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Abstract

We give a complete description of the behaviour of Calabi—Yau instantons and
monopoles with an SU (2)?-symmetry, on Calabi—Yau 3-folds with asymptotically
conical geometry and SU (2)? acting with co-homogeneity one. We consider gauge
theory on the smoothing and small resolution of the conifold, and on the canoni-
cal bundle of CP' x CP!, with their known asymptotically conical co-homogeneity
one Calabi—Yau metrics, and find new one-parameter families of invariant instantons.
We also entirely classify the relevant moduli-spaces of instantons and monopoles
satisfying a natural curvature decay condition, and show that the expected bubbling
phenomena occur in these families of instantons.
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1 Introduction

On Calabi—Yau (CY) 3-folds, Riemannian manifolds of real dimension six with holon-
omy contained in SU (3), one can define analogues of the Bogomol’nyi monopole
and anti-self-dual equations found in dimensions three and four. These analogues
are referred to as the Calabi—Yau monopole equations, and the Calabi—Yau instanton
equations, respectively, and are defined with the additional data of a fixed principal
bundle over the 3-fold. It has been conjectured in [5, 6] that one might be able to use
the moduli-space of their solutions to construct invariants of the underlying 3-folds.
However, the analysis of the resulting partial differential equations can be difficult
in general: in this article, we focus on the SU(2)?-symmetric setting for both the
Calabi—Yau structure and the bundle, so that these equations can be written as ordinary
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differential equations of a single variable. We further restrict our investigations to
bundles with structure group of rank one, and asymptotically conical (AC) geometries,
i.e. the Calabi—Yau is diffeomorphic to a cone outside of a compact subset!, with a
Riemannian metric converging in a suitable sense to the corresponding metric cone.

In this setting, we are able to explicitly describe the aforementioned moduli-spaces
and their structure, which will hopefully shed more light on the wider subject: for exam-
ple, how the underlying geometry interacts with the gauge theory, and how to construct
local models for solutions on compact three-folds with isolated conical singularities,
and their de-singularisations. We also prove the relevant bubbling and compactness
theorems for these moduli-spaces, in line with the general picture laid out in [5, 6].

Another related motivation for studying SU (2)-invariant AC Calabi—Yau gauge
theory are the potential applications to an analogous notion of gauge theory on Rieman-
nian manifolds with exceptional holonomy group G». In particular, Foscolo, Haskins,
and Nordstrom have recently constructed one-parameter families of SU (2)2-invariant
Gr-metrics in [10] with asymptotically locally conical (ALC) geometry at infinity,
i.e. outside of a compact subset, these metrics converge to a circle fibration over a
Calabi—Yau cone, with fibres of some length ¢ > 0. These families collapse to invari-
ant AC Calabi—Yau 3-folds in the limit as £ — 0, and one may be able to use the
invariant Calabi—Yau gauge theory constructed in this article to construct invariant
G, instantons near the collapsed limit. Far from the collapsed limit, the families of
G>-metrics have AC geometry when £ — o0, see [11] for partial results comparing
invariant instantons on G;-metrics with ALC and AC asymptotics.

1.1 Overview

Let (M ° w, Q) be a Calabi—Yau 3-fold, where w denotes the Kéhler form, and 2
denotes the holomorphic volume form on M such that ;0% = ZI—JZ A €, and fix
a principal G-bundle P — M with a compact semi-simple Lie group G. The pair
(A, @), for some connection A on P and non-trivial ® € QU (AdP), is called a
(Calabi—Yau) monopole if it satisfies the Calabi—Yau monopole equations:

Fanw?=0 Fi AReQ = #d, @ (1)

where * is the Hodge star of the Riemannian metric defined by (w, ), Fs € Q% (AdP)
is the curvature of A, and dy : Q° (AdP) — Q' (AdP) is the induced covariant
derivative. We refer to the section @ as the Higgs field for this monopole.

We obtain the Calabi—Yau instanton equations for a connection A on P by setting
® =0in (1):

Fahew® =0 FiAReQ =0 ()
Note that if a monopole (A, @) has d4 @ = 0, then A is also a (Calabi—Yau) instanton,

i.e. a solution of (2), but the existence of a non-trivial parallel section ® implies that
the connection A must be reducible in this case.

! The presence of continuous symmetries for full holonomy SU (3) necessitates the manifold be non-
compact.
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In terms of the complex geometry, the first condition of (2) says that F4 is a
primitive Lie algebra-valued two-form, while the second condition says it is of type
(1, 1). Furthermore, it is not hard to prove that instantons minimise the Yang—Mills
energy functional YM(A) := [, ulFa | on the space of connections on P, where we
take point-wise norms with respect to some ad-invariant metric on the Lie algebra of
G. Hence, on the special unitary frame bundle SU (E) of some hermitian vector bundle
E over M with trivial determinant bundle, a Calabi—Yau instanton is also referred to
as a Hermitian Yang—Mills (HYM) connection in the literature.

When G is abelian, (1) and (2) are linear equations, and the moduli-space of their
solutions are well understood: if G = U (1) for example, any two-form on M which is
an instanton in the sense of (2) is harmonic, with the converse holding when (M, w, €2)
is compact with full holonomy SU (3). Even when M is non-compact, every U (1)-
bundle carries a unique Calabi—Yau instanton with decaying curvature when (w, 2)
is asymptotically conical with full holonomy SU (3) by [9, Theorem 5.12]. For non-
abelian gauge groups, one usually seeks a description of the gauge theory starting with
the next simplest case of rank one groups: in particular, without loss of generality?,
we will always take the gauge group to be SU (2) in this article.

The Calabi—Yau monopole equations were first studied in the SU (2)?-invariant
setting in [13], for the asymptotically conical metric of Stenzel [15] on the cotangent
bundle of S°. There is a one-parameter family of invariant monopoles for this metric,
with a single explicit instanton [13, Theorem 2] appearing at the boundary of this
family when the Higgs field vanishes. In this article, we will independently verify
this claim using new proofs, as well as proving that the explicit instanton actually lies
in a one-parameter family of invariant instantons for this metric. We also describe
the invariant gauge theory for all the other known examples of SU (2)>-invariant AC
Calabi—Yau metrics, namely the metric of Candelas and de la Ossa [3] on the small
resolution of the conifold O(—1) & O(—1) over CP!, and the metric of Calabi [2],
later generalised to a one-parameter family by Pando-Zayas and Tseytlin [14], on the
canonical bundle O(—2, —2) of CP' x CP!. Here, the action of SU(2)? on these
3-folds is with co-homogeneity one i.e. the generic SU (2)%-orbit is co-dimension one.

To understand the various components of these gauge-theoretic moduli-spaces, we
must first discuss fixing the asymptotic behaviour of solutions. A natural condition
on a solution of (1) on an asymptotically conical metric is that it converges at the
conical end to some model solution (As, o) on the cone, pulled back from the
link. Concretely, up to double-cover, the metrics on T*S3, O(=1) ® O(-1), and
O(—2, —2) all share the same asymptotic cone with link $? x §3, and we have the
following potential invariant model solutions: either we have a flat connection with a
trivial Higgs field, or we have the unique non-flat invariant instanton pulled back from
§2 x 83, which we denote A, with a possibly non-trivial parallel Higgs field .3

On these asymptotically conical metrics, we find four distinct possibilities for any
invariant irreducible solution (A, ®) to the monopole equations: (i) the curvature does
not decay quadratically, i.e. £2|F,| is unbounded as r — oo, where 7 is the radial

2 gauge group SO (3) always lifts to SU(2) in our invariant setting, see Proposition A.2 of the appendix.

