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Abstract
We give a complete description of the behaviour of Calabi–Yau instantons and
monopoles with an SU (2)2-symmetry, on Calabi–Yau 3-folds with asymptotically
conical geometry and SU (2)2 acting with co-homogeneity one. We consider gauge
theory on the smoothing and small resolution of the conifold, and on the canoni-
cal bundle of CP

1 × CP
1, with their known asymptotically conical co-homogeneity

one Calabi–Yau metrics, and find new one-parameter families of invariant instantons.
We also entirely classify the relevant moduli-spaces of instantons and monopoles
satisfying a natural curvature decay condition, and show that the expected bubbling
phenomena occur in these families of instantons.

Keywords Gauge Theory · Co-homogeneity one · Calabi–Yau 3-folds

Mathematics Subject Classification 53C07 · 53C25

1 Introduction

OnCalabi–Yau (CY) 3-folds, Riemannianmanifolds of real dimension six with holon-
omy contained in SU (3), one can define analogues of the Bogomol’nyi monopole
and anti-self-dual equations found in dimensions three and four. These analogues
are referred to as the Calabi–Yau monopole equations, and the Calabi–Yau instanton
equations, respectively, and are defined with the additional data of a fixed principal
bundle over the 3-fold. It has been conjectured in [5, 6] that one might be able to use
the moduli-space of their solutions to construct invariants of the underlying 3-folds.

However, the analysis of the resulting partial differential equations can be difficult
in general: in this article, we focus on the SU (2)2-symmetric setting for both the
Calabi–Yau structure and the bundle, so that these equations can be written as ordinary
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differential equations of a single variable. We further restrict our investigations to
bundles with structure group of rank one, and asymptotically conical (AC) geometries,
i.e. the Calabi–Yau is diffeomorphic to a cone outside of a compact subset1, with a
Riemannian metric converging in a suitable sense to the corresponding metric cone.

In this setting, we are able to explicitly describe the aforementioned moduli-spaces
and their structure,whichwill hopefully shedmore light on thewider subject: for exam-
ple, how the underlying geometry interacts with the gauge theory, and how to construct
local models for solutions on compact three-folds with isolated conical singularities,
and their de-singularisations. We also prove the relevant bubbling and compactness
theorems for these moduli-spaces, in line with the general picture laid out in [5, 6].

Another related motivation for studying SU (2)2-invariant AC Calabi–Yau gauge
theory are the potential applications to an analogous notion of gauge theory onRieman-
nian manifolds with exceptional holonomy group G2. In particular, Foscolo, Haskins,
and Nordström have recently constructed one-parameter families of SU (2)2-invariant
G2-metrics in [10] with asymptotically locally conical (ALC) geometry at infinity,
i.e. outside of a compact subset, these metrics converge to a circle fibration over a
Calabi–Yau cone, with fibres of some length � > 0. These families collapse to invari-
ant AC Calabi–Yau 3-folds in the limit as � → 0, and one may be able to use the
invariant Calabi–Yau gauge theory constructed in this article to construct invariant
G2 instantons near the collapsed limit. Far from the collapsed limit, the families of
G2-metrics have AC geometry when � → ∞, see [11] for partial results comparing
invariant instantons on G2-metrics with ALC and AC asymptotics.

1.1 Overview

Let
(
M6, ω,�

)
be a Calabi–Yau 3-fold, where ω denotes the Kähler form, and �

denotes the holomorphic volume form on M such that 1
3!ω

3 = 1
23

� ∧ �̄, and fix
a principal G-bundle P → M with a compact semi-simple Lie group G. The pair
(A,�), for some connection A on P and non-trivial � ∈ �0 (AdP), is called a
(Calabi–Yau) monopole if it satisfies the Calabi–Yau monopole equations:

FA ∧ ω2 = 0 FA ∧ Re� = ∗dA� (1)

where∗ is theHodge star of theRiemannianmetric defined by (ω,�), FA ∈ �2 (AdP)

is the curvature of A, and dA : �0 (AdP) → �1 (AdP) is the induced covariant
derivative. We refer to the section � as the Higgs field for this monopole.

We obtain the Calabi–Yau instanton equations for a connection A on P by setting
� = 0 in (1):

FA ∧ ω2 = 0 FA ∧ Re� = 0 (2)

Note that if a monopole (A,�) has dA� = 0, then A is also a (Calabi–Yau) instanton,
i.e. a solution of (2), but the existence of a non-trivial parallel section � implies that
the connection A must be reducible in this case.

1 The presence of continuous symmetries for full holonomy SU (3) necessitates the manifold be non-
compact.

123



SU(2)2-Invariant Gauge Theory Page 3 of 55   121 

In terms of the complex geometry, the first condition of (2) says that FA is a
primitive Lie algebra-valued two-form, while the second condition says it is of type
(1, 1). Furthermore, it is not hard to prove that instantons minimise the Yang–Mills
energy functional YM(A) := ∫

M |FA|2 on the space of connections on P , where we
take point-wise norms with respect to some ad-invariant metric on the Lie algebra of
G. Hence, on the special unitary frame bundle SU (E) of some hermitian vector bundle
E over M with trivial determinant bundle, a Calabi–Yau instanton is also referred to
as a Hermitian Yang–Mills (HYM) connection in the literature.

When G is abelian, (1) and (2) are linear equations, and the moduli-space of their
solutions are well understood: if G = U (1) for example, any two-form on M which is
an instanton in the sense of (2) is harmonic, with the converse holdingwhen (M, ω,�)

is compact with full holonomy SU (3). Even when M is non-compact, every U (1)-
bundle carries a unique Calabi–Yau instanton with decaying curvature when (ω,�)

is asymptotically conical with full holonomy SU (3) by [9, Theorem 5.12]. For non-
abelian gauge groups, one usually seeks a description of the gauge theory starting with
the next simplest case of rank one groups: in particular, without loss of generality2,
we will always take the gauge group to be SU (2) in this article.

The Calabi–Yau monopole equations were first studied in the SU (2)2-invariant
setting in [13], for the asymptotically conical metric of Stenzel [15] on the cotangent
bundle of S3. There is a one-parameter family of invariant monopoles for this metric,
with a single explicit instanton [13, Theorem 2] appearing at the boundary of this
family when the Higgs field vanishes. In this article, we will independently verify
this claim using new proofs, as well as proving that the explicit instanton actually lies
in a one-parameter family of invariant instantons for this metric. We also describe
the invariant gauge theory for all the other known examples of SU (2)2-invariant AC
Calabi–Yau metrics, namely the metric of Candelas and de la Ossa [3] on the small
resolution of the conifold O(−1) ⊕ O(−1) over CP

1, and the metric of Calabi [2],
later generalised to a one-parameter family by Pando-Zayas and Tseytlin [14], on the
canonical bundle O(−2,−2) of CP

1 × CP
1. Here, the action of SU (2)2 on these

3-folds is with co-homogeneity one i.e. the generic SU (2)2-orbit is co-dimension one.
To understand the various components of these gauge-theoretic moduli-spaces, we

must first discuss fixing the asymptotic behaviour of solutions. A natural condition
on a solution of (1) on an asymptotically conical metric is that it converges at the
conical end to some model solution (A∞,�∞) on the cone, pulled back from the
link. Concretely, up to double-cover, the metrics on T ∗S3, O(−1) ⊕ O(−1), and
O(−2,−2) all share the same asymptotic cone with link S2 × S3, and we have the
following potential invariant model solutions: either we have a flat connection with a
trivial Higgs field, or we have the unique non-flat invariant instanton pulled back from
S2 × S3, which we denote Acan, with a possibly non-trivial parallel Higgs field .3

On these asymptotically conical metrics, we find four distinct possibilities for any
invariant irreducible solution (A,�) to the monopole equations: (i) the curvature does
not decay quadratically, i.e. t2|FA| is unbounded as t → ∞, where t is the radial

2 gauge group SO(3) always lifts to SU (2) in our invariant setting, see Proposition A.2 of the appendix.
3 these monopoles

(
Acan, �m

)
pulled back from the link actually come in a one-parameter family, param-

eterised by the mass m = |�m | > 0. This is explained in more detail in [13].
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parameter of the cone, and we take norms with respect to the cone metric, (ii) (A,�)

is an invariant monopole which is asymptotic to Acan with a non-trivial Higgs field
as t → ∞, (iii) � = 0, A is an invariant instanton which is asymptotic to Acan as
t →∞, (iv) � = 0, A is invariant instanton which is asymptotic to a flat connection
as t →∞ .4

We shall restrict to cases (ii)–(iv) by only considering invariant solutions with
quadratic curvature decay. In general, this is a natural assumption tomake for solutions
on asymptotically conical metrics, since solutions on the cone converging to some
model solution have curvature decaying (at least) as a two-form on link of the cone.
As far as the author is aware, this article is the first situation for which we have a
complete description of this moduli-space for the invariant co-homogeneity one gauge
theory. Also, although we were unable to prove this in full generality, we conjecture
that situation (i) does not actually arise, i.e. any invariant solution to the monopole
equations on T ∗S3, O(−1) ⊕ O(−1), and O(−2,−2) without quadratic curvature
decay must blow up in finite time.

We now summarise our main results. For the metric of Stenzel, there is a sin-
gle SU (2)-bundle admitting irreducible invariant connections, which we denote PId,
and we find a one-parameter family of instantons, and a one-parameter family of
monopoles:

Theorem A In a neighbourhood of S3 ⊂ T ∗S3, up to gauge, invariant solutions to
the monopole equations are in a two-parameter family (S,�)ξ,χ , containing a one-
parameter family of invariant instantons with χ = 0. Moreover, (S,�)ξ,χ extends
over all of T ∗S3 when

(i) ξ ∈ (−1, 1) , χ = 0, as an irreducible instanton asymptotic to Acan at infinity,
(ii) ξ = ±1, χ = 0, as a flat connection,
(iii) ξ = 0, χ ∈ (0,∞), as an irreducible monopole asymptotic to Acan with a non-

trivial parallel Higgs field at infinity.

Otherwise, (S,�)ξ,χ cannot extend over T ∗S3 with quadratically decaying curvature.

See Proposition 3.12 for a proof of the local statement, Theorem 4.1 parts (i), (ii),
and Proposition 4.25 for (iii). The existence of the one-parameter family of monopoles
(S,�)χ := (S,�)0,χ , χ ∈ (0,∞), and the instanton S0 := (S,�)0,0 was already
established in [13], which considered only local solutions (S,�)ξ,χ with ξ = 0: we fix
a gap in the proof of [13, Theorem 1] by showing these are all the invariant monopoles
with quadratic curvature decay. We also note here that there is a (non-equivariant)
isometric involution of T ∗S3, arising from the map exchanging the factors of SU (2)
in each SU (2)2-orbit, which sends (S,�)ξ,χ 	→ (S,�)−ξ,χ .

For the small resolution O(−1)⊕O(−1), there are two SU (2)-bundles admitting
invariant irreducible connections, denoted P0,Id and P1,0, and these are equivariantly
isomorphic over the complement O(−1) ⊕ O(−1) \ CP

1. We find that each bundle
carries a one-parameter family of instantons Rε , R′

ε′ , respectively, and the family R′
ε′

contains an invariant abelian instanton R′0:

4 one can also show that for (ii), (iii), solutions have exactly quadratic curvature decay, while for (iv),
solutions have curvature decaying faster than quadratically, and moreover, have curvature bounded in
L2-norm.
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Theorem B In a neighbourhood of CP
1 ⊂ O(−1)⊕O(−1), invariant instantons are

in two one-parameter families Rε and R′
ε′ , ε′ ∈ [0,∞), up to gauge. Moreover, Rε ,

R′
ε′ extends over all of O(−1)⊕O(−1) when

(i) ε ∈ (0,∞), as an irreducible instanton asymptotic to Acan at infinity,
(ii) ε′ ∈ [0, 1), as an instanton asymptotic to Acan at infinity, which is abelian if

ε′ = 0 and irreducible otherwise,
(iii) ε = 0 or ε′ = 1, as a flat connection.

Otherwise, Rε , R′
ε′ cannot extend over O(−1)⊕O(−1) with quadratically decaying

curvature.

See Propositions 3.14, 3.15 for a proof of the local statement, Theorems 4.6, 4.7
for parts (i)–(iii).

We can also show that, in the limit ε → ∞, i.e. as the curvature of the invariant
family Rε blows up on the calibrated co-dimension four CP

1, we get the expected
bubbling and removable-singularity phenomena:

Theorem C Let Rε be the one-parameter family of invariant instantons and R′0 the
invariant abelian instanton extending overO(−1)⊕O(−1). Then, in the limit ε →∞:

(i) Up to an appropriate rescaling, Rε bubbles off a family of anti-self-dual connec-
tions along CP

1 ⊂ O(−1)⊕O(−1).
(ii) Without this rescaling, Rε converges uniformly to R′0 on compact subsets of

O(−1)⊕O(−1) \ CP
1.

See Theorem 4.17 for proofs and a more precise statement of these results. The
proof of Theorem C is more involved than for a similar co-homogeneity one bubbling
theorem for instantons found in [11, Theorem 2]: everything was explicit in that case,
whereas wemust genuinely prove (i) here to obtain the relevant compactification result
(ii).

There are countably many bundles overO(−2,−2) admitting irreducible invariant
connections, which we denote P1−l,l for l ∈ Z. The number l ∈ Z can be under-
stood topologically by associating a rank two complex vector bundle to P1−l,l via the
standard representation: this associated bundle splits into a direct sum of line bun-
dles pulled back from O(±(1 − l),±l) → CP

1 × CP
1. Each bundle P1−l,l carries

a one-parameter family of instantons Ql
αl

similar to the family R′
ε′ of Theorem B:

Ql
0 is abelian, Ql

αl
is asymptotic to Acan at infinity when the parameter αl ≥ 0 is

less than some finite critical value αcrit
l , and the asymptotic behaviour of this family

jumps to a flat connection at the critical value. However, there is a new phenomenon
onO(−2,−2), as the instantons Ql

αcrit
l

are not themselves flat when l �= 0, 1: they are

rigid in the moduli-space of invariant, irreducible instantons with these asymptotics.

Theorem D In a neighbourhood of CP
1 × CP

1 ⊂ O(−2,−2), invariant instantons
are in countably many one-parameter families Ql

αl
, l ∈ Z, αl ∈ [0,∞), up to gauge.

Moreover, Ql
αl

extends over all of O(−2,−2) when

(i) αl ∈
[
0, αcrit

l

)
for some αcrit

l ∈ (0,∞), as an instanton asymptotic to Acan at
infinity, which is abelian if αl = 0 and irreducible otherwise,
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(ii) l = 0, 1, αl = αcrit
l as a flat connection,

(iii) l �= 0, 1, αl = αcrit
l as an irreducible instanton asymptotic to a flat connection at

infinity.

Otherwise, Ql
αl

cannot extend overO(−2,−2) with quadratically decaying curvature.

See Proposition 3.10 for a proof of the local statement, and Theorems 4.8, 4.9 for
parts (i)–(iii). See also the end of §4.2 for a further discussion of the behaviour of
instantons on O(−2,−2).

In the final result, the proof of which can be found in Proposition 4.20, we show that
Theorems A - D fully describe the moduli-space of the SU (2)2-invariant Calabi–Yau
gauge theory:

Theorem E There are no irreducible, invariant monopoles onO(−2,−2) orO(−1)⊕
O(−1) with quadratically decaying curvature.

1.2 Plan of Paper

For the rest of the introduction, we summarise the structure of this article.
Throughout the following, if a manifold M has a co-homogeneity one action by

Lie group K , with exactly one exceptional isotropy subgroup H ′, and generic isotropy
subgroup H , we will denote the sequence H ⊂ H ′ ⊆ K as the group diagram of M .
We will refer to the generic K -orbit K/H as the principal orbit, the orbit K/H ′ as the
singular orbit, and the union of all generic K -orbits as the space of principal orbits.
In order to fix conventions, we start with a preliminary introduction to the geometry
of co-homogeneity one Calabi–Yau metrics in §2, in the case K = SU (2)2, and H is
either the diagonal subgroup�U (1) or�U (1)×Z2, i.e. we describe the Calabi–Yau
metrics on O(−1)⊕O(−1), T ∗S3, and O(−2,−2).

We proceed with the main goal of the article in §3: we consider the space of
connections, Higgs fields, and SU (2)-bundles over these manifolds that are invariant
under the SU (2)2-action, and write down the monopole equations in this invariant
setting. We describe the gauge theory on the complement of the singular orbit by
pulling back invariant bundles over the principal orbit in §3.1, giving us some ODE
system for our connection andHiggs field. Invariant bundles over the principal orbit are
classified by an integer, but only one of these bundles, denoted P1, admits irreducible
connections. We write down the ODE system for this bundle explicitly in Proposition
3.4. We also briefly mention the reducible solutions to these equations in §3.2, which
are explicit.

We cannot generically expect to find explicit solutions in the irreducible case, but
by imposing that the bundle data extend to the singular orbit, we can describe the space
of solutions to the ODEs near the singular orbit using a power-series. In §3.3, we will
find that these local solutions to themonopole equations are always in a two-parameter
family for each extension of the bundle P1 to the singular orbit, and we can obtain
a local one-parameter family of instantons by setting one of these two parameters to
zero.

The discussion of boundary conditions for extending the invariant bundle data to
the singular orbit is relegated to Appendix 1. Using the analysis of Eschenburg–Wang
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[7] on invariant tensors, which can be adapted to (adjoint-valued) forms, these are just
representation-theoretic computations.

We dedicate the remaining sections to finding a qualitative description of the
behaviour of the local solutions in §3.3 as we move away from the singular orbit.
In §4.1, using the existence of invariant sets for these ODE systems, we determine the
asymptotic behaviour of the local instanton solutions to obtain Theorems B, D, and
parts (i), (ii) of Theorem A. To prove existence of the critical value of the parameter
αl in Theorem D when l �= 0, 1, we must also employ a rescaling argument along the
fibres ofO(−2,−2), and we prove uniqueness via some comparison results allowing
us to compare solutions away from the singular orbit for different values of αl .

We continue discussing rescaling arguments in §4.2. To show Theorem C, we can
consider an adiabatic limit in whichwe shrink themetric onO(−1)⊕O(−1) along the
fibre. We prove that in this limit, as ε →∞, a rescaling of the one-parameter family
of solutions Rε to the ODEs converges to the standard anti-self-dual connection on
C
2, and use this result to prove the convergence of the solution Rε as ε → ∞. The

general picture is that the solution curve Rε breaks into two pieces in this limit, the
first being the anti-self-dual connection, which is only traversed in non-zero time if
we rescale, and the second being an abelian instanton R′0.

We also include an extended remark on bubbling phenomena for instantons on
O(−2,−2): we consider a limit in which the metric is close to the simplest (non-
trivial) example of an asymptotically locally Euclidean (ALE) fibration: a copy of the
Eguchi–Hanson metric on the total space of the cotangent bundle of CP

1, fibred over
the standard metric onCP

1. As onemight expect, in this limit, we find that the families
of instantons onO(−2,−2), suitably rescaled, are close to corresponding families of
anti-self-dual connections for the Eguchi–Hanson metric. Although this result was
ultimately unnecessary for proving the main theorems of this article, they provide a
way to understand the moduli-space over O(−2,−2) in terms of the moduli-spaces
of anti-self-dual connections constructed by Nakajima in [12].

