagons instead of hexagons, accordingly the disparity of this encoding is

∆ = DF +TC−2 (3.37)

where DF is the number of dodecagonal faces and TC is the number of triangular

corners. The argument in the proof for proposition 12 is easily modified for this case.

3.4 A Cubic Encoding

3.4.1 Construction

Having covered a range of 2D geometries, a version of the encoding on a cubic lattice

will be introduced. This encoding is a generalization of the 2D square encoding

reviewed in chapter 2 in the following sense. Construction begins by defining an

orientation for each edge in the lattice as in the 2D case, with the condition that any

2D slice of the lattice has an edge orientation identical to a 2D encoding. As with

the 2D case, this ensures that edge operators that fail to anticommute at a vertex

are clustered around the same faces, allowing them to share auxiliary qubits and

resolve this. There are a number of ways to do this. Consider the (0,0,0) corner of

the cubic lattice. This corner has three edges extending away from it in the x̂, ŷ and ẑ

direction. Specifying the orientation of those three edges completely specifies the

orientation of all other edges1, given the condition that any 2D slice looks identical to

the edge orientation of a 2D encoding. Since we do not care about the case where all

orientations are inverted, there are four different ways to orientate these three edges.

In one case, all arrows point away from the corner, and in the three other cases, two

arrows point away from the corner, and a third arrow points into the corner. This is

illustrated in fig. 3.13. Thus there are four possible ways to give an orientation to the

1More explicitly, if an orientation is decided for an edge aligned with the â direction, then all
edges running along the same straight line as it must be oriented the same way, and every edge an
odd (even) number of lattice translations in the ŷ or ẑ directions must be oriented the other (same)
way. Thus picking an orientation for a single edge parallel to the x̂ direction fixes all others parallel to
that direction. The same logic applies in the other cardinal directions.

3.4. A Cubic Encoding 103

edges of the lattice.

(0,0,0)

Figure 3.13: Four possible orientations to the edges of the cubic lattice. Odd faces are
coloured blue and have a circle in the center to denote the extra qubit. The
leftmost cell is odd and the remaining three are even.

In the case of the 2D encoding, the orientations of the edges are in accordance

with a checkerboard labelling of the faces, so that an even face has oriented edges

circulating around it, and an odd face has all edges around it touching head to head

or tail to tail. A similar checkerboard labelling is induced by one’s choice of edge

orientation for the corner (0,0,0), with all three faces surrounding that corner being

odd in the case where all edges point away from the corner, and with only one face

being odd in the other three choices of edge orientation.

Regardless of one’s choice of orientation, a given cubic cell in the lattice will

either have all six faces odd, referred to as an odd cell, or exactly two opposite faces

odd, referred to as an even cell (see fig. 3.13). There are no other possibilities. This

is most easily seen by checking the four possible edge orientations of the (0,0,0)

corner in the case of a 2×2×2 cubic lattice. The cells will be oriented in the cubic

lattice such that every odd cell shares its faces only with even cells, and every even

cell shares its odd faces only with odd cells, as illustrated in fig. 3.14. Thus every

odd face can either be associated with a unique odd cell, or else it is a face on the

boundary of the cubic lattice. These odd faces on the lattice boundary that do not

belong to an odd cell are referred to as isolated odd faces.

Having specified an orientation of the lattice, and an even/odd labelling of all

of the faces and cells, the encoding may now be described. In fact the encoding is

almost exactly the same as in the 2D case. Associate a qubit with every vertex of the

lattice, and a qubit with every odd face of the lattice. The vertex operator at vertex

i is given by Ṽi = Zi, and the edge operator for edge (i, j), with i pointing to j is

given by Ẽi j := XiYjP(i, j) (Ẽ ji :=−Ẽi j) where P(i, j) is the same Pauli operator P

3.4. A Cubic Encoding 104

Figure 3.14: The unit cell of the encoding which includes two odd cells (front top right,
back bottom left) and six even cells in different orientations.

X Y

X

X

X

Y

Z
Z

X

Y
Y

Y

Figure 3.15: Edge operators of the cubic encoding along edges aligned in the x, y and z
directions (shown from left to right). If an edge is part of an isolated odd face
then it will only act on one face qubit, if it is only part of two even faces then it
will only act on vertex qubits.

on every face qubit adjacent to (i, j), where if the edge (i, j) is aligned to the x̂ (ŷ, ẑ)

direction, then P = X (Y , Z) respectively. This ensures that any two edges, going in

orthogonal directions, which share an adjacent odd face, will act on that face qubit

with different Pauli operators. Finally, for every isolated odd face, choose a single

adjacent edge (i, j), with i pointing to j, and modify the definition of the operator

for that edge to be Ẽi j := −XiY jP(i, j). This ensures that the product of the edges

around that face is equal to I and not −I. Fig. 3.15 illustrates the operators of this

encoding.

As every edge is adjacent to at most 2 odd faces, the maximum weight of the

edge operators in this encoding is 4. In the bulk there are 6/4 = 1.5 odd faces for

every vertex so the number of qubits per mode is ≤ 2.5.

3.4.2 Disparity

The disparity of the encoding, ∆, is more complicated to compute than for the planar

cases. In particular, D(K) is not simply equal to the number of odd faces, as in the

3.4. A Cubic Encoding 105

ZZ

X

X

=

(a) (b)

ZZ
X

X

Z
Z

Z
Z

Z Z

X

X

Z
Z

X

X

Figure 3.16: Loop operators around odd and even faces in the cubic encoding. (a) shows
the identical loop operators around odd faces opposite to each other on an odd
cell. Loop operators around odd cells aligned in different directions will have
a similar form only with different Paulis. Loop operators around isolated odd
faces are identity. (b) shows a loop operator around an even face. Similarly,
operators oriented in different directions will have the same shape but different
Paulis. Loop operators around even faces on the lattice boundary will have
“hanging” Paulis omitted.

square lattice encoding.

Lemma 13.

D(K) = IOF +2OC. (3.38)

Where IOF denotes the number of isolated odd faces, and OC denote the number of

odd cells.

Proof. Since K is an abelian finitely generated group, its rank D(K) is the size of a

maximal independent subset of elements.

Note that for cycles a around isolated odd faces σ(a) = 1, and so a ∈ K.

Furthermore, for a cycle a around an odd face that is bounding an odd cell, the cycle

b on the opposite face of that cell satisfies σ(a) = σ(b) (see Figure 3.16), and so the

cycle ab around that pair of faces is in K.

Consider a subset g⊆ K consisting of the cycles around:

• each isolated odd face.

• one pair of opposite faces for every odd cell.

• a second different pair of opposite faces for every odd cell

3.4. A Cubic Encoding 106

We claim that K = 〈g〉, and that no element of g can be generated by any other

elements of g. Thus D(K) = |g|= IOF +2OC.

First we argue that every element of g is independent. This can be seen straight-

forwardly by noting that every odd face only shares edges with odd faces bounding a

common odd cell. Thus all the isolated odd faces are independent. Furthermore each

cycle ab around a pair of opposite odd faces in g only shares edges with the other

pair of opposite odd faces cd ∈ g, and ab 6= cd. Thus all elements are independent.

Secondly we argue that K is generated by g, via proof by contradiction. Assume

there exists an element a ∈ K that is not in 〈g〉. We first note that there exists a set of

odd face cycles F such that

a = ∏
b∈F

b (3.39)

This can be seen by noting that if a cycle a is in K then for every edge e1 in a

pointing into (away from) a vertex v there exists another edge e2 in a which also

points into (away from resp.) vertex v. Furthermore by inspection e1 and e2 must

bound a unique common odd cell. Thus a may be decomposed into a product of

cycles, where each of these cycles are confined to the edges bounding a unique odd

cell. Such cycles may be generated by the odd face cycles bounding the odd cell.

For any odd cell c, we may define Fc = {b|b ∈ F and b bounds c}, and the

corresponding product

ac := ∏
b∈Fc

b.

Without loss of generality we may assume to have chosen an a s.t. no b ∈ F is an

isolated odd face. Thus a = ∏c ac. We note that any two odd face cycles b and

b′ that bound different odd cells have representations σ(b) and σ(b′) that act on

disjoint qubits. It must follow that ac ∈ K. It can be seen by enumerating cases

that all possible forms of ac, ie all possible combinations of products of face cycles

bounding a given odd cell whose product yields an element of K, may be generated

by elements in g. Thus a ∈ 〈g〉, which is a contradiction.

3.4. A Cubic Encoding 107

Given this expression for D(K), the disparity ∆ may now be determined from

counting arguments.

Theorem 14. Let an odd corner vertex of a cubic lattice be a corner vertex of the

lattice whose associated corner cell is odd. Given a cubic lattice encoding as defined

above, the disparity is given by

∆ =
OCV

2
−1 ∈ {−1,0,1,3}

Where OCV denotes the number of odd corner vertices.

Proof. Let V denote the number of vertices, E the number of edges, F the number

of faces, C the number of cells, OF/EF the number of odd/even faces, OC/EC the

number of odd/even cells, IOF the number of isolated odd faces, N the number of

qubits, and M the number of fermionic modes.

Note that for this encoding

N−M = OF. (3.40)

Note also that

IOF = OF−6OC. (3.41)

Note also that the Euler characteristic of a cubic lattice is given by

V −E +F−C = 1. (3.42)

This can be seen most easily by counting the edges vertices faces and cells of a cubic

lattice with a single cell, and noting that the Euler characteristic is an invariant of the

lattice size, since it is a topological invariant. Thus, using eq. (3.19) retrieve

D(CG) = F−C. (3.43)

3.4. A Cubic Encoding 108

Substituting these expressions, and eq. (3.38), into eq. (3.18) gives

∆ = OF−EF−3OC+EC (3.44)

We need only count odd/even faces and cells. For a given vertex in the lattice, we

define:

∆v = OFv/4−EFv/4−3OCv/8+ECv/8 (3.45)

where OFv,EFv,OCv,ECv are the number of odd faces, even faces, odd cells and

even cells, respectively, containing the vertex v. ∆v counts the number of odd/even

faces and cells per vertex, with the factors of 1/4 or 1/8 corresponding to the number

of other vertices sharing respectively a face or a cell. Thus

∆ = ∑
v

∆v (3.46)

The values of ∆v for vertices in the bulk (deg(v) = 6), on the face (deg(v) = 5),

on an edge (deg(v) = 4), and on a corner (deg(v) = 3) of the cubic lattice, may be

computed by inspection of the vertex neighbourhoods illustrated in fig. 3.17. For a

vertex v in the bulk of the lattice

∆v = 6/4−6/4−3∗2/8+6/8 = 0. (3.47)

For a vertex v on the face of the lattice

∆v = 4/4−4/4−3∗1/8+3/8 = 0. (3.48)

For a vertex v on the edge of the lattice, either

∆v = 2/4−3/4−3∗0/8+2/8 = 0, (3.49)

or

∆v = 3/4−2/4−3∗1/8+1/8 = 0. (3.50)

3.4. A Cubic Encoding 109

Finally, for a vertex v on the corner of the lattice, either

∆v = 3/4−0/4−3∗1/8+0/8 = 3/8 (3.51)

if v is adjacent to an odd cell (an odd corner vertex), or

∆v = 1/4−2/4−3∗0/8+1/8 =−1/8 (3.52)

if v is adjacent to an even cell (an even corner vertex). Thus, since there are 8 corner

Figure 3.17: The possible neighbourhoods of vertices in the bulk, on a face, on a edge, and
on a corner of the cubic lattice.

vertices, which are either even corner vertices or odd corner vertices

∆ =
3
8

OCV − 1
8
(8−OCV) =

1
2

OCV −1. (3.53)

All that remains is to show that ∆ ∈ {−1,0,1,3}.
First note that an odd cell only shares faces with even cells, an even cell only

shares odd faces with odd cells, and the face opposite an odd face on an even cell is

also an odd face. Therefore, considering the three columns of cells extending away

from a given odd cell in the three cardinal directions, each column will consist of

alternating even and odd cells. Thus, given an odd corner cell, a corner opposite to

3.4. A Cubic Encoding 110

it in one of the three cardinal directions will be odd if the side length of the lattice in

that direction is even, and even if the side length is odd.

Second note that any cell sharing an even face with an even cell must also be an

even cell. Furthermore, the face opposite an even face on an even cell is also an even

face. Therefore, if we consider the three columns of cells extending away from a

given even cell in the three cardinal directions, only the cells in one of those columns

contain odd cells, and the other two columns must only contain even cells. Thus, for

a given even corner cell, of the three corner cells opposite this corner cell along the

cardinal directions, at least two of them must be even corner cells, and the other is

odd if and only if the side length of the lattice in that direction is odd.

If a lattice has no odd corners, then the disparity is ∆ =−1. If on the other hand

a lattice has at least one odd corner vertex, then the observations above completely fix

the even or oddness of the remaining corner vertices based solely on the even/oddness

of the side lengths of the lattice. This is illustrated in fig. 3.18. In these cases the

number of corner vertices is 8, 4 or 2, which yields disparities of 3, 1 and 0.

odd corner
even corner

e

e

e o

e

e o

e

o o

o

o

Figure 3.18: The possible configurations of even and odd corners on the cubic encoding,
assuming there is at least one odd corner. The letters denote whether a lattice
edge has an even (e) or odd (o) number of vertices.