3 these monopoles (Aca", <I>m) pulled back from the link actually come in a one-parameter family, param-
eterised by the mass m = |®,,| > 0. This is explained in more detail in [13].
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parameter of the cone, and we take norms with respect to the cone metric, (ii) (A, ®)
is an invariant monopole which is asymptotic to A°® with a non-trivial Higgs field
ast — oo, (iii) ® = 0, A is an invariant instanton which is asymptotic to A" as
t — 00, (iv) @ = 0, A is invariant instanton which is asymptotic to a flat connection
ast — oo .

We shall restrict to cases (ii)—(iv) by only considering invariant solutions with
quadratic curvature decay. In general, this is a natural assumption to make for solutions
on asymptotically conical metrics, since solutions on the cone converging to some
model solution have curvature decaying (at least) as a two-form on link of the cone.
As far as the author is aware, this article is the first situation for which we have a
complete description of this moduli-space for the invariant co-homogeneity one gauge
theory. Also, although we were unable to prove this in full generality, we conjecture
that situation (i) does not actually arise, i.e. any invariant solution to the monopole
equations on T*S3, O(—1) @ O(—1), and O(—2, —2) without quadratic curvature
decay must blow up in finite time.

We now summarise our main results. For the metric of Stenzel, there is a sin-
gle SU (2)-bundle admitting irreducible invariant connections, which we denote Pyq,
and we find a one-parameter family of instantons, and a one-parameter family of
monopoles:

Theorem A In a neighbourhood of 3 C T*S3, up to gauge, invariant solutions to
the monopole equations are in a two-parameter family (S, ®)¢ ,, containing a one-
parameter family of invariant instantons with x = 0. Moreover, (S, ®)¢ , extends
over all of T*S3 when

(i) &€ € (=1, 1), x =0, as an irreducible instanton asymptotic to A" at infinity,
(i) &€ = £1, x =0, as a flat connection,
(iii) £ = 0, x € (0, 00), as an irreducible monopole asymptotic to A°*™ with a non-
trivial parallel Higgs field at infinity.

Otherwise, (S, ®); , cannot extend over T*S 3 with quadratically decaying curvature.

See Proposition 3.12 for a proof of the local statement, Theorem 4.1 parts (i), (ii),
and Proposition 4.25 for (iii). The existence of the one-parameter family of monopoles
(S, @), = (S, P)g,y> x € (0,00), and the instanton Sp := (S, P)g o was already
established in [13], which considered only local solutions (S, ®)¢ , with§ = 0: we fix
a gap in the proof of [13, Theorem 1] by showing these are all the invariant monopoles
with quadratic curvature decay. We also note here that there is a (non-equivariant)
isometric involution of 7*$3, arising from the map exchanging the factors of SU (2)
in each SU (2)2-orbit, which sends (S, D), > (S, )¢ -

For the small resolution O(—1) & O(—1), there are two SU (2)-bundles admitting
invariant irreducible connections, denoted Py 14 and Pj ¢, and these are equivariantly
isomorphic over the complement O(—1) & O(—1) \ CP!. We find that each bundle
carries a one-parameter family of instantons Re, R/, respectively, and the family R/,
contains an invariant abelian instanton R:

4 one can also show that for (ii), (iii), solutions have exactly quadratic curvature decay, while for (iv),

solutions have curvature decaying faster than quadratically, and moreover, have curvature bounded in
L2-norm.
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Theorem B In a neighbourhood of CP' ¢ O(—1) ® O(—1), invariant instantons are
in two one-parameter families R, and R;,, €’ € [0, 00), up to gauge. Moreover, R,
R;, extends over all of O(—1) & O(—1) when

(i) € € (0, 00), as an irreducible instanton asymptotic to A" at infinity,
(ii) € € [0, 1), as an instanton asymptotic to A®™ at infinity, which is abelian if
€' = 0 and irreducible otherwise,
(iii) € = 0 or €’ =1, as a flat connection.

Otherwise, R, Ré, cannot extend over O(—1) & O(—1) with quadratically decaying
curvature.

See Propositions 3.14, 3.15 for a proof of the local statement, Theorems 4.6, 4.7
for parts (i)—(iii).

We can also show that, in the limit € — o0, i.e. as the curvature of the invariant
family R, blows up on the calibrated co-dimension four CP!, we get the expected
bubbling and removable-singularity phenomena:

Theorem C Ler R. be the one-parameter family of invariant instantons and Ry, the
invariant abelian instanton extending over O(—1)®O(—1). Then, in the limite — o0:

(1) Up to an appropriate rescaling, Re bubbles off a family of anti-self-dual connec-
tions along CP' ¢ O(=1) @ O(—1).

(ii) Without this rescaling, R. converges uniformly to R(, on compact subsets of
O(—1) ® O(—1)\ CP..

See Theorem 4.17 for proofs and a more precise statement of these results. The
proof of Theorem C is more involved than for a similar co-homogeneity one bubbling
theorem for instantons found in [11, Theorem 2]: everything was explicit in that case,
whereas we must genuinely prove (i) here to obtain the relevant compactification result
(ii).

There are countably many bundles over O(—2, —2) admitting irreducible invariant
connections, which we denote Pi_;; for [ € Z. The number / € Z can be under-
stood topologically by associating a rank two complex vector bundle to P_;; via the
standard representation: this associated bundle splits into a direct sum of line bun-
dles pulled back from O(+(1 — 1), +I) — CP! x CP'. Each bundle P, —1,] carries
a one-parameter family of instantons Qfx[ similar to the family R/, of Theorem B:
Qf) is abelian, Ql is asymptotic to A" at infinity when the parameter oy > 0 is
less than some ﬁmte critical value oecr“ and the asymptotic behaviour of this family
jumps to a flat connection at the crltlcal value. However, there is a new phenomenon
on O(—2, —2), as the instantons Q" st are not themselves flat when [ # 0, 1: they are

rigid in the moduli-space of i 1nvar1ant irreducible instantons with these asymptotics.

Theorem D In a neighbourhood of CP' x CP! ¢ O(—2, —2), invariant instantons
are in countably many one-parameter families Qa,: l € Z, oy € [0, 00), up to gauge.

Moreover, Qfxz extends over all of O(—2, —2) when

() oy € [O, ozlcm) Sfor some otlcrit € (0, 00), as an instanton asymptotic to A" at
infinity, which is abelian if o; = 0 and irreducible otherwise,
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(i) I=0,1, 0, = alcrit as a flat connection,
(iii) 1 # 0, 1, oy = o™ as an irreducible instanton asymptotic to a flat connection at
infinity.

Otherwise, ny, cannot extend over O(—2, —2) with quadratically decaying curvature.

See Proposition 3.10 for a proof of the local statement, and Theorems 4.8, 4.9 for
parts (i)—(iii). See also the end of §4.2 for a further discussion of the behaviour of
instantons on O(—2, —2).

In the final result, the proof of which can be found in Proposition 4.20, we show that
Theorems A - D fully describe the moduli-space of the SU (2)?-invariant Calabi—Yau
gauge theory:

Theorem E There are no irreducible, invariant monopoles on O(—=2, —=2) or O(—1)&®
O(—1) with quadratically decaying curvature.

1.2 Plan of Paper

For the rest of the introduction, we summarise the structure of this article.