Finally, in §4.3, we analyse the behaviour of the full system of the monopole
equations away from the singular orbit to prove Theorem E, and the final part of
Theorem A.We show that, aside from the one-parameter family of monopoles already
found in [13] and the instantons described in the previous sections, any other member
of the local two-parameter families of monopoles from §3.3 cannot have quadratically
decaying curvature.

2 Preliminaries

2.1 Calabi–Yau Structures, Cones, and Co-homogeneity OneManifolds

Before considering Calabi–Yau structures in (real) dimension 6, let us recall some
general definitions from [4] in dimension 5. We let N be a real 5-dimensional man-
ifold equipped with an SU (2)-reduction of the frame bundle: this gives a unique
Riemannian metric and orientation on N compatible with such a reduction, via the
inclusion SU (2) ⊂ SO(5). An SU (2)-structure on N is equivalent to a triple of
2-forms (ω1, ω2, ω3) and a nowhere-vanishing 1-form η such that
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1. ωi ∧ ω j = δi jv, with v fixed 4-form s.t. v ∧ η is nowhere-vanishing: i.e. v is a
volume form on the distribution H := ker η.

2. X�ω1 = Y�ω2 ⇒ ω3(X , Y ) ≥ 0, i.e. (ω1, ω2, ω3) is an oriented basis of∧+ (H) in the splitting
∧2 (H) = ∧+ (H) ⊕ ∧− (H), with respect to the

induced Riemannian metric on H, and volume form v.

Wewill take the quadruple (η, ωi ) satisfying the above as defining an SU (2)-structure.
If we take t ∈ I as parameterising some interval I ⊂ R, then (η, ωi ) can be used to
define an SU (3)-structure (ω,�) on N × I :

ω = dt ∧ η + ω1 � = (dt + iη) ∧ (ω2 + iω3) (3)

Requiring the SU (3)-structure be torsion-free, i.e. that (ω,�) be closed on N × I ,
gives (on N ):

dω1 = 0 d(ω3 ∧ η) = 0 d(ω2 ∧ η) = 0 (4)

Along with the evolution equations:

dη = ∂tω1 dω2 = −∂t (ω3 ∧ η) dω3 = ∂t (ω2 ∧ η) (5)

The right-hand side of the evolution equations vanishes if the SU (2)-structure (η, ωi )

on N is fixed, but if we instead allow it to vary with t , then a one-parameter family of
SU (2)-structures (η, ωi )t satisfying (5), with (η, ωi )t initially satisfying (4), will also
define a torsion-free SU (3)-structure on N × I . Conversely, if N can be embedded as
an oriented hypersurface in a 6-manifold M , then any SU (3)-structure on M gives rise
to a one-parameter family of SU (2)-structures on N for some tubular neighbourhood
M∗ ∼= N × I of N ⊂ M (see [4]), and requiring that the SU (3)-structure be torsion-
free gives (4), (5).

We will refer to a torsion-free SU (3)-structure as a Calabi–Yau structure on M ,
an SU (2)-structure satisfying (4) as a hypo-structure on N , and equations (5) as the
hypo-evolution equations.

Note that N × I is foliated into parallel hypersurfaces when equipped with the
metric g compatible with this SU (3)-structure, i.e. we have g = dt2 + gt for some
t-dependent metric gt on N . Equivalently, there exists a geodesic on N × I that meets
every hypersurface in the foliation perpendicularly.

Putting aside completeness of the resulting metrics for a moment, an important
example of the above procedure is the Riemannian cone C(N ) over N . As a smooth
manifold, this is just R>0 × N , and if we identify N ⊂ C(N ) with the hypersurface
{1} × N at t = 1, a fixed SU (2)-structure

(
ηse, ωse

i

)
on N defines the following

1-parameter family (η, ωi )t of SU (2)-structures:

η = tηse ωi = t2ωse
i (6)

As in (3), this family defines the conical SU (3)-structure (ωC ,�C ) on R>0 × N :

ωC = tdt ∧ ηse + t2ωse
1 �C = t2

(
ωse
2 + iωse

3

) ∧ (
dt + i tηse) (7)
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which is Calabi–Yau iff (6) satisfies equations (4), (5). In this case, satisfying (4), (5)
is equivalent to the following structure equations on N :

dηse = 2ωse
1 dωse

2 = −3ωse
3 ∧ ηse dωse

3 = 3ωse
2 ∧ ηse (8)

We refer to an SU (2)-structure
(
ηse, ωse

i

)
satisfying (8) as being Sasaki–Einstein: one

can show that such an SU (2)-structure induces a Sasaki–Einstein metric gse on N , or
other words, the Calabi–Yau metric gC compatible with (ωC ,�C ) on R>0 × N is a
metric cone gC = dt2 + t2gse over gse.

Another class of examples for this construction arise when we have a smooth,
isometric action by some compact Lie group K on M , such that there is a K -orbit
with co-dimension one. These are the co-homogeneity one Riemannian manifolds,
and it is not difficult to show that the K -orbits foliate (a dense open subset of) M
into parallel hypersurfaces, and that the quotient space M/K is one-dimensional, c.f.
[1]. These parallel hypersurfaces can all be written as the homogeneous space K/H ,
where H denotes the principal (i.e. generic) isotropy subgroup of the K -action, and
the evolution equations (5) for some K -invariant forms (η, ωi ) on K/H become a
finite-dimensional system of ODEs, which can be explicitly solved in some cases.

Such a situation arises for the three known distinct examples of complete asymptot-
ically conical co-homogeneity one Calabi–Yau 3-folds in the literature, each of which
has the form M = SU (2)2×H ′ V for some singular isotropy subgroup H ′ ⊂ SU (2)2,
and H ′-representation V :

1. O(−1)⊕O(−1) over CP
1, with a metric obtained by Candelas and de la Ossa

in [3], also known as the small resolution of the conifold. The metric is unique up
to rescaling by a constant factor, and as a co-homogeneity one manifold we have
the diagram �U (1) ⊂ U (1)× SU (2) ⊂ SU (2)2, where �U (1) is the diagonal
U (1) subgroup. The U (1) × SU (2) representation is given by the following:
viewing v ∈ V as a quaternion, and q ∈ SU (2) as a unit quaternion, then
(eiθ , q).v = qve−iθ . By applying the outer automorphism exchanging the factors
of SU (2) ⊂ SU (2)2, we can get another co-homogeneity one metric from the
small resolution, with singular isotropy group U (1)× SU (2) ⊂ SU (2)2, but this
metric is distinct only up to equivariant isometries.

2. T ∗S3 over S3, with a metric also considered in [3] and found independently
by Stenzel in [15]. This is also referred to as the smoothing of the conifold
and again, this metric is unique up to overall scale. The group diagram is
�U (1) ⊂ �SU (2) ⊂ SU (2)2, and we have as a �SU (2) representation
V ∼= su(2), i.e. SU (2) acts via the adjoint representation. As a smooth mani-
fold, it is diffeomorphic to R

3 × S3, the only rank 3 vector bundle over S3 up to
diffeomorphism.

3. O(−2,−2), the total space of the canonical bundle over CP
1 × CP

1, with a
metric found by Calabi in [2] (unique up to overall scaling), which was later
generalised to a one-parameter family of metrics by Pando-Zayas and Tseytlin
in [14]. This parameter represents the relative volume of each CP

1 as the zero-
section of O(−2,−2), and Calabi’s construction considers the case when these
two volumes are equal. The group diagram is K2,−2 ⊂ U (1)2 ⊂ SU (2)2, where
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K2,−2 is the kernel of the mapU (1)2 → U (1) given by (eiθ1 , eiθ2) 	→ e2iθ1−2iθ2 ,
and as a U (1)2-representation we have V ∼= C2,−2, i.e. for complex number
V � v, (eiθ1 , eiθ2).v = e2i(θ1−θ2)v. Note that there is a (non-unique) isomor-
phism K2,−2 ∼= �U (1) × Z2 ⊂ U (1)2, where we define �U (1) × Z2 ⊂
U (1)2 as the (internal) direct product of the diagonal subgroup �U (1) and
the Z2-subgroup generated by (e2iπ , eiπ ), by sending K2,−2 � (eiθ1 , eiθ2) 	→
(eiθ1 , eiθ1).(e2iπ , ei(θ2−θ1)) ∈ �U (1)× Z2.

The asymptotic model for the geometry of these spaces (up to Z2-cover) is the unique
co-homogeneity oneCalabi–Yaumetric cone over SU (2)2/�U (1) ∼= S2×S3, referred
to as the conifold in [3]. In the co-homogeneity one setting, there is an obvious
diffeomorphism identifying the space of principal orbits with the smooth manifold
underlying the conifold, and pulling back any of these asymptotically conical metrics
to ametric on the conifold via this diffeomorphism, by [3, 14], we have |i∗g−gC | → 0
as t →∞, where t denotes the radial parameter on the cone, i∗g denotes the pulled-
back metric, and we take norms with respect to the conical metric gC .

2.2 Invariant Calabi–Yau Structures On The Space Of Principal Orbits.

In order to have a uniform set-up for the gauge theory in later sections, we will
recall the construction of these co-homogeneity one Riemannian metrics onO(−1)⊕
O(−1), T ∗S3, andO(−2,−2). They appear as solutions to the hypo-equations (4) and
evolution equations (5) on the space of principal orbits S2 × S3 = SU (2)2/�U (1),
which extend to the singular orbits in the complete cases.

Let us begin by fixing an explicit basis E1, E2, E3 for su(2), given by the matrices:

E1 :=
(

i 0
0 −i

)
E2 :=

(
0 1
−1 0

)
E3 :=

(
0 i
i 0

)

so that
[
Ei , E j

] = 2Ek for cyclic permutations of (123), and the action of U (1)
on SU (2) is generated by E1. Clearly, we can identify the span of E2, E3 under the
adjoint action of U (1) with C2, where Cn denotes nth tensor power of the standard
representation of U (1) on C.

We will also fix a basis for the left-invariant vector fields of SU (2)2:

U 1 := (E1, 0) V 1 := (E2, 0) W 1 := (E3, 0)

U 2 := (0, E1) V 2 := (0, E2) W 2 := (0, E3)

and denote U± := U 1 ±U 2, where U+ generates the diagonal subgroup �U (1).
Let m denote the complement of u(1) in su(2)⊕ su(2), where u(1) is the span of

U+. We have the ad-invariant splitting as �U (1)-representations:

su(2)⊕ su(2) = u(1)⊕m := 〈U+〉 ⊕ 〈U−, V 1, W 1, V 2, W 2〉 ∼= R⊕ (R⊕ C2 ⊕ C2)
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Remark 2.1 Assume Z2 ⊂ SU (2)2 is a subgroup of the flow generated by the vector
field U−. The adjoint action of Z2 onm is trivial, and so the results of this section will
also apply to SU (2)2/�U (1)× Z2.

With this notation, we define the standard invariant Sasaki–Einstein structure(
ηse, ωse

i

)
on SU (2)2/�U (1) as

ηse := 4
3u− ωse

1 := − 2
3 (v

1 ∧ w1 − v2 ∧ w2)

ωse
2 := 2

3 (v
1 ∧ v2 + w1 ∧ w2) ωse

3 := 2
3 (v

1 ∧ w2 − w1 ∧ v2)
(9)

It is easy to check that
(
ηse, ωse

i

)
satisfies the Sasaki–Einstein structure equations (8).

The corresponding Calabi–Yau cone C
(
SU (2)2/�U (1)

)
has the SU (3)-structure

(ωC ,�C ), as in (7), and we refer to this cone as the conifold.5

Furthermore, it is not hard to show that the space of invariant two-forms on
SU (2)2/�U (1) is four-dimensional, and spanned by ωse

0 , ωse
1 , ωse

2 , ωse
3 , where we

define

ωse
0 := 2

3 (v
1 ∧ w1 + v2 ∧ w2) (10)

By using this basis of invariant two-forms and the invariant one-form ηse, we have the
following description of the space of hypo-structures:

Proposition 2.2 [8] Up to transformations by isometries with respect to the induced
metric, any invariant family of hypo-structures (η, ω1, ω2, ω3)t on SU (2)2/�U (1)
can be written:

η = ληse ω1 = u0ω
se
0 + u1ω

se
1 ω2 = μωse

2 ω3 = v0ω
se
0 + v3ω

se
3 (11)

where λ, u0, u1, v0, v3 are real-valued functions depending on t ∈ R>0, with μ2 :=
−u2

0 + u2
1 = −v20 + v23 , and v0u0 = 0.

Clearly, at least one of v0 or u0 must vanish: if v0 vanishes, we will refer to this
family as a hypo-structure of type I, while if u0 vanishes, we will refer to this family
as a hypo-structure of type II. We will write these two situations explicitly below,
along with corresponding hypo-evolution Eq (5):

1. Type I:

η = ληse ω1 = u0ω
se
0 + u1ω

se
1 ω2 = μωse

2 ω3 = μωse
3 (12)

The corresponding hypo-evolution equations are

∂t u0 = 0 ∂t u1 = 2λ ∂t (λμ) = 3μ (13)

5 Note that any invariant Sasaki–Einstein structure on SU (2)2/�U (1) can be obtained from (9) by rotating
the plane spanned by

(
ωse
2 , ωse

3
)
. However, since any of two of these structures induce the same Sasaki–

Einstein metric gse , we will make this particular choice without loss of generality.
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2. Type II:

η = ληse ω1 = μωse
1 ω2 = μωse

2 ω3 = v0ω
se
0 + v3ω

se
3 (14)

The corresponding hypo-evolution equations are

∂tμ = 2λ ∂t (μλ) = 3v3 ∂t (λv3) = 3μ ∂t (λv0) = 0 (15)

If both v0, u0 vanish, then u1 = v3 = μ, and clearly λ = t, μ = t2 is a solution to the
resulting evolution equations:

∂tμ = 2λ ∂t (μλ) = 3μ

which gives rise to the conical Calabi–Yau structure (ωC ,�C ) of the conifold.

Remark 2.3 (ω,Re�) represent cohomologyclasses of M∗ := R>0×SU (2)2/�U (1),
and the conserved quantities u0, −λv0 appearing in (13), (15) are the coefficients of
([ω] , [Re�]) ∈ H2 (M∗)× H3 (M∗) ∼= R

2 with respect to the basis ωse
0 , ωse

0 ∧ ηse.

For each of the families, one can write down the corresponding invariant Calabi–Yau
metric g = dt2 + gt explicitly on the space of principal orbits, cf. [8, Prop.2.16]:

1. Type I:

g = dt2 + λ2(ηse)2 + 2
3 (u1 − u0)

(
(v1)2 + (w1)2

)

+ 2
3 (u1 + u0)

(
(v2)2 + (w2)2

)
(16)

2. Type II:

g = dt2 + λ2(ηse)2 + 4
3 (v3 − v0)

(
(v−)2 + (w−)2

)

+ 4
3 (v3 + v0)

(
(v+)2 + (w+)2

)
(17)

where v± is the 1-form dual to tangent vector V± = V1 ± V2, respectively, w+
is the dual to W± = W1 ±W2.

With this description in hand, the problem of finding invariant Calabi–Yau metrics
on the space of principal orbits is reduced to finding solutions to the evolution equations
(13) or (15). We can write the complete Calabi–Yau metrics as solutions extending to
the singular orbits at t = 0, c.f. [8, Thm.2.27]:

Lemma 2.4 [3, 14] Up to transformations by isometries with respect to the induced
metric, the space of SU (2)2-invariant Calabi–Yau structures (ω,�) on M can be
identified with:

(i) For M = O(−2,−2), the open convex cone {(U0, U1) ∈ R
2 | U1 > |U0| ≥ 0}.

(ii) For M = O(−1)⊕O(−1), the ray {(U0, U1) ∈ R
2 | U1 = −U0 < 0}.
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These invariant Calabi–Yau structures induce a hypo-structure of type I on the prin-
cipal orbits, with (U0, U1) := (u0(0), u1(0)), and

μ2 = u2
1 −U 2

0 λ2 = u3
1 − 3U 2

0 u1 +U1(3U 2
0 −U 2

1 )

u2
1 −U 2

0

(18)

There are a few comments to be made about the parameters (U0, U1) appearing in
Lemma 2.4: firstly, the point U0 = U1 = 0 is clearly identified with the conifold u1 =
μ = t2, λ = t . Secondly, the interior of the cone {(U0, U1) ∈ R

2 | U1 > |U0| ≥ 0}
can be identified with the Kähler cone of O(−2,−2), i.e. the convex cone generated
by the Kähler classes of the two copies of CP

1 ⊂ O(−2,−2), and it is not hard to
see that multiplicative rescalings of the cone are equivalent to constant rescalings of
the metric. Furthermore, the diffeomorphism arising from exchanging the two copies
of CP

1 acts on this cone via reflection U0 →−U0, and the Calabi construction in [2]
produces exactly the metrics in the subset fixed by this action.

Calabi–Yau structures on the cone boundary U1 = ±U0 (excluding the origin) are
not quite the same as those found on the boundary of the Kähler cone ofO (−2,−2),
however, which generically haveZ2-quotient singularities. Rather, they are a (smooth)
branched double-covering6: up to exchanging the factors of CP

1, this boundary gives
the Calabi–Yau structure on O(−1) ⊕ O(−1) over CP

1 = SU (2)2/U (1) × SU (2).
In the rest of this article, for ease of notation, we will fix the scaling convention for
this metric to be (U0, U1) = (−1, 1).

Finally, for the Calabi–Yau structure on T ∗S3, we give the explicit solutions to (15)
extending to the singular orbit S3:

Lemma 2.5 [15] Up to scale, and transformations by isometries with respect to the
induced metric, there is a unique SU (2)2-invariant Calabi–Yau structure on T ∗S3. It
induces a hypo-structure of type II on the principal orbits, with

λ =
(
2

3

) 1
3 sinh 3s

(sinh 3s cosh 3s − 3s)
1
3

μ =
(
2

3

) 2
3

(sinh 3s cosh 3s − 3s)
1
3

v0 = −
(
2

3

) 2
3 (sinh 3s cosh 3s − 3s)

1
3

sinh 3s
v3 =

(
2

3

) 2
3 (sinh 3s cosh 3s − 3s)

1
3

tanh 3s
(19)

for s ∈ [0,∞), where s(t) := ∫ t
0 λ−1(t̂)dt̂

With this description of the underlying Calabi–Yau geometry out of the way, we
now return to describing the gauge theory.

6 these quotient singularities do not appear in our set-up, as we only define λ, μ, u0, u1 at the identity coset
on the principal orbit.
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3 Calabi–Yau Gauge Theory

Consider again the monopole equations (1), for a connection A and� ∈ �0 (AdP) on
some principal bundle P over a Calabi–Yau 3-fold (M, ω,�). As it is more convenient
for our purposes, we can rewrite (1) as

FA ∧ ω2 = 0 (20a)

FA ∧ Im� = −1

2
dA� ∧ ω2 (20b)

Let us assume we are in the general set-up of §2.1: we let N ⊂ M be a (real) hyper-
surface, and we suppose that N foliates M into parallel hypersurfaces, up to working
on a tubular neighbourhood N × I ⊆ M for some I ⊆ R. As in (3), we can write
the Calabi–Yau structure (ω,�) on M in terms of a one-parameter family of hypo-
structures (η, ωi )t on N .

In this neighbourhood, we may always write P → M as the pull-back of some
bundle on N , and we can view any � ∈ �0 (AdP) as a one-parameter family of
sections �t over N . We can also split the connection A = At + γt dt , where At is a
one-parameter family of connections over N , and γt ∈ �0 (adP) is a one-parameter
family of sections of the adjoint bundle.