For a lattice with infinite extent in any direction, there are no corner vertices, and

so the disparity is −1, corresponding to an encoding representing the even fermionic

Hilbert space. The 2D square encoding is formally a subcase of the cubic encoding

outlined here, and so this also applies to the 2D square encoding.

3.5. Discussion 111

3.4.3 Particle Species

Particle species are straightforward to identify on this encoding. The odd corners,

whose number dictates the disparity of the encoding, serve as injection sites for

single particle operators just as in the 2D case. For ∆ = 0, 1 and 3 cases the 2, 4 and

8 odd corners beget distinct particle species, two of which can be assigned as the

encoded single Majorana γ̃i and hole h̃i operators. Any remaining species are taken

to be holes tensored with an element of some maximal anticommuting set of Paulis

on the excess encoded qubit space.

3.5 Discussion

This chapter has illustrated how the Compact encoding may be applied to a wide

range of lattices and importantly has shown how to analyse the codespace of these

encodings. Hopefully these examples will be useful to others in tailoring the Compact

encoding to their own needs.

It would be valuable to have a general procedure for constructing these encod-

ings. In particular a procedure for choosing the orientations of the edges of the

graphs, and assignment of auxiliary qubits, so that the weights of the edge operators

are minimal and act locally. The constructions presented here were not too diffcult to

find, but ultimately emerged from a process of trial and error. It is possible that the

problem may be straightforwardly framed as a combinatoric optimization problem,

however this suggests that a generic set of instructions for optimal constructions is

unlikely, especially given that ultimately the optimization problem will be dependent

on the particular notion of locality furnished by the quantum computing device.

It was discussed in chapter 2, section 2.3 that the Compact Encoding on a square

lattice may be interpreted as condensing fermion-like excitations of the toric code

into the codespace. This is revealed by the fact that removing the vertex qubits

yields the toric code on a square lattice. Similar connections can be found with

some of the uniform tiling constructions in this chapter. The encoding on the 4.8.8

tiling utilises the square lattice toric code in a similar fashion to the square lattice

encoding while the 6.4.3.4 and 4.6.12 encodings are connected to the toric code

3.5. Discussion 112

on a hexagonal lattice in the same manner (or equivalently a triangular lattice). As

well as this, stabilizers of the encodings on the Kagome lattice and the 3.12.12 tiling

resemble the stabilizers of the color code [65] when the vertex qubits are removed,

indicating a possible connection with the fermion-like excitations present in that

construction [66]. The encoding on a cubic lattice also reveals a topological code

when its vertex qubits are removed, however this underlying code does not appear

to resemble anything in the existing literature [46, 60, 67, 68, 69, 70] so it will be

explored in more detail in chapter 5.

Chapter 4

Mitigating Errors on the Compact

Encoding

As discussed in previous sections, it is desirable for fermionic encodings to encode

local fermionic interaction operators as low weight, local qubit operators. This yields

lower circuit depths for Hamiltonian simulation algorithms, an important component

of quantum procedures for solving classically intractable fermionic systems such as

the Fermi-Hubbard model. Recall also, that local fermionic encodings which achieve

the former, are in fact stabilizer codes where the encoded fermionic terms are the

logical operators and the encoded Fock space forms the codespace, any deviation

from which is flagged by measuring the stabilizers, be they loops of edge operators

or Jordan-Wigner strings. The error detecting and correcting abilities of stabilizer

codes are also desirable for simulation of fermionic systems as the suppression of

errors will allow for longer and more detailed computations.

Herein lies a trade-off inherent to fermionic encodings. A good error correcting

code has a large code distance which reduces the likelihood of undetectable errors but

a low weight fermionic encoding aims to achieve the opposite of this. This chapter

argues that, despite the apparent conflict between low-weight fermionic operators

and error correction and detection, there can exist valuable error mitigating properties

of fermionic encodings that do not need to be sacrificed in the pursuit of low-weight

fermionic operators. In particular, in the context of fermionic simulation of natural

systems, one might tolerate—or even desire—some noise in the physical qubits,

114

provided that this noise translates into “natural” fermionic noise in the simulated

fermionic system. This will depend crucially on the choice of encoding, and on what

fermionic operators the low-weight undetectable errors correspond to in the logical

fermionic space.

This point has been made in a more general context in [71]. There, the authors

prove that for any local Hamiltonian simulations, as defined rigorously in that paper,

local physical noise in the simulator system corresponds to local noise in the system

being simulated. They also show that such local Hamiltonian simulations can indeed

be constructed; in fact, they show there exist simple, universal quantum Hamiltonians

that are able to simulate any target Hamiltonian, to arbitrary precision. The general

theoretical results of [71] do not address specific natural noise models, nor do they

address fermionic systems.

This chapter demonstrates how local noise maps to local noise on the encoded

system – for specific families of local noise models – on the square and cubic

lattice versions of the Compact encoding from this work. The analysis considers

independent, identically distributed (iid) noise on the quantum system and studies

the effect on the virtual fermionic system. Although this is a simplistic (but widely

used) model for noise on quantum devices, the salient features of the results depend

only on the locality of the noise model rather than the specific form. Furthermore,

this model is a surprisingly good match for the noise observed in current hardware

[57].

In summary, section 4.1 shows that the natural noise experienced by a fermionic

system coupled to a bosonic bath experiences fermionic phase noise, section 4.2

shows that the vast majority of undetectable single qubit errors map to this noise on

the encodings considered and section 4.3 shows how the noise for which this is not

the case can be avoided. Some discussion follows in section 4.5.

The work in this section is based off material from the paper [59] by the author

and Joel Klassen.

4.1. Natural Noise on Fermionic Lattice Models 115

4.1 Natural Noise on Fermionic Lattice Models
A common fermionic lattice model is one in which lattice sites correspond to atomic

positions. These atomic positions are often considered to be fixed. However, one may

consider the possibility of phonons in the lattice of atoms, and how these phonons

couple to the electrons as a source of noise. To first order, this coupling is dominated

by low energy acoustical modes [72, 73], with interaction Hamiltonian known as

the Fröhlich Hamiltonian

Hint =
1
V ∑

k,σ
∑
q

gqc†
k+q,σ ck,σ

(
bq +b†

−q

)
, (4.1)

where c(†)k,σ and b(†)k are, respectively, the annihilation and creation operators for

fermions and phonons with momentum k and spin σ in the case of fermions.

For a thermal bosonic bath, the effective noise model of this interaction on

the fermionic system is spontaneous hopping of fermions into different momentum

modes. In the position basis this translates into dephasing noise [74], since motion

in momentum space corresponds to phase shifts in position space. The fermionic

dephasing operator is: (
1−2n j

)
=−iγ jγ j. (4.2)

A more thorough derivation of this noise model follows.

4.1.1 Derivation of Fermionic Phase Noise

Consider the Fröhlich Hamiltonian [75, 76], which reads

Hint = ∑
k,σ

∑
q

gqc†
k+q,σ ck,σ

(
bq +b†

−q

)
. (4.3)

Assume for simplicity a momentum-independent coupling gq = g := 1.1 A Fourier

transform of the fermionic and bosonic operators yields the position space expression

Hint = ∑
x,σ

nxσ (bx +b†
x), (4.4)

1A more sophisticated and realistic analysis could be performed for a momentum-dependent
coupling, this will not be attempted here.

4.1. Natural Noise on Fermionic Lattice Models 116

where nxσ = c†
x,σ cx,σ is the number operator for spin σ ∈ {↑,↓} on site x. Given an

interaction strength γ, the interaction unitary is Uint = e−iγHint .

A system prepared in a state ρ = ρ↑⊗ ρ↓⊗ ρB, in the spin-up, spin-down

fermionic spaces and bosonic space respectively, will evolve under the channel

Uint(ρ) =Uintρ↑⊗ρ↓⊗ρBU†
int (4.5)

and the effective channel on the spin-up sector will be

Λ(ρ↑) = Tr↓,B
[
Uintρ↑⊗ρ↓⊗ρBU†

int

]
. (4.6)

Using the property of the partial trace,

TrW [T (IV ⊗S)] = TrW [(IV ⊗S)T] ∀S ∈ L(W) ∀T ∈ L(V ⊗W) (4.7)

and writing

Uint = e−iγ(H↑+H↓)t

= e−iγH↑te−iγH↓t

=U↑U↓

(4.8)

where Hσ = ∑x nxσ (bx +b†
x) with [U↑,U↓] = 0, we have

Λ(ρ↑) = Tr↓,B
[
U↓U↑ρ↑⊗ρ↓⊗ρBU†

↑U
†
↓
]

= Tr↓,B
[(

U↓I↑⊗ρ↓⊗ IB
)
·
(

U↑ρ↑⊗ I↓⊗ρBU†
↑U

†
↓
)]

= Tr↓,B
[(

U↑ρ↑⊗ I↓⊗ρBU†
↑U

†
↓
)
·
(
U↓I↑⊗ρ↓⊗ IB

)]
= Tr↓,B

[(
U↑ρ↑⊗ρ↓⊗ρBU†

↑
)]

= TrB
[
U↑ρ↑⊗ρBU†

↑
]
.

(4.9)

Assuming that the bosonic bath is in a finite temperature Gibbs state in a completely

thermalised bath configuration, with inverse temperature β and partition function Z,

4.1. Natural Noise on Fermionic Lattice Models 117

the effective channel can be rewritten in the Fock basis |~NB〉 of B as

Λ(ρ↑) = ∑
~NB,~N′B

e−β |~N′B|

Z
〈~NB|U↑ |~N′B〉ρ↑ 〈~N′B|U†

↑ |~NB〉 . (4.10)

Noting that 〈~NB|~N′B〉= δ~NB,~N′B
and 〈~NB|H↑ |~NB〉= 0, a second order expansion of

U↑ in τ = γt yields

Λ(ρ↑) =O(τ3)+ρ↑

+ τ2
∑
x,x′

Γxx′(β)nx↑ρ↑nx′↑

− τ2

2 ∑
x,x′

Ωxx′(β)
(
nx↑nx′↑ρ↑+ρ↑nx↑nx′↑

) (4.11)

where

Γxx′(β) = ∑
~NB,~N′B

〈~NB|(bx +b†
x) |~N′B〉 〈~N′B|(bx′+b†

x′) |~NB〉
e−β |N′B|

Z
(4.12)

and

Ωxx′(β) = ∑
~NB

〈~NB|(bx +b†
x)(bx′+b†

x′) |~NB〉
e−β |NB|

Z

= ∑
~NB,~N′B

〈~NB|(bx′+b†
x′) |~N′B〉〈~N′B|(bx +b†

x) |~NB〉
e−β |NB|

Z

= Γxx′(β).

(4.13)

Noting that Γxx′(β) = δxx′Γxx(β) = δxx′Γ(β) where Γxx = Γ(β) does not de-

pend on x, we have

Λ(ρ↑) =O(τ3)+ρ↑

+ τ2
Γ(β)∑

x↑
nx↑ρ↑nx↑

− τ2

2
Γ(β)∑

x↑

(
n2

x↑ρ↑+ρ↑n2
x↑
)
.

(4.14)

4.2. Mapping Physical Errors to Logical Errors 118

Using the fact that n2
x = nx this can be written

Λ(ρ↑) =O(τ3)+ρ↑+ τ2
Γ(β)∑

x

(
nx↑ρ↑nx↑+

1
2
(n2

x↑ρ↑+ρ↑n2
x↑)
)
. (4.15)

Considering the fermionic phase operator defined as φx↑ = (1−2nx↑), then

∑
x

(
nx↑ρ↑nx↑+

1
2
(n2

x↑ρ↑+ρ↑n2
x↑)
)
=

1
4 ∑

x
(φx↑ρ↑φx↑−ρ↑) (4.16)

and thus

Λ(ρ↑) =
(

1− τ2Γ(β)M
4

)
ρ↑+

τ2Γ(β)
4 ∑

x
φx↑ρ↑φx↑+O(τ3) (4.17)

to second order, where M is the number of modes. The above argument applies

entirely to the spin-down sector as well.

The above derivation has shown that the reduced evolution channel of a system

of spin-1
2 fermions coupled to a bosonic bath (e.g. vibrational modes in a material) is

approximately equivalent to a random phase flips occurring on position modes after

every small time step with some small probability quadratic in the step’s duration.

From this one sees that if a simulated fermionic system were to experience similar

noise then it’s arguable that the simulation would still be “true to life”. In fact, the

following sections will show that for the Compact Encoding, the primary form of

any undetectable errors on a simulation will be of this form.

4.2 Mapping Physical Errors to Logical Errors

This section shows that for the square and cubic lattice instances of the Compact

encoding shown in chapter 3, all weight-1 qubit errors fall into one of three cate-

gories: detectable errors, errors that correspond to mode-weight-1 phase noise, and

errors that correspond to mode-weight-1 Majorana operators. The mode-weight of

a fermionic operator counts the number of fermionic modes acted on non-trivially

(not to be confused Pauli weight). Thus, aside from the Majorana errors, all unde-

tectable weight-1 errors correspond to low-mode-weight, local, and arguably natural

4.2. Mapping Physical Errors to Logical Errors 119

fermionic noise as per the derivation in section 4.1. Although the Majorana errors

can only occur on very few sites, they can take a fermionic state into one which

violates parity superselection. Section 4.3 presents some techniques for avoiding or

detecting these errors on the VC and Compact encodings.