Throughout the following, if a manifold M has a co-homogeneity one action by
Lie group K, with exactly one exceptional isotropy subgroup H’, and generic isotropy
subgroup H, we will denote the sequence H C H' C K as the group diagram of M.
We will refer to the generic K -orbit K /H as the principal orbit, the orbit K /H’ as the
singular orbit, and the union of all generic K -orbits as the space of principal orbits.
In order to fix conventions, we start with a preliminary introduction to the geometry
of co-homogeneity one Calabi—Yau metrics in §2, in the case K = SU (2)2, and H is
either the diagonal subgroup AU (1) or AU(1) x Z, i.e. we describe the Calabi—Yau
metrics on O(—1) & O(—1), T*S3, and O(-2, —2).

We proceed with the main goal of the article in §3: we consider the space of
connections, Higgs fields, and SU (2)-bundles over these manifolds that are invariant
under the SU (2)%-action, and write down the monopole equations in this invariant
setting. We describe the gauge theory on the complement of the singular orbit by
pulling back invariant bundles over the principal orbit in §3.1, giving us some ODE
system for our connection and Higgs field. Invariant bundles over the principal orbit are
classified by an integer, but only one of these bundles, denoted P, admits irreducible
connections. We write down the ODE system for this bundle explicitly in Proposition
3.4. We also briefly mention the reducible solutions to these equations in §3.2, which
are explicit.

We cannot generically expect to find explicit solutions in the irreducible case, but
by imposing that the bundle data extend to the singular orbit, we can describe the space
of solutions to the ODESs near the singular orbit using a power-series. In §3.3, we will
find that these local solutions to the monopole equations are always in a two-parameter
family for each extension of the bundle P; to the singular orbit, and we can obtain
a local one-parameter family of instantons by setting one of these two parameters to
Zero.

The discussion of boundary conditions for extending the invariant bundle data to
the singular orbit is relegated to Appendix 1. Using the analysis of Eschenburg—Wang

@ Springer



SU(2)2-Invariant Gauge Theory Page7of 55 121

[7] on invariant tensors, which can be adapted to (adjoint-valued) forms, these are just
representation-theoretic computations.

We dedicate the remaining sections to finding a qualitative description of the
behaviour of the local solutions in §3.3 as we move away from the singular orbit.
In §4.1, using the existence of invariant sets for these ODE systems, we determine the
asymptotic behaviour of the local instanton solutions to obtain Theorems B, D, and
parts (i), (ii) of Theorem A. To prove existence of the critical value of the parameter
oy in Theorem D when [ # 0, 1, we must also employ a rescaling argument along the
fibres of O(—2, —2), and we prove uniqueness via some comparison results allowing
us to compare solutions away from the singular orbit for different values of ;.

We continue discussing rescaling arguments in §4.2. To show Theorem C, we can
consider an adiabatic limit in which we shrink the metric on O(—1) @ O(—1) along the
fibre. We prove that in this limit, as € — o0, a rescaling of the one-parameter family
of solutions R, to the ODEs converges to the standard anti-self-dual connection on
C?, and use this result to prove the convergence of the solution R, as € — oo. The
general picture is that the solution curve R, breaks into two pieces in this limit, the
first being the anti-self-dual connection, which is only traversed in non-zero time if
we rescale, and the second being an abelian instanton R;,.

We also include an extended remark on bubbling phenomena for instantons on
O(—2, —2): we consider a limit in which the metric is close to the simplest (non-
trivial) example of an asymptotically locally Euclidean (ALE) fibration: a copy of the
Eguchi—Hanson metric on the total space of the cotangent bundle of CP', fibred over
the standard metric on CP!. As one might expect, in this limit, we find that the families
of instantons on O(—2, —2), suitably rescaled, are close to corresponding families of
anti-self-dual connections for the Eguchi—-Hanson metric. Although this result was
ultimately unnecessary for proving the main theorems of this article, they provide a
way to understand the moduli-space over O(—2, —2) in terms of the moduli-spaces
of anti-self-dual connections constructed by Nakajima in [12].

Finally, in §4.3, we analyse the behaviour of the full system of the monopole
equations away from the singular orbit to prove Theorem E, and the final part of
Theorem A. We show that, aside from the one-parameter family of monopoles already
found in [13] and the instantons described in the previous sections, any other member
of the local two-parameter families of monopoles from §3.3 cannot have quadratically
decaying curvature.

2 Preliminaries
2.1 Calabi-Yau Structures, Cones, and Co-homogeneity One Manifolds

Before considering Calabi—Yau structures in (real) dimension 6, let us recall some
general definitions from [4] in dimension 5. We let N be a real 5-dimensional man-
ifold equipped with an SU (2)-reduction of the frame bundle: this gives a unique
Riemannian metric and orientation on N compatible with such a reduction, via the
inclusion SU((2) C SO(5). An SU (2)-structure on N is equivalent to a triple of
2-forms (w1, w2, @3) and a nowhere-vanishing 1-form 7 such that
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I. w; AN wj = §;jv, with v fixed 4-form s.t. v A 1 is nowhere-vanishing: i.e. v is a
volume form on the distribution H := ker 7.

2. Xowy; = Yoo = w3(X,Y) > 0, i.e. (w1, w2, w3) is an oriented basis of
AT (H) in the splitting A% (H) = AT (H) ® A~ (H), with respect to the
induced Riemannian metric on H, and volume form v.

We will take the quadruple (17, w;) satisfying the above as defining an SU (2)-structure.
If we take t € I as parameterising some interval / C R, then (1, w;) can be used to
define an SU (3)-structure (w, ) on N x I:

w=dt A+ w Q=(dt+in) A (wr +iw3) 3)

Requiring the SU (3)-structure be torsion-free, i.e. that (w, 2) be closed on N x I,
gives (on N):

dw; =0 dws Ann) =0 dwyAn) =0 (@)
Along with the evolution equations:
dn = dw; dwy = =0 (w3 A1) dw3z = (w2 A 1) )

The right-hand side of the evolution equations vanishes if the SU (2)-structure (1, ;)
on N is fixed, but if we instead allow it to vary with #, then a one-parameter family of
SU (2)-structures (1, w;), satisfying (5), with (n, w;), initially satisfying (4), will also
define a torsion-free SU (3)-structure on N x I. Conversely, if N can be embedded as
an oriented hypersurface in a 6-manifold M, then any SU (3)-structure on M gives rise
to a one-parameter family of SU (2)-structures on N for some tubular neighbourhood
M* = N x I of N C M (see [4]), and requiring that the SU (3)-structure be torsion-
free gives (4), (5).

We will refer to a torsion-free SU (3)-structure as a Calabi—Yau structure on M,
an SU (2)-structure satisfying (4) as a hypo-structure on N, and equations (5) as the
hypo-evolution equations.

Note that N x [ is foliated into parallel hypersurfaces when equipped with the
metric g compatible with this SU (3)-structure, i.e. we have g = dt*> + g; for some
t-dependent metric g; on N. Equivalently, there exists a geodesic on N x I that meets
every hypersurface in the foliation perpendicularly.