Via a gauge transformation, we can always choose to set γt = 0: i.e. for each
t ∈ I take gt ∈ G such that γt + g−1t (∂t gt ) = 0. We will refer to this choice of
gauge as the temporal gauge, and the curvature of A = At in this gauge is given
by FA = FAt − ∂t At ∧ dt , where ∂t At ∈ �1 (adP) denotes the limit as ε → 0 of
1
ε
(At − At+ε). Since the space of connections on a given bundle is affine, ∂t At is a

genuine one-parameter family of adjoint-valued one-forms on N .
With this said, using (3) and the temporal gauge on a tubular neighbourhood of N ,

(20) takes the form

FAt ∧ ω2 ∧ η + 1

2
dAt � ∧ ω2

1 = 0 (21a)

FAt ∧ ω1 ∧ η + 1

2
∂t At ∧ ω2

1 = 0 (21b)

FAt ∧ ω3 + ∂t At ∧ ω2 ∧ η = dAt � ∧ ω1 ∧ η − 1

2
∂t�ω2

1 (21c)

We refer to equation (21a) as the static monopole equation, and (21b), (21c), as the
monopole evolution equations, where (21b) is just the condition (20a), and the other
two arise from (20b). Furthermore, it is not difficult to compute that the static equation
(21a) is preserved by the evolution equations. Similarly, in the case � = 0, we will
refer to the respective equations as the static and dynamic instanton equations.

Remark 3.1 A solution of (21) with � = 0 is equivalent to a solution At of the t-
dependent flow:

∗ (
FAt ∧ ω1

) = −∂t At
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with initial conditions At=t0 satisfying (21a). By fixing a choice of reference connec-
tion A0, this flow can be written as the gradient flow for a Chern–Simons functional
C Sω1 : A× I → R:

C Sω1(A0 + a, t) := 1

2

∫

N
tr

(
a ∧

(
2FA0 + dA0a + 2

3
a ∧ a

))
∧ ω1(t)

3.1 Invariant Monopole and Instanton ODEs

Away from the singular orbit, the general set-up of (21) clearly applies to the co-
homogeneity one metrics onO (−2,−2), T ∗S3, andO (−1)⊕O (−1). We will also
suppose that the bundle, connection, and Higgs field are invariant under the SU (2)2-
action, so that (21) is a system of ODEs for the invariant connection and Higgs field on
SU (2)2/H , where the relevant principal isotropy subgroup H is given by H = K2,−2
or H = �U (1).

Recall from [16] that we can write such invariant bundles as SU (2)2 ×H G →
SU (2)2/H for some compact gauge group G and homomorphism λ : H → G.
These bundles are referred to as SU (2)2-homogeneous. Recall also that an invariant
connection on this bundle can be written as an H -equivariant linear map A : su(2)⊕
su(2)→ g, such that A|h = dλ. Here, g, h ∼= u(1) denotes the lie algebra of G, H ⊂
SU (2)2, and dλ is the image of the canonical connection on SU (2)2 → SU (2)2/H
under λ.

If H = K2,−2, G = SU (2) then the defining homomorphism K2,−2 → SU (2) of
the homogeneous bundle is classified by a pair (n, j) ∈ Z×Z2. Using the isomorphism
K2,−2 ∼= �U (1)× Z2 ⊂ U (1)2, we can write these as

(eiθ , eiθ ).(e2iπ , eiπ ) 	→
(−1 0

0 −1
) j (

einθ 0
0 e−inθ

)
(22)

for some (n, j) ∈ Z × Z2, and similarly (with j = 0) for every homomorphism
�U (1) → SU (2). We will denote the corresponding homogeneous SU (2)-bundles
over SU (2)2/H as Pn, j , Pn , respectively, although since the action of Z2 in (22) is
trivial on the Lie algebra of the gauge group SU (2), for the following section, it will
suffice just to consider Pn .

The canonical connection on Pn appears as nE1⊗u+, and the space of invariant con-
nections can be identified as an affine space for intertwiners of�U (1)-representations
given by left-invariant one-forms on SU (2)2/�U (1) and the composition of (22) with
the adjoint action on su(2). We summarise the results in the following proposition,
and compute curvatures:

Proposition 3.2 SU (2)2-invariant connections A on Pn, and corresponding curva-
tures FA, are of the following form:

(i) If n = 0, then for some a1, a2, a3 ∈ R,

A = a1E1 ⊗ u− + a2E2 ⊗ u− + a3E3 ⊗ u−
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FA = 3
2 (a1E1 + a2E2 + a3E3)⊗ ωse

1 (23)

(ii) Otherwise, for some a0, a1, a2, b1, b2 ∈ R, where a1 = a2 = b1 = b2 = 0 if
n �= 1:

A = a1(E2 ⊗ v1 + E3 ⊗ w1)+ b1(E3 ⊗ v1 − E2 ⊗ w1)

+ a2(E2 ⊗ v2 + E3 ⊗ w2)+ b2(E3 ⊗ v2 − E2 ⊗ w2)

+ a0E1 ⊗ u− + nE1 ⊗ u+

FA = 3(a1a2 + b1b2)E1 ⊗ ωse
3 + 3(a1b2 − b1a2)E1 ⊗ ωse

2

+ 3
2

(
a2
1 + b21 + a2

2 + b22 − n
)

E1 ⊗ ωse
0

+ 3
2

(
−a2

1 − b21 + a2
2 + b22 + a0

)
E1 ⊗ ωse

1

+ 3
2 (a0 − 1)

(
a1

(
E2 ⊗ w1 − E3 ⊗ v1

)

+ b1
(

E2 ⊗ v1 + E3 ⊗ w1
))
∧ ηse

+ 3
2 (a0 + 1)

(
a2

(
E2 ⊗ w2 − E3 ⊗ v2

)

+ b2
(

E2 ⊗ v2 + E3 ⊗ w2
))
∧ ηse

(24)

Proof As mentioned previously, the canonical connection appears as nE1 ⊗ u+, the
derivative of the map given by (22). As�U (1)-representations, we have the following
splitting of su(2), the Lie algebra of the gauge group SU (2), and m, the space of
left-invariant 1-forms on SU (2)2/�U (1):

su(2) = 〈E1〉 ⊕ 〈E2, E3〉 ∼= R⊕ C2n

m = 〈u−〉 ⊕ 〈v1, w1〉 ⊕ 〈v2, w2〉 ∼= R⊕ C2 ⊕ C2

For any invariant connection A, by [16, Thm.A], we have that A|m is an element in the
vector space of �U (1)-intertwiners m→ su(2). If n �= 0, 1, this is space is spanned
by E1⊗ u−, while if n = 0 it is spanned by E1⊗ u−, E2 ⊗ u−, E3⊗ u−. For n = 1,
define

I1 := E2 ⊗ v1 + E3 ⊗ w1 J1 := E3 ⊗ v1 − E2 ⊗ w1

I2 := E2 ⊗ v2 + E3 ⊗ w2 J2 := E3 ⊗ v2 − E2 ⊗ w2
(25)

where Ii , Ji , respectively, correspond to the identity map and multiplication by imag-
inary number i between �U (1)-representations C2 → C2. Clearly, the space of
�U (1)-intertwiners is spanned by E1 ⊗ u−, I1, J1, I2, J2, and curvatures can then
be computed from the Maurer–Cartan formula FA = d A + 1

2 [A, A]. Explicitly, we
compute the following derivatives:

d I1 = 2J1 ∧
(
u+ + u−

)
d J1 = −2I1 ∧

(
u+ + u−

)
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d(E1 ⊗ u+) = −E1 ⊗ (v1 ∧ w1 + v2 ∧ w2)

d I2 = 2J2 ∧
(
u+ − u−

)
d J2 = −2I2 ∧

(
u+ − u−

)

d(E1 ⊗ u−) = −E1 ⊗ (v1 ∧ w1 − v2 ∧ w2)

and the following commutators:

[Ii , Ii ] = 2E1 ⊗ vi ∧ wi [Ji , Ji ] = 2E1 ⊗ vi ∧ wi [Ii , Ji ] = 0

for i = 1, 2. The mixed terms are given by

[I1, I2] = [J1, J2] = 2E1 ⊗
(
v1 ∧ w2 − w1 ∧ v2

)

[J1, I2] = − [I1, J2] = 2E1 ⊗
(
v1 ∧ v2 + w1 ∧ w2

)

and finally

[
Ii , E1 ⊗ u±

] = −2Ji ∧ u±
[
Ji , E1 ⊗ u±

] = 2Ii ∧ u±

For an invariant connection on P0, the expression for the curvatures follows immedi-
ately. Otherwise, the connection is of the form A = a1 I1+b1 J1+a2 I2+b2 J2+nE1⊗
u+ + a0E1 ⊗ u−, for some a0, a1, a2, b1, b2 ∈ R, where a1 = a2 = b1 = b2 = 0
when n �= 1, so applying the above in theMaurer–Cartan formula and comparing with
the expression for the standard Sasaki–Einstein structure (9) on SU (2)2/�U (1) gives
the result. ��

In a similar way, we can classify SU (2)2-invariant sections of the adjoint bun-
dle: an SU (2)2-invariant section of AdPn appears as an element of the Lie algebra
su(2) invariant under the �U (1) action. This understood, the following proposition
is immediate:

Proposition 3.3 SU (2)2-invariant sections of AdPn are of the form � = φ1E1 +
φ2E2 + φ3E3 for some φ1, φ2, φ3 ∈ R, where φ2 = φ3 = 0 if n �= 0.

There are some useful facts about the bundle data of Propositions 3.2 and 3.3 that
should be noted before continuing: firstly, it is clear that the bundles Pn admit only
reducible invariant connections when n �= 1, and when n = 1, from the explicit
expressions for curvature, we see that the invariant connection is reducible iff either
a0 = 1, a2 = b2 = 0, or a0 = −1, a1 = b1 = 0, or a1 = b1 = a2 = b2 = 0.

Secondly, on Pn → SU (2)2/�U (1), there is an invariant gauge transformation
generated by the vector field E1 on the fibre, which acts by rotation on the plane
spanned by E2, E3, and leaves E1 fixed. In the notation of Propositions 3.2, 3.3 for
n �= 0, this acts as a rotation (a1 + ib1, a2 + ib2) 	→

(
eiθ (a1 + ib1), eiθ (a2 + ib2)

)

by some common angle θ , and acts trivially on (a0, φ1).
Using Propositions 3.2, 3.3, we can now write down (21) on O (−2,−2), T ∗S3,

and O (−1) ⊕ O (−1) as ODE systems for the coefficients appearing in these two

123



  121 Page 18 of 55 J. Stein

propositions. Since we are primarily interested in finding non-abelian solutions to
(21), it will suffice to consider the case for n = 17:

Proposition 3.4 On P1 → R>0 × SU (2)2/�U (1) with Calabi–Yau structure (11),
invariant monopoles (A,�) can be written, up to gauge, as

A = a1(E2 ⊗ v1 + E3 ⊗ w1)+ a2(E2 ⊗ v2 + E3 ⊗ w2)+ a0E1 ⊗ u− + E1 ⊗ u+

� = φE1

with (a0, a1, a2, φ) real-valued functions satisfying the following ODE system:

ȧ0 = 4λ

μ2

(
(a2

1 + a2
2 − 1)u0 − (a0 − a2

1 + a2
2)u1

)

ȧ1 = 3

2λμ
((a0 − 1)a1v3 − (a0 + 1)a2v0)− 2

u1 − u0

μ
a2φ

ȧ2 = 3

2λμ
((a0 − 1)a1v0 − (a0 + 1)a2v3)− 2

u1 + u0

μ
a1φ

φ̇ = 3

μ2

((
a2
1 + a2

2 − 1
)

v0 − 2a1a2v3
)

(26)

Proof We use Propositions 3.2 and 3.3 in the monopole equations (21): we use the
temporal gauge to put the connection into the form At = a1 I1+b1 J1+a2 I2+b2 J2+
a0E1 ⊗ u− + nE1 ⊗ u+, where I1, I2, J1, J2 are as in (25). Then dAt � = [A,�] =
φ [A, E1] = 2φ (−a1 J1 + b1 I1 − a2 J2 + b2 I2). This implies dAt �∧ω2

1 vanishes, so
the static equation (21a) is just the single condition a1b2 − b1a2 = 0. Equation (21b)
also only has a single component, giving

ȧ0 = 4λ

μ2

(
(a2

1 + b21 + a2
2 + b22 − 1)u0 − (a0 − a2

1 − b21 + a2
2 + b22)u1

)

Splitting (21c) into E1, E2, E3 components, the E1 component gives

φ̇ = 3

μ2

((
a2
1 + b21 + a2

2 + b22 − 1
)

v0 − 2 (a1a2 + b1b2) v3

)

Meanwhile the E2, E3 components together give

ȧ1 = 3

2λμ
((a0 − 1)a1v3 − (a0 + 1)a2v0)− 2

u1 − u0

μ
a2φ

ḃ1 = 3

2λμ
((a0 − 1)b1v3 − (a0 + 1)b2v0)− 2

u1 − u0

μ
b2φ

ȧ2 = 3

2λμ
((a0 − 1)a1v0 − (a0 + 1)a2v3)− 2

u1 + u0

μ
a1φ

7 See §3.2 for explicit abelian solutions in the case n = 1: the solutions for n �= 1 are similar.
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ḃ2 = 3

2λμ
((a0 − 1)b1v0 − (a0 + 1)b2v3)− 2

u1 + u0

μ
b1φ

We can now use the invariant gauge transformation generated by E1 to simplify this
ODE system, which appears as the symmetry of the equations. Using the static con-
dition a1b2 − a2b1 = 0, we will use this symmetry to set b1 = b2 = 0, thus giving
the ODEs in the form stated. ��

We note here that (26) displays some further discrete symmetries:

Proposition 3.5 The following involution is a discrete symmetry of (26):

(a0, a1, a2, φ) 	→ (a0,−a1,−a2, φ) (27)

Specialising to the case of (26) with u0 = 0, we have an additional symmetry:

(a0, a1, a2, φ) 	→ (−a0, a2, a1, φ) (28)

Remark 3.6 If one is also free to vary the Calabi–Yau structure, (28) becomes a sym-
metry of the full system (26) with u0 	→ −u0.

Proof One can easily check that the symmetries of this proposition are indeed sym-
metries of the ODE systems in question. We comment instead on the origin of such
symmetries: (27) is a residual symmetry from the invariant gauge transformation that
we used to set b1 = b2 = 0: it is simply the rotation by angleπ of the plane spanned by
E2, E3. Meanwhile, (28) is the symmetry arising from interchanging the two factors
of SU (2) on the principal orbits: this explains why one must alter the Calabi–Yau
structure to see it as a symmetry of (26). ��

We also recall that a natural condition on solutions to the monopole equations on
asymptotically conical CY 3-folds is to require quadratically decaying curvature. In
terms our ODE system (26), this requirement takes the following form:

Lemma 3.7 An invariant solution (A,�) to the monopole equations determined by
a solution (a0, a1, a2, φ) to (26) has quadratically decaying curvature if and only if
a0, a1, a2, ta1φ, ta2φ are bounded.

Proof Using the expression for curvature FA = FAt−∂t At∧dt in the temporal gauge,
the explicit expressions for FAt , At , given in (23), and the scaling of k-forms on the
cone, it is clear that t2|FA| is bounded if a0, a1, a2, t ȧ0, t ȧ1, t ȧ2 are bounded. The
converse is clear for t ȧ0, t ȧ1, t ȧ2, and note that t2|FAt | is bounded only if a2

1+a2
2−1,

and −a2
1 + a2

2 + a0 are: the first of these implies a1, a2 must be bounded, and since
| − a2

1 + a2
2 + a0| ≥ |a0| − |a2

1 − a2
2 | this implies a0 must be bounded also.
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Up to terms decaying faster than O(t−1), as t → ∞, the ODE system (26) is
asymptotic to (26) on the conifold:

ȧ0 = −4

t

(
a0 − a2

1 + a2
2

)

ȧ1 = 3

2t
(a0 − 1) a1 − 2a2φ

ȧ2 = − 3

2t
(a0 + 1) a2 − 2a1φ

φ̇ = − 6

t2
a1a2

(29)

and comparing the expressions for t ȧ0, t ȧ1, t ȧ2 gives the statement of the lemma. ��
Remark 3.8 One can show that any solution (a0, a1, a2, φ) to (26) converging in C0

as t →∞ must converge to a t-invariant solution of (29): (1, 1, 0, 0) , (−1, 0, 1, 0),
or (0, 0, 0, m), m ∈ R, up to gauge i.e. A�

1, A�
2, or Acan with parallel Higgs field

�m = m E1. In the following sections, we will also see that any bounded solution to
(26) extending over the singular orbit at t = 0 must converge to one of these solutions
as t →∞.

3.2 Reducible Solutions

Before conducting an analysis of the full system (26), we will briefly say something
about the reducible case, i.e. if we consider abelian or flat connections. Firstly, note
that the trivial flat connection A� on P1→ SU (2)2/�U (1) ∼= S2× S3 appears in two
distinct SU (2)2-invariant gauge-equivalence classes8, which can be represented by

A�
1 := E1 ⊗ u1 + E2 ⊗ v1 + E3 ⊗ w1 A�

2 := E1 ⊗ u2 + E2 ⊗ v2 + E3 ⊗ w2

(30)

i.e. in terms of Proposition 3.2, we have a0 = 1, a1 = 1, b1 = a2 = b2 = 0, or
a0 = −1, a2 = 1, b1 = a1 = b2 = 0, respectively. These are clearly just lifts of
the standard Maurer–Cartan form on SU (2) to P1, and A�

1, A�
2 are exchanged via

non-equivariant diffeomorphism obtained via exchanging the factors of SU (2) in
SU (2)2/�U (1).

Secondly, note that if both a1 = a2 = 0 then the connection is abelian, and we can
solve (26) explicitly on the space of principal orbits:

a0(t) = C − 2u0u1

μ2 φ = −3I (t) (31)

where İ (t) = v0
μ2 , and C is a constant of integration.

8 although these represent the same connection up to non-equivariant gauge, at least on S2 × S3.
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Using the results of Appendix 1, we see that generic solution (31) can extend over
the singular orbits S2, or S2 × S2 only if9 C = 2u0u1(0), and can never extend over
the singular orbit S3.

Remark 3.9 For later reference, we note that the generic abelian solution (31) on
O(−1)⊕O(−1) \ CP

1 is also unbounded near CP
1 unless C = 2u0u1(0).

3.3 Local Solutions

We now consider the full system (26). Unlike with the reducible case, in general this
will not have explicit solutions, and instead, we will analyse the qualitative behaviour
of solutions as they move away from the singular orbit. To determine their behaviour
near the singular orbit, we will apply the theory of singular initial value problems
of the form [8, Thm.4.7]: t ẏ = M−1(y) + M(t, y), where M(t, y)t−1, M−1(y) are
smooth functions of their arguments. To have unique solution near t = 0, we require
that M−1(y0) = 0 at initial value y(0) = y0, and that the linearisation dy0 M−1 has
no positive integer eigenvalues. This theory, combined with the boundary conditions
found in Appendix 1, will allow us to construct local solutions to (26) extending over
the singular orbits at t = 0.

In all cases, we will find that solutions to the monopole equations are in a local
two-parameter family for each bundle extending P1 over the singular orbit, with the
vanishing of the second parameter corresponding to the vanishing of the Higgs field
φ, and thus a local one-parameter family of instantons.