The analysis here is motivated by the assumption that weight-1 Pauli noise

dominates in the given noise model. This is consistent with the most commonly

studied qubit noise model, iid depolarising noise, amongst others.

Proposition 15. On the Compact encoding for square and cubic lattices, the only

non-trivial, undetectable, Pauli weight-1 errors are:

• Z operators on primary qubits, which map to mode-weight-1 fermionic phase

errors Z j 7→ −iγ jγ j.

• In the case where the full fermionic space is encoded, X or Y errors on

those corners adjacent only to an odd face, which map to single Majorana or

Majorana hole operators, depending on the choice of convention.2

Proof. There can be X , Y or Z errors, either on the lattice face qubits (auxiliary

qubits), or the vertices (primary qubits). They will be addressed separately.

Auxiliary Qubits. By inspection, every face qubit on the square and cubic lattice

encodings is acted upon by at least two even face stabilizers with different Pauli

operators. Therefore every single Pauli error on a face qubit will flip at least one

stabilizer generator and thus is detectable.

Primary Qubits. Stabilizers only act with Z on vertex qubits, stabilizers have no

support on vertex qubits that are not contained in even faces (odd corner vertices).

Any Z errors on vertex qubits are then undetectable as they always commute with

stabilizers; they correspond to fermionic phase errors. X and Y errors on vertex

qubits not on odd corners are detectable as they anticommute with stabilizers. X and

Y errors on odd corner vertices are undetectable as no stabilizers touch them, these

2For example Xi 7→γi, Yi 7→γi or Xi =γi ∏ j(−iγ jγ j), Yi 7→γi ∏ j(−iγ jγ j). For a fixed fermionic
parity, the operator ∏ j(−iγ jγ j) is a good quantum number equal to ±1, and so fermionic hole
operators can be thought of as mode-weight-1 fermionic operators.

4.3. Mitigating Parity Switching Errors on the Square Lattice 120

correspond to single Majorana or Majorana hole operators on the encoded fermionic

system.

The above shows that, under low-weight biased noise, the primary source of

undetectable noise on a fermionic lattice simulation using the Compact Encoding

will be weight-1 Z errors on vertex qubits. In the simulated fermionic picture, these

correspond to position mode phase flips, exactly the form of the noise channel

derived in section 4.1.1. This suggests that even if such a simulation was subject

to noise then it would still produce physically meaningful results. The following

sections will discuss the mitigation of unphysical, undetectable parity switching

errors and a strategy for the correction of detectable low weight errors.

4.3 Mitigating Parity Switching Errors on the

Square Lattice
Parity switching errors, such as single Majoranas, can lead to violations of parity

superselection in the encoded fermionic system. One strategy to mitigate these

errors, up to first order, is to measure the parity of the fermionic system as a stabilizer.

This parity stabilizer is given by the product of vertex operators at every fermionic

site, which in our case corresponds to the product of Z operators on every primary

vertex qubit. However if one is performing non-destructive and coherent stabilizer

measurements, or is interested in measuring observables that do not commute with the

vertex operators, then such a stabilizer can be very costly to measure coherently. This

section shows how for the square case of the Compact encoding, these weight-1 parity

switching errors can be avoided through a minor modification to the construction.

A lattice with an odd number of faces can avoid parity switching errors alto-

gether by choosing the appropriate chequerboard pattern of the auxiliary qubits such

that none are placed on corner faces, permitting only the representation of parity-

preserving fermionic operators. Other lattice shapes always have auxiliary qubits

in at least two odd corner vertex qubits and so will always permit parity switching

errors.

4.4. Partial Correction of Detectable X and Y Errors 121

Y X

Y

YX

Y

X

Y

X

X

Y

X →

Y X

Y
X

Y

X

Y

Y

Z Y

Y

Y

X

(b)(a)

Figure 4.1: Lattice modification to create weight-2 single Majorana/hole operators. (a) The
change in edge operators (b) the Majorana/hole operators on the new corner
sites. For a corner face where the arrows are all pointing in the other direction,
the action of the new edge operator and the new Majorana operators on the
vertex qubits will be X .

If the odd corner vertex qubits are removed as shown in fig. 4.1, then the parity

switching errors correspond to Pauli weight-2 errors—i.e. the single Majorana or

hole operator—has a weight-2 qubit representation. One can preserve most of the

structure of the corner, by introducing a new diagonal edge operator connecting

those vertex qubits which had previously been connected to the removed site. To

ensure the correct anti-commutation relations, this new edge operator acts with a

Z on the face qubit and will act with the same Pauli operator on its incident vertex

qubits as the two edge operators bounding the odd face (see fig. 4.1). The cycle

operator formed by these three edge operators is the identity, provided the correct

sign convention is chosen for the diagonal edge.

Single Majorana (or Majorana hole) operators may be added on either of the

sites which were previously adjacent to the removed corner site, by applying a

weight-2 Pauli operator on the corresponding vertex qubit and on the face qubit.

Note that these operators anti-commute with all incident edge operators and the

vertex operator on that site.

4.4 Partial Correction of Detectable X and Y Errors
On the compact encoding, X and Y errors on primary sites are detectable, but they

are not distinguishable as they differ only by Z, which is itself an undetectable logical

error. This means that neither error is correctable since it is impossible to know

4.5. Discussion 122

which correction to apply and the application of the wrong correction leads to a Z

error. Normally this would mean that the codes do not lend themselves to active

error correction throughout a circuit run.

However, one can disregard the distinction between X or Y errors and apply

a random correction, i.e. an X or Y . This yields a 50% chance that the error is

corrected; and otherwise the error will be mapped to an undetectable Z error which

maps onto natural fermionic phase noise as per the contents of section 4.1. Together

with the fact that all single qubit Pauli errors on auxiliary qubits are distinguishable

in both the VC and Compact encodings, this means that active error correction can

be used for all single qubit errors, at the expense of introducing additional phase

noise on the simulated fermionic system.

4.5 Discussion
The features and techniques described in this chapter are relevant for near term

quantum algorithms with no active error correction or fault tolerance. Since fermionic

encodings are indispensable for fermionic simulation, they constitute a significant

fixed overhead in representing any fermionic systems on NISQ devices. One may

not be able to afford any additional overhead for supplementary error detection. In

this context the time scale of any coherent quantum evolution would have to be upper

bounded to ensure that the probability of an error is� 1. Individual runs might then

be post-selected based on whether errors are detected.

Take for example a quantum simulation via the Suzuki-Trotter expansion de-

scribed in section 1.3, i.e. approximating the Hamiltonian as

e−iHt =
(

e−ih1t/me−ih2t/m · · ·e−ihNt/m
)m

+ ε, (4.18)

with some error ε ∼O(t2/m) and where hi are the local Hamiltonian terms. Suppose

for the sake of argument that the error model is such that errors only occur between

Trotter steps, and not in the circuit decomposition of these steps. Given that syndrome

measurements are done by measuring stabilizers, which commute with all terms

in the Hamiltonian, any sufficiently spatially distant weight-1 Pauli errors in the

4.5. Discussion 123

volume of the computation can be detected, and those computations may be post-

selected away. However if two errors occur within the volume of the computation

which cancel their respective syndromes, then these runs can not be post-selected,

and will contribute to the overall expected accuracy of the computation. Naturally,

the question arises how one might address these higher order errors within this

framework.

A natural extension of the work in this chapter is to fully explore how higher

Pauli-weight errors map under these encodings. In particular, if higher-weight errors

also map to natural local fermionic noise, then it may be possible to similarly mitigate

qubit noise to an even higher order. For example, a number of undetectable weight-2

operators on the Compact encoding for a square lattice correspond to edge operators

along the boundary which expand into sums of hopping terms along the lattice

boundary and pair creation and annihilation operators on the corresponding sites.

This suggests a physical error model in which the simulated system is a subsystem

of a superconductor-like material where pairs of fermions may enter and exit at the

boundary. It will also be worth extending the analysis in this chapter to the other 2D

encodings presented in this work and the other local encoding construction in the

literature.

One interesting feature of these results is that there is an inbuilt preference for

a particular choice of weight-1 Pauli errors. Thus the work presented here may be

especially applicable in cases were the hardware is already biased towards certain

Pauli errors.

It is worth noting that if stabilizers are only measured at the end of a run,

then, depending on the observables one is interested in measuring, the cost of

some stabilizer measurements may be significantly reduced, since they can be

performed destructively and non-coherently. For example, if one is purely interested

in measuring fermion density in the system, then the highly non-local parity operator

can be measured simply by measuring every qubit in the Z basis. Thus allowing one

to detect the Majorana errors described in this work, without having to resort to any

modifications of the encodings.

4.5. Discussion 124

This material remains relevant even if one does have fault tolerance. Mitigating

a large fraction of errors already one level above the error-correcting code would

allow a reduction in overhead.

Chapter 5

Code Underlying the Cubic Compact

Encoding

In chapter 2, section 2.3 it was shown how the compact encoding may be thought of as

a method for condensing the particle excitations of the toric code into the low energy

subspace. In that case removing the vertex qubits from the stabilizer generators

reveals toric code stabilizers on the auxiliary qubits. This feature translates to the

cubic encoding, where the removal of the vertex qubits also reveals a topological

code structure. This code bears some resemblance to a 3D generalization of the

toric code presented in [67, 77], which has qubits living on the faces of cubes, and

employs weight 6 stabilizers on each cube. The code underlying the cubic encoding

also has qubits living on cube faces however they are more sparsely arranged with

the simplest stabilizers being weight 4 and 8 and associated with faces. Having

investigated the existing literature the author has been unable to find a code with a

structure obviously resembling this [60, 46, 68, 69] so this section will describe the

code’s structure and features on a finite cubic lattice with open boundary conditions

(referred to as an open lattice) and a lattice on a 3-torus.

The code described in this chapter will be referred to as the underlying code.

This chapter will also contain numerous references to specific cardinal directions.

Unless otherwise stated, diagrams will consistently be oriented using the convention

shown in fig. 5.1, with the x axis oriented left-to-right, z axis top-to-bottom and the y

axis running in and out of the page.

5.1. Structure and Codespace 126

z

x

y

Figure 5.1: The convention used for cardinal directions in this section. All subsequent
diagrams of 3D structures are oriented this way unless otherwise stated.

Figure 5.2: (Upper) Odd cells arranged touching corner-to-corner, even cells lie in the gaps
between odd cells. (Lower) An odd cell and all orientations of even cells. Qubits
live on all faces of odd cells, denoted by circles.

5.1 Structure and Codespace

As with the cubic encoding, the underlying code is defined on a cubic lattice with

faces and cells labelled even or odd. Odd faces form all 6 sides of odd cells which are

arranged touching corner-to-corner with the remaining cells being labelled even and,

consequently having 4 even faces and 2 odd faces opposite one another (see fig. 5.2).

Qubits live only on odd faces and the stabilizer group is generated by operators

identical to the loop operators of the cubic encoding, only without the vertex qubits

(see fig. 5.3). In the case of the 3-torus, the stabilizer of the cubic encoding includes

loop operators corresponding to non-contractible cycles (see fig. 5.4) as the loop

condition on edge operators must be satisfied for every loop. Equivalent operators

are not included in the stabilizer of this code.

5.1. Structure and Codespace 127

ZZ

X

X

=
ZZ

X

X

Z Z

X

X

XZ
Z

X

Figure 5.3: Stabilizer generators of the underlying code associated with lattice faces. An
odd face stabilizer operator is identical to the stabilizer operator associated with
the opposite face on the same odd cell. In later diagrams odd face stabilizers will
be denoted by blue squares with circles in the centre and even face stabilizers by
red squares, as indicated in this figure.

Figure 5.4: Non-contractible cycles on a 3-torus. Boundaries with matching arrow labels
are joined such that the directions of the arrows match. There are 3 such cycles
that cannot be reduced to one another by continuous deformation. These are
denoted by the solid, dashed and dotted purple lines between the boundaries.

The relationship between the cubic fermionic encoding and the underlying code

can be formalised by a mapping between the linear operators on their respective

Hilbert spaces:

µ : L(HF)→ L(HC), (5.1)

whereHF , andHC are the Hilbert spaces of the fermionic encoding and the under-

lying code respectively. The mapping µ is simply amounts to the removal of all

vertex qubit support from Pauli operators in L(HF). Furthermore, as discussed in

section 3.1, the cubic encoding can be related to the edge and vertex group MG (see

5.1. Structure and Codespace 128

eq. (3.6) and section 3.1) by the mapping

σ : MG→ L(HF). (5.2)

The composition of these mappings, µ ◦σ , yields

ν : MG→ L(HC). (5.3)

Applying the mapping σ to the cycle group CG /MG produces the cubic encod-

ing stabilizer SF and in the case of open boundary conditions, applying µ to SF

produces the stabilizer SC of the underlying code. In the case of the cubic lattice on

a 3-torus however the underlying code stabilizer is

ν(C′G) = µ(σ(C′G)) = µ(S ′F) = SC (5.4)

where C′G is the subgroup of CG containing only contractible cycles and S ′F is the

corresponding subgroup of SF . On open lattices C′G = CG and S ′G so for the rest of

this section, discussion may be limited to these subgroups.