Putting aside completeness of the resulting metrics for a moment, an important
example of the above procedure is the Riemannian cone C(N) over N. As a smooth
manifold, this is just R.g x N, and if we identify N C C(N) with the hypersurface
{1} x N atr = 1, a fixed SU(2)-structure (1°¢, w¢) on N defines the following
1-parameter family (1, w;); of SU (2)-structures:

n=1tn*° w; = tzwise 6)
As in (3), this family defines the conical SU (3)-structure (wc, Qc) on Rog x N:
wc =tdt A + P20l Qe =17 (0 + iwk) A (d +itn*) 7
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which is Calabi—Yau iff (6) satisfies equations (4), (5). In this case, satisfying (4), (5)
is equivalent to the following structure equations on N:

dn* = 2w}* dost = =308 A 1™ dot =30 A7 (8)

We refer to an SU (2)-structure (nse, w; e) satisfying (8) as being Sasaki—Einstein: one
can show that such an SU (2)-structure induces a Sasaki—Einstein metric g°¢ on N, or
other words, the Calabi—Yau metric gc compatible with (wc, Q¢) on R.g x N is a
metric cone g¢ = dt? + t2g%¢ over g*°.

Another class of examples for this construction arise when we have a smooth,
isometric action by some compact Lie group K on M, such that there is a K-orbit
with co-dimension one. These are the co-homogeneity one Riemannian manifolds,
and it is not difficult to show that the K-orbits foliate (a dense open subset of) M
into parallel hypersurfaces, and that the quotient space M /K is one-dimensional, c.f.
[1]. These parallel hypersurfaces can all be written as the homogeneous space K /H,
where H denotes the principal (i.e. generic) isotropy subgroup of the K-action, and
the evolution equations (5) for some K -invariant forms (1, ;) on K/H become a
finite-dimensional system of ODEs, which can be explicitly solved in some cases.

Such a situation arises for the three known distinct examples of complete asymptot-
ically conical co-homogeneity one Calabi—Yau 3-folds in the literature, each of which
has the form M = SU(2)? x g+ V for some singular isotropy subgroup H' C SU(2)?,
and H'-representation V:

1. O(=1) ® O(—1) over CP', with a metric obtained by Candelas and de la Ossa
in [3], also known as the small resolution of the conifold. The metric is unique up
to rescaling by a constant factor, and as a co-homogeneity one manifold we have
the diagram AU(1) C U(1) x SU(2) C SU(2)%, where AU (1) is the diagonal
U (1) subgroup. The U(1) x SU(2) representation is given by the following:
viewing v € V as a quaternion, and ¢ € SU(2) as a unit quaternion, then
(€'?, q).v = que™'? By applying the outer automorphism exchanging the factors
of SU(2) C SU(2)?, we can get another co-homogeneity one metric from the
small resolution, with singular isotropy group U (1) x SU(2) C SU (2)2, but this
metric is distinct only up to equivariant isometries.

2. T*S3 over S3, with a metric also considered in [3] and found independently
by Stenzel in [15]. This is also referred to as the smoothing of the conifold
and again, this metric is unique up to overall scale. The group diagram is
AU(l) ¢ ASU(2) C SU(2)2, and we have as a ASU(2) representation
V = su(2), i.e. SU(2) acts via the adjoint representation. As a smooth mani-
fold, it is diffeomorphic to R3 x §3, the only rank 3 vector bundle over S up to
diffeomorphism.

3. O(=2, =2), the total space of the canonical bundle over CP! x C]P’l, with a
metric found by Calabi in [2] (unique up to overall scaling), which was later
generalised to a one-parameter family of metrics by Pando-Zayas and Tseytlin
in [14]. This parameter represents the relative volume of each CP! as the zero-
section of O(—2, —2), and Calabi’s construction considers the case when these
two volumes are equal. The group diagram is K _» C U(1)> C SU(2)?, where
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K>, _» is the kernel of the map U (1)> — U (1) given by (e/%1, £/%2) 1 210172102,
and as a U (l)z—representation we have V = C; _», i.e. for complex number
V 3 v, (€%, %) v = %@ %)y Note that there is a (non-unique) isomor-
phism K _» = AU(1) x Zy C U(1)2, where we define AU(1) x Z, C
U(1)? as the (internal) direct product of the diagonal subgroup AU (1) and
the Z,-subgroup generated by (¢*7, ¢/™), by sending K»_» 3 (¢!%1, ¢!®?) -
(€01, e (&2 12—y ¢ AU(1) x Zos.

The asymptotic model for the geometry of these spaces (up to Z,-cover) is the unique
co-homogeneity one Calabi—Yau metric cone over SU (2)2/AU (1) = §?x S3, referred
to as the conifold in [3]. In the co-homogeneity one setting, there is an obvious
diffeomorphism identifying the space of principal orbits with the smooth manifold
underlying the conifold, and pulling back any of these asymptotically conical metrics
to a metric on the conifold via this diffeomorphism, by [3, 14], we have [i*g —gc| — 0
as t — 0o, where t denotes the radial parameter on the cone, i*g denotes the pulled-
back metric, and we take norms with respect to the conical metric gc.

2.2 Invariant Calabi-Yau Structures On The Space Of Principal Orbits.

In order to have a uniform set-up for the gauge theory in later sections, we will
recall the construction of these co-homogeneity one Riemannian metrics on O(—1) &
O(—=1), T*S3,and O(—2, —2). They appear as solutions to the hypo-equations (4) and
evolution equations (5) on the space of principal orbits $2 x §3 = SU2)2/AU(D),
which extend to the singular orbits in the complete cases.

Let us begin by fixing an explicit basis E1, E2, E3 for su(2), given by the matrices:

i 0 0 1 0i
e (39) wm(00) 0 (00

so that [E;, Ej] = 2Ej for cyclic permutations of (123), and the action of U (1)
on SU(2) is generated by E;. Clearly, we can identify the span of E;, E3 under the
adjoint action of U (1) with C,, where C,, denotes n'" tensor power of the standard
representation of U (1) on C.

We will also fix a basis for the left-invariant vector fields of SU (2)2:

U':= (E;,0) vli= (E,, 0) w! = (E3,0)
U?:= (0, Ey) V2= (0, E») W2 = (0, E3)

and denote U* := U' & U?, where U™ generates the diagonal subgroup AU (1).
Let m denote the complement of u(1) in su(2) @ su(2), where u(1) is the span of
U™. We have the ad-invariant splitting as AU (1)-representations:

su) @su@)=u)dm:= U e WU, VLW V2 W) ZRe R C, ®Cy)
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Remark 2.1 Assume Z, C SU(2)? is a subgroup of the flow generated by the vector
field U ™. The adjoint action of Z, on m is trivial, and so the results of this section will
also apply to SU(2)?/AU(1) x Z,.

With this notation, we define the standard invariant Sasaki—Einstein structure
(1°¢, @) on SU(2)?/AU(1) as

n*¢ = %Lf i = —%(v] Aw =2 Aw?)

©)
LA ?)

w3y’ = %(vl/\v2+wl/\w2) w3y’ = %(vl/\wz—w AV

It is easy to check that (n“, ; e) satisfies the Sasaki—FEinstein structure equations (8).
The corresponding Calabi—Yau cone C (S U(2)> /AU (1)) has the SU (3)-structure
(wc, Q¢), as in (7), and we refer to this cone as the conifold.’

Furthermore, it is not hard to show that the space of invariant two-forms on
SU(2)?/AU(1) is four-dimensional, and spanned by wy’ s )¢, wy°, w3°, where we
define

wy’ = %(v1 Aw! + 0% Aw?) (10)

By using this basis of invariant two-forms and the invariant one-form 7°¢, we have the
following description of the space of hypo-structures:

Proposition 2.2 [8] Up to transformations by isometries with respect to the induced
metric, any invariant family of hypo-structures (1, w1, w2, w3), on SU(2)?/AU(1)
can be written:

n=a"¢" w1 =uowy +uiw)’® = pwy’ w3 = vowy + vy’ (11)

where A, ug, uy, vo, v3 are real-valued functions depending on t € R~, with uz =
—u(z) + u% = —v% + v%, and voug = 0.