First of all, here is a countable family of bundles P1−l,l , l ∈ Z extending P1 over the
singular orbit S2× S2. However, we can reduce our computations to the case l > 0 by
the diffeomorphism exchanging the factors of SU (2) in the SU (2)2-orbits on the total
space of the bundle, since this map sends P1−l,l 	→ Pl,1−l . As this map acts on the
underlying Calabi–Yau structure by sending the constant u0 	→ −u0, the monopole
ODEs (26) also transform, but solutions of the transformed system are equivalent to
solutions of (26) under the symmetry (28):

Proposition 3.10 In a neighbourhood of the singular orbit of P1−l,l → O(−2,−2)
local solutions to (26)are in a two-parameter family

(
Ql ,�l

)
αl ,βl
:= (a0, a1, a2, φ)αl ,βl

for each l ∈ Z. For l > 0, these solutions satisfy

a0 = 1− 2l + O(t2) a1 = −1

l
βlαl

√
U1 −U0

U1 +U0
t l + O(t l+2)

a2 = αl t
l−1 + O(t l+1) φ = βl + O(t2)

9 the converse will also hold for a suitable choice of bundle extension.
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Proof We write (26) for a Calabi–Yau structure of type I:

ȧ0 = 4λ

μ2

(
(a2

1 + a2
2 − 1)u0 − (a0 − a2

1 + a2
2)u1

)

φ̇ = − 6

μ
a1a2

ȧ1 = 3

2λ
(a0 − 1)a1 − 2

u1 − u0

μ
a2φ

ȧ2 = − 3

2λ
(a0 + 1)a2 − 2

u1 + u0

μ
a1φ

(32)

We consider solutions to (32) with this Calabi–Yau structure given by (18), for any
U1, U0 with U1 > |U0| ≥ 0. The power-series of λ, u1, μ near t = 0 are given by

λ(t) = 3t + O(t3) u1 = U1 + O(t2) μ =
√

U 2
1 −U 2

0 + O(t2)

Although we cannot apply [8, Thm.4.7] directly, we can use the boundary conditions
for extending to the singular orbit to rewrite this system in the correct form:

First, assume l > 0. Using Proposition A.8, we can define smooth functions X1, X2
such that a1 = t l X1, a2 = t l−1X2, and (32) becomes

ȧ0 = O(t)

φ̇ = O(t2l−1)

Ẋ1 = 1

t

(
1

2
(a0 − 1− 2l) X1 − 2X2φ

√
U1 −U0

U1 +U0

)

+ O(t)

Ẋ2 = − 1

2t
(a0 − 1+ 2l) X2 + O(t)

Since the extension conditions also require a0(0) = 1− 2l, once we fix αl := X2(0),

δl := φ(0) such that l X1(0)+ X2(0)φ(0)
√

U1−U0
U1+U0

= 0, then y(t) = (a0, X1, X2, φ)

satisfies a singular initial value problem with linearisation

dy0 M−1 =

⎛

⎜⎜⎜
⎝

0 0 0 0
0 0 0 0

1
2 X1(0) −2

√
U1−U0
U1+U0

αl −2l −2
√

U1−U0
U1+U0

δl

− 1
2αl 0 0 0

⎞

⎟⎟⎟
⎠

at initial value y0 =
(
1− 2l,− 1

l αlβl

√
U1−U0
U1+U0

, αl , βl

)
. This has a unique solution

once we fix y0, since det
(
kId − dy0 M−1

) = (k + 2l) k3 > 0 for k > 0.
To recover the local solutions extending for l ≤ 0 from these solutions, we can send

U0 	→ −U0 and apply the transformation (28). It is easy to verify from Proposition
A.8 that these solutions extend to Pl,1−l . ��
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Remark 3.11 By setting βl = 0 in
(
Ql ,�l

)
αl ,βl

, we obtain a local one-parameter
family of instantons i.e. solutions to (26) with φ = 0, and for l > 0 these solutions
have

a0 − aab
0 = −

6α2
l

l(U0 +U1)
t2l + O(t2l+2) (33)

where aab
0 denotes the abelian solution to (26) extending over the singular orbit of

P1−l,l .
Moreover, when l = 1, these solutions have

a0 = −1− 6

U1 +U0
(α2

1 − 1)t2 + O(t4)

a2 = α1 + 3

2(U1 +U0)
α1(α

2
1 − 1)t2 + O(t4) (34)

As their proofs are similar,wewill state the results for solutions extending over singular
orbits S2 and S3 without proof. The correct re-parameterisations, corresponding initial
values y0, and linearisations dy0 M−1 as in [8, Thm.4.7] can be found in Appendix 1.

The bundle P1 extends uniquely over S3, and we denote this extension PId:

Proposition 3.12 In the neighbourhood of the singular orbit, solutions to (26) on
PId → T ∗S3 are in a two-parameter family (S,�)ξ,χ := (a0, a+, a−, φ)ξ,χ , where
a+ = a1 + a2, a− = a1 − a2. These solutions satisfy

a0 = ξ + O(t2) a+ = 1+
(
9

8
(ξ2 − 1)− χ

)
t2 + O(t4)

a− = ξ + O(t2) φ = χ t + O(t3)

Remark 3.13 By setting χ = 0 in (S,�)ξ,χ , we obtain a local one-parameter family
of instantons i.e. solutions to (26) with φ = 0, and we give some additional terms in
the resulting power-series:

a0 = ξ + 9

10
ξ(−1+ ξ2)t2 + O(t4) a+ = 1+ 9

8
(−1+ ξ2)t2 + O(t4)

a− = ξ + 27

40
ξ(−1+ ξ2)t2 + O(t4) (35)

Finally, the bundle P1 extends in exactly two ways over S2 = SU (2)2/U (1) ×
SU (2), and we denote these possible extensions P0,Id and P1,0:

Proposition 3.14 In the neighbourhood of the singular orbit of P0,Id → O(−1) ⊕
O(−1), solutions to (26)are in a two-parameter family (R, �)ε,δ := (a0, a1, a2, φ)ε,δ ,
with

a0 = −1+ εt2 + O(t4) a1 = − δ√
3

t2 + O(t4)
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a2 = 1− 1

2
εt2 + O(t4) φ = δt2 + O(t4)

Proposition 3.15 In a neighbourhood of the singular orbit of P1,0 → O(−1)⊕O(−1),
solutions to (26) are in a two-parameter family

(
R′, � ′

)
ε′,δ′ := (a0, a1, a2, φ)ε′,δ′ ,

with

a0 = 1+ O(t2) a1 = ε′ + O(t2) a2 = O(t2) φ = δ′ + O(t2)

Remark 3.16 On P1,0, we have a2 = −
√
3
4 ε′δ′t2 + O(t4) once we fix ε′, δ′.

Having computed these two-parameter families of local solutions to the monopole
equations (26), by uniqueness, we see that the following one-parameter families are
the local solutions to the instanton equations, i.e. (26) with φ = 0:

Sξ := (S,�)ξ,0 Rε := (R, �)ε,0 R′ε′ :=
(
R′, � ′

)
ε′,0 Ql

αl
:=

(
Ql ,�l

)

αl ,0

For later reference, we have already computed some additional terms in the power-
series of Sξ , Ql

αl
, in (35), (33), (34). For the analysis of the family R′

ε′ , it will be more
useful to first apply the transformation (28), and then compute higher-order terms with
respect to (26) with u0 	→ −u0. To explain why, observe that the instanton equations
for a hypo-structure of type I, i.e. (26) with φ, v0 vanishing, has at least one of a1
or a2 vanishing identically, and if both vanish we have the abelian solution. From
the boundary conditions of Propositions A.3, A.7, which of a1 or a2 must necessarily
vanish will depend on how we extend the bundle P1 to the singular orbit: we have
a1 vanishing for P0,Id and P1−l,l for l > 0, while a2 vanishes for P1,0 and P1−l,l for
l ≤ 0.

However, we can always reduce our analysis to a single ODE system with, say, a1
vanishing identically by applying (28) to (26) and mapping u0 	→ −u0: this is the
same as pulling back these equations by the diffeomorphism exchanging the factors of
SU (2) in the SU (2)2-orbits on the total space of the bundle. This has been previously
explained for the solutions Ql

αl
, and we can apply the same reasoning to the family

R′
ε′ : the caveat here is that if we exchange the factors on the singular orbit S2, then

the bundle P1 and the Calabi–Yau structure on the principal orbits now extend over
S2 = SU (2)2/SU (2)×U (1) rather than our convention S2 = SU (2)2/U (1)×SU (2).

With this explained, let us denote P0,1 the bundle obtained from P1,0 by exchang-
ing the factors of SU (2)2, and pull-back the local one-parameter family of invariant
instantons R′

ε′ on P1,0 to a local one-parameter family of invariant instantons on P0,1.
Corollary A.8 ensures that these solutions actually extend to SU (2)2/SU (2)×U (1),
and for later reference, we compute some higher-order terms in the power-series:

Lemma 3.17 In a neighbourhood of the singular orbit, solutions to (26) on P0,1 with
φ = 0 are in a one-parameter-family, pulled back via (28) from the one-parameter
family R′

ε′ .

a0 = −1− 3

4

(
ε′2 − 1

)
t2 + O(t4) a2 = ε′ + 3

8
ε′

(
ε′2 − 1

)
t2 + O(t4) (36)
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4 ODE Analysis

4.1 Solutions to the Instanton Equations

Using the description of solutions to (26) near the singular orbit, we will now describe
the qualitative behaviour of the solutions as we move away from this orbit. We will
focus first on the case φ vanishes i.e. instantons: in this case, the requirement of
quadratic curvature decay in Lemma 3.7 is equivalent to considering bounded solu-
tions.

We will start with the smoothing T ∗S3. A single explicit solution to (26) on the
smoothing was found in [13, Theorem 2]:

a0 = φ = 0 a1 = a2 = 1

2

√
4

3λ(v3 − v0)
(37)

given locally by the power-series Sξ in (35) with ξ = 0. We now show that this
instanton actually lies in a one-parameter family:

Theorem 4.1 Invariant instantons with quadratic curvature decay on PId → T ∗S3

are in a one-parameter family Sξ , −1 ≤ ξ ≤ 1, up to gauge. Moreover,

(i) The isometry exchanging the factors of SU (2) on the principal orbits of T ∗S3

sends Sξ 	→ S−ξ , with explicit fixed point S0 given by (37).
(ii) S1 = Ab

1, S−1 = Ab
2, and Sξ , −1 < ξ < 1 are irreducible with limt→∞ Sξ (t) =

Acan.

Proof of Theorem 4.1 We will prove that the local solutions Sξ given by the power-
series (35) near the singular orbit exist for all time if |ξ | ≤ 1 and are otherwise
unbounded.

First, we formulate (26) with φ = 0 in terms of a+ = a1 + a2, a− = a1 − a2:

ȧ0 = f0(a+a− − a0) ȧ+ = f+(a0a− − a+) ȧ− = f−(a0a+ − a−) (38)

where we define

f0 := 4λ

μ
f+ := 3(v3 + v0)

2λμ
f− := 3(v3 − v0)

2λμ

As the functions f0, f+, f− are all strictly positive on (0,∞), the following lemma is
immediate: ��
Lemma 4.2 Critical points of (38) for t ∈ (0,∞) are given by the following triples
(a0, a+, a−):

(1, 1, 1) (1,−1,−1) (−1, 1,−1) (−1,−1, 1) (0, 0, 0)
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Proof This follows by a simple computation: note that these critical points are just the
canonical connection Acan and the flat connections A�

1, A�
2 under the symmetries (27)

and (28). ��
We will define a subset S ⊂ R

n to be forward-invariant for an ODE system
ẋ = F (x, t) if a solution x(t) contained in S at some non-singular initial time t∗, must
remain in S for all forward time t ≥ t∗ for which the solution exists.

Lemma 4.3 The following sets in R
3 are forward-invariant for (38):

(0,∞)3 (0, 1)3 (1,∞)3

Proof (i) We bound a solutions (a0, a+, a−) lying in the quadrant (0,∞)3 with
boundary a0 = 0, a+ = 0, and a− = 0. We can exclude the axes at intersections
of these planes by local uniqueness to ODEs, since (38) has three families of
solutions given by setting any two of (a0, a+, a−) to be identically zero.
At a0 = 0, a+ ≥ 0, a− ≥ 0, ȧ0 = f0a+a− ≥ 0, with equality iff a+ = 0 or
a− = 0. Since a solution cannot hit any of the axes, this implies both are zero if
ȧ0 = 0, but since (0, 0, 0) is a critical point, by uniqueness one cannot have this
situation either, and hence the inequality is strict. This implies a solution with
a0 > 0, a+ ≥ 0, a− ≥ 0 for some non-zero time cannot leave this region at
a0 = 0, a+ ≥ 0, a− ≥ 0.
One obtains the same result for a+ and a− by repeating the proof with permuted
subscripts 0,+,−.

(ii) We show that the boundary of the unit cube also bounds solutions lying inside
it. By the symmetry of permuting 0,+,−, and the previous result, it will be
enough to show this for the top face of the cube i.e. prove that a solution with
1 > a0 > 0, 1 ≥ a+ > 0, 1 ≥ a− > 0 cannot leave this region via a0 =
1, 1 ≥ a+ > 0, 1 ≥ a− > 0. We have, at a0 = 1, 1 ≥ a+ > 0, 1 ≥ a− > 0,
ȧ0 = f0 (a+a− − 1) ≤ 0 , with equality iff both a+ = a− = 1. However, since
(1, 1, 1) is a critical point for (38), this cannot be the case, hence the inequality is
strict, and we cannot have a solution with 1 > a0 > 0, 1 ≥ a+ > 0, 1 ≥ a− > 0
leaving this region at a0 = 1, 1 ≥ a+ > 0, 1 ≥ a− > 0, arguing as before.

(iii) The proof that the quadrant (1,∞)3 bounded by the planes a0 = 1, a+ = 1, and
a− = 1 goes almost exactly as for the previous part of the lemma: at a0 = 1, a+ ≥
1, a− ≥ 1, ȧ0 = f0 (a+a− − 1) ≥ 0 with equality iff both a+ = a− = 1, hence
the inequality is strict, and we cannot have a solution leaving this region via
a0 = 1, a+ ≥ 1, a− ≥ 1.

��
Having established these results, we can immediately see from the local solutions

Sξ in (35) for some sufficiently small non-zero time (a0, a+, a−)ξ ∈ (0, 1)3 for 0 <

ξ < 1, and (a0, a+, a−)ξ ∈ (1,∞)3 for 1 < ξ , so we have a rough bound on the
behaviour of our solutions as t → ∞. However, we can use the previous lemma to
show an improved statement:

Lemma 4.4 The following sets in R
3 are forward-invariant for (38):

123



SU(2)2-Invariant Gauge Theory Page 27 of 55   121 

(i) S∞ := {(a0, a+, a−) ∈ R
3 | a+a− > a0 > 1, a0a− > a+ > 1, a0a+ > a− >

1}
(ii) S0 := {(a0, a+, a−) ∈ R

3 | 0 < a+a− < a0 < 1, 0 < a0a− < a+ < 1, 0 <

a0a+ < a− < 1}.
Proof Given an ODE system ẋ = F (x, t) in R

n , if one has a hypersurface h(x) = 0
such that ∇h · F (x, t) > 0, where ∇ is the gradient of h, and “·′′ denotes the standard
dot product on R

n , then for all time for which a smooth solution x(t) exists, it can
only cross hypersurface h(x) = 0 in the same direction as ∇h.

In the case of (38), we use the hypersurfaces {(a0, a+, a−) ∈ R
3 | a0 = a+a−},

{(a0, a+, a−) ∈ R
3 | a+ = a0a−}, and {(a0, a+, a−) ∈ R

3 | a− = a+a0}:
(i) S∞ is the region in (1,∞)3 bounded by these three paraboloids, with triple

intersection at (1, 1, 1), and intersecting pairwise along three line segments in
R
3. We can exclude the intersections: note that {(a0, a+, a−) ∈ [1,∞)3 | a+ =

a0a−, a− = a0a+} = {(a0, a+, a−) ∈ [1,∞)3 | a− = a+, a0 = 1}, which lies
in the boundary of (1,∞)3 so using the previous lemma, and the symmetry of
permuting 0,+,−, it will be enough to prove that a solution contained in S∞, at
some initial time, cannot leave via {(a0, a+, a−) ∈ (0,∞)3 | a0 = a+a−}. We
calculate for h = a+a− − a0, with a0 > 1, a+ > 1, a− > 1:

∇h · (ȧ0, ȧ+, ȧ−)|h=0 = (−1, a−, a+)

· ( f0(a+a− − a0), f+(a0a− − a+), f−(a0a+ − a−))|a0=a+a−

= a+a−
(

f+(a−2 − 1)+ f−(a+2 − 1)
)

> 0

Repeating the proof with indices 0,+,− permuted gives the result for surfaces
defined by a0a− − a+ = 0 and a0a+ − a− = 0, respectively.

(ii) S0 is also bounded by these three paraboloids, but in (0, 1)3, ∇h (as we have
defined it) points outward. As for the intersections, we can again exclude them,
as before for (a0, a+, a−) ∈ (0,∞)3, but also for {(a0, a+, a−) ∈ [0, 1]3 |
a+ = a0a−, a− = a0a+} = {(a0, a+, a−) ∈ [0, 1]3 | a+ = a−, a0 = 1} ∪
{(a0, a+, a−) ∈ [0, 1]3 | a+ = a− = 0}, which lies in the boundary of the unit
cube. Now the calculation is exactly the same as the previous part of the lemma,
with 0 < a0 < 1, 0 < a+ < 1, 0 < a− < 1 and h = a+a− − a0, giving
∇h · (ȧ0, ȧ+, ȧ−)|h=0 < 0.

��
Note that solutions (a0, a+, a−) to (38) lying inside S0, S∞ have a0, a+, a− mono-

tonic in t . We can then use this fact to determine their asymptotic behaviour:

Lemma 4.5 A solution (a0, a+, a−) to (38) lying inside S0 at some time t∗ > 0, exists
for all forward time t ≥ t∗, and is asymptotic as t → ∞ to (0, 0, 0). A solution
(a0, a+, a−) lying inside S∞ at some time t∗ cannot be bounded for all t ≥ t∗.

Proof Webegin by looking at solutions lying inS0. Forward-time existence andbound-
edness of these solutions follows from the boundedness of S0, and since a0, a+, a−

123



  121 Page 28 of 55 J. Stein

are all (strictly) monotonically decreasing in S0, the solution (a0, a+, a−) must have
a limit lying in the closure. To determine that limit, we reparameterise (38) in terms
of the variable s, as in the explicit solutions given by (19):

ȧ0 = 4λ2

μ
(a+a− − a0)

ȧ+ = 3(v3 + v0)

2μ
(a0a− − a+)

ȧ− = 3(v3 − v0)

2μ
(a0a+ − a−)

(39)

In particular, by using (19), one can check that λ f0 → C0 > 0 as s → ∞ for
some strictly positive constant C0, and similarly λ f± → C± > 0. If a solution
(a0, a+, a−) to (39) lying in S0 does not have a+a− − a0 → 0 as s → ∞, then we
get a contradiction: otherwise for s sufficiently large we can bound ȧ0 above, away
from 0. Said more explicitly, if we do not have a+a− − a0 → 0, then we do not have
ȧ0 → 0, so for some constant C∗0 < 0, there exists s∗ � 0 such that ȧ0(s) < C∗0
for all s ≥ s∗. Integrating this inequality would give the contradiction a0 → −∞ as
s →∞, thus we must have a+a− − a0 → 0 as s →∞.