Similarly to the discussion in section 3.1.1, important groups are the subgroups

of C′G mapped to identity via σ and ν and the subgroup of S ′F mapped to identity

by µ , i.e. ker(σ |C′G), ker(ν |C′G) and ker(µ|S ′F), respectively. To avoid overcrowded

notation, define

Kσ := ker(σ |C′G)

Kν := ker(ν |C′G)

Kµ := ker(µ|S ′F).

(5.5)

Lemma 16. The rank of stabilizer SC is D(SC) = D(C′G)−D(Kν) = D(C′G)−
D(Kσ)−D(Kµ).

Proof. By identical argument to theorem 1 we have that |SC| = |C′G/Kν |, |S ′F | =

5.1. Structure and Codespace 129

|C′G/Kσ | and |SC|= |S ′F/Kµ |. By Lagrange’s theorem we have that

|SC|= |S ′F |/|Kµ |= |C′G/Kσ |/|Kµ |

= (|C′G|/|Kσ |)/|Kµ |= |C′G|/|Kν |
(5.6)

All elements of C′G, S ′F and SC commute and square to identity so we have that

|SC|= 2D(SC), |C′G|= 2D(C′G) and |Ki|= 2D(Ki) for i = σ ,µ,ν . Therefore

D(SC) = D(C′G)−D(Kν) = D(C′G)−D(Kσ)−D(Kµ) (5.7)

Lemma 17.

D(Kµ) =

1, if OCV = 0,

0, if OCV > 0
(5.8)

where OCV is the number of odd corner vertices of the lattice (i.e. number of lattice

corners that are part of odd cells, as in theorem 14).

Proof. As the mapping µ simply removes vertex qubits from operators in SF , the

non-trivial elements of Kµ are operators with support only on vertex qubits.

Consider a product of cubic encoding edge operators (fig. 3.15). Any given

face qubit is only acted upon by edge operators with the Paulis corresponding to the

plane its face is aligned in. For example, a qubit on a face in the xy-plane is only

acted on with X and Y by edge operators. This means that the only way to cancel

any edge operator’s action on a face qubit with another edge operator is by applying

the operator on the opposite edge of the qubit’s associated face. Furthermore, this

implies that for any product of edge operators with no support on face qubits, the

inclusion of any edge operator with face qubit support implies the inclusion of every

parallel edge operator with which it shares an odd face. Consequently, the only

products of edge operators with no support on face qubits are combinations of:

• Sets of four parallel edges belonging to the same odd cell

• Sets of two parallel edges belonging to the same isolated odd face

5.1. Structure and Codespace 130

X

Y

X

Y

Y

X

Y

X

X

X

Y

Y X

Y

Figure 5.5: (Left, centre) Products of parallel edge sets which have no support on face qubits
on an odd cell and an isolated odd face. (Right) An edge operator that belongs to
no odd cells along the edge of the lattice. All elements of Kµ must be a product
of operators of these types.

• Edges that belong to no odd faces.

Sets of parallel edges belonging to the same odd cell / isolated odd face will be

referred to as parallel sets. Each odd cell has 3 such sets and each isolated odd

face has 2, see fig. 5.5 for illustration. As the elements of S ′F are products of edge

operators, this constraint applies to members of Kµ . A further constraint on the

elements of Kµ is that they must be products of edge operators that form a closed

cycle, that is every vertex must have an even number of incident edges in the product.

Consider an element of Kµ with an even number of parallel sets on an odd cell

as part of its edge product. Every vertex on this cell will then have an even number

these edges incident. To maintain even edge incidence, all odd cells / isolated odd

faces (IOF) that share a vertex with this odd cell must also have an even number of

their parallel sets as part of the edge product. Every odd cell / IOF shares a vertex

with another odd cell / IOF so this extends to the entire lattice. This element of Kµ

will then have an even number of edge operators from each odd cell / IOF acting

on each vertex as every vertex belongs to an odd cell / IOF. Recalling that edge

operators on the same odd cell / IOF act with the same Pauli on shared vertices the

resulting operator will have no support on the vertex qubits or face qubits, making it

a trivial element of Kµ .

It then follows that any non-trivial element of Kµ must be a product of edge

operators consisting of an odd number of parallel sets on each odd cell and IOF.

They must still form a cycle however, with every vertex having an even number of

incident edges in the product. No such operator exists for a lattice with OCV > 0 as

5.1. Structure and Codespace 131

the corner vertices at odd corners are not shared by any other odd cells, odd faces or

edges belonging to neither. This means they will have an odd number of incident

edges, hence D(Kµ) = 0 in this case.

If OCV = 0 then there may exist vertices along the edges of the lattice and at the

corners that only belong to one odd cell or IOF. In this case, they will share an edge

which belongs to no odd cells or faces which must then be present in the product to

ensure it is a cycle. So then for a lattice with OCV = 0, a non-trivial element of Kµ

must be a product of an odd number of parallel edge sets for every odd cell and IOF

and every edge that belongs to no odd cells. Every vertex will be acted on by two of

these objects, one with an X and one with a Y meaning that the only non-trivial Kµ

element is Z on every vertex qubit, hence D(Kµ) = 1.

In the 3-torus case every vertex is shared by two odd cells so the cycle condition

is satisfied automatically by a product of odd numbers of parallel sets on every odd

cell. As in the open boundary case, this will result in the only element of Kµ being

Z on every vertex qubit. The lattice on the 3-torus has no boundary and thus, no

corners so the lemma holds.

Theorem 18. The codespace of the underlying code has dimension 2NC , i.e. it

encodes NC logical qubits, where, for an open cubic lattice:

NC =

0, if OCV = 0

OCV
2 −1, if OCV > 0

(5.9)

with OCV
2 −1 ∈ {0,1,3} and for a cubic lattice on a 3-torus:

NC = 3. (5.10)

Proof. Let N be the number of qubits used in an instance of the code. The dimension

of the codespace is then 2N−D(SC), equivalent to N−D(SC) qubits. As N is the

number of odd faces, OF , and D(SC) = D(S ′F)−D(Kµ) then, by lemma 17 for the

5.1. Structure and Codespace 132

case of open boundary conditions we have

NC =

∆+1, if OCV = 0

∆, if OCV > 0.
(5.11)

Here ∆ = OF −D(S ′F) is the disparity for the cubic encoding on the same lattice.

This is equivalent to eq. (5.9) by theorem 14.

For the 3-torus case we have by lemmas 13 and 16

NC = N−D(SC) =N−D(C′G)+Kσ +Kν

=N−D(C′G)+2OC+1.
(5.12)

The Euler characteristic of a lattice on a 3-torus is given by

V −E +F−C = 0, (5.13)

where V , E, F , C are the numbers of vertices, edges. This can be seen by considering

the fact that the Euler characteristic is multiplicative for Cartesian products of graphs.

That is

χ(G×H) = χ(G)χ(H) (5.14)

where χ(·) denotes the Euler characteristic of a graph. The Euler characteristic of

a circle graph is 0 and the graph of a cubic lattice on a 3-torus is simply Cartesian

product of 3 of these. Using eqs. (3.19) and (5.13) we have the rank of the total cycle

group on a 3-torus

D(CG) = F−C+1. (5.15)

A minimal generator for CG on a 3-torus must contain exactly 3 non-contractible

cycles. A generator for C′G may then be obtained by removing these 3 cycles from

the set. The rank of C′G is then

D(C′G) = D(CG)−3 = F−C−2. (5.16)

5.2. Excitations, Logical Operators and Code Distance 133

Substituting into eq. (5.12) we have

NC = N−F +C+2+2OC+1

= OF− (EF +OF)+(EC+OC)+2OC+3

= 3OC−EF +EC+3.

(5.17)

Inspection the neighbourhoods of each vertex (illustrated in fig. 3.17) reveals that for

every vertex there are 2
8 odd cells, 6

8 even cells and 6
4 even faces. From this it is clear

that 3OC−EF +EC = 0 and thus

NC = 3 (5.18)

for the code on a 3-torus.

5.2 Excitations, Logical Operators and Code

Distance

5.2.1 Geometrical Pictures

With the codespaces found, the natural next step is to identify the logical operators

with which to navigate them. It will be helpful to use some geometric interpretations

to describe operators and syndromes on the code in this section. These interpretations

should be explored and justified before continuing.

5.2.1.1 Building Operators from Strings

Consider a cubic lattice, either on a 3-torus (with even side lengths) or with open

boundaries and label the faces odd and even in the pattern required of the underlying

code. Define the groups C, F, E and V as the sets of unordered subsets of cells,

faces, edges and vertices with the group action as the disjoint union of two elements.

Consider now, the Pauli group PHF on the Hilbert space of the cubic fermionic

encoding HF and define P ′HF
= PHF/{I,−I, iI,−iI}, i.e. the Pauli group with

5.2. Excitations, Logical Operators and Code Distance 134

XX
Y

X
σ ′

ν ′
µ ′

X

X

Figure 5.6: Graphical representation of the mappings σ ′, µ ′, and ν ′ = µ ′ ◦σ ′. An edge on
the lattice highlighted in green is transformed by σ ′ into an edge operator on the
cubic compact encoding which is transformed by µ ′ into a code edge operator
on the underlying code, each highlighted in red.

phases ignored. Define the mapping1

σ ′ : E→P ′HF
(5.19)

which maps elements of E to the product of corresponding fermionic edge operators

in the cubic compact fermionic encoding on the lattice up to a sign (orientation

irrelevant). Then define the mapping

µ ′ : P ′HF
→P ′HC

(5.20)

where HC is the Hilbert space of the code underlying the cubic encoding, i.e. HF

with all vertex qubits removed. The mapping µ ′ simply takes elements of P ′HF
and

removes their vertex qubit support, leaving them otherwise unchanged.

The composition ν ′ = µ ′ ◦σ ′ maps elements of E to the corresponding product

of code edge operators, where the code edge operator for a given edge is the corre-

sponding edge operator from the cubic encoding with the vertex support removed,

see fig. 5.6 for an illustration. This formalises a relationship between edges on the

lattice and the subgroup of the Pauli operators on the code formed by the code edge

operators.

1The following mappings are analogous to the mappings σ ,µ and ν defined earlier but since they
act on different spaces they are primed in the notation to distinguish them.

5.2. Excitations, Logical Operators and Code Distance 135

Figure 5.7: The lattice of the underlying code (black) and its dual lattice (blue/red). Dual
edges of odd faces are coloured blue and dual edges of even faces are coloured
red. Note that not every dual face is fully surrounded by dual edges, namely the
faces dual to edges at the boundary of the original lattice.

Upon inspection of the generators one can see that the stabilizer is obtained by

applying the mapping ν ′ to the subgroup of E corresponding to contractible cycles

on the lattice. It will be useful at times to think of stabilizers and some operators as

strings on the lattice mapped under ν ′. It is worth noting that this mapping is not

bijective and can map different elements of E to the same Pauli operator, meaning

that strings of code edge operators are not associated with a unique set of edges

on the lattice. However this picture still provides a useful intuition for building

operators.

5.2.1.2 Operators as Surfaces

Consider the dual lattice of the lattice upon which an instance of the underlying code

is defined. Cells, faces, edges and vertices on the dual lattice are respectively dual to

vertices, edges, faces and cells on the original lattice. Label the edges of the dual

lattice odd and even according to the face on the original lattice that they are dual to.

Define also the groups C∗, E∗, F∗ and V∗ analogously to C etc. As will be shown,

it is possible to define a mapping between Pauli operators on the code and the face

group F∗ on the dual lattice, thereby formalising an interpretation of Pauli operators

as surfaces.

5.2. Excitations, Logical Operators and Code Distance 136

∂

Figure 5.8: Illustration of the mapping ∂ . A set of faces highlighted in purple is mapped to
the set of edges highlighted in green.

It is first helpful to formalise a relationship between Pauli errors – more precisely,

their syndromes – on the code and the edges of the dual lattice. Consider the mapping

on the original lattice

∂ : F→ E (5.21)

which maps an element of F to the set of edges which bound it. Each element of F is

then mapped to a contractible cycle of edges, see fig. 5.8 for an illustration. One can

then see that under the composed map Γ = ν ′ ◦∂ , faces map to stabilizer operators.

Define now a generating set g of the stabilizer SC as the set of all stabilizers

that single faces map to under Γ, formally

g =
⋃
f∈F

Γ(f) s.t. | f |= 1. (5.22)

Note that some f will map to the same stabilizer, these operators appear only once

in g. Subsets of this generating set correspond to syndromes of errors on the code,

the set of syndromes is then equivalent to the power set of the generator P(g). A

mapping from syndromes to faces on the lattice

Σ : P(g)→ F (5.23)

can then be defined as

∀s ∈ P(g) : Σ(s) =
⋃
f∈F

f s.t. | f |= 1, Γ(f) ∈ s (5.24)

5.2. Excitations, Logical Operators and Code Distance 137

i.e. a syndrome maps to the set of all single faces which map to elements of the

syndrome. This may include multiple faces which each map to the same stabilizer.

From here on, the syndrome of an error and the faces that the syndrome maps to will

be used interchangeably.

Now consider the syndrome of single Pauli error. For example an X error on the

qubit associated with an odd face parallel to the xz plane (i.e. facing the y direction).