Clearly, at least one of vy or ug must vanish: if vg vanishes, we will refer to this
family as a hypo-structure of type Z, while if u( vanishes, we will refer to this family
as a hypo-structure of type TZ. We will write these two situations explicitly below,
along with corresponding hypo-evolution Eq (5):

1. Type Z:
n=a"¢" o =uowy’ +uiw)® = pwy’ w3 = pwy’ (12)
The corresponding hypo-evolution equations are

orug =0 oru] = 2A 0y (Ap) =31 (13)

5 Note that any invariant Sasaki—Einstein structure on SU (2)2 /AU (1) can be obtained from (9) by rotating
the plane spanned by (3¢, w%‘) However, since any of two of these structures induce the same Sasaki—
Einstein metric g*¢, we will make this particular choice without loss of generality.
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2. Type I7:
n=a" o =pwl’ o =pwy’ w3 =vwy + vzws’ (14)
The corresponding hypo-evolution equations are
oL =2\ 0 (ur) = 3v3 0r(Av3) =3u 0;(Avg) =0 (15)

If both vg, ug vanish, then u; = v3 = u,andclearly A =1, u = 2 is a solution to the
resulting evolution equations:

p =2A 0 (nA) =3u

which gives rise to the conical Calabi—Yau structure (wc, €2¢) of the conifold.

Remark 2.3 (w, Re2) represent cohomology classes of M* := R. g xSU (2)2/AU(1),
and the conserved quantities 1o, —Avo appearing in (13), (15) are the coefficients of
(0], [ReQ]) € H* (M*) x H? (M*) = R? with respect to the basis »}’, wi¢ A n*¢.

For each of the families, one can write down the corresponding invariant Calabi—Yau
metric g = dt”> + g, explicitly on the space of principal orbits, cf. [8, Prop.2.16]:

1. Type I:
g =dr? +220)? + 3 — o) (@2 + (')?)
+ 3+ uo) (097 + @?) (16)
2. Type I7:
g =dr* + 220" + 3 = vo) (02 + ™))
43+ v0) (097 + H?) (17)

where v¥ is the 1-form dual to tangent vector V4 = V; & V5, respectively, w™
is the dual to W4 = W; £ W>.

With this description in hand, the problem of finding invariant Calabi—Yau metrics
on the space of principal orbits is reduced to finding solutions to the evolution equations
(13) or (15). We can write the complete Calabi—Yau metrics as solutions extending to
the singular orbits at = 0, c.f. [8, Thm.2.27]:

Lemma 2.4 [3, 14] Up to transformations by isometries with respect to the induced
metric, the space of SU(2)?-invariant Calabi-Yau structures (w, 2) on M can be
identified with:

(i) For M = O(=2, =2), the open convex cone {(Uy, Uy) € R2 | Ur > |Ug| = 0}.
(i) For M = O(=1) @ O(—1), the ray {(Up, Uy) € R* | Uj = —Uy < O}.
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These invariant Calabi—Yau structures induce a hypo-structure of type I on the prin-
cipal orbits, with (Uy, U1) := (u9(0), u1(0)), and

uj —3Ugu; + U (3US — UD)

2_ 2 g2 2 _
uy — Yo

(18)

There are a few comments to be made about the parameters (Uy, Uj) appearing in
Lemma 2.4: firstly, the point Uy = U; = 0 is clearly identified with the conifold u; =
w = t2, & = t. Secondly, the interior of the cone {(Uy, U;) € R? | U > |Up| > 0}
can be identified with the Kéhler cone of O(—2, —2), i.e. the convex cone generated
by the Kihler classes of the two copies of CP! ¢ O(—2, —2), and it is not hard to
see that multiplicative rescalings of the cone are equivalent to constant rescalings of
the metric. Furthermore, the diffeomorphism arising from exchanging the two copies
of CP! acts on this cone via reflection Uy — —Ujp, and the Calabi construction in [2]
produces exactly the metrics in the subset fixed by this action.

Calabi—Yau structures on the cone boundary U; = U (excluding the origin) are
not quite the same as those found on the boundary of the Kéhler cone of O (-2, —2),
however, which generically have Z,-quotient singularities. Rather, they are a (smooth)
branched double-covering®: up to exchanging the factors of CP', this boundary gives
the Calabi—Yau structure on O(—1) @& O(—1) over CP' = SU(2)2/U(1) x SU(2).
In the rest of this article, for ease of notation, we will fix the scaling convention for
this metric to be (Uy, U1) = (—1, 1).

Finally, for the Calabi—Yau structure on T*S3, we give the explicit solutions to (15)
extending to the singular orbit §3:

Lemma 2.5 [15] Up to scale, and transformations by isometries with respect to the
induced metric, there is a unique SU (2)*-invariant Calabi—Yau structure on T*S3. It
induces a hypo-structure of type ZT on the principal orbits, with

2

2\3 sinh 3s 2\3 |
== : uw=|=] (sinh3scosh3s —3s)3
3 (sinh 3s cosh 3s — 3s)3 3

(2)% (sinh 3s cosh 3s — 3S)% <2>§ (sinh 3s cosh 3s — 3s)%
Vo=—|\ = V3 =

3 3 tanh 3s

sinh 3s
(19)

fors € [0, 00), where s(t) := fot AN bdi

With this description of the underlying Calabi—Yau geometry out of the way, we
now return to describing the gauge theory.

6 these quotient singularities do not appear in our set-up, as we only define A, u, uq, u1 at the identity coset
on the principal orbit.
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3 Calabi-Yau Gauge Theory

Consider again the monopole equations (1), for a connection A and ® € Q" (AdP) on
some principal bundle P over a Calabi—Yau 3-fold (M, w, £2). Asitis more convenient
for our purposes, we can rewrite (1) as

FsAw? =0 (20a)

1
Fi AImQ = —szCD A ©? (20b)

Let us assume we are in the general set-up of §2.1: we let N C M be a (real) hyper-
surface, and we suppose that N foliates M into parallel hypersurfaces, up to working
on a tubular neighbourhood N x I € M for some I € R. As in (3), we can write
the Calabi—Yau structure (w, €2) on M in terms of a one-parameter family of hypo-
structures (1, w;); on N.

In this neighbourhood, we may always write P — M as the pull-back of some
bundle on N, and we can view any ® € QO (AdP) as a one-parameter family of
sections ®; over N. We can also split the connection A = A; + y,dt, where A; is a
one-parameter family of connections over N, and y, € Q0 (adP) is a one-parameter
family of sections of the adjoint bundle.

Via a gauge transformation, we can always choose to set y; = 0: i.e. for each
t € I take g; € G such that y; 4+ g, l(a,g,) = 0. We will refer to this choice of
gauge as the temporal gauge, and the curvature of A = A; in this gauge is given
by Fao = Fa, — 0;A; A dt, where 0;A; € Ql (adP) denotes the limit as € — 0 of
% (A; — A4¢). Since the space of connections on a given bundle is affine, d;A; is a
genuine one-parameter family of adjoint-valued one-forms on N.