One then repeats this argument for a±(s), to obtain that a solution in S0 must tend
to a critical point of this system in the closure of S0 as s → ∞: either (0, 0, 0), or
(1, 1, 1) by Lemma 4.2. Since a0, a+, a− are all strictly decreasing, we must have
(a0, a+, a−)→ (0, 0, 0).

Nowwe deal with solutions (a0, a+, a−) to (38) lying inS∞. These have a0, a+, a−
strictly increasing as long as the solution exists, so again, if a solution is bounded and
exists for all time, it must have limit lying in the closure of S∞. Let us assume this
is the case and derive a contradiction: since the right-hand side of (39) has a limit as
s → ∞, this implies that (ȧ0, ȧ+, ȧ−) must also have a limit. Since λ f0 → C0 > 0
we have, for a fixed constant C∗0 > 0, some S > 0 such that for all s > S:

ȧ0 > C∗0 (a+a− − a0)

and likewise for ȧ±. As such, a bounded solution existing for all time cannot have
simultaneously ȧ0, ȧ+, ȧ− → 0 as s →∞, since this would require (a0, a+, a−)→
(1, 1, 1), which is impossible by the monotonicity of a0, a+, a−. Therefore, at least
one of ȧ0, ȧ+, ȧ− must be bounded below away from 0 for s sufficiently large, and
hence the corresponding a0, a+, a− must be unbounded above as s →∞. ��

We can now conclude the proof of Theorem 4.1: the first point is clear by applying
the symmetry outlined in (28) to the local power-series of (a0, a+, a−)ξ , i.e. (35), and
noting that the fixed point ξ = 0 is the explicit solution (37). For the rest, by using
(35), one finds the flat connection (a0, a+, a−)1 = (1, 1, 1) is a critical point, and

a0 − a−a+ = − 9

10

(
ξ2 − 1

)
ξ t2 + O(t4)
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a+ − a0a− = 1− ξ2 − 45− 63ξ2

40

(
ξ2 − 1

)
t2 + O(t4)

a− − a+a0 = −27

20

(
ξ2 − 1

)
ξ t2 + O(t4)

In particular, for non-zero t sufficiently small, and 0 < ξ < 1, we have
(a0, a+, a−)ξ (t) ∈ S0, while for 1 < ξ we have (a0, a+, a−)ξ (t) ∈ S∞. Using
the symmetry (28) for ξ < 0, Theorem 4.1 follows. ��

On O(−1) ⊕ O(−1) and O(−2,−2) there are multiple ways of extending the
invariant bundle P1 to the singular orbit. The local solutions on each extension exhibit
a slightly different behaviour:

Theorem 4.6 Invariant instantons with quadratic curvature decay on P0,Id →
O(−1)⊕O(−1) are in a one-parameter family Rε , ε ≥ 0, up to gauge. Moreover,

(i) R0 = A�
2, and Rε are irreducible for ε > 0.

(ii) limt→∞ Rε(t) = Acan for ε > 0.

Theorem 4.7 Invariant instantons with quadratic curvature decay on P1,0 →
O(−1) ⊕ O(−1) are in a one-parameter family R′

ε′ , 0 ≤ ε′ ≤ 1, up to gauge.
Moreover,

(i) R′0 is abelian, R′1 = A�
1, and R′

ε′ are irreducible for 0 < ε′ < 1.
(ii) limt→∞ R′

ε′(t) = Acan for 0 ≤ ε′ < 1.

For insantons overO(−2,−2), we also split the statement of the theorem into two
cases. The first case is similar to the situation of Theorem 4.7:

Theorem 4.8 Invariant instantons with quadratic curvature decay on P1−l,l →
O(−2,−2) with l = 0, 1, are in a one-parameter family Ql

αl
,0 ≤ αl ≤ 1, up to

gauge. Moreover,

(i) Ql
0 is abelian, Q0

1 = A�
1, Q1

1 = A�
2, and Ql

αl
are irreducible for 0 < αl < 1.

(ii) limt→∞ Ql
αl

(t) = Acan for 0 ≤ αl < 1.

The second case exhibits a new phenomenon: now, the instantons appearing at the
boundary of the moduli-space of instantons with asymptotics Acan are not themselves
flat, but are asymptotic to the flat connection:

Theorem 4.9 Invariant instantons with quadratic curvature decay on P1−l,l →
O(−2,−2) with l �= 0, 1, are in a one-parameter family Ql

αl
, 0 ≤ αl ≤ αcrit

l for
some αcrit

l > 0, up to gauge. Moreover,

(i) Ql
0 are abelian, and Ql

αl
are irreducible for 0 < αl ≤ αcrit

l .

(ii) limt→∞ Ql
αl

(t) = Acan for 0 ≤ αl < αcrit
l , limt→∞ Ql

αcrit
l

(t) = A�
1 for l < 0,

and limt→∞ Ql
αcrit

l
(t) = A�

2 for l > 1.
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Proof of Theorems 4.6, 4.7, 4.8 Most of what is required to prove these theorems boils
down to studying the qualitative behaviour of a single ODE system.We study solutions
to (26) with φ = 0, a1 = 0:

ȧ0 = − 4λ

μ2

(
a2
2(u1 − u0)+ a0u1 + u0

)
ȧ2 = − 3

2λ
a2 (a0 + 1) (40)

wherewe have a generic family of Calabi–Yau structures defined by hypo-structures of
type I, so that u0, u1, μ, λ are non-degenerate solutions to hypo-evolution equations
(13). We consider forward-invariant sets for this system, see also Fig. 1 below: ��
Lemma 4.10 The following sets in R

2 are forward-invariant under (40):

(i) Half-planes {(a0, a2) ∈ R
2 | ±a2 > 0}

(ii) R∞ := {(a0, a2) ∈ R
2 | a0 < −1, 1 < a2}

(iii) R0 := {(a0, a2) ∈ R
2 | −1 < a0 < 1, 0 < a2 < 1}

Proof (i) Since there is always a non-trivial abelian solution (a0, 0) to (40), by
uniqueness a solution hitting a2 = 0 at some time t∗ > 0 must be there for
all time t > 0. Furthermore, since the symmetry (27) exchanges the upper/lower
half-planes, we can reduce to the case of a2 > 0 in what follows.

(ii) In the following, we will split the upper half-plane into four quadrants centred
around the critical point (−1, 1), and look at the sign of ȧ0 along a0 = −1 and
ȧ2 along a2 = 1.
Since λ > 0 for all t > 0, and a2 > 0 by assumption, the sign of ȧ2
is the same as that of −(a0 + 1), and the sign of ȧ0 is the same as that of
− (

(a2
2 − 1)(u1 − u0)+ (a0 + 1)u1

)
. Then ȧ2 > 0 for all a0 < −1. Since λ > 0,

solutions to the hypo-equations (13)must have u1±u0 strictly increasing. In addi-

tion, we must have μ =
√

u2
1 − u2

0 > 0 for all time t > 0, so u1 ± u0 must be
strictly positive for all time t > 0, and hence also u1. Thus at a0 = −1, we have
that ȧ0 < 0 iff a2 > 1. Thus a solution inR∞ at some initial time t∗ > 0, cannot
leave via either of its boundaries a0 = −1 or a2 = 1, and since the intersection
(−1, 1) is a critical point, the solution must remain in R∞ for all time t > t∗.

(iii) As shown in the first part of the lemma, no solution can hit a2 = 0, the bottom
ofR0, unless it is contained in a2 = 0 for all time. From the proof of the second
part of the lemma, we see that a solution in R0 cannot exit R0 via. the top
a2 = 1, a0 > −1 , or the side a0 = −1, a2 ≤ 1. All that remains to show is that
the side a0 = 1, 1 > a2 > 0 is bounding. This follows from the fact that u1 ± u0
must be strictly positive, since at a0 = 1, ȧ0 = − 4λ

μ2 ((a
2
2(u1−u0)+u1+u0) < 0.

��
These sets determine the behaviour of solutions lying inside them:

Lemma 4.11 A solution (a0, a2) to (40) lying inside R0 at initial time t∗ > 0 exists
for all forward time t ≥ t∗, and is asymptotic as t → ∞ to (0, 0). A solution lying
inside R∞ at initial time t∗ > 0 cannot be bounded for all t ≥ t∗.
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Fig. 1 Distinguished sets for
(40), and possible asymptotics:

the flat connection A�
2 at

(a0, a2) = (−1, 1) and Acan at
(a0, a2) = (0, 0)

Proof For the bounded setR0, it is clear that solutions exist for all time, but it remains
to prove their asymptotic behaviour. Since ȧ2 < 0 inR0, a2 is strictly decreasing, and
as it is bounded below, a2 must have a limit â2 ∈ [0, 1) as t → ∞. To get a limit
for a0, notice that the first equation for the ODEs (40), together with hypo-evolution
equations (13), gives

d

dt

(
a0μ

2
)
= −4λ

(
a2
2(u1 − u0)+ u0

)
(41)

Written in integral form on the interval t ≥ t∗, this is the equation:

a0(t) = − 1

μ2

((∫ t

t∗
4λ

(
a2
2(u1 − u0)+ u0

))
+ a0(t

∗)μ2(t∗)
)

(42)

Since the hypo-structure λ, u1, u0, μ is asymptotically conical as a function of t and
a0 bounded, as t →∞ (42) gives

a0(t) ∼ − 1

t4

∫ t

T
4t

(
â2
2 t2 + (â2

2 − 1)u0

)
∼ −â2

2 −
2u0

(
â2
2 − 1

)

t2
+ O(t−4) ∼ −â2

2

for some T ≥ t∗ sufficiently large. Hence we also have a limit a0 →−â2
2 as t →∞.

Since a2 > 0, integrating the second equation of (40) gives us, as t →∞:

a2(t) = a2(T ) exp

(
−

∫ t

T

3

2λ
(a0 + 1)

)
∼ a2(T ) exp

(
(â2

2 − 1)
∫ t

T

3

2t

)

= Ct
3
2 (â22−1)

where C is some constant of integration. As â2 < 1, this implies a2 → 0, and thus
also a0 → 0.

Now we come to solutions lying in R∞. Since R∞ is forward-invariant, and a
solution lying in R∞ has ȧ2 > 0 for all finite t , the statement for finite t follows
directly from the previous lemmas. All that is left is to prove that if a solution exists
for all time in R∞, then it cannot be bounded. We will assume that it is, and derive a
contradiction:
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If a solution is bounded, then since a2 is strictly increasing inR∞, a2 must have a
limit as t →∞, and as before, the integral formula (42), and the boundedness of a0
gives that (a0, a2) must have a limit lying on the curve a0 = −a2

2 . Since a2 is strictly
increasing, we can bound a2 away from 1, thus for some t large enough, we can also
bound a0 away from −1. Call this bound C , i.e. there exists T , such that for t > T
we have a0 < C < −1. Then we also have that

ȧ2 > − 3

2λ
a2(C + 1)

So by integrating this inequality, we get

a2(t) ≥ a2(T ) exp

(
− 3

2λ
(C + 1)

∫ t

T

1

λ

)

but the right-hand side grows to O(t−
3(C+1)

2 ) as t →∞, hencewe have a contradiction.

��
We now conclude the proof of Theorem 4.6, by applying our analysis above to the

local power-series Rε of Proposition 3.14 with δ = 0, so that (a0, a2)ε ∈ R0 for ε > 0
while (a0, a2)ε ∈ R∞ for ε < 0 at sufficiently small non-zero time. Taking ε = 0
gives the flat connection (a0, a2)0 = (−1, 1), which is a critical point of (40).

Theorems 4.7 and 4.8 also follow fromwhat has been said. In the first case, in order
to apply the results of the previous lemmas, one must first pull-back the Calabi–Yau
structure via the involution u0 	→ −u0 by exchanging the factors of SU (2) on the
principal orbits, which pulls back the local solutions to solutions of the form (36).
These invariant instantons extend on the singular orbit SU (2)2/SU (2)×U (1) rather
than SU (2)2/U (1)×SU (2) as is our convention, but one can fix this by again applying
the involution lifted to the total space of the principal bundle i.e. (28). Similarly for the
latter case, to consider l = 0, one considers the local solutions on P0,1 for the original
Calabi–Yau structure pulled back via the involution, and then applies the involution
again on the total space of P0,1 to get the result on P1,0.

With this in mind, we can apply our analysis to the local power-series (36) and
(34). We see that these situations are basically the same in terms of the gauge theory:
up to invariant gauge transformation (27), for some sufficiently small t∗ > 0, for
1 > ε′ > 0 (resp. 1 > α1 > 0) we have (a0, a2)ε′ (t

∗) ∈ R0 (resp. (a0, a2)α1 ),
while for ε′ > 1, we have (a0, a2)ε′ (t

∗) ∈ R∞ (resp. (a0, a2)α1 (t∗)). We also see
that (a0, a2)0 (0) = (−1, 0), hence by uniqueness (a0, a2)0 must correspond to the
abelian solution to (40), and (a0, a2)1 (0) = (−1, 1). ��

The proof for the remaining case of Theorem 4.9 requires slightly more care:

Proof of Theorem 4.9 We are again studying solutions to the ODE (40). Looking at the
local power-series solutions in Proposition 3.10, we see that they do not initially lie
in the sets R0 or R∞ covered in our previous analysis. However, we will show that
the only possibilities are that such solutions either enter R0 or R∞ in finite time, or
are otherwise asymptotic to the flat connection A�

2: ��
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Lemma 4.12 Let R1 := {(a0, a2) ∈ R
2 | 1 > a2 > 0, a0 < −1}. A solution (a0, a2)

to (40) lying in R1 at initial time t∗ > 0 can remain in R1 for all forward time t ≥ t∗
only if it is asymptotic to (−1, 1) as t →∞, and must otherwise enter one of R0, R∞
in finite time.

Proof We have that, in R1

ȧ0 = − 4λ

μ2

(
(a2

2 − 1)(u1 − u0)+ (a0 + 1)u1

)
> 0 ȧ2 = − 3

2λ
a2 (a0 + 1) > 0

Hence, a solution lying in R1 can only leave in finite time via the boundaries {a2 =
1, a0 < −1} or {a0 = −1, 0 < a2 < −1}, since (−1, 1) is a critical point for (40).
Since ȧ2 is strictly positive on the first boundary, and ȧ0 is strictly positive on the
second, this proves that if a solution leavesR1 in finite time, it must actually leave the
boundary and end up in the regions R∞, R0, respectively.

If a solution remains inR1 for all forward time, then by monotonicity (a0, a2) has a
limit lying in the closure. The existence of a limit, combined with the integral formula
(42), gives that (a0, a2) must also tend to a point lying on the curve a0 = −a2

2 , which
only intersects the closure ofR1 at (−1, 1). ��

Wemust also prove a comparison lemma for two solutions to (40), which will allow
us to compare our power-series solutions away from the singular orbit at t = 0

Lemma 4.13 (Forward-Comparison) Let (a0, a2),
(
â0, â2

)
be two solutions to (40). If

a0(t∗) < â0(t∗), a2(t∗) > â2(t∗) ≥ 0, at initial time t∗ > 0, then a0(t) < â0(t),
a2(t) > â2(t) ≥ 0, for all forward time t ≥ t∗ for which these solutions exist.

Proof Let t > t∗ > 0 be the first time for which the condition a0 < â0, a2 > â2
fails. By uniqueness of solutions to ODEs, we cannot have both a0(t) = â0(t) and
a2(t) = â2(t), hence we must have exactly one of these. In the first case, at t

ȧ0 − ˙̂a0 = − 4λ

μ2 ((a2
2 − â2

2)(u1 − u0)) < 0

but this implies a0(t∗∗) − â0(t∗∗) > 0 for some t∗ < t∗∗ < t , which contradicts t
being the first time the condition fails. In the second case, at t

ȧ2 − ˙̂a2 = − 3

2λ
((a0 − â0)a2 > 0

but this implies a2(t∗∗) − â2(t∗∗) < 0 for some t∗ < t∗∗ < t , which is again a
contradiction. ��

Another ingredient we will need is a slight improvement on the comparison lemma,
restricted to solutions lying inR1

Lemma 4.14 (Improved Comparison) Let (a0, a2),
(
â0, â2

)
be two solutions to (40),

with a0(t∗) < â0(t∗), a2(t∗) > â2(t∗) ≥ 0, at some initial time t∗ > 0. Then a2 − â2
is strictly increasing ∀t ≥ t∗ for which (a0, a2) (t) ∈ R1.
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Proof By the forward-comparison lemma, a0 < â0, a2 > â2 ≥ 0 for all time t ≥ t∗,
and by definition (a0 + 1) < 0 for all time t ≥ t∗ such that (a0, a2) (t) ∈ R1.
Rewriting ȧ2 − ˙̂a2 using (40)

ȧ2 − ˙̂a2 = 3

2λ

(
â2

(
â0 − a0

)+ (
â2 − a2

)
(a0 + 1)

)
> 0

for all such t , and hence a2 − â2 is strictly increasing in t as claimed. ��
With these out the way, we are almost ready to prove the theorem. First of all,

it is clear that the one-parameter family Ql
αl

of local solutions to the ODEs (40)
given by Proposition 3.10 with βl = 0, αl > 0 are all contained in R1 for some
t∗ > 0 sufficiently small, and up to gauge transformation (27) we can assume this
one-parameter family has αl ≥ 0. The local solution with αl = 0 is clearly the abelian
solution by uniqueness.

If (a0, a2)α =
(
aα
0 , aα

2

)
and (a0, a2)α′ = (aα′

0 , aα′
2 ) are any two of these solutions,

then near the singular orbit:

aα
0 − aα′

0 = −
6

l(U1 +U0)

(
α2 − α′2

)
t2l + O(t2l+2)

aα
2 − aα′

2 =
(
α − α′

)
t l−1 + O(t l+1)

(43)

So, by the forward-comparison lemma, if (a0, a2)αl
hits the boundary of R0 in finite

time (and thus enters it if αl > 0) then so does (a0, a2)α′l for all 0 ≤ α′l ≤ αl . Similarly,
if (a0, a2)αl

hits the boundary of R∞ in finite time (and thus enters it), then so does
(a0, a2)α′l , for all α

′
l ≥ αl . By continuous dependence on initial conditions for singular

initial value problems, these sets are disjoint open intervals in R≥0. Clearly, the set
αl ∈ R≥0 for which (a0, a2)αl

hits the boundary of R0 in finite time is non-empty
since it contains 0, so to complete the theorem, we must prove

1. There exists αl > 0 such that (a0, a2)αl
enters R∞ in finite time.

2. There is at most one αl such that (a0, a2)αl
remains in R1 for all time.

The latter statement follows directly from our improved forward-comparison lemma:
if α > α′ then aα

0 (t) < aα′
0 (t), aα

2 (t) > aα′
2 (t) for all t > 0, and ȧ2α(t)− ȧα′

2 (t) > 0
when the solutions are in R1. However, if two distinct solutions lie in R1 for all
time t > 0, they must both be asymptotic as t → ∞ to (−1, 1) which would be a
contradiction as aα

2 − aα′
2 can be bounded below away from 0.

The former statement can be proved via a rescaling argument, which we state below
as a proposition:

Proposition 4.15 Fix l > 1. Then ∃αl > 0, t∗ > 0 such that (a0, a2)αl
(t∗) ∈ R∞,

where (a0, a2)αl
is the one-parameter family of solutions Ql

αl
to (40) near t = 0 given

in Proposition 3.10.