The X will anticommute with the stabilizers associated with every face that shares

the odd face’s edges oriented in the z direction, that is, every generator that each

of those faces maps to under Γ. Via Σ, this syndrome then maps to those 6 faces.

The syndrome of a Z error on the same qubit analogously maps to the 6 faces which

share the odd face’s x oriented edges. Similar rules apply for errors on faces parallel

to the xy and yz planes (see fig. 5.9 for illustration). By mapping each Pauli operator

to its syndrome and then applying the mapping Σ the mapping

θ : P ′HC
→ F (5.25)

is defined which maps Paulis to sets of faces.

Define the mapping

δ : F→ E∗ (5.26)

which maps faces on the original lattice to their dual edges. One sees that the

composition δ ◦θ maps Paulis on the code to contractible cycles of edges on the dual

lattice. This is reminiscent of the 3D toric code on which the syndromes of X errors

also map to contractible loops on the dual lattice. These errors can then be mapped

onto surfaces on the dual lattice whose boundaries are formed by these loops [78].

Indeed a similar picture can be justified for errors on the underlying code, in

fact all errors can be mapped onto surfaces rather than just certain types. Consider

a single Pauli error on the underlying code that maps to a closed loop of 6 dual

edges under δ ◦θ , e.g. an X error on an odd face parallel to the xz plane. This loop

encloses a 2×1 surfaces parallel to the xy plane, centred on the odd edge dual to the

qubit’s odd face and with its long side running along the x direction. Call this surface

5.2. Excitations, Logical Operators and Code Distance 138

X
φ

Z

φ

X φ Y φ

Y

φ
Z

φ

Figure 5.9: Single Pauli errors on odd cells in the bulk of the underlying code and their
associated domino surface elements on the dual lattice under the mapping φ .
Filled circles denote the qubit the error acts on, even and odd faces whose
stabilizers are flipped by an error are highlighted in red and blue. Purple
filled faces denote the associated surface on the dual lattice with its boundary
highlighted. Errors on the opposite odd faces to those pictured have mirrored
behaviour.

a domino surface element due to its shape and associate it with the Pauli error (see

fig. 5.9). A Z error on the same qubit is then associated with a domino centred on

the same (dual) edge but with its long side running along the z direction. For each

qubit on the code lattice, 2 Pauli operators can be chosen that correspond to the 2

domino elements centred on its face’s dual odd edge. These pairs of Paulis form a

generating set for P ′HC
and are shown in fig. 5.9.

Consider now the set of all domino elements centred on odd dual edges. These

surface elements form a generating set for the subgroup of surfaces G/F∗ such that

5.2. Excitations, Logical Operators and Code Distance 139

∂ ∗(G) = Im(δ ′ ◦θ). Here the mapping

∂ ∗ : F∗→ E∗ (5.27)

maps faces on the dual lattice to the product of their surrounding edges, analogous to

∂ on the original lattice. As discussed earlier, a one-to-one mapping can be defined

between a generating set for P ′HC
and the domino elements that generate G. This

then defines a mapping

φ : P ′HC
→ F∗ (5.28)

whereby any Pauli error on the underlying code is mapped to a surface on the dual

lattice whose boundary corresponds to the syndrome over the stabilizer generator g.

From this one can find operators that commute with the stabilizer by finding closed

surfaces on the dual lattice that can be decomposed into the domino elements in

fig. 5.9. A Pauli operator P will be said to induce the surface φ(P) later in this work.

This interpretation of Pauli operators on the code yields an alternative interpre-

tation of the stabilizer generators. While they can be interpreted as contractible loops

of code edge operators, they can now also be viewed as surfaces enclosing a volume

on the dual lattice. The surface due to an even face stabilizer encloses a 2×2×1

volume and the surface due to an odd face stabilizer cancels out to nothing (see

fig. 5.10). The surfaces induced by an even stabilizer capture deformations which

can transform between elements of G without changing their boundary under ∂ ∗.

The restricted set of surface primitives (the dominos) mean that Pauli operators

map to only a limited set of surfaces which may not be freely deformed. Compare

this to, say, the surface operators of the 3D toric code where products of X errors

correspond to arbitrary tilings of lattice faces and products of vertex stabilizers

correspond to arbitrary enclosing surfaces. However, this rigidity present in the

underlying code allows full sets of logical operators to be constructed from the

surface-like Pauli operators, unlike the 3D toric code which requires string-like Z

products to fully navigate the codespace.

In the case of open boundary conditions, the edges at the lattice boundaries

5.2. Excitations, Logical Operators and Code Distance 140

X

X

X

X

ZZ Z

Z
X

X

Z Z

= =∅

Figure 5.10: The surface picture admits surface interpretations of stabilizers as closed
surfaces. Stabilizers formed from loops around even faces induce a surface
enclosing a 2×2×1 volume. Stabilizers formed from loops around odd faces
induce no surface as their constituent parts cancel out.

are dual to faces which are not fully surrounded by edges (see fig. 5.7). These

are included in the surfaces induced by Pauli operators on some instance of the

underlying code on these lattices and their syndrome only corresponds to their

boundary on existing edges in the dual lattice. Here “existing” edges refers to edges

on the dual lattice which have a dual face on the original lattice. Faces in the bulk

of the dual lattice are fully surrounded by existing edges but faces corresponding

to edges at the boundary of the original lattice are not and are partially surrounded

by implicitly defined “absent” edges. If a Pauli operator induces a surface whose

boundary is only on the absent edges then it must be a stabilizer or a logical operator

(see fig. 5.11).

The following subsections will define full sets of logical operators for the

underlying code on a 3-torus and on the 2 cases of open cubic lattices for which it

has non-trivial codespace.

5.2.2 3-Torus

The logical Z̃ operators on the 3 qubits in the 3-torus case can most easily be found

by considering the non-contractible cycles of the 3-torus (see fig. 5.4). Recall that

the Pauli operators which these map to under ν ′ are chosen to be absent from the

5.2. Excitations, Logical Operators and Code Distance 141

X

Z
Z

Figure 5.11: Pauli errors on the Underlying Code on a 2×1×1 lattice with their syndromes
(left) and the surfaces they map to on the dual lattice (right). The dashed lines
on the dual lattices denote “absent edges”. (Upper) A single qubit error has a
non-trivial syndrome, it maps to a surface with boundary on non-absent edges.
(Lower) A two qubit error with no syndrome, the boundary of its corresponding
surface on the dual lattice is purely on absent edges.

code stabilizer. Considering these Pauli operators one finds 3 commuting logical

operators on the code space which can be chosen as the 3 logical Z̃ operators. Each

unique non-contractible cycle runs along a cardinal direction of the lattice so define

their operators accordingly as Z̃x, Z̃y and Z̃z.

To see that these operators have no syndrome consider an open ended straight

line of code edge operators and switch to the surface picture discussed earlier. Each

edge operator induces a folded surface on the dual lattice, due to the alternating

positions of the qubits along the string of edge operators these surfaces alternate in

orientation down the line and form an open ended tube whose boundaries run along

the edges corresponding to the dual edges of all even faces which share the vertices

at each end of the string on the original lattice (see fig. 5.12). These boundaries will

change orientation depending on their position in the lattice but for a tube induced

by string of even length, the boundaries at each end will be identical. The 3-torus

5.2. Excitations, Logical Operators and Code Distance 142

X X

X X

X X
X X

X

X

Figure 5.12: (Upper) A single code edge operator along the x direction and maps to a folded
surface. (Lower) An open string of edge operators maps to an open ended tube-
like surface. The syndromes of the Paulis and the boundaries of the surfaces
are highlighted in red.

Figure 5.13: A logical Z̃x operator is formed by connecting a tube which loops round the
torus.

housing the code must be of even length in each cardinal direction. This means

that if a straight tube loops back into itself the boundaries at each end will line up,

closing the surface and so the Pauli operator which induced it has no syndrome (see

fig. 5.13).

Their absence from the stabilizer can also be understood in the surface picture.

Products of stabilizers are also closed surfaces but they must be built out of 2×2×1

blocks implying that their total cross sectional area in every cell layer of the lattice

must be even. The cross sectional area of a logical Z̃x corresponding to a straight tube

spanning the x direction has a cross sectional area of 1 in every cell layer oriented in

the x direction meaning that it cannot be constructed by stabilizers. By contrast, a

5.2. Excitations, Logical Operators and Code Distance 143

X

X XX

X XXX

Figure 5.14: (Upper) A single Pauli error which induces a domino surface element. (Lower)
Multiple Pauli errors which induce a tiled surface of dominos. The syndromes
of the errors and the corresponding boundaries of the surfaces are highlighted
in red for even faces/edges and blue for odd faces/edges.

straight, looping tube of cross section 2 at each of these layers can be constructed

via stabilizers but simply corresponds to Z̃2
x = 1.

To find logical X̃ operators, one needs to find another surface which cannot be

contracted to a point via the deformations induced by the stabilizers. Consider an

odd cell. An X operator on one of its 2 faces oriented in the y direction induces a

domino surface on the dual lattice oriented in the z direction. These dominos can be

tiled to form larger flat surfaces (see fig. 5.14). If an X acts on every on face facing

the y direction in a layer of cells across the xy-plane then the induced surface will

completely span the corresponding layer of faces on the dual lattice (see fig. 5.15).

This operator has no syndrome because the surface has no boundary and it cannot

be contracted to a point even by arbitrary continuous deformations so it clearly is

not in the stabilizer. This also implies that it is distinct from Z̃x, Z̃y, Z̃z, since it

cannot be deformed into the tubes which form these operators as they would be

contractible under such unrestricted action. Similar surfaces can be defined parallel

to all 3 cardinal planes of the lattice. Define the logical operator X̃i as the Pauli

operator which induces the, flat, unbounded surface oriented in the direction of the

Z̃i’s induced tube (up to action by stabilizers).

To find the code distance of the underlying code on the 3-torus one must consider

the minimum weights of the logical operators

5.2. Excitations, Logical Operators and Code Distance 144

→

Figure 5.15: A logical X̃ operator is formed by spreading a surface out across a whole plane
of the torus.

Lemma 19. Given an instance of the underlying code on a 3-torus of lengths

Lx,Ly,Lz in each cardinal direction, the minimum weight w(·) of logical operator Z̃i

is given by

w(Z̃i) = 2Li, (5.29)

where i ∈ {x,y,z}.

Proof. Logical Z̃ operators are non-contractible loops of code edge operators. Con-

sider the operator Z̃z, a cycle of code edge operators forming this operator will pass

through every layer of cells in the lattice parallel to the xy plane an odd number of

times, this means it will have an odd number of z-oriented edges in each of these

layers. Therefore in each layer, there will be at least one odd cell with an odd number

of its z-oriented edges present in the cycle. In the Pauli picture, the product of an

odd number of edge operators on a single odd cell results in a weight-2 operator (see

fig. 5.16) whose weight cannot be reduced by edge operators in different directions

so therefore, any instance of Z̃z must be at least weight 2Lz. This lower bound is

saturated by the operator corresponding to a straight line of edge operators looping

through the 3-torus in the z direction.

The above argument also applies to Z̃x and Z̃y.

Lemma 20. Given an instance of the underlying code on a 3-torus of lengths

5.2. Excitations, Logical Operators and Code Distance 145

Z
Z

Z
Z

Figure 5.16: For any odd cell, a product of an odd number of its associated z-oriented code
edge operators will have weight 2 on the cell’s qubits. This weight cannot be
reduced by multiplying by x or y-oriented edge operators.

Lx,Ly,Lz in each cardinal direction, the minimum weight w(·) of logical operator X̃i

is given by

w(X̃i) =
L jLk

2
, (5.30)

where i, j,k ∈ {x,y,z} and i 6= j 6= k.

Proof. A logical X̃z operator must map to a surface such that any straight line drawn

through the 3-torus in the z direction must pass through it. The smallest surface to

satisfy this is the completely flat plane perpendicular to the z direction which has

area LxLy. Any deformation of this surface will have at least this surface area so

therefore any encoding of a logical X̃z operator must correspond to a surface with at

least this area, furthermore it must have at least this area of surface perpendicular to

the z direction. Every single qubit Pauli operator induces a surface of area at most

2 on cells oriented in the z direction so a surface with area LxLy oriented that way

must be induced by a Pauli operator of at least weight LxLy/2. This lower bound is

saturated by the X̃z which induces a flat surface.

The above argument applies equally to X̃x and X̃y.

Theorem 21. Given an instance of the underlying code on a 3-torus of size Lz ≤
Ly ≤ Lx in each cardinal direction, its code distance is

dC =

2, if Lz = Ly = 2,

2Lz, otherwise.
(5.31)

Proof. The code distance is the weight of the lowest weight logical Pauli on the code,

5.2. Excitations, Logical Operators and Code Distance 146

i.e. the lowest weight of a product of Z̃x, Z̃y, Z̃z, X̃x, X̃y, X̃z. Any product involving

an X̃i is subject to the lower bound from lemma 20 as the area of the i-oriented

component of the induced surface cannot be made lower than L jLk. Any product

of Z̃ operators is subject to the lower bound in lemma 19 for any involved Z̃i as the

Pauli must be a product of code edge operators with at least one i-oriented edge in

every layer of the lattice perpendicular to the i direction. The lowest weight of a

logical Pauli is then the lowest weight of a single logical X̃i or Z̃i.