With this said, using (3) and the temporal gauge on a tubular neighbourhood of N,
(20) takes the form

1
FAI/\a)gAr]—i—EdAldD/\w%:O (21a)
1
Fa, Ay A+ Ea,A, Aot =0 (21b)
1
FAt/\w3+8,A,/\w2An:dA,d>/\a)1An—zaﬂbw% (21c)

We refer to equation (21a) as the static monopole equation, and (21b), (21c), as the
monopole evolution equations, where (21b) is just the condition (20a), and the other
two arise from (20b). Furthermore, it is not difficult to compute that the static equation
(21a) is preserved by the evolution equations. Similarly, in the case ® = 0, we will
refer to the respective equations as the static and dynamic instanton equations.

Remark 3.1 A solution of (21) with ® = 0 is equivalent to a solution A; of the #-
dependent flow:

* (FAt VAN C()]) = —atAt
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with initial conditions A;—, satisfying (21a). By fixing a choice of reference connec-
tion Ao, this flow can be written as the gradient flow for a Chern—Simons functional
CSy : Ax 1 — R:

1
CSu (Ag+a,t) = 5/

2
tr (a A <2FA0 +daga + 5“ /\a)) A w1 (1)
N

3.1 Invariant Monopole and Instanton ODEs

Away from the singular orbit, the general set-up of (21) clearly applies to the co-
homogeneity one metrics on O (—2, —2), T*S3, and O (—1) ® O (—1). We will also
suppose that the bundle, connection, and Higgs field are invariant under the SU (2)2-
action, so that (21) is a system of ODEs for the invariant connection and Higgs field on
SU(2)?/H, where the relevant principal isotropy subgroup H is givenby H = K> _»
or H=AU(1).

Recall from [16] that we can write such invariant bundles as SU (2)2 xg G —
SU(2)?/H for some compact gauge group G and homomorphism A : H — G.
These bundles are referred to as SU (2)2—homogeneous. Recall also that an invariant
connection on this bundle can be written as an H-equivariant linear map A : su(2) @
su(2) — g, such that Aly = di. Here, g, h = u(1) denotes the lie algebra of G, H C
SU (2)2, and dA is the image of the canonical connection on SU (2)2 — SU (2)2 /H
under A.

If H= K> >, G = SU(2) then the defining homomorphism K, _» — SU(2) of
the homogeneous bundle is classified by a pair (n, j) € Z x Z,. Using the isomorphism
Ky o =AUQ1) xZy C U (1)2, we can write these as

o . ) . J s ,ind
@7, 6%y .(e* ™, ') > (Ol _01) (eo e_(,?n(;) (22)

for some (n, j) € Z x Z,, and similarly (with j = 0) for every homomorphism
AU(1) — SU(2). We will denote the corresponding homogeneous SU (2)-bundles
over SU (2)? /H as P, ;, P,, respectively, although since the action of Z, in (22) is
trivial on the Lie algebra of the gauge group SU (2), for the following section, it will
suffice just to consider P,.

The canonical connection on P, appears as n E1®u ™, and the space of invariant con-
nections can be identified as an affine space for intertwiners of AU (1)-representations
given by left-invariant one-forms on SU (2)2 /AU (1) and the composition of (22) with
the adjoint action on su(2). We summarise the results in the following proposition,
and compute curvatures:

Proposition 3.2 SU (2)%-invariant connections A on P,, and corresponding curva-
tures F, are of the following form:

(i) Ifn = 0, then for some ay, az, az € R,
A=aiE1Qu” +amE,Qu +a3E3Qu™
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Fo=3@E| +®E; + a3E3) ® 0)° (23)

(i1) Otherwise, for some ao, ai, az, by, by € R, where a; = ay = by = by =0 if
n#1:
A=a(B2@v' +E30w") +bi(E3®0v' — E,@w)
+ay(Ex @ V2 + E3 @ w?) + ba(E3 @ v* — E; @ w?)
+aE1 ®u- +nky Qut
Fa =3(a1a2 + b1b2) E1 ® 03° + 3(a1by — biaa) E1 ® w)°
—i—%(a%%—b%—l—a%%—bﬁ—n) E| ® vy
+3 (=t = b} + a3 + 0} +a0) By @ o 24)
+ 3 —1) (al <E2®w1 —E3®u1)
+ by (Ez ® ! + E3® w1)> A e
+ 3 1 2 2
2a0+)a2 E,®@w E;®v

+ b (E2®UZ+E3 ®w2)) AN

Proof As mentioned previously, the canonical connection appears as nE; ® u™, the
derivative of the map given by (22). As AU (1)-representations, we have the following
splitting of su(2), the Lie algebra of the gauge group SU(2), and m, the space of
left-invariant 1-forms on SU (2)%/AU (1):

su(2) = (E1) @ (E2, E3) =R Cy,
m= )o@, w)e v w)ZROC ®C,y

For any invariant connection A, by [16, Thm.A], we have that A|,, is an element in the
vector space of AU (1)-intertwiners m — su(2). If n #~ 0, 1, this is space is spanned
by E1 @ u~, whileifn = 0itis spanned by E1 Qu~, E, ®u ™, E3Qu~.Forn =1,
define

I :=E2®v1—i-E3®w1 Ji :=E3®v1—E2®w1

2 2 2 2 (25)

L =EQRQv +E3Qw” Jh:=E3Qv" —E,Qw
where [;, J;, respectively, correspond to the identity map and multiplication by imag-
inary number i between AU (1)-representations Co — C,. Clearly, the space of
AU (1)-intertwiners is spanned by £y ® u~, Iy, Ji, I, J2, and curvatures can then
be computed from the Maurer—Cartan formula Fy = dA + % [A, A]. Explicitly, we
compute the following derivatives:

dl =2J1 A (u+ +u_) dJi = -2 A (u+ +u_)
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dEy@ut)=—E ® @' Aw! +0? Aw?)
dl, =2J, A (u+ — ui) dl) = -2 A (u+ — ui)
dEiQu )=—E; ® (v Aw' —v? Aw?)

and the following commutators:
i L1=2E1®@v' Aw' [, Ji]=2E1®@v' Aw' [[1,Ji]=0
fori = 1, 2. The mixed terms are given by

(I, L] =[], )] = 2E; ® (vl Aw?—w' A UZ)

1 Bl = =11, Bl =261 @ (v A v? + 0! Aw?)
and finally
[1;, Ey @ u™] = —2J; Au™ [Vi, Ey @ u™] = 21; Au*

For an invariant connection on Py, the expression for the curvatures follows immedi-
ately. Otherwise, the connection is of the form A = a1 1 +b1J1+as b +by J+nE1®
ut + apE; ® u—, for some ag, ay, az, by, by € R, where a; = ap = by = b, =0
when n # 1, so applying the above in the Maurer—Cartan formula and comparing with
the expression for the standard Sasaki—FEinstein structure (9) on SU (2)? /AU (1) gives
the result. O

In a similar way, we can classify SU(2)?-invariant sections of the adjoint bun-
dle: an SU (2)*-invariant section of AdP, appears as an element of the Lie algebra
su(2) invariant under the AU (1) action. This understood, the following proposition
is immediate:

Proposition 3.3 SU(2)%-invariant sections of AdP, are of the form ® = ¢p1E| +
$2Er + ¢p3 E3 for some ¢y, ¢2, ¢3 € R, where ¢ = ¢3 = 0if n # 0.

There are some useful facts about the bundle data of Propositions 3.2 and 3.3 that
should be noted before continuing: firstly, it is clear that the bundles P, admit only

reducible invariant connections when n # 1, and when n = 1, from the explicit
expressions for curvature, we see that the invariant connection is reducible iff either
apg=1,ap =bp)=0,0rag=—1,ay =b; =0,0ra; =b; =a, =by =0.