Proof As has been said previously, every local solution (a0, a2)αl
is contained in the

region R1 for small t > 0. Since these solutions can only fail to exist for all forward
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time if they leave in finite time viaR∞, it suffices to consider the case that, for all αl ,
these solutions exist for all time.

We start by rescaling the Calabi–Yau structure along the fibreC2,−2 ofO(−2,−2),
by defining, for some δ > 0:

λδ(t) := λ(δt)

δ
(u1)δ (t) := u1(δt) (44)

Near the singular orbit S2× S2, we have the power-series expansions λ = 3t+O(t3),
u1 = U1+O(t2) for some fixed Calabi–Yau structure, and hence, for fixed t , λδ(t)→
3t , (u1)δ (t)→ U1 as δ→ 0 .10

In terms of the rescaled Calabi–Yau structure, the instanton equations (40) for(
aδ
0, aδ

2

)
(t) = (a0, a2) (δt) become the family of ODEs, parameterised by δ:

ȧδ
0 = −

4δ2λδ

(u1)
2
δ − u2

0

(
a2
2((u1)δ − u0)+ a0 (u1)δ + u0

)
ȧδ
2 = −

3

2λδ

a2 (a0 + 1)

(45)

One can always rescale the one-parameter family of (local) solutions (a0, a2)αl
to

(40) to obtain solutions to (45) for fixed δ > 0, but one can show that there is a one-
parameter family of (local) solutions extending to the singular orbit for any δ ≥ 0.
To verify this claim, we apply the boundary conditions A.3 for extending an invariant
connection to the singular orbit, which allows us to write aδ

2 = t l−1X δ
2 for some

smooth X δ
2. The ODEs (45) can now be written as the singular IVP:

ȧδ
0 = O(t) Ẋ δ

2 = −
a0 + 2l − 1

2t
X δ
2 + O(t) (46)

which, for every δ ≥ 0, has a one-parameter family of solutions by fixing X δ
2(0) as

some constant κl . These solutions are determined by the local power-series:

aδ
0 = 1− 2l + O(t2) aδ

2 = κl t
l−1 + O(t l+1) (47)

and by comparing the two power-series, it is clear that the rescaled solutions
(a0, a2)αl

(δt) to (45) for any δ > 0 have κl = αlδ
l−1.

Meanwhile, for δ = 0, (45) can be solved explicitly:

a0
0 = 1− 2l a0

2 = κl t
l−1 (48)

We can always fix κl = 1 for this solution by a further rescaling of t , so as δ → 0,
a solution

(
aδ
0, aδ

2

)
to (45) has

(
aδ
0, aδ

2

)
(t)→ (

1− 2l, t l−1). By assumption, for all δ
these solutions exist for all time, and therefore we can always find T > 1, δ  1, such

10 if we consider the metric on O(−2,−2), rescaled by the diffeomorphism t 	→ δt , this rescaling is the
adiabatic limit as δ → 0 of the product of the rescaled metric on the fibres and the two copies of CP

1 of
fixed volume. See §4.2 for a similar discussion.
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that
(
aδ
0, aδ

2

)
(T ) ∈ R∞. If we set δ(αl) such that δ1−l = αl , and take t∗ = T δ, then

the solution (a0, a2)αl
to the instanton equations (40) can be rescaled to a solution of

(45), so it must satisfy (a0, a2)αl
(t∗) ∈ R∞ for some αl sufficiently large. ��

This concludes the proof of Theorem 4.9, in the case l > 1. As before, one can con-
sider the case l < 0 in the same way, by first considering solutions for the pulled-back
Calabi–Yau structure by exchanging the factors of SU (2) on the underlying manifold,
and then applying this diffeomorphism again on the total space of the principal bundle.

��

4.2 Bubbling

Having described the one-parameter family Rε of solutions to (26) onO(−1)⊕O(−1)
in Theorem 4.6, a natural question would be to ask about the behaviour of solutions as
ε →∞.Wewill show that there is a familiar bubbling phenomenon in this setting: after
a suitable rescaling of the metric, the one-parameter family of Calabi–Yau instantons
Rε converge as ε → ∞ to an anti-self-dual connection along the co-dimension four
calibrated singular orbit S2 = CP

1 ⊂ O(−1)⊕O(−1).We use this result to obtain the
expected removable-singularity statement, which says that as Rε bubbles off this anti-
self-dual connection, if we do not perform this rescaling, it will uniformly converge
on compact subsets of O(−1) ⊕ O(−1) \ CP

1 to the instanton R′0 of Theorem 4.7,
which extends smoothly over CP

1. Recall that the abelian instanton R′0 is determined
by the unique solution to the ODE (40) on [0,∞) with a2 = 0, which has explicit
form (31) with C = −2, u0 = −1, u1(0) = 1.

Let us first discuss this rescaling in detail: asO(−1)⊕O(−1) has the structure of a
vector bundle, fibre-wise multiplication equips it with an natural SU (2)2-equivariant
action of R>0. Let sδ denote the corresponding R-action for some δ > 0, i.e. the map
fixing the singular orbit and sending t 	→ δt on the space of principal orbits. Pulling
back the Riemannian metric g on O(−1)⊕O(−1) as given in (16) by sδ:

s∗δ g = δ2
(

dt2 + λ2δ
(
ηse)2 + 2

3 (u1 + u0)δ

(
(v2)2 + (w2)2

))

+ 2
3 (u1 − u0)δ

(
(v1)2 + (w1)2

)
(49)

where λδ , (u1 + u0)δ , and (u1 − u0)δ are defined as

λδ(t) := λ(δt)

δ
(u1 + u0)δ (t) := (u1 + u0) (δt)

δ2

(u1 − u0)δ (t) := (u1 − u0) (δt) (50)

We will refer to the limit δ→ 0 as the adiabatic limit, and recall that here, u0 = −1,
and that λ(t) = 3

2 t +O(t3), u1 = 1+ 3
2 t2+O(t4) near t = 0, so λδ , (u1 ± u0)δ have

well-defined point-wise limits as δ→ 0.
Near the adiabatic limit, restricted to any finite distance from the singular orbit,

s∗δ g is approximated by the metric δ2gF + gB for some δ sufficiently small, where gF
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denotes a lift of the Euclidian metric on the fibre R
4 and gB denotes a round metric

on the base S2. Here, the lift of the Euclidian metric on R
4 to the fibres identifies

3
2η

se = u1−u2, v2,w2 with the standard orthonormal basis of one-forms on S3 ⊂ R
4,

and v1, w1 as an orthonormal basis of one-forms for the singular orbit S2, viewed
upstairs on SU (2)2 → SU (2)2/U (1)× SU (2).

One can always obtain a solution to the Calabi–Yau instanton equation (2) on
the flat Calabi–Yau 3-fold C

3 by pulling back any anti-self-dual connection on C
2 to

C
3 = C

2×C, so at least at the level of tangent spaces, ifwe pull-back someCalabi–Yau
instanton by sδ on some sufficiently large neighbourhood of CP

1 ⊂ O(−1)⊕O(−1)
in the adiabatic limit, there should appear an anti-self-dual connection pulled back
from the fibre. However, the fibre bundle O(−1)⊕O(−1) is non-trivial, so to make
this a global statement, one must first choose a connection on this bundle: we will see
in the next lemma that this connection will be forced onto us by the symmetries of the
problem.

Lemma 4.16 Up to gauge and rescaling, there is a unique non-flat SU (2)2-invariant
anti-self-dual connection Aasd on R

4. Aasd has a unique lift Āasd to the fibres of
O(−1)⊕O(−1) as an SU (2)2-invariant connection on P0,Id:

Āasd := 1

1+ t2

(
E1 ⊗ (u2 − u1)+ E2 ⊗ v2 + E3 ⊗ w2

)
+ E1 ⊗ u1 (51)

Proof We first explain how to view the SU (2)2-invariant bundle P0,Id over O(−1)⊕
O(−1) as a bundle over the fibres: there is an obvious SU (2)2-equivariantU (1)-action
on S3 × R

4, viewed as SU (2) × H, where SU (2)2 acts on the left and U (1) on the
right, and thisU (1)-action induces the quotient map q : S3×R

4 → O(−1)⊕O(−1).
By definition of P0,Id, its pull-back via q is also the pull-back of an SU (2)-invariant
bundle over R

4, via the projection π : S3 × R
4 → R

4 onto the second factor. Here,
we view R

4 as a co-homogeneity one manifold with group diagram {1} ⊂ SU (2) ⊆
SU (2), and define the SU (2)-invariant SU (2)-bundle over R

4 by the homomorphism
Id : SU (2) → SU (2), i.e. the singular isotropy group SU (2) acts via the identity
homomorphism on the fibre SU (2).

The canonical connection of P0,Id over the singular orbit S2 = SU (2)2/U (1) ×
SU (2) is just the flat Maurer–Cartan form A�

2, and this clearly pulls back via q over
S3 × R

4 as the canonical connection (pulled back via π ) on the singular orbit {0} =
SU (2)/SU (2) of the SU (2)-invariant bundle over R

4. Using this choice of reference
connection, a connection defined on q∗P0,Id over S3×R

4 descends toO(−1)⊕O(−1)
if and only if the corresponding adjoint-valued one-form is basic with respect to the
U (1)-action. Furthermore, the one-form u1 is the unique SU (2)-invariant connection
on the principal U (1)-bundle S3→ S2, and this induces connection on the associated
vector bundle O(−1) ⊕ O(−1) → S2. We can use this connection to project any
(adjoint-valued) one-form on S3×R

4 to its semi-basic component, and thus uniquely
lift any U (1) × SU (2)-invariant SU (2)-connection over R

4 to a connection over
O(−1)⊕O(−1).

With this understood, we now describe the invariant anti-self-dual connection Aasd

over R
4. Since the SU (2)-invariant bundle is trivial restricted to the principal orbit
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S3 ⊂ R
4, up to gauge transformation, we can always put any SU (2)-invariant con-

nection A on this bundle into the form:

A = α1E1 ⊗ u2 + α2E2 ⊗ v2 + α3E3 ⊗ w2

for some αi (t) satisfying αi (0) = 1, so that this connection extends to the singular
orbit as the canonical connection.

The basis of self-dual forms (up to cyclically permuting u2, v2, w2) for the
Euclidean metric11 can be written as tdt ∧ u2 − t2v2 ∧ w2, so the SU (2)-invariant
anti-self-dual equations can be written as the ODE system:

t α̇i = −2αi + 2α jαk

where i jk are cyclic permutations of (1 2 3). Imposing the additional SU (2)-
symmetry12, we set α1 = α2 = α3, giving

t α̇ = −2α + 2α2 (52)

which has the explicit solution α = (
1+ κt2

)−1
for any κ ∈ R, and it is not hard to

see that these are the only solutions to (52) extending over the singular orbit. Clearly,
this exists for all t ≥ 0 if and only if κ ≥ 0, and when κ > 0 we can always fix the
solution to have κ = 1 by rescaling t . This defines the connection:

Aasd := 1

1+ t2

(
E1 ⊗ u2 + E2 ⊗ v2 + E3 ⊗ w2

)
(53)

over R
4. The extra symmetry ensures, implicitly, that Aasd isU (1)× SU (2)-invariant,

so it can be uniquely lifted to the connection Āasd = Aasd −
(

1
1+t2
− 1

)
E1 ⊗ u1 as

previously explained. ��
With these preliminaries out of the way, we can now state the main theorem of this

section:

Theorem 4.17 Let δ(ε) = √2ε−1. Then, as ε →∞:

(i) s∗δ Rε(t)→ Āasd(t).
(ii) Rε(t)→ R′0(t) uniformly on compact subsets of (0,∞).

Proof of Theorem 4.17 (i) We start by rewriting the instanton equations in terms of the
rescaling (49), and the lift from an invariant connection on the fibre as in the previ-

ous lemma. If we define
(
aδ
0, aδ

2

)
(t) =

(
1−a0
2 , a2

)
(δt), and consider some invariant

11 the slightly non-standard orientation convention here arises from the disparity between orientation con-
ventions for (49) and the SU (2)-action.
12 one can show, however, that the additional SU (2)-symmetry arises a-posteriori as a consequence of the
general solution to the SU (2)-invariant anti-self-dual equations extending to the singular orbit.
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connection A defined by (a0, a2) (t), as in Proposition 3.2, then

s∗δ A(t) = aδ
2(t)

(
E2 ⊗ v2 + E3 ⊗ w2

)
+ aδ

0(t)E1 ⊗ (u2 − u1)+ E1 ⊗ u1

Written in this way, the instanton equations (40) for (a0, a2) (t) becomes the following
one-parameter family of ODEs for

(
aδ
0, aδ

2

)
(t):

ȧδ
0 =

2λδ

(u1 + u0)δ

((
aδ
2

)2 − aδ
0

)
+ 2δ2λδ

(u1 − u0)δ

(
(1− a0

δ)
)

ȧδ
2 = −

3

λδ

(
1− a0

δ
)

aδ
2

(54)

(54) has a one-parameter family of solutions for each δ > 0 by rescaling the family of
solutions Rε to (40), and we now show that one still obtains a one-parameter family as
δ → 0. Considering the boundary conditions Proposition A.7 for extending

(
aδ
0, aδ

2

)

to t = 0, we can write aδ
0 = 1 − t2X0, aδ

2 = 1 − t2X2 for some smooth functions
X0, X2, so that, in a neighbourhood of t = 0, (54) becomes the well-defined initial
value problem:

t Ẋ0 = 2 (X0 − X2)+ O(t2) t Ẋ2 = 2 (X0 − X2)+ O(t2) (55)

hence, once we fix the parameter κ := X0(0) = X2(0), the continuous dependence
of (54) on δ gives existence of a sufficiently small open neighbourhood of t = 0
such that, for each δ ≥ 0, solutions to (54) are in a one-parameter family. These are
determined by the power-series:

aδ
0 = 1− κt2 + O(t4) aδ

2 = 1− κt2 + O(t4) (56)

Comparing with the power-series in Proposition 3.14 for Rε , we see that the rescaled

solutions
(
1−a0
2 , a2

)

ε
(δt) for δ > 0 have κ = δ2ε/2, and so the family of solutions

(
aδ
0, aδ

2

)
exist for all time if κ ≥ 0, δ > 0 by Theorem 4.6.

By continuity, the solutions must also exist for all time for κ ≥ 0 as δ→ 0, but as
the resulting equations:

t ȧ0
0 = 2

((
a0
2

)2 − a0
0

)
t ȧ0

2 = 2
(

a0
0 − 1

)
a0
2 (57)

have the explicit solutions a0
0 = a0

2 =
(
1+ κt2

)−1
as in (52), this is already guaran-

teed.
We now set δ (ε) = √2κε−1 for some given κ > 0, which we can always fix to be 1

by a further rescaling.By rescaling the family Rε = (a0, a2)ε to the instanton equations

(40), we get a solution
(
aδ
0, aδ

2

)
(t) =

(
1−a0
2 , a2

)

ε
(δt) to (54). As we have just shown,

the solution has aδ
0(t), aδ

2(t)→
(
1+ t2

)−1
as δ→ 0, hence s∗δ Rε(t)→ Āasd(t). ��
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Remark 4.18 Since
(
1+ κt2

)−1
blows up in finite time if κ < 0, by keeping the

freedom to vary κ , this rescaling argument can be used to show that local solutions of
Theorem 4.6 with ε < 0 are not only unbounded but blow up in finite time.

Proof of Theorem 4.17 (ii) Let (a0, a2)ε (t) = (
aε
0, aε

2

)
(t) denote the one-parameter

family of solutions to (40) corresponding to Rε . Using the local power-series in Propo-
sition 3.14, it follows that aε

0(t
∗), aε

2(t
∗) are both strictly monotonic (increasing and

decreasing, respectively) functions of ε > 0 for any fixed t∗ > 0, since we can take
some 0 < t∗∗ ≤ t∗ sufficiently small to compare the power-series for (a0, a2)ε and
(a0, a2)ε′ at t∗∗ for any pair ε, ε′ by their first few terms, and then use the forward-
comparison lemma to recovermonotonicity at t∗. Since (a0, a2)ε (t) lies in the bounded
set R0 for all t > 0, ε > 0, this implies (a0, a2)ε (t) converges point-wise on (0,∞)

as ε →∞.
Since aε

2(t) is strictly decreasing in t for all t > 0, ε > 0, if we assume that the
point-wise limit infε aε

2(t
∗) for any fixed t∗ > 0 is non-zero, then we can use the

inequality aε
2(t) ≥ aε

2(t
∗) ≥ infε aε

2(t
∗) ≥ 0 for all ε > 0, t ≤ t∗ to uniformly bound

aε
2 away from zero on (0, t∗) and derive a contradiction with the first part of the main
theorem. Explicitly, by part (i), for any ε > 0, T > 0, ∃ε(ε, T ) such that ∀ε ≥ ε(ε, T ),
the rescaled solution (a0, a2)ε (

√
2ε−1T ) satisfies |aε

2(
√
2ε−1T )− (1+ T 2)−1| < ε.

By the assumption L := infε aε
2(t
∗) > 0, we can pick ε, T such that 0 < ε <

L − (1+ T 2)−1, and then apply our inequality to any ε ≥ max{ε(ε, T ), 2
( T

t∗
)2}:

ε < L − (1+ T 2)−1 ≤ |aε
2(

√
2ε−1T )| − |(1+ T 2)−1|

≤ |aε
2(

√
2ε−1T )− (1+ T 2)−1|

since
√
2ε−1T ≤ t∗. However, this demonstrates the existence of an ε ≥ ε(ε, T )

such that the inequality |aε
2(
√
2ε−1T )− (1+ T 2)−1| < ε fails, and hence we have a

contradiction.
This previous discussion implies that aε

2 converges uniformly to zero on any com-
pact interval contained in (0,∞), and by using (41) to express the derivative ȧε

0 purely
in terms of aε

2 (up to some fixed functions of t), we also get the uniform convergence
of aε

0 on this interval. Now consider the initial value problem defined by the ODE
(40) with (a0, a2) (t∗) = (a0, a2)ε (t∗) for some fixed initial time t∗ > 0: this has
unique solution (a0, a2)ε (t) on (0,∞), and continuous dependence on initial condi-
tions guarantees that the limit as ε →∞ is the unique solution to (40) with a2 = 0,
and a0(t∗) = supε aε

0(t
∗). Since this solution must be contained in the closure ofR0,

by Remark 3.9, this must be identified with R′0 on (0,∞), the unique solution to (40)
bounded on (0,∞) with a2 = 0. ��

Bubbling onO(−2,−2)

In the rest of this section, we will discuss bubbling phenomena for instantons on
O(−2,−2): we will see that the one-parameter families of Calabi–Yau instantons
Ql

αl
on O(−2,−2) can be understood, in an appropriate adiabatic limit, as anti-self-

dual instantons for the Eguchi–Hanson metric on the cotangent bundle of CP
1, fibred
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along a co-dimension four calibrated sub-manifoldCP
1 ⊂ O(−2,−2). Although this

discussion is unnecessary for understanding the main results of this article, we include
a brief sketch of the details, omitting any explicit proofs.

First, recall that the Eguchi–Hanson metric is SU (2)×U (1)-invariant, and can be
written on T ∗CP

1 \ CP
1 ∼= R>0 × SU (2)/ Z2, up to scale, as

geh = dt2 + ϕ2
(
(1− ϕ−4)u2 + v2 + w2

)
(58)

where t ≥ 0 is the radial geodesic arc-length extending over CP
1 at t = 0, u, v, w

are the basis of left-invariant one-forms dual to E1, E2, E3 on SU (2), and ϕ(t) is the
unique solution to ϕ̇2 = 1− ϕ−4 on [0,∞) with ϕ(0) = 1.