For a lattice of lengths Lz ≤ Ly ≤ Lx, the lowest weights of X̃i and Z̃i operators

are

w(Z̃z) = 2Lz, w(X̃x) =
LyLz

2
. (5.32)

In the case where Lz = Ly = 2, these weights are w(X̃x) = 2 < w(Z̃z) = 4 giving a

code distance of 2. For lattices larger in these dimensions w(Z̃z)< w(X̃x) giving a

code distance of 2Lz.

5.2.3 Open Boundary Conditions

By theorem 18 the only cases of the code on an open cubic lattice with finite

codespace are those with 4 and 8 odd corners, encoding 1 and 3 logical qubits

respectively. One may expect the logical operators of these versions of the code to

have similar forms to those in the 3-torus version. In fact one finds that all logical

operators in the open lattice cases can be constructed from strings of code edge

operators like the logical Z̃i operators on a 3-torus.

Consider an open string of edge operators as illustrated in fig. 5.12. Such an

operator only excites the stabilizers associated with each even face that contains

the end vertices. An odd corner vertex is part of no even faces so it then follows

that a string operator between 2 odd corner vertices will have no syndrome meaning

they are either stabilizers or logical operators. As all stabilizers are closed loops

within the lattice, a path of edge operators between two lattice corners cannot be

constructed from only stabilizers implying that such a path is a logical operator.

5.2. Excitations, Logical Operators and Code Distance 147

A B

C D

Z̃

X̃
A B

C D

Z̃

X̃

Figure 5.17: Illustrations of logical operators on the underlying code on an open lattice with
4 odd corners. (Left) Strings of edge operators between the odd corners form
logical operators. (Right) Pauli operators that induce surfaces across the whole
lattice form equivalent logical operators.

5.2.3.1 4 Odd Corners

Consider an open lattice instance of the code with 4 odd corners (they must all be on

one side of the lattice as shown in fig. 3.18) and label the odd corners A, B, C, D as

in fig. 5.17. Consider strings of edge operators Si j that connect corners i and j. The

strings SAB and SAC commute with the stabilizer and anticommute with one another,

meaning that they must be non-trivial logical operators. Furthermore, because the 4

odd corner case only encodes a single qubit then one may identify

SAB := X̃

SAC := Z̃

SBC := Ỹ .

(5.33)

Other strings connecting odd corners are equivalent to the above logical Paulis under

stabilizers with SBD = Z̃, SCD = X̃ and SAD = Ỹ .

One might wonder whether flat surface operators like the 3-torus logical X̃

operators exist in this case. In fact, they do and are also logical Paulis on the encoded

qubit. Say that the lattice edges AB and AC are oriented in the x and z directions

then the flat surface operator oriented in the x direction (with boundaries on the

lattice faces oriented in the y and z directions) encodes a logical X̃ with a similar

surface representation for Z̃. See fig. 5.17 for illustration. These equivalences are

5.2. Excitations, Logical Operators and Code Distance 148

A B

C D

Figure 5.18: Illustration of the equivalence between logical operators in string and surface
form. A string of edge operators from corner A to C is a logical Z̃ operator
and in the surface picture, corresponds to the folded surface shown on the left.
Through multiplication by stabilizer operators this surface can be extruded out
into a flat surface which represents the same logical operator on the codespace.

clearer when the operators are viewed in the surface picture. A logical Z̃ operator

encoded by a string of edge operators down the boundary edge between corners A

and C induces an open surface rather than a tube due to the truncation of the lattice

and the dual lattice, this surface can then be “stretched out” by stabilizers to form a

flat surface. As this deformation is achieved only via stabilizers, the two surfaces

correspond to the same logical operator (see fig. 5.18).

Theorem 22. For an instance of the code underlying the cubic fermionic encoding

on an open lattice with 4 odd corners, side lengths Lz ≤ Lx and Ly in the cardinal

directions and where Lx, Lz are odd and Ly is even, the code distance is

dC = Lz +1 (5.34)

Proof. Consider Lz layers of cells orthogonal to the z direction. Denote these layers

as odd or even in an alternating manner such that the first layer is odd, there are then

(Lz +1)/2 odd layers (see fig. 5.19).

Define a logical X̃ on the code to be an operator that induces a flat surface

orthogonal to the z direction. These surfaces can only be induced by operators acting

only on qubits within a single odd layer of the lattice. On any given odd cell in this

layer, the X̃ acts with X on 2 faces oriented in the y direction or with Y on the 2

faces oriented in the x direction (these are the two ways to ways to make the same

5.2. Excitations, Logical Operators and Code Distance 149

odd

even

odd

Figure 5.19: Odd and even cell layers perpendicular to the z direction on an open lattice
with 4 odd corners. In this case Lx = Lz = 3 and Ly = 2.

z

y

x

X X X

Y

Y

X

Figure 5.20: Two operators that induce the same flat surface in a 1× 2× 1 lattice with 4
odd corners, note that the action on odd cells can be changed while inducing
the same surface. Both these operators are the same logical operator on this
instance of the code as they are equivalent up to a stabilizer. Orientation has
been changed for this diagram such that it is consistent with the text while still
being easy to interpret.

flat square surface) and on any given isolated odd face on the boundary it acts with a

X (as all isolated odd faces in the layer will be y-oriented, see fig. 5.20 at the back of

the lattice).

To anticommute with the flat surface X̃ operator in any odd layer, a logical Z̃

operator must, in each odd layer, include an X or Z on an x-oriented face or a Y or Z

on a y-oriented face lower bounding its weight by (Lz +1)/2. These Pauli operators

induce a total surface comprising one face parallel to the z direction in every cell

layer of the dual lattice. This surface is bounded by edges in the bulk of the dual

lattice and therefore an operator composed only of these Paulis has a syndrome,

5.2. Excitations, Logical Operators and Code Distance 150

Z

Z

Z

Z

Z

Z

Figure 5.21: (Upper) A Pauli inducing a surface consisting of one face parallel to the z
direction in every layer of cells in the dual lattice, it has a syndrome corre-
sponding to an open boundary parallel to z of length (2Lz +1)/2 which must
be cancelled out by an operator of at least weight (2Lz +1)/2 (lower).

meaning that a logical Z̃ must include more Paulis to cancel this syndrome. To this

end, the remaining part of Z̃ must also include Paulis (on a disjoint set of qubits)

which induce a surface including at least one face parallel to z in every cell. The

most efficient way to form such a surface from domino surface elements is with

(Lz +1)/2 dominos with long sides along the z direction meaning that the remaining

component of Z̃ must include at least (Lz +1)/2 single Paulis (see fig. 5.21 for an

illustrated example). This tightens the lower bound on the weight of Z̃ to Lz +1.

The above argument applies equally to the weight of Ỹ as it must also anticom-

5.2. Excitations, Logical Operators and Code Distance 151

γ̃1

γ̃2

γ̃3 γ̃4

γ̃5γ̃6

Figure 5.22: For the underlying code on an open lattice with 8 odd corners, strings of
code edge operators connecting corners as shown correspond to 6 mutually
anticommuting logical operators. These can be interpreted as anticommuting
Paulis or as a Majorana basis on the codespace.

mute with any X̃ and the same argument up to a reshuffle in Paulis and cardinal

directions lower bounds the weight of X̃ to Lx +1≥ Lz +1.

The lower bound of Lz +1 is saturated by the operator formed from a product

of edge operators running directly from one odd corner to its neighbour in the z

direction so therefore the code distance is Lz +1.

5.2.3.2 8 Odd Corners

In the 8 odd corner case, 3 qubits are encoded and again, a full set of logical operators

can be encoded with only strings of code edge operators. Choosing a privileged

corner, the 7 string operators that connect it to each other corner correspond to a

set of 7 anticommuting Paulis which form a complete generating set for the Pauli

group on 3 qubits [64]. One may also consider these strings to represent 6 Majorana

operators with the 7th representing the product of all 6, see fig. 5.22 for illustration.

Surface operators also exist in the 8 odd corner case but they make the most

sense when seeking out logical X̃ and Z̃ operators for the 3 encoded qubits. One can

define 3 commuting logical Paulis with strings connecting 3 disjoint pairs of corners,

each pair sharing a lattice boundary edge in the x, y and z direction and label these

Z̃x, Z̃y and Z̃z. Logical X̃ operators can then be defined as the surfaces oriented in the

same direction as the corresponding Z̃ strings, see fig. 5.23 for illustration.

Theorem 23. For an instance of the code underlying the cubic fermionic encoding

on an open lattice with 8 odd corners, with side lengths Lz ≤ Ly ≤ Lx in the cardinal

5.2. Excitations, Logical Operators and Code Distance 152

Z̃z

Z̃x

Z̃y

X̃x

X̃z

X̃y

Figure 5.23: Other logical operator representations on an open lattice with 8 odd corners.
(Left) Strings of code edge operators connecting odd corners as shown corre-
spond to commuting logical operators, these can be chosen as logical Z̃’s on
the 3 encoded qubits. (Right) Operators which induce these surfaces spanning
the lattice also correspond to commuting logical Paulis which can be chosen as
the logical X̃’s on each encoded qubit. Strings and surfaces of the same colour
denote operators on the same encoded qubit.

directions, the code distance is

dC = Lz +1 (5.35)

Proof. Any logical Pauli is a product of code edge operators forming closed loops

and at least one string connecting 2 odd corners which must pass through at least Lz

layers of cells in some direction. Each odd corner can be considered to be connected

to, at most, one other corner without loss of generality (the product of a pair of

paths connecting corners A to B and A to C is equivalent to one path connecting B

to C). A logical Pauli anticommutes with another if its path components share an

odd number of odd corners. A product of paths incident on all odd corners an odd

number of times encodes the identity operator on the code space, this can be checked

by considering a “Majorana basis” for logical operators as illustrated in fig. 5.22.

Label the four odd corners A, B, C, D, E, F , G and H. Consider a logical Pauli

operator P of fixed form whose edge product includes (w.l.o.g.) a single path of edge

operators between odd corner pairs AB denoted SAB, up to 2 other paths between

2 other disjoint pairs (fix these to be CD and EF) and any closed loops of edge

operators on a disjoint set of edges to the paths, denoted L, so P = SAB ·SCD ·SEF ·L.

Consider a logical operator Q = SAG, i.e. a path of edge operators between corners

5.3. Discussion 153

A and G. This operator will commute with all components of P except the path

between corner pair AB with which it must anticommute.

Via multiplication by stabilizers, Q may be deformed into an arbitrary path

between odd corners A and G. It may be deformed such that it is identical to the SAB

component of P from odd corner A up to an arbitrary vertex v along the length of

SAB where the strings diverge. The anticommutation between this deformed Q and

SAB must occur on the edge operators of SAB incident at v. All edges before this pair

are shared exactly with the deformed Q and will commute and all edges after share

no vertices with Q and will commute (edge operators anticommute only if they share

a single vertex).

The vertex v at which divergence occurs can be at any point along the length

of SAB so P must have support on every odd cell / isolated odd face that SAB passes

through (v can be chosen such that anticommutation occurs between edge operators

on any odd cell / isolated odd face). As P is a product of code edge operators, the

minimum support it may have on an odd cell is 2, since SAB must pass through at

least Lz layers of cells, it must pass through at least (Lz +1)/2 odd cells (no isolated

odd faces exist in ≥ (Lz +1)/2 cell layers of the lattice in any direction), this lower

bounds the weight of any logical Pauli by (Lz +1).

This bound is saturated by the logical operator composed of a product of edge

operators forming a straight line from one odd corner to its neighbour in the z

direction.

5.3 Discussion
The underlying code encodes 3 qubits when defined on a 3-torus and 1 or 3 qubits

when defined on an open lattice. Its code distance scales linearly with its lattice’s

shortest side length and therefore scales as Θ(N1/3) with its total number of qubits

N. This distance is outperformed by other LDPC codes, in particular an instance

of the “fiber bundle codes” detailed in [79] have minimum distance Θ(N3/5) up to

polylogarithmic factors, while the underlying code’s performance is more in line

with the 3D toric code in this regard. That said, the 3D toric code on an open lattice

5.3. Discussion 154

(3D surface code) only encodes a single qubit while the underlying code encodes up

to 3.

While its basic performance as an error correcting code is not the best the

underlying code is not entirely uninteresting. The 3 dimensional dependence of its

stabilizer operators is suggestive of the XYZ product code construction given in

[70] (which generalises the structure detailed by Chamon in [67]), but it does not

immediately fit into the formalism. If the underlying code cannot be described by

this then perhaps another general construction or even a more general version of the

XY Z construction can be found which captures it.

The fact that the excitations of this code are all string-like may remind some

readers of the 4D toric code [60], whose excitations are also entirely string-like.

The 4D toric code behaves as a self correcting quantum memory because its string

like excitations scale with the weight of the minimal associated Pauli error (i.e. the

smallest surface the string bounds). This is not the case in the underlying code due

to the rigidity of the surface operators that form the string excitations. For instance,

consider a pair of excitations associated with the end of a tube operator (as illustrated

in fig. 5.12). This pair can be separated arbitrarily while their total size remains

constant, however the correction required to resolve their syndrome scales linearly

with the separation. This rigidity may still yield benefits in decoding, as it would

reduce the number of possible ways to resolve syndromes.