Secondly, on P, — SU (2)2 /AU (1), there is an invariant gauge transformation
generated by the vector field E; on the fibre, which acts by rotation on the plane
spanned by E», E3, and leaves E; fixed. In the notation of Propositions 3.2, 3.3 for
n # 0, this acts as a rotation (a; + iby, ar +ib) — (eie(al +iby), e (ar + ibz))
by some common angle 6, and acts trivially on (ag, ¢1).

Using Propositions 3.2, 3.3, we can now write down (21) on O (-2, —2), T*S3,
and O (—1) ® O (—1) as ODE systems for the coefficients appearing in these two
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propositions. Since we are primarily interested in finding non-abelian solutions to
(21), it will suffice to consider the case forn = 17:

Proposition 3.4 On P; — R. x SU(2)2/AU(1) with Calabi-Yau structure (11),
invariant monopoles (A, ®) can be written, up to gauge, as

A=a|(E2Q0 v + E3Q0uw) +a(Ea @ vV + E3®@w?) +agE1 Qu™ + E; Qu™t
D=9k

with (ao, a1, az, @) real-valued functions satisfying the following ODE system:

. 4)
ap = ? ((al2 + a% — Dug — (ag — a12 + a%)m)
. 3 up —up
= ((ap — Dayvsz — (ap + Dazvp) — 2 ad
Ak
(26)
) 3 ui +ug
ay = — ((ap — Dayvg — (ap + Dagvz) — 2 arp
204
3

¢ = E (( %—i—a% . l) ) —2a1a2v3)

Proof We use Propositions 3.2 and 3.3 in the monopole equations (21): we use the
temporal gauge to put the connection into the form A; = a1 l1 +b1J1 +ax b + by J> +
a)E1 @ u™ +nEy @ ut, where Iy, I, Ji, J» are as in (25). Then d4, ® = [A, ®] =
¢ [A, E1] =2¢ (—a1J1 + b111 — axJ2 + by Ip). This implies dy, ® /\a)% vanishes, so
the static equation (21a) is just the single condition a;b> — bja; = 0. Equation (21b)
also only has a single component, giving

Y
do = ?((a%+b%+a§+b§—l)uo—(ao—af—bf+a§+b§>“1>

Splitting (21c¢) into E, E», E3 components, the £ component gives

; 3 2,32, 2,12

¢ = 2 ((al +bi+a5+ b5 — 1) vo — 2 (a1a2 + b1b2) v3)
Meanwhile the E», E3 components together give

. 3 up —up
dy = — ((ap — Dayvs — (ap + Dazvg) — 2

G arp
. 3 ujp — ug
by = — ((ap — D)b1v3 — (ap + Dbrvg) — 2 by
204
. 3 up + ug
2 = == ((ap — Darvo — (ao + Dazv3) —2——a¢

2A1L

7 See §3.2 for explicit abelian solutions in the case n = 1: the solutions for n # 1 are similar.
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up +uo

. 3
by = 5-— ((ao = Db1vo — (a0 + 1)bav3) —2 bié
A

We can now use the invariant gauge transformation generated by E to simplify this
ODE system, which appears as the symmetry of the equations. Using the static con-
dition a;by — axb; = 0, we will use this symmetry to set by = b, = 0, thus giving
the ODEs in the form stated. O

We note here that (26) displays some further discrete symmetries:

Proposition 3.5 The following involution is a discrete symmetry of (26):

(aOaa]yazv ¢) = (aOa —ap, —az, ¢)) (27)

Specialising to the case of (26) with ug = 0, we have an additional symmetry:

(a07a17025 ¢) = (_a07a2aal’¢) (28)

Remark 3.6 If one is also free to vary the Calabi—Yau structure, (28) becomes a sym-
metry of the full system (26) with ug — —uy.

Proof One can easily check that the symmetries of this proposition are indeed sym-
metries of the ODE systems in question. We comment instead on the origin of such
symmetries: (27) is a residual symmetry from the invariant gauge transformation that
we used to set by = by = 0:itis simply the rotation by angle r of the plane spanned by
E>, E3. Meanwhile, (28) is the symmetry arising from interchanging the two factors
of SU(2) on the principal orbits: this explains why one must alter the Calabi—Yau
structure to see it as a symmetry of (26). O

We also recall that a natural condition on solutions to the monopole equations on
asymptotically conical CY 3-folds is to require quadratically decaying curvature. In
terms our ODE system (26), this requirement takes the following form:

Lemma 3.7 An invariant solution (A, ®) to the monopole equations determined by
a solution (ag, ay, az, @) to (26) has quadratically decaying curvature if and only if
ap, ay, az, tay¢, tar$ are bounded.

Proof Using the expression for curvature F4 = F4, —9; A; Adt in the temporal gauge,
the explicit expressions for Fy,, A;, given in (23), and the scaling of k-forms on the
cone, it is clear that t2|FA| is bounded if ag, ay, az, tag, tay, tay are bounded. The
converse is clear for tay, 7dy, tdy, and note that 12 | F4,| is bounded only if af + a% -1,
and —a% + a% + aq are: the first of these implies aj, a, must be bounded, and since
| — al2 + a% +ag| > |ag| — |a]2 — a§| this implies ag must be bounded also.
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Up to terms decaying faster than O(t~'), as 1 — oo, the ODE system (26) is
asymptotic to (26) on the conifold:

. 4
ap = —; (a() —a12+a§>

3
ay = % (ap — 1) a1 —2ax¢

3 (29)
a = —5 (ao +1)ax —2a1¢
. 6
¢ = — M

and comparing the expressions for tag, tay, tay gives the statement of the lemma. O

Remark 3.8 One can show that any solution (ag, a1, a2, ¢) to (26) converging in C°
as t — 0o must converge to a t-invariant solution of (29): (1, 1,0,0), (-1, 0, 1, 0),
or (0,0,0,m), m € R, up to gauge i.e. Az, A;, or A" with parallel Higgs field
®,, = mE;. In the following sections, we will also see that any bounded solution to
(26) extending over the singular orbit at # = 0 must converge to one of these solutions
ast — oo.

3.2 Reducible Solutions

Before conducting an analysis of the full system (26), we will briefly say something
about the reducible case, i.e. if we consider abelian or flat connections. Firstly, note
that the trivial flat connection A® on Py — SU(2)2/AU(1) = §2 x §3 appears in two
distinct SU (2)*-invariant gauge-equivalence classes®, which can be represented by

Al =E@u +E,®v + E3@w' A= E@u’+ E2 @0 + E3 @ w?

(30)
i.e. in terms of Proposition 3.2, we have a9 = 1,a1 = 1,b1 = a» = by = 0, or
ap = —1l,a; = 1,b; = a1 = by = 0, respectively. These are clearly just lifts of

the standard Maurer—Cartan form on SU (2) to P;, and A?, A; are exchanged via
non-equivariant diffeomorphism obtained via exchanging the factors of SU(2) in
SU2)%/AU(1).

Secondly, note that if both a; = a; = 0 then the connection is abelian, and we can
solve (26) explicitly on the space of principal orbits:

ao(t) = % ¢ =—31(0) 31)

where I (1) = %, and C is a constant of integration.