One can show that, up to gauge, SU (2)-invariant anti-self-dual connections for the
Eguchi–Hanson metric are in l ∈ Z>0 one-parameter families Aeh

κ,l , 0 ≤ κ ≤ 1, and
these are additionally U (1)-invariant. Written in the temporal gauge

Aeh
κ,l := α0E1 ⊗ u + α2 (E2 ⊗ v + E3 ⊗ w) (59)

with coefficients α0(t), α2(t), explicit up to a smooth change of variable t 	→ ϕ:

α0 = l

ϕ2

(

1+ κ

(
ϕ2 − 1

ϕ2 + 1

)l
) (

1− κ

(
ϕ2 − 1

ϕ2 + 1

)l
)−1

α2 = 2l

1− κ
(

ϕ2−1
ϕ2+1

)l

√√√√κ
(

ϕ2−1
ϕ2+1

)l

ϕ4 − 1
(60)

By considering the orbit of the one-parameter family Aeh
κ,l , 0 ≤ κ < 1 under con-

stant (t-independent) invariant gauge transformations, these invariant families can be
understood in terms of themoduli-spaces of anti-self-dual connections for the Eguchi–
Hanson metric constructed by Nakajima in [12]: he shows, under certain assumptions,
that connected components of the moduli-space are themselves a copy of Eguchi–
Hanson. In our invariant set-up, the parameter κ corresponds to (a parameterisation
of) the radial parameter t , and these gauge orbits correspond to the orbits of the co-
homogeneity one action of SU (2) on T ∗CP

1.
Observe that the moduli-space of invariant anti-self-dual connections Aeh

κ,l behaves
similarly to the moduli-space of invariant Calabi–Yau instantons for the metrics on
O(−2,−2) in Theorems 4.8, 4.9: κ = 0 is the unique abelian solution for each l, and
at κ = 1 there is a transition in the asymptotic behaviour of Aeh

κ,l from the canonical
connection (α0, α2) = (0, 0) to the flat connection (α0, α2) = (1, 1). Any solutions
with κ greater than this critical value become unbounded (at least here, in finite time),
and only when l = 1 are these critical solutions Aeh

1,l themselves flat.
If we pick overall scale for the family of metrics on O(−2,−2) such that one of

the copies of CP
1 ⊂ O(−2,−2) has fixed volume U1 − U0 = 1, and consider the

rescaling sδ as in (49), (50) with δ2 = 2
3 (U1 +U0), then one can show that by varying
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in this one-parameter family of metrics, 43λδ → ϕ
√
1− ϕ−4, 23 (u1 + u0)δ → ϕ2, and

(u1 − u0)δ → 1 in the adiabatic limit as δ → 0. In other words, near this adiabatic
limit, the metric s∗δ g is approximated by a fibration δ2geh + gB of a rescaled Eguchi–
Hanson metric over a round metric on the base CP

1, for some δ sufficiently small.
With this established, the similarity between the moduli-spaces of instantons on

O(−2,−2) and anti-self-dual connections on Eguchi–Hanson is somewhat less mys-
terious: if one considers the one-parameter family of instantons Ql

αl
for αl = l

√
κδ1−l

for some fixed, l > 0, κ ≥ 0, and pulls back via this rescaling, it can further-
more be shown that s∗δ Ql

αl
(t) → Aeh

κ (t) as δ → 0 along the fixed-volume copy

of CP
1 ⊂ O(−2,−2).

Remark 4.19 Since the explicit solution (60) blows up in finite time if κ > 1, up to
exchanging the copies of CP

1 ⊂ O(−2,−2), one can use this rescaling argument
to show that the instantons Ql

αl
for metrics on O(−2,−2) with U1 ±U0 sufficiently

close to 0 must also blow up in finite time if αl is sufficiently large.

4.3 Solutions to theMonopole Equations

In this section, we analyse the qualitative behaviour of solutions to the monopole
equations (26) with non-zero Higgs field � away from the singular orbit. Assuming
that the connection is not an instanton, we first show that there are no solutions for
O(−2,−2), or O(−1)⊕O(−1) with quadratic curvature decay:
Proposition 4.20 There are no irreducible invariant monopoles on O(−2,−2) or
O(−1)⊕O(−1) with quadratic curvature decay.

Proof We look at solutions to the monopole equations (26) with v0 = 0, v3 = μ, i.e.
for a hypo-structure of type I given by (12):

ȧ0 = 4λ

μ2

(
(a2

1 + a2
2 − 1)u0 − (a0 − a2

1 + a2
2)u1

)

φ̇ = − 6

μ
a1a2

ȧ1 = 3

2λ
(a0 − 1)a1 − 2

u1 − u0

μ
a2φ

ȧ2 = − 3

2λ
(a0 + 1)a2 − 2

u1 + u0

μ
a1φ

(61)

Recall from Lemma 3.7 that a weak condition for solutions (a0, a1, a2, φ) was to
assume at least boundedness of a0, a1, a2.Wewill show that there are no such solutions
to (61) existing for all time: in particular, we show that if a solution exists for all time
with a0 bounded and φ non-zero, then a1 − a2 must have at least exponential growth
at infinity, provided certain initial conditions are satisfied. These initial conditions
will be satisfied by the local solutions extending to t = 0 obtained in the previous
propositions, up to certain easily-verified symmetries: ��
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Lemma 4.21 The following involutions are symmetries of (61):

(a0, a1, a2, φ) 	→ (a0,−a1,−a2, φ) (62)

(a0, a1, a2, φ) 	→ (a0,−a1, a2,−φ) (63)

We now find the set in which our solutions remain for all time:

Lemma 4.22 The set R+∞ := {(a0, a1, a2, φ) ∈ R
4 | a1 > 0 > a2, φ > 0} is forward-

invariant under (61).

Proof We let t be the first time a solution (a0, a1, a2, φ) leaves R+∞. However, none
of the possibilities for a solution to leave R+∞ can hold at t :

(i) a1 = 0, a2 < 0, φ > 0, since it implies ȧ1 > 0.
(ii) a2 = 0, a1 > 0, φ > 0, since it implies ȧ2 < 0.
(iii) a1 = a2 = 0, φ ≥ 0 coincides with the reducible solution a1 ≡ a2 ≡ 0, which by

uniqueness of solutions implies this solution coincides with the reducible solution
for all time.

(iv) Since φ(t0) > 0 for some t0 < t , if we assume φ(t) = 0, then by the mean value
theorem φ̇(t1) < 0 for some t0 < t1 < t which implies a1(t1)a2(t1) > 0.

��
Remark 4.23 Although we have shown explicitly from the ODEs that solutions pre-
serve |φ| > 0, it also follows more generally, since the function |�|2 : M → R is
sub-harmonic for any monopole (A,�) over an arbitrary Calabi–Yau 3-fold M . In the
invariant co-homogeneity one setting, this implies that if |�(t)|2 = 0 for some t > 0,
then it vanishes for all t by the maximum principle.

We also prove that solutions lying in this set, if they exist for all time, are (expo-
nentially) unbounded as t →∞:

Lemma 4.24 If (a0, a1, a2, φ) be a solution to (61) existing for all time t ≥ t∗ with a0
bounded, lying in R+∞ at initial time t∗, then a1(t)− a2(t) is unbounded as t →∞.

Proof Since theCY-structure isAC,λ ∼ t as t →∞, hence 3
2λ (a0±1)→ 0 as t →∞

by assumption. We also have that u1±u0
μ
→ 1 in the same limit. Since a1 > 0 > a2,

then for every ε > 0, ∃T ∗ � 0 such that ∀t > T ∗ the following inequalities hold:

3

2λ
(a0 − 1)a1 > −εa1 − 3

2λ
(a0 + 1)a2 < −εa2

− u1 − u0

μ
a2 > −(1− ε)a2 − u1 − u0

μ
a1 < −(1− ε)a1

(64)

Let T := max{t∗, T ∗} for our fixed initial time t∗, and φ̄ := φ(t∗) > 0. Since φ is
strictly increasing in R+∞, we have φ(t) > φ̄ for t > t∗. Putting all our inequalities
together on t > T , we obtain the following:

ȧ1 − ȧ2 > (2φ̄ − ε(2φ̄ + 1))(a1 − a2)
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and if we choose ε <
φ̄

(2φ̄ + 1)
, then by integrating:

a1(t)− a2(t) ≥ (a1(T )− a2(T )) exp((t − T )φ̄)

��

This completes the proof the proposition, since in all cases, using the symmetries
(62), (63), for the power-series solutions near the singular orbit, one can reduce to the
case of the monopole lying inR+∞ for some small initial time:

1. For local solutions
(
R′, � ′

)
ε′,δ′ defined by Proposition 3.15, since ε′, δ′ �= 0 by

assumption i.e. we do not have an instanton, then up to symmetry one can assume
ε′, δ′ > 0. Hence (a0, a1, a2, φ)ε′,δ′ lies inR+∞.

2. For local solutions
(
Ql ,�l

)
αl ,βl

defined by Proposition 3.10, since αl , δl �= 0
by assumption, up to symmetry one can assume αl < 0, βl > 0. Hence
(a0, a1, a2, φ)αl ,βl

lies in R+∞. This also covers the case l ≤ 0, by exchang-
ing the factors of SU (2) on the principal orbits, and considering the Calabi–Yau
structure on O(−2,−2) pulled back via this diffeomorphism.

3. For local solutions (R, �)ε,δ defined by Proposition 3.14, since δ �= 0 by assump-
tion, then up to (63), one can also assume δ > 0. While the image of a solution
under (62) may not extend to the singular orbit, existence of a bounded solution
extending to the singular orbit would imply existence of a bounded solution in
R+∞ under the symmetry.

��
The existence of invariant monopoles on T ∗S3 was shown in [13]: by restricting the

monopole equations to the R
3-fibre over a point in S3, i.e. solving (26) with a0 ≡ 0,

a1 ≡ a2,Oliveira constructed aone-parameter family of invariantmonopoles forT ∗S3,
first by considering the local solutions (S,�)ξ,χ with ξ = 0 of this system, and then
applying PDE methods for invariant monopoles in R

3. Due to a computational error
in [13, Lemma 6, Appendix A], Oliveira did not consider local solutions (S,�)ξ,χ

with ξ non-zero, but we fix the resulting gap in the proof of the main theorem [13,
Theorem 1] by imposing quadratic curvature decay:

Proposition 4.25 Invariant monopoles with quadratic curvature decay on PId →
T ∗S3 are in a one-parameter family (S,�)χ := (S,�)0,χ , χ > 0, up to gauge.
Moreover,

(i) limt→∞ (S,�)χ (t) = (
Acan,�χ

)
, where �χ is a constant non-trivial Higgs

field.
(ii) (S,�)0,0 = S0 where S0 is the instanton of Theorem 4.1, with a trivial Higgs

field.
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Proof We rewrite the monopole equations (26) with a± := a1 ± a2:

ȧ0 = 4λ

μ
(a+a− − a0)

ȧ+ = 3(v3 + v0)

2λμ
(a0a− − a+)− 2a+φ

ȧ− = 3(v3 − v0)

2λμ
(a0a+ − a−)+ 2a−φ

φ̇ = 3

μ2

((
1

2
(a2+ + a2−)− 1

)
v0 − 1

2
(a2+ − a2−)v3

)

(65)

for μ, λ, v3, v0 explicit solutions to the hypo-equations given in (19), and recall from
Lemma 3.7, that we are interested in solutions with a0, a+, a−, tφa+, tφa− bounded.
There are three parts to the proof:

1. Solutions to (65) extendingover the singular orbitwitha0, a− �≡ 0 are unbounded.
2. Solutions to (65) with a0, a− ≡ 0, which have local power-series (S,�)ξ,χ given

in Proposition 3.12 for ξ = 0, are bounded iff χ ≥ 0.
3. In this case, solutions with χ > 0 have a+ → 0, φ → φχ as t → ∞ for some

constant φχ > 0, and ta+φ bounded. The solution with ξ, χ = 0 is the explicit
instanton (37) found in [13].

To prove the first part, we will recall the symmetries (27) and (28) of the problem: ��
Lemma 4.26 The following involutions are symmetries of (65):

(a0, a+, a−, φ) 	→ (a0,−a+,−a−, φ) (66)

(a0, a+, a−, φ) 	→ (−a0, a+,−a−, φ) (67)

We can also prove a strict monotonicity condition for φ:

Lemma 4.27 (Monotonicity) A solution (a0, a+, a−, φ) to (65) with ±φ(t∗) >

0,±φ̇(t∗) > 0 at some initial time t∗ > 0, has ±φ(t) > 0,±φ̇(t) > 0 for all
t ≥ t∗.

Proof We calculate

φ̈
∣∣
φ̇=0 =

6

μ2

(
a2+ (v3 − v0)+ a2− (v3 + v0)

)
φ

In particular, since φ̇ �= 0 for a+ = a− = 0, and (v3 ± v0) > 0 for t �= 0, we have
φ̈ > 0 at φ̇ = 0 iff φ > 0. Hence any critical point for φ must be minimum, and
since φ̇(t∗) > 0 , we must have φ̇(t) > 0, φ(t) > 0 for all t > t∗. The proof for
φ(t) < 0, φ̇(t) < 0 is similar. ��

Using this, we find a set that contains our solutions for all time:
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Lemma 4.28 A solution (a0, a+, a−, φ) to (65) lying in S±∞ := {(a0, a+, a−, φ) ∈
R
4 | a0 > 0, a+ > 0, a− > 0,±φ > 0} at some initial time t∗ with ±φ̇(t∗) > 0,

remains there for all forward time t ≥ t∗.

Proof Let t be the first time a solution (a0, a+, a−, φ) leaves S±∞. However, none of
the possibilities for a solution to leave S±∞ can hold at t :

(i) a0 = 0, a− > 0, a+ > 0, since it implies ȧ0 > 0. The same is true if we permute
indices 0,+,−.

(ii) a+ = 0, a− = 0, a0 > 0, since then ȧ+ = ȧ− = 0. By local uniqueness and
existence forODEs, from (65), one sees that the solutionmust have a+ ≡ 0, a− ≡
0, at least for some small interval (t − ε, t + ε). Again one obtains similar results
by permuting indices.

(iii) a0 = a+ = a− = 0 coincides with solution (0, 0, 0,−3I ), where İ = v0
μ2 , which

is a solution to (65) for any choice of initial condition φ(t) for t > 0.
(iv) φ = 0 is impossible by monotonicity. ��

We can now use monotonicity to bound φ away from zero, which will show that
solutions in S±∞ must be unbounded as t →∞:

Lemma 4.29 A solution (a0, a+, a−, φ) to (65) lying in S±∞ with ±φ̇ > 0 at some
initial time t∗ > 0 cannot have a∓ bounded for all forward time t ≥ t∗.

Proof We start with the case S+∞. Since a+a0 > 0, we have the following inequality:

ȧ− >

(
2φ − 3(v3 − v0)

2λμ

)
a−

Since 3(v3−v0)
2λμ

→ 0 and φ strictly increasing, then for fixed t∗, ∃T > t∗ such that
∀t > T :

φ̄ := φ(t∗) >
3(v3 − v0)

2λμ
(t)

Then, since a− > 0, integrating the inequality for ȧ− gives

a−(t) ≥ a−(T ) exp((t − T )φ̄)

The proof for S−∞ is almost identical, since now:

ȧ+ >

(
−2φ − 3(v3 + v0)

2λμ

)
a+ (68)

with φ < 0 monotonically decreasing and 3(v3+v0)
2λμ

→ 0. ��
Tocomplete the proof of the first part of the theorem, one only need apply this lemma

to the power-series solution (S,�)ξ,χ ofProposition 3.12.Up to symmetry,we can take
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χ, ξ > 0, so for some 0 < t∗ sufficiently small, the solution (a0, a+, a−, φ)ξ,χ (t∗)
lies in S+∞ with φ̇(t∗) > 0, and hence we obtain that these solutions are unbounded.

To prove the second and third parts of the theorem (cf. [13, Theorem 1]), we need
to prove local solutions (S,�)0,χ with ξ = 0, i.e. solutions to the ODE:

ȧ+ = −a+
(
3(v3 + v0)

2λμ
+ 2φ

)
φ̇ = − 3

μ2

(
1

2
a2+(v3 − v0)+ v0

)
(69)

have fixed asymptotics a+ → 0, φ → φχ > 0 only in the case χ > 0, and if χ < 0
are these solutions are unbounded as t →∞. By uniqueness, the local solution with
χ = 0, ξ = 0 is the instanton (37) with φ ≡ 0.

We first note that the sign of a+ is preserved by (69), hence by using the gauge
symmetry (66) we can always reduce to the case a+ > 0 in the following. Assuming
this, we can prove the existence of a set in which solutions become unbounded:

Lemma 4.30 Solutions to (69) with a+ > 0, φ < 0, φ̇ < 0 at some initial time t∗ > 0,
cannot have a+ bounded for all forward time t ≥ t∗.

Proof This proceeds almost identically to the proof of Proposition 4.29, only now we
have the inequality (68) is an equality. Again we have φ < 0monotonically decreasing
by Lemma 4.27, and integrating the inequality for ȧ+ in terms of φ(t∗), we have that
there exists T > t∗, such that for all t ≥ T :

a+(t) ≥ a+(T ) exp(−(t − T )φ(t∗)) ��
We also prove the existence of a set in which solutions are bounded for all time,

and have the desired asymptotics:

Lemma 4.31 Solutions to (69) with a+ > 0, φ > 0, φ̇ > 0 at some initial time t∗, are
bounded for all t ≥ t∗, and have (a+, φ) → (

0, φχ

)
as t → ∞, for some constant

φχ > 0. Moreover, ta+φ is bounded for all t ≥ t∗.

Proof Wealreadyhave lower bounds fora+ andφ.Wenowprove anupper bound forφ:
we have the inequality φ̇ < − 3v0

μ2 , and hence by integrating φ must be bounded above.
Since φ is also strictly increasing, this implies the existence of a limit φ → φχ > 0
as t →∞.

For a+, since 3(v3+v0)
2λμ

> 0, and φ > 0 strictly increasing, we have the inequality
ȧ+ ≤ −2a+φ(t∗). Integrating this, we get

0 < a+(t) ≤ a+(t∗) exp(−2(t − t∗)φ(t∗))

giving us the required asymptotics for a+, tφa+. ��
The final two parts of the proof of the Theorem 4.25 are now immediate, since local

solution (S,�)0,χ to (69) given by Proposition 3.12 with ξ = 0, χ < 0 satisfies the
conditions of Lemma 4.30, while for χ > 0 they satisfy the conditions of Lemma
4.31. ��
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A Extending Invariant Bundle Data to the Singular Orbit

By considering SU (2)2-invariant instantons and monopoles on the space of principal
orbits, we obtained ordinary differential equations depending on geodesic parameter
t ∈ R>0. In this appendix, we check the boundary conditions for these data to extend
smoothly to the singular orbits at t = 0.

First, in a general setting for extending homogeneous bundles over the principal
orbits of co-homogeneity one manifolds to the singular orbits, we let M denote a co-
homogeneity one manifold with group diagram H ⊂ H ′ ⊆ K , and H ′-representation
V , and let the structure group be denoted G. Any K -invariant G-bundle P over M
must be of the form Pλ = K ×H ′ (V × G) for some homomorphism λ : H ′ → G,
whichwe denote the singular homomorphism. It is not difficult to see that Pλ restricted
to a principal orbit K/H is a homogeneous bundle K ×H G, where H acts on G via
group homomorphism λ|H .