The potential advantages in decoding do not end there. Pauli errors of a single

type give rise to surfaces and tubes of specific orientation. For example, tube operator

on the underlying code running along the z direction is composed entirely of Z errors.

This directional bias of Pauli errors is reminiscent of the behaviour of the XZZX

surface code, the high performance of which against biased Pauli noise channels was

shown in [80].

Also worth noting is that the excitations at each end of a tube operator are

fermionic in character by the criterion established by Levin and Wen in [46]. Looking

back to the cubic fermionic encoding from which the underlying code emerges, one

sees that, much like the 2D case, a string of encoded fermionic edge operators creates

5.3. Discussion 155

a pair of fermions on the auxiliary qubit system with the energy cost removed by the

stabilizer support on the vertex qubits. This is yet another fermionic encoding which

appears to work by utilising fermionic excitations on an underlying topologically

ordered system.

Chapter 6

Concluding Remarks and Outlook

This thesis has presented a novel fermion to qubit mapping with a number of in-

teresting properties. It is shown to outperform all existing fermionic encodings in

both qubit to mode ratio and in the weight of encoded local 2-mode interactions

when simulating fermionic systems on various lattice types. These are two important

metrics for the near term quantum simulation of fermionic systems such as the 2D

Fermi-Hubbard Model, a system which is classically intractable for even small sys-

tem sizes outside of the half-filled regime. As well as this, low weight undetectable

errors on the square and cubic lattice encodings were shown to map onto natural

noise for a fermionic system, a feature which may be useful if they are to be used on

NISQ devices with limited error correcting facilities.

Also presented were some theoretical results that apply more generally to

fermionic encodings, in particular those relating to the size of the codespace of

fermionic encodings. These proved useful when analysing the variants of the compact

encoding introduced in this work. They may also find use in the analysis of any new

encodings discovered in the future.

Inspection of the compact encoding on a square lattice revealed an unexpected

direct link to the toric code. The loop stabilizers of the encoding are in fact square

lattice toric code stabilizers tensored with local parity check operators which allow

the fermionic ε pair excitations of the toric code to exist in the ground state. The

compact encoding on other 2D lattice structures also display similar links to other

toric code variations and in some cases the colour code. The cubic lattice case

157

however was found to contain a 3D topological code which appears to be novel. The

codespace and code distance of this code were found exactly for both periodic and

open boundary conditions. While its code distance is similar to that of the 3D toric

code its unusual structure may yield benefits for decoding algorithms.

There are two avenues for future work motivated by the content of this thesis.

One would be to test instances of the compact encoding on some of the many NISQ

devices available such as IBM or Rigetti’s hardware. Such experiments would

gauge how well the results of this thesis play out in real life and perhaps inform

any modifications one may need to make to the encoding to improve real world

performance.

Another interesting line of enquiry would be to further explore the connection

between local fermionic encodings and topological models with fermion-like excita-

tions. As well as the compact encoding from this work, numerous other fermionic

encodings display similar links. The BKSF encoding [12] on a square lattice is

effectively a toric code system with the reduced stabilizer generated by only pairs

of adjacent plaquette and star operators. Similarly to the square lattice compact

encoding, this allows the fermionic ε excitation of the toric code to exist in the

ground state and strings of encoded fermionic edge operators are equivalent to pairs

of these. The VC encoding [13, 14] is more similar still to the compact encoding; an

appropriately chosen generator shows that its stabilizers are also in fact toric code

stabilizers combined with local parity checks. The difference here is that the VC

encoding uses a toric code rotated by π/4. A square lattice instance of the code due

to Setia et al [16] can be found such that it is equivalent to a colour code system

on a hexagonal lattice with a reduced stabilizer, similar to the BKSF with the toric

code. It can then be shown that the excitations allowed in the ground space of this

system are also fermionic and are in fact equivalent to the ε excitations of one of the

toric codes underlying the color code [81, 66]. The author conjectures that similar

links to topological models can be found in the other local fermionic encodings

and that these underlying structures may be the thing that links the seemingly sep-

arate approaches for representing fermionic systems on qubits. A unified picture

158

of fermionic encodings may prove useful in finding new encodings, for instance,

protocols tailored to specific fermionic systems or hardware.

Contribution Statement

The research direction of studying fermionic encodings came from my supervisor

Toby Cubitt. The introduction and conclusion are written by me. A statement of

contribution to the main body chapters is given below.

Chapter 2: The initial construction of the encoding came from Joel Klassen after

discussions together. Further details including the edge sign fixing and behaviour

under different lattice side lengths are my work. The connection to toric code was

first noticed by Joel Klassen, technical details of this are joint work between him and

myself.

Chapter 3: The discussion of local encodings on graphs in the first section is

joint work with contributions shared between myself and Joel Klassen, except for

the results on particle species which are my own work. The results on generalising

the 2D compact encoding are my own work. The examples of encodings on different

lattice geometries came from discussions with Joel but the proofs of their more

detailed properties are my work. The construction of the 3D encoding is joint work

from me and Joel Klassen, the lemma on stabilizer generator is my work, the theorem

on the disparity which follows from it is from Joel.

Chapter 4: The initial idea of investigating how errors map through fermionic

encodings came from my supervisor Toby Cubitt. The initial derivation of fermionic

phase noise came from Joel but was refined by me into the form in this document.

The results on error mapping in the compact encoding are my own work.

Chapter 5: The idea for this chapter was inspired by Joel’s observation of the

toric code in the compact encoding on a square lattice but all content is my own

work.

Bibliography

[1] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6), 1982.

[2] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078,

1996.

[3] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation

and statistical zero knowledge. In Proceedings of the thirty-fifth annual ACM

symposium on Theory of computing, pages 20–29, 2003.

[4] Andrew M. Childs. On the relationship between continuous-and discrete-time

quantum walk. Communications in Mathematical Physics, 294(2):581–603,

2010.

[5] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian

simulation with nearly optimal dependence on all parameters. In Foundations

of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages

792–809. IEEE, 2015.

[6] Guang Hao Low and Isaac L. Chuang. Optimal hamiltonian simulation by

quantum signal processing. Phys. Rev. Lett., 118:010501, 2017.

[7] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization.

Quantum, 3:163, 2019.

[8] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su.

Toward the first quantum simulation with quantum speedup. Proceedings of

the National Academy of Sciences, 115(38):9456–9461, 2018.

Bibliography 161

[9] Eugene P. Wigner and Pascual Jordan. Über das paulische äquivale-nzverbot.

Z. Phys., 47:631, 1928.

[10] Daniel S. Abrams and Seth Lloyd. Simulation of many-body fermi systems on

a universal quantum computer. Physical Review Letters, 79(13):2586, 1997.

[11] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,

2018.

[12] Sergey B. Bravyi and Alexei Kitaev. Fermionic quantum computation. Ann.

Phys., 298(1):210–226, 2002.

[13] Frank Verstraete and J. Ignacio Cirac. Mapping local hamiltonians of fermions

to local hamiltonians of spins. J. Stat. Mech. Theory E., 2005(09):P09012,

2005.

[14] James D. Whitfield, Vojtěch Havlíček, and Matthias Troyer. Local spin opera-

tors for fermion simulations. Phys. Rev. A, 94:030301, 2016.

[15] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven. Majorana

loop stabilizer codes for error mitigation in fermionic quantum simulations.

Phys. Rev. Applied, 12:064041, 2019.

[16] Kanav Setia, Sergey Bravyi, Antonio Mezzacapo, and James D. Whitfield.

Superfast encodings for fermionic quantum simulation. Phys. Rev. Research,

1(3):033033, 2019.

[17] Mark Steudtner and Stephanie Wehner. Quantum codes for quantum simulation

of fermions on a square lattice of qubits. Phys. Rev. A, 99:022308, 2019.

[18] Alexei Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys.,

303(1):2 – 30, 2003.

[19] Tom Banks. Modern quantum field theory: a concise introduction. Cambridge

University Press, Cambridge, United Kingdom, 2008.

Bibliography 162

[20] Eva Pavarini, Erik Koch, and (eds.). Simulating Correlations on Computers,

volume 11 of Modelling and Simulation. Verlag des Forschungszentrum Jülich,

2021.

[21] Gian-Carlo Wick, Arthur S. Wightman, and Eugene P. Wigner. The intrinsic

parity of elementary particles. Phys. Rev., 88:101–105, 1952.

[22] Gerhard C. Hegerfeldt, Kamil Kraus, and Eugene P. Wigner. Proof of the

fermion superselection rule without the assumption of time-reversal invariance.

Journal of Mathematical Physics, 9(12):2029–2031, 1968.

[23] John Hubbard. Electron correlations in narrow energy bands. Proceedings of

the Royal Society of London. Series A. Mathematical and Physical Sciences,

276(1365):238–257, 1963.

[24] Elbio Dagotto. Correlated electrons in high-temperature superconductors. Rev.

Mod. Phys., 66:763–840, 1994.

[25] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy,

and Sergio Boixo. Quantum algorithms to simulate many-body physics of

correlated fermions. Physical Review Applied, 9(4):044036, 2018.

[26] John Bardeen, Leon N. Cooper, and John R. Schrieffer. Microscopic theory of

superconductivity. Phys. Rev., 106:162–164, 1957.

[27] Leticia Tarruell and Laurent Sanchez-Palencia. Quantum simulation of the

hubbard model with ultracold fermions in optical lattices. Comptes Rendus

Physique, 19(6):365–393, 2018.

[28] Elliott H. Lieb and Fa-Yueh Wu. Absence of mott transition in an exact

solution of the short-range, one-band model in one dimension. Phys. Rev. Lett.,

20:1445–1448, 1968.

[29] Chunjing Jia, Brian Moritz, Cheng-Chien Chen, B. Sriram Shastry, and

Thomas P. Devereaux. Fidelity study of the superconducting phase diagram

Bibliography 163

in the two-dimensional single-band hubbard model. Phys. Rev. B, 84:125113,

2011.

[30] Susumu Yamada, Toshiyuki Imamura, and Masahiko Machida. 16.447 tflops

and 159-billion-dimensional exact-diagonalization for trapped fermion-hubbard

model on the earth simulator. In SC’05: Proceedings of the 2005 ACM/IEEE

Conference on Supercomputing, pages 44–44. IEEE, 2005.

[31] Richard Blankenbecler, Douglas J. Scalapino, and Robert L. Sugar. Monte carlo

calculations of coupled boson-fermion systems. i. Phys. Rev. D, 24:2278–2286,

1981.

[32] E. Y. Loh, James E. Gubernatis, Richard T. Scalettar, S. R. White, Douglas J.

Scalapino, and Robert L. Sugar. Sign problem in the numerical simulation of

many-electron systems. Phys. Rev. B, 41:9301–9307, 1990.

[33] Raimundo R. dos Santos. Introduction to quantum monte carlo simulations for

fermionic systems. Brazilian Journal of Physics, 33:36–54, 2003.

[34] Matthias Troyer and Uwe-Jens Wiese. Computational complexity and funda-

mental limitations to fermionic quantum monte carlo simulations. Phys. Rev.

Lett., 94:170201, 2005.

[35] Zi-Xiang Li and Hong Yao. Sign-problem-free fermionic quantum monte carlo:

Developments and applications. Annual Review of Condensed Matter Physics,

10:337–356, 2019.

[36] Dave Wecker, Matthew B. Hastings, Nathan Wiebe, Bryan K. Clark, Chetan

Nayak, and Matthias Troyer. Solving strongly correlated electron models on a

quantum computer. Phys. Rev. A, 92:062318, 2015.

[37] Daniel S. Abrams and Seth Lloyd. Quantum algorithm providing exponential

speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett.,

83:5162–5165, 1999.

Bibliography 164

[38] Alexei Kitaev. Quantum measurements and the abelian stabilizer problem.

arXiv preprint quant-ph/9511026, 1995.

[39] Euan Allen. Efficient quantum simulation. In Advanced Quantum Information

Theory Student Essays. Bristol University, 2015.

[40] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Effi-

cient quantum algorithms for simulating sparse hamiltonians. Communications

in Mathematical Physics, 270(2):359–371, 2007.

[41] Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear

combinations of unitary operations. arXiv preprint arXiv:1202.5822, 2012.

[42] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Methodology of res-

onant equiangular composite quantum gates. Physical Review X, 6(4):041067,

2016.

[43] Daniel Gottesman. Class of quantum error-correcting codes saturating the

quantum hamming bound. Phys. Rev. A, 54:1862–1868, 1996.

[44] Emanuel Knill, Raymond Laflamme, and Wojciech H. Zurek. Resilient quan-

tum computation. Science, 279(5349):342–345, 1998.

[45] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with

constant error rate. SIAM Journal on Computing, 2008.

[46] Michael Levin and Xiao-Gang Wen. Fermions, strings, and gauge fields in

lattice spin models. Phys. Rev. B, 67(24):245316, 2003.

[47] Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, and Kristan Temme.

Tapering off qubits to simulate fermionic hamiltonians. arXiv preprint

arXiv:1701.08213, 2017.

[48] Mark Steudtner and Stephanie Wehner. Fermion-to-qubit mappings with vary-

ing resource requirements for quantum simulation. New Journal of Physics,

20(6):063010, 2018.

Bibliography 165

[49] William Kirby, Bryce Fuller, Charles Hadfield, and Antonio Mezzacapo.

Second-quantized fermionic hamiltonians for quantum simulation with poly-

logarithmic qubit and gate complexity, 2021.

[50] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. Strategies for

solving the fermi-hubbard model on near-term quantum computers. Physical

Review B, 102(23):235122, 2020.

[51] Vojtěch Havlíček, Matthias Troyer, and James D. Whitfield. Operator locality

in the quantum simulation of fermionic models. Phys. Rev. A, 95:032332, 2017.

[52] Zhang Jiang, Amir Kalev, Wojciech Mruczkiewicz, and Hartmut Neven. Opti-

mal fermion-to-qubit mapping via ternary trees with applications to reduced

quantum states learning. arXiv preprint arXiv:1910.10746, 2019.

[53] Yu-An Chen, Anton Kapustin, and Ðord̄e Radičević. Exact bosonization in two

spatial dimensions and a new class of lattice gauge theories. Annals of Physics,

393:234–253, 2018.

[54] Rigetti Aspen-9 QPU Specifications. https://qcs.rigetti.com/qpus/.

Accessed 2021-10-13, limited information available in above link, further

info available with account at https://qcs.rigetti.com/lattices with

account access.

[55] Google Quantum AI Quantum Computer Datasheet. https://quantumai.

google/hardware/datasheet/weber.pdf. Accessed: 2021-10-13,

archive link: https://web.archive.org/web/20211010024253/https:

//quantumai.google/hardware/datasheet/weber.pdf.

[56] IBM Quantum Services. https://quantum-computing.ibm.com/

services?services=systems. Accessed: 2021-10-13, requires (free) ac-

count to view.

[57] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David A. Buell,

https://qcs.rigetti.com/qpus/
https://qcs.rigetti.com/lattices
https://quantumai.google/hardware/datasheet/weber.pdf
https://quantumai.google/hardware/datasheet/weber.pdf
https://web.archive.org/web/20211010024253/https://quantumai.google/hardware/datasheet/weber.pdf
https://web.archive.org/web/20211010024253/https://quantumai.google/hardware/datasheet/weber.pdf
https://quantum-computing.ibm.com/services?services=systems
https://quantum-computing.ibm.com/services?services=systems

Bibliography 166

et al. Quantum supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019.

[58] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours

using 20 million noisy qubits. Quantum, 5:433, 2021.

[59] Charles Derby, Joel Klassen, Johannes Bausch, and Toby Cubitt. Compact

fermion to qubit mappings. Phys. Rev. B, 104:035118, 2021.

[60] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological

quantum memory. J. Math. Phys., 43(9):4452–4505, 2002.

[61] Laura Clinton, Johannes Bausch, and Toby Cubitt. Hamiltonian simulation

algorithms for near-term quantum hardware. Nature communications, 12(1):1–

10, 2021.

[62] Charles Derby and Joel Klassen. A compact fermion to qubit mapping part 2:

Alternative lattice geometries. arXiv preprint arXiv:2101.10735, 2021.

[63] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD

thesis, California Institute of Technology, (1997).

[64] Rahul Sarkar and Ewout van den Berg. On sets of commuting and anticommut-

ing paulis. arXiv preprint arXiv:1909.08123, 2019.

[65] Hector Bombin and Miguel A. Martin-Delgado. Topological quantum distilla-

tion. Phys. Rev. Lett., 97:180501, 2006.

[66] Markus S. Kesselring, Fernando Pastawski, Jens Eisert, and Benjamin J. Brown.

The boundaries and twist defects of the color code and their applications to

topological quantum computation. Quantum, 2:101, 2018.

[67] Claudio Chamon. Quantum glassiness in strongly correlated clean systems: An

example of topological overprotection. Physical review letters, 94(4):040402,

2005.

Bibliography 167

[68] Jeongwan Haah. Local stabilizer codes in three dimensions without string

logical operators. Phys. Rev. A, 83(4):042330, 2011.

[69] Paul Webster and Stephen D. Bartlett. Fault-tolerant quantum gates with defects

in topological stabilizer codes. Phys. Rev. A, 102(2):022403, 2020.

[70] Anthony Leverrier, Simon Apers, and Christophe Vuillot. Quantum xyz product

codes. arXiv preprint arXiv:2011.09746, 2020.

[71] Toby S. Cubitt, Ashley Montanaro, and Stephen Piddock. Universal quantum

hamiltonians. P. Natl. A. Sci., 115(38):9497–9502, 2018.

[72] Arkady Fedorov, Leonid Fedichkin, and Vladimir Privman. Decoherence rate

of semiconductor charge qubit coupled to acoustic phonon reservoir. Phys. Rev.

A, 69:032311, 2004.

[73] Henrik Bruus and Karsten Flensberg. Many-Body Quantum Theory in Con-

densed Matter Physics: An Introduction. Oxford University Press, 2004.

[74] Alexey A. Melnikov and Leonid E. Fedichkin. Quantum walks of interacting

fermions on a cycle graph. Sci. Rep. UK, 6:34226, 2016.

[75] Herbert Fröhlich. Electrons in lattice fields. Adv. Phys., 3(11):325–361, 1954.

[76] Eva Pavarini, Erik Koch, Richard Martin, and Richard Scalettar. The physics

of correlated insulators, metals, and superconductors, volume 7 of Modelling

and Simulation. Theoretische Nanoelektronik, 2017.

[77] Sergey Bravyi, Bernhard Leemhuis, and Barbara M. Terhal. Topological order

in an exactly solvable 3d spin model. Ann. Phys., 326(4):839 – 866, 2011.

[78] Maria F. Araujo de Resende. A pedagogical overview on 2d and 3d toric codes

and the origin of their topological orders. Reviews in Mathematical Physics,

32(02):2030002, 2020.

Bibliography 168

[79] Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle

codes: breaking the n 1/2 polylog (n) barrier for quantum ldpc codes. In Pro-

ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,

pages 1276–1288, 2021.

[80] J. Pablo Bonilla Ataides, David K. Tuckett, Stephen D. Bartlett, Steven T. Flam-

mia, and Benjamin J. Brown. The xzzx surface code. Nature communications,

12(1):1–12, 2021.

[81] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the

color code. New Journal of Physics, 17(8):083026, 2015.

Appendix A

Supplemental Material to Chapter 3

A.1 Properties of the cycle group CG

The cycle group CG is defined by eq. (3.8). Here we prove some properties of this

group. We say a cycle c ∈ CG contains an edge if its expression as a product of edges

contains that edge. We say a cycle c contains a vertex if it contains an edge incident

on that vertex.

Proposition 24. CG is in the centralizer of MG.

Proof. Consider an element c ∈ CG. For every vertex contained in c, c contains an

even number of edges incident on that vertex. MG is generated by edge and vertex

operators. First we note that c commutes with all vertex operators since it contains an

even number of edge operators incident on that vertex. Next we note that c commutes

with all edge operators, since for every edge operator e, c contains an even number

of edge operators not equal to e and incident on common vertices with e (this is true

even if c contains e). Thus CG commutes with MG.

Corollary 25. CG is an Abelian normal subgroup of MG.

Definition 26 (Eulerian Graph). A graph is Eulerian if each of its vertices has an

even number of incident edges.

Definition 27 (Simple Cycle). A connected Eulerian subgraph in which all vertices

have degree two.

A.1. Properties of the cycle group CG 170

Definition 28 (Cycle Space γ of G). Given a graph G = (E,V), let E = P(E) be

the power set of edges in the graph, also known as the edge space. The edge space

forms an Abelian group, with the product operation being the disjunctive union

ab = a∪b−a∩b. The cycle space γ is the set of edge sets of Eulerian subgraphs of

G, and it is a subgroup under this group operation. Every element of the cycle space

can be expressed as the product of simple cycles, thus there exists a basis – called a

cycle basis – consisting of independent simple cycles which generates γ .

Proposition 29. CG is isomorphic to the cycle space γ of G.

Proof. Every simple cycle a ∈ γ is a set of undirected edges which may be given an

ordering and directedness such that one may traverse the cycle, passing over each

vertex in a exactly once. The choice of ordering is unique up to the choice of starting

point and the direction of travel. For every simple cycle a ∈ γ define the function

f : γ →CG in accordance with an arbitrary choice of starting point and direction of

travel

f (a) = i|a| ∏
ei,i+1∈a

ei,i+1. (A.1)

We may note that f (a) is invariant under any choice of starting point and direction

of travel by noting that a simple cycle never goes over the same vertex twice and so

e1,2e2,3...e|a|,1 = e2,3...e|a|,1e1,2 (A.2)

and furthermore inverting direction of travel yields

e1,|a|...e3,2e2,1 = (−1)|a|e|a|,1...e2,3e1,2 (A.3)

= (−1)|a|e1,2(e|a|,1...e2,3) (A.4)

= (−1)|a|e1,2e2,3(−1)1(e|a|,1...e3,4) (A.5)

= (−1)|a|e1,2e2,3...e|a|−1,|a|(−1)|a|−2e|a|,1 (A.6)

= e1,2e2,3...e|a|,1 (A.7)

Thus one may uniquely retrieve a from f (a), and so f is invertible on the simple

A.1. Properties of the cycle group CG 171

cycles. Choose a cycle basis B of γ . Define f on all of γ as the product of its action

on B, ie if c = ∏bi ,bi ∈ B, then f (c) = ∏i f (bi). We can see by construction that

f is a homomorphism. Furthermore, since f is invertible on all simple cycles, it is

invertible on the cycle basis, and is thus an isomorphism.

Proposition 30. ME is isomorphic to MG/CG

Proof. Define the mapping

f : MG/CG→ME (A.8)

with action on each vertex vi and each directed edge ei j

f (viCG) =Vi, f (ei jCG) = Ei j (A.9)

and

f (viCG ·a) = f (viCG) f (a),

f (ei jCG ·a) = f (ei jCG) f (a)
(A.10)

for some a ∈MG/CG.

The mapping is clearly invertible for all products of Vi. For Ei j corresponding

to edges in G, for some path {k1, . . . ,kL} with k1 = i and kL = j, the identification

f

(
iL−1

L−1

∏
x=1

ekx,kx+1CG

)
= Ei j (A.11)

can also be made, however the left hand side is equivalent to f (ei jCG). For Eik corre-

sponding to edges not in G, for some path between i and k, a similar identification to

eq. (A.11) can be found where the left hand side will also be unique for the same

reason. The mapping is then invertible for all products of Vi and Ei j.

The properties of Vi and Ei j shown in eq. (3.4) are satisfied by f−1(Vi) and

f−1(Ei j) due to eqs. (3.6) and (A.10) and proposition 24. The cycle condition in

eq. (3.5) is satisfied by inverse mappings of cycles because for sequence of vertices

s = (i1, . . . , iL) with i1 = iL and path p = (i′1, . . . , i
′
L′) with i′1 = i′L′ where p passes

A.1. Properties of the cycle group CG 172

through all the vertices in s in order at least once

f−1

(
iL−1

L−1

∏
x=1

Eix,ix+1

)
= iL−1

L−1

∏
x=1

f−1(Eix,ix+1)

= iL
′−1

L′−1

∏
x=1

ei′x,i′x+1
CG

= ICG.

(A.12)

The mapping is then an invertible homomorphism and therefore an isomorphism.

	Introduction and Background
	Fermions
	The Fermi-Hubbard Model
	The Hamiltonian
	Classical and Quantum Simulation of the Model

	Hamiltonian Simulation
	Stabilizer Codes: A Brief Review
	A Simple Example: 3-qubit Repetition Code
	A More Complex Example: The Toric Code

	Fermionic Encodings
	N-to-N Encodings
	Local Encodings

	NISQ Hardware

	A Compact Fermionic Encoding on a Square Lattice
	Preliminaries
	Construction
	Odd Number of Faces

	Connection to the Toric Code
	Discussion

	The Compact Encoding on Further Lattice Geometries
	Local Fermionic Encodings on Graphs
	Counting Stabilizers
	The Compact Encoding on a Square Lattice
	Particle Species on Fermionic Encodings

	Generalizing the Compact Encoding in 2D
	Examples of Weight-3 Planar Encodings
	The Hexagonal Lattice (6.6.6 Uniform Tiling)
	Diagram Notation
	The 4.8.8 Uniform Tiling
	The 6.4.3.4 Uniform Tiling
	The 4.6.12 Uniform Tiling
	The Kagome Lattice (3.6.3.6 Uniform Tiling)
	The 3.12.12 Uniform Tiling

	A Cubic Encoding
	Construction
	Disparity
	Particle Species

	Discussion

	Mitigating Errors on the Compact Encoding
	Natural Noise on Fermionic Lattice Models
	Derivation of Fermionic Phase Noise

	Mapping Physical Errors to Logical Errors
	Mitigating Parity Switching Errors on the Square Lattice
	Partial Correction of Detectable X and Y Errors
	Discussion

	Code Underlying the Cubic Compact Encoding
	Structure and Codespace
	Excitations, Logical Operators and Code Distance
	Geometrical Pictures
	3-Torus
	Open Boundary Conditions

	Discussion

	Concluding Remarks and Outlook
	Bibliography
	Appendices
	Supplemental Material to chap:EncodingVariations
	Properties of the cycle group Lg