Focussing on the case of SU (2)2-invariant SU (2)-bundles over the co-homogeneity
one manifolds T ∗S3, O(−1)⊕O(−1), and O (−2,−2), let us describe and classify
the possible extensions of homogeneous bundles in this way. Recall from §3.1 that
homogeneous bundles Pn over the principal orbits are classified by the integer n, and
an additional j ∈ Z2 in the case of homogeneous bundles Pn, j over the principal orbit
of O (−2,−2):
Proposition A.1 Up to equivariant isomorphism, the SU (2)2-invariant SU (2)-bundles
extending Pn, Pn, j to the singular orbit are given by

(i) Extending over S3 = SU (2)2/�SU (2): P1, P0 extend to PId, P0 defined by
singular homomorphisms Id, 0, respectively.

(ii) Extending over S2 = SU (2)2/U (1) × SU (2): Pn extends to Pn,0 defined by
singular homomorphism ιn × 0 for all n, and P1 also extends to P0,Id defined by
singular homomorphism ι0 × Id.

(iii) Extending over S2 = SU (2)2/SU (2) × U (1): Pn extends to P0,n defined by
singular homomorphism 0× ιn for all n, and P1 also extends to PId,0 defined by
singular homomorphism Id × ι0.

(iv) Extending over S2 × S2 = SU (2)2/U (1)2: Pn, j extends to Pl,m defined by
singular homomorphism �

l ×�
m, where l +m = n, and either j = m mod2 or

j = l mod2.
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where Id, 0 : SU (2) → SU (2) denote the identity and the trivial homomorphism,
respectively, and �

n denotes the nth-power of the diagonal embedding ι : U (1) ↪→
SU (2).

Proof The first two parts of the proposition follow directly from the previous dis-
cussion, and the group diagrams �U (1) ⊂ �SU (2) ⊂ SU (2)2, and �U (1) ⊂
U (1) × SU (2) ⊂ SU (2)2 for T ∗S3 and O(−1) ⊕ O(−1), respectively. The third
part follows via exchanging the factors of SU (2)2 for O(−1) ⊕ O(−1), i.e. writing
the group diagram as �U (1) ⊂ SU (2)×U (1) ⊂ SU (2)2.

The group diagram for O (−2,−2) is given by K2,−2 ⊂ U (1)2 ⊂ SU (2)2, so the
singular homomorphisms are classified by a pair of integers (l, m):

(eiθ1 , eiθ2) 	→
(

eilθ1+imθ2 0
0 e−ilθ1−imθ2

)
(70)

where principal isotropy group K2,−2 is uniquely defined as the kernel of (70) with
(l, m) = (2,−2). One can realise the isomorphism K2,−2 ∼= �U (1) × Z2 ⊂ U (1)2

in exactly two ways, either with Z2 ⊂ U (1)2 defined as the subgroup generated by
(e2iπ , eiπ ) or Z2 ⊂ U (1)2 defined as the subgroup generated by (eiπ , e2iπ ), equiv-
alent up to the automorphism exchanging the factors of U (1) ⊂ U (1)2. The first of
these isomorphisms is given by K2,−2 � (eiθ1 , eiθ2) 	→ (eiθ1 , eiθ1).(e2iπ , ei(θ2−θ1)) ∈
�U (1)× Z2, and if we rewrite (70) as

(eiθ1 , eiθ2) 	→
(

eiθ2−iθ1 0
0 e−iθ2+iθ1

)m (
ei(l+m)θ1 0

0 e−i(l+m)θ1

)

and fix the Z2-generator (e2iπ , eiπ ), then (70) restricts to �U (1) × Z2 ⊂ U (1)2 as
the homomorphism (22) with j = m mod2 and l +m = n. By exchanging the factors
of U (1) ⊂ U (1)2, which also exchanges (l, m) in (70), we get the homomorphism
(22) with j = l mod2 and l + m = n. ��

With a little extrawork, the following proposition can also be seen from the previous
discussion:

Proposition A.2 Any SU (2)2-invariant SO(3)-bundle over O(−1) ⊕ O(−1), T ∗S3

or O(−2,−2) admitting irreducible invariant connections has a lift to an SU (2)2-
invariant SU (2)-bundle.

Proof By definition, an invariant SO(3)-bundle lifts if the singular homomorphism
lifts.On theother hand, to admit irreducible invariant connections, the invariant SO(3)-
bundle restricted to the space of principal orbits must lift to the invariant SU (2)-bundle
P1 i.e. if we denote the principal isotropy group by H , the homomorphism H →
SO(3) lifts to the homomorphism H → SU (2) given by (22) with n = 1. The
statement for T ∗S3 and O (−1)⊕O (−1) is then immediate from Proposition A.1.
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As for O (−2,−2), the SO(3)-bundles are classified by the singular homomor-
phisms U (1)2 → SO(2) ⊂ SO(3):

(eiθ1 , eiθ2) 	→
⎛

⎝
1 0 0
0 cos (lθ1 + mθ2) sin (lθ1 + mθ2)

0 − sin (lθ1 + mθ2) cos (lθ1 + mθ2)

⎞

⎠ (71)

which lift to the SU (2)-homomorphism (70) when l, m are both even. By the assump-
tion of irreducibility, we require l + m = 2, so it suffices to consider the case where
l, m are also both odd. Restricted to K2,−2 ⊂ U (1)2, this gives

(eiθ1 , eiθ2) 	→
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠

⎛

⎝
1 0 0
0 cos (2θ1) sin (2θ1)
0 − sin (2θ1) cos (2θ1)

⎞

⎠ (72)

up to the automorphism exchanging the factors ofU (1) ⊂ U (1)2. Recall fromRemark
2.1 that both (eiπ , e2iπ ), (e2iπ , eiπ ) ∈ K2,−2 act trivially on the tangent space of the
principal orbits of O (−2,−2), but one of (eiπ , e2iπ ), (e2iπ , eiπ ) acts non-trivially
on so(3) by (72), and so every invariant so(3)-valued connection one-form on the
principal orbit can only take values in the set of fixed-points u(1) ⊂ so(3) and must
therefore be reducible. ��

If there is a lift of the invariant SO(3)-bundle, then clearly any invariant connection
or Higgs field can also be lifted. Consequentially, in the irreducible case, the invariant
gauge theory can also be lifted.

Returning now to the invariant SU (2)-bundles Pλ in Proposition A.1, we seek to
describe the conditions for extending SU (2)2-invariant connections on Pλ and sections
of the adjoint bundle �0 (AdPλ) over the singular orbit. For any SU (2)2-invariant
connection A, it will suffice to describe the conditions for extending SU (2)2-invariant
adjoint-valued one-forms �1(AdPλ), since we can use the canonical connection dλ

of Pλ over the singular orbit as an SU (2)2-invariant reference connection to write
A − dλ ∈ �1(AdPλ).

Observe that an SU (2)2-invariant section of AdPλ can be identified with an H ′-
equivariant map V → su(2), where

(
H ′, V

)
are the singular isotropy groups and

their representations as above. Similarly, an SU (2)2-invariant element of �1(AdPλ)

is determined by an H ′-equivariant map L : V → su(2)⊗ (V ∗ ⊕ p∗), where p∗ is the
space of left-invariant one-forms on the singular orbit SU (2)2/H ′, and H ′, λ

(
H ′

)
act

via the adjoint on p∗, su(2), respectively.
In order to calculate these extension conditions, we apply a similar analysis as in [7,

Lemma 1.1] applied to SU (2)2-invariant adjoint-valued forms, c.f. [11]. The general
procedure is as follows: by evaluating at some non-zero v0 ∈ V , H ′-equivariant
homogeneous polynomial maps L : V → su(2)⊗ (V ∗ ⊕ p∗) (respectively, L : V →
su(2) for zero-forms) give splitting of the vector space of �U (1)-invariant adjoint-
valued forms, indexed by the associated polynomial degree. Any SU (2)2-invariant
adjoint-valued form, away from 0 ∈ V , can be written as the sum of�U (1)-invariant
adjoint-valued forms.
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We now summarise the extension conditions for SU (2)2-invariant elements of
�0(AdPλ), and SU (2)2-invariant connections in the temporal gauge, as obtained in
Proposition 3.2, focussing on the case that the bundle Pλ restricts to the homoge-
neous bundle P1 over the principal orbit. We adopt the notation of writing invariant
adjoint-valued one-forms I1, J1, I2, J2 as in (25):

I1 := E2 ⊗ v1 + E3 ⊗ w1 J1 := E3 ⊗ v1 − E2 ⊗ w1

I2 := E2 ⊗ v2 + E3 ⊗ w2 J2 := E3 ⊗ v2 − E2 ⊗ w2

Proposition A.3 An invariant connection A on Pl,m with l + m = 1, extends to the
singular orbit S2 × S2 = SU (2)2/U (1)2 if and only if A = a1 I1 + b1 J1 + a2 I2 +
b2 J2+ a0E1⊗ u− + (l+m)E1⊗ u+, with a0(0) = l−m, a0 even, and the following
cases:

(i) If l ≥ 1, then a1, b1 must be of degree l − 1 and a2, b2 of degree l
(ii) If m ≥ 1, then a1, b1 must be of degree m and a2, b2 of degree m − 1.

Proposition A.4 An invariant section � of AdPl,m with l + m = 1 extends to the
singular orbit S2 × S2 = SU (2)2/U (1)2 if and only if � = φE1 with φ even.

Proposition A.5 An invariant connection A on PId extends to the singular orbit S3 =
SU (2)2/�SU (2) if an only if A = a1 I1 + b1 J1 + a2 I2 + b2 J2 + a0E1 ⊗ u− + E1 ⊗
u+ with a1, a2, a0 even, b1, b2 odd, b′1(0) = −b′2(0), a1(0) − a2(0) = a0(0), and
a1(0)+ a2(0) = 1.

Proposition A.6 An invariant section � of AdPId extends to the singular orbit S3 =
SU (2)2/�SU (2) if and only if � = φE1 with φ odd.

Proposition A.7 An invariant connection A on P0,Id, P1,0 extends to the singular orbit
S2 = SU (2)2/U (1)× SU (2) iff:

(1) On P0,Id, A = a1 I1 + b1 J1 + a2 I2 + b2 J2 + a0E1 ⊗ u− + E1 ⊗ u+ with a1,
a2, a0 b1, b2 even, a1(0) = b1(0) = b2(0) = 0, a2(0) = −a0(0) = 1, and
a′′0 (0)+ 2a′′2 (0) = b′′2(0) = 0.

(2) On P1,0, A = a1 I1+ b1 J1+ a2 I2+ b2 J2+ a0E1⊗ u− + nE1⊗ u+ with a1, b1,
a2, b2, a0 even, a2(0) = b2(0) = 0, a0(0) = 1.

By exchanging the factors of SU (2) ⊂ SU (2)2 in Proposition A.7, we also obtain
the following corollary:

Corollary A.8 An invariant connection A on PId,0 and P0,1 extends to the singular
orbit S2 = SU (2)2/SU (2)×U (1) if and only if:

(1) On PId,0, A = a1 I1 + b1 J1 + a2 I2 + b2 J2 + a0E1 ⊗ u− + E1 ⊗ u+ with a1,
a2, a0 b1, b2 even, a2(0) = b2(0) = b1(0) = 0, a1(0) = a0(0) = 1, and
a′′0 (0)− 2a′′1 (0) = b′′1(0) = 0.

(2) On P0,1, A = a1 I1 + b1 J1 + a2 I2 + b2 J2 + a0E1 ⊗ u− + E1 ⊗ u+ with a1, b1,
a2, b2, a0 even, a1(0) = b1(0) = 0, and a0(0) = −1.
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Proposition A.9 An invariant section � of AdP0,Id, AdP1,0 extends to the singular
orbit S2 = SU (2)2/U (1)× SU (2) if and only if:

(1) On P0,Id, � = φE1 with φ even, and φ(0) = 0.
(2) On P1,0, � = φE1 with φ even.

In the remainder of this section, we will explicitly prove A.3 and A.4: we omit
details of the others, since these are proved similarly.

Proof of A.3 Wefirst calculate the boundary extension conditions for invariant sections
of �1

(
AdPl,m

)
. Here, denote g = su(2), p = 〈V 1, W 1, V 2, W 2〉, and V the tangent

space of the fibre C2,−2, spanned by the Cartesian coordinate vector fields ∂
∂x0

, ∂
∂x1

.

Clearly p⊕ V is a U (1)2-invariant splitting of the tangent space of O (−2,−2), and
as U (1)2-representations:

g = 〈E1〉 ⊕ 〈E2, E3〉 ∼= R⊕ C2l,2m p = 〈V 1, W 1〉 ⊕ 〈V 2, W 2〉 ∼= C2,0 ⊕ C0,2

V ∼= C2,−2 (73)

while as �U (1)× Z2-representations :13

g = 〈E1〉 ⊕ 〈E2, E3〉 ∼= R⊕ C2(l+m) p = 〈V 1, W 1〉 ⊕ 〈V 2, W 2〉 ∼= C2 ⊕ C2

V ∼= R
2 (74)

Recall that, since l + m = 1, the of �U (1)× Z2-invariant adjoint-valued one-forms
in g⊗ (V ∗ ⊕ p∗) is spanned by the real and imaginary parts of E1 ⊗

(
dx0 + idx1

)
,

(E2 + i E3)⊗
(
v1 − iw1

)
, (E2 + i E3)⊗

(
v2 − iw2

)
. To apply the power-series anal-

ysis of [7, Lemma 1.1], we use (73) to look for a basis in terms of U (1)2-equivariant
homogeneous polynomials p : V → g⊗ (V ∗ ⊕ p∗), evaluated at 1 ∈ V = C.

First assume l > 0. By making the identification of the fibre Cartesian coordinate
one-forms dx0 = dt and dx1 = 3tηse = 4tu− along γ (t) = (1, 1, t) ∈ SU (2)2 ×C,
and by taking real and imaginary parts, we obtain the following splitting: ��

Degree Polynomial p(z) Evaluation at z = 1

1 zE1 ⊗
(

dx0 + idx1
)

E1 ⊗ dt, E1 ⊗ 4tu−

l − 1 zl−1 (E2 + i E3)⊗
(
v1 − iw1

)
E2 ⊗ v1 + E3 ⊗ w1,−E2 ⊗ w1 + E3 ⊗ v1

l zl (E2 + i E3)⊗
(
v2 − iw2

)
E2 ⊗ v2 + E3 ⊗ w2,−E2 ⊗ w2 + E3 ⊗ v2

We can recover the case l ≤ 0 by exchanging Pl,m 	→ Pm,l , since clearly, the polyno-
mials of degree l − 1 and l are exchanged by map.

13 note the factor of Z2 in K2−2 ∼= �U (1)×Z2 does not appear in the representation theory, as it always
acts trivially on the tangent space and the Lie algebra of the gauge group.
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We now apply this calculation to invariant connection A of the proposition: the
canonical connection dλ on Pl,m is given by dλ = l E1 ⊗ u1 +m E1 ⊗ u2, so writing
the SU (2)2-invariant connection A as an invariant section A − dλ ∈ �1

(
AdPl,m

)
,

we get

A − dλ = a1(E2 ⊗ v1 + E3 ⊗ w1)+ b1(E3 ⊗ v1 − E2 ⊗ w1)

+ a2(E2 ⊗ v2 + E3 ⊗ w2)

+ b2(E3 ⊗ v2 − E2 ⊗ w2)+ (a0 − 2l + 1)E1 ⊗ u−

So if l > 0, we require a0(0) = 2l − 1, a0 be even, a1, b1 to have degree l − 1 and
a2, b2 to have degree l to extend A. Again, one gets the corresponding claim for l ≤ 0
by exchanging the factors of SU (2). ��
Proof of A.4 The degree of a function appearing as the coefficient of an SU (2)2-
invariant element in �0

(
AdPl,m

)
on the principal orbits is determined by a U (1)2-

equivariant homogeneous polynomial from V = C2,−2 to g = 〈E1〉 ⊕ 〈E2, E3〉 ∼=
R⊕ C2l,2m .

When l + m = 1, there is a single-degree zero polynomial given by the constant
map E1, so the invariant section � = φ1E1 must have φ1 even. ��

B Singular Initial Value Problems

For use in the following proof, we note that the Calabi–Yau structure on T ∗S3 is given
by (19), and we compute the power-series near t = 0 of the following expressions:

4λ

μ
= 2

t
+ O(t)

3 (v3 − v0)

2λμ
= 1

t
+ O(t)

3 (v3 + v0)

2λμ
= 9

4
t + O(t3)

3v0
μ2 = −

1

2t2
+ 3

2
+ O(t2)

3v3
μ2 =

1

2t2
+ 3

4
+ O(t2)

Proof of Proposition 3.12 Let (a0, a1, a2, φ) be a solution to (26) on T ∗S3. Using Prop.
A.5, define smooth functions a−, A+, ψ such that a1−a2 = a−, a1+a2 = 1+ t2A+,
φ = tψ . Then y(t) = (a0, ψ, A+, a−) must satisfy a singular initial value problem
with linearisation:

dy0 M−1 =

⎛

⎜⎜
⎝

−1 0 0 1
0 −1 −1 9

4ξ
9
4ξ −2 −2 9

4ξ

2 0 0 −2

⎞

⎟⎟
⎠

at initial value y0 =
(
ξ, 9

8 (ξ
2 − 1)− χ, ξ, χ

)
for some ξ, χ ∈ R. This initial value

problem has a unique solution once we fix y0, since det(kId−dy0 M−1) = (k + 3)2 k2.
��
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For use in the following proofs, we note that the Calabi–Yau structure onO(−1)⊕
O(−1) is given by (18) with U1 = −U0 = −u0 = 1, and the power-series of λ, u1,
μ near t = 0 satisfy

λ(t) = 3

2
t + O(t3) u1 = 1+ 3

2
t2 + O(t4) μ = √3t + O(t3)

Proof of Propositions 3.15 Let (a0, a1, a2, φ) be a solution to (26) onO(−1)⊕O(−1).
Using Prop. A.7 for extending on P1,0, y(t) = (a0, a1, a2, φ) satisfies a singular initial
value problem with linearisation:

dy0 M−1 =

⎛

⎜⎜
⎝

−2 0 0 0
0 0 0 −2√3ε′
ε′ 0 0 − 4√

3
δ′

0 0 0 −2

⎞

⎟⎟
⎠

at initial value y0 =
(
1, ε′, 0, δ′

)
for some ε′, δ′ ∈ R. This initial value problem has a

unique solution once we fix y0, since det(kId − dy0 M−1) = (k + 2)2 k2. ��
Proof of Proposition 3.14 Let (a0, a1, a2, φ) be a solution to (26) onO(−1)⊕O(−1).
Using Prop. A.5 for extending on P0,Id, we define smooth functions X0, X1, X2, ψ

such that a0 = −1 + t2X0, a1 = t2X1, a2 = 1 + t2X2, and φ = t2ψ . Then
y(t) = (X0, X1, X2, ψ) satisfies a singular initial value problem with linearisation:

dy0 M−1 =

⎛

⎜⎜
⎝

−4 0 0 −8
0 −2 −2√3 0
0 − 4√

3
−4 0

−1 0 0 −2

⎞

⎟⎟
⎠

at initial value y0 =
(
ε,− 1√

3
δ,− 1

2ε, δ
)
. This initial value problem has a unique

solution once we fix y0, since det(kId − dy0 M−1) = (k + 6)2 k2. ��
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