8 although these represent the same connection up to non-equivariant gauge, at least on S 2 x 83,
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Using the results of Appendix 1, we see that generic solution (31) can extend over
the singular orbits S2, or $2 x §2 only if? ¢ = 2uou1(0), and can never extend over
the singular orbit S3.

Remark 3.9 For later reference, we note that the generic abelian solution (31) on
O(—1) ® O(—1) \ CP! is also unbounded near CP' unless C = 2uqu; (0).

3.3 Local Solutions

We now consider the full system (26). Unlike with the reducible case, in general this
will not have explicit solutions, and instead, we will analyse the qualitative behaviour
of solutions as they move away from the singular orbit. To determine their behaviour
near the singular orbit, we will apply the theory of singular initial value problems
of the form [8, Thm.4.7]: ty = M_1(y) + M(t, y), where M(t, y)t~', M_,(y) are
smooth functions of their arguments. To have unique solution near t = 0, we require
that M_1(yo) = O at initial value y(0) = yo, and that the linearisation dy,M 1 has
no positive integer eigenvalues. This theory, combined with the boundary conditions
found in Appendix 1, will allow us to construct local solutions to (26) extending over
the singular orbits at t = 0.

In all cases, we will find that solutions to the monopole equations are in a local
two-parameter family for each bundle extending P; over the singular orbit, with the
vanishing of the second parameter corresponding to the vanishing of the Higgs field
¢, and thus a local one-parameter family of instantons.

First of all, here is a countable family of bundles P;_; ,! € Z extending P; over the
singular orbit $? x S%. However, we can reduce our computations to the case [ > 0 by
the diffeomorphism exchanging the factors of SU(2) in the SU (2)2-orbits on the total
space of the bundle, since this map sends Pi_;; +— P;1—;. As this map acts on the
underlying Calabi—Yau structure by sending the constant ug +— —ug, the monopole
ODEs (26) also transform, but solutions of the transformed system are equivalent to
solutions of (26) under the symmetry (28):

Proposition 3.10 [n a neighbourhood of the singular orbit of Pi—;; — O(=2, —2)
local solutions to (26) are in a two-parameter family (Ql, ®l)a, 5= (ao, ai, az, )y, g,
foreachl € Z. Forl > 0, these solutions satisfy

1 Ul_UOI 142
=1-20+ O(t* == [—— o't
ao +0(t7) a lﬂzaz U1+ Uo +0@™)

a=at '+ o) ¢p=p+ 0%

9 the converse will also hold for a suitable choice of bundle extension.
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Proof We write (26) for a Calabi—Yau structure of type Z:

. 40
g = E ((af +a§ — Dug — (ap — a% +a§)u1)
. 6
¢=—;alaz
. 3( 3 H U1~ o é (32)
ar = —(ap — Day — a
1= 5 (@ 1 2
) 3 uy +u
iy = — (o + Day = 2=

We consider solutions to (32) with this Calabi—Yau structure given by (18), for any
U1, Uy with Uy > |Ug| = 0. The power-series of A, u1, u near t = 0 are given by

A =3t+00)  w=U+00")  pu=,U}-UZ+ 0@

Although we cannot apply [8, Thm.4.7] directly, we can use the boundary conditions
for extending to the singular orbit to rewrite this system in the correct form:

First, assume ! > 0. Using Proposition A.8, we can define smooth functions X1, X»
such that a; = thl, a = tl_le, and (32) becomes

do = O(t)
¢ — O(tZZ—l)

.11 Uy — Uy
Xi=-|- —1-2D) X; —-2X _— Ot
1= (2(00 ) X1 20 U1+U0)+ ()

. 1
Xo == (ay = 1+2) X2+ 0()

Since the extension conditions also require aog(0) = 1 — 2/, once we fix o := X»(0),
8 := ¢(0) such that /X (0) + X»(0)¢(0),/ g;;gg =0, then y(¢) = (ag, X1, X2, ¢)
satisfies a singular initial value problem with linearisation

0 0 0 0
0 0 0 0

DoM=1 =1 1%, 0) —2,/9loe; —21 2, [D=l0s,
—Jay 0 0 0

at initial value yy = (1 — 21, —%alﬂl, / % o, ,81). This has a unique solution

once we fix yp, since det (kId — dyOM_l) = (k42D k> > 0fork > 0.

To recover the local solutions extending for/ < 0 from these solutions, we can send
Uy — —Up and apply the transformation (28). It is easy to verify from Proposition
A.8 that these solutions extend to P; ;. O
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Remark 3.11 By setting f; = 0 in (Ql @’) p We obtain a local one-parameter
family of instantons i.e. solutions to (26) w1th ¢ = 0, and for [ > 0 these solutions
have

(10 _ aab — 6“[2 t21 + 0(t21+2) (33)
T W+ U

where ajj b denotes the abelian solution to (26) extending over the singular orbit of
Prp.
Moreover, when [ = 1, these solutions have

6 2 2 4
a)=—1——(a7 — Dt“+ O(t
0 U1+Uo(l ) )
3 2 2 4
a) = o +—0{Ol—1t+0t 34
2 1 30+ Uo) Ch ) @) (34)

As their proofs are similar, we will state the results for solutions extending over singular

orbits §% and 3 without proof. The correct re-parameterisations, corresponding initial

values Yo, and linearisations dy, M_1 as in [8, Thm.4.7] can be found in Appendix 1.
The bundle P; extends uniquely over S°, and we denote this extension Piq:

Proposition 3.12 In the neighbourhood of the singular orbit, solutions to (26) on
Py — T*S3 are in a two-parameter family (S, dJ)&X = (ap,ay,a—, ¢>)§,X, where
as = ay + az, a— = ay — ap. These solutions satisfy
9
a=E+0@1?) ay =1+ (g(gz —1) - x) 240"
_=E40() p=x1+00)

Remark 3.13 By setting x = 0 in (S, ®)¢ ,, we obtain a local one-parameter family
of instantons i.e. solutions to (26) with ¢ = 0, and we give some additional terms in
the resulting power-series:

9 9
ag =&+ SEC-LHEN+ 00N ap =14 (=1 48" +0Gh
_ ﬂ _ 24,2 4
a_—‘;‘+405§( 14+E9t"+ 0@ (35)
Finally, the bundle P; extends in exactly two ways over S% = SU(2)%/U(1) x
SU(2), and we denote these possible extensions Py jq and Py o:

Proposition 3.14 In the neighbourhood of the singular orbit of Pp1a — O(—1) &
O(—1), solutions to (26) are in atwo-parameter family (R, V). s := (ap, a1, az, $). s,
with

8
ay=—l+et>+0@G*% a = —ﬁzz +0@h
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1
a=1- Eetz +0@Y ¢ =82+ 001"

Proposition 3.15 In a neighbourhood of the singular orbit of P1 ¢ — O(—1)@0O(—1),
solutions to (26) are in a two-parameter family (R’, \Il’)é, s = (a0, a1, a2, )¢ g,
with ’

a=1+0C> a=€+00> aw=0¢>) ¢=58+0@1>

Remark 3.16 On P o, we have a, = _«/T§€/3/t2 + O@*) once we fix €, §'.

Having computed these two-parameter families of local solutions to the monopole
equations (26), by uniqueness, we see that the following one-parameter families are
the local solutions to the instanton equations, i.e. (26) with ¢ = O:

S = (S.®)eg Re:= (R W)y Ro=(R.W), 0= (Q’, @’)al .
For later reference, we have already computed some additional terms in the power-
series of Sg, wa, in (35), (33), (34). For the analysis of the family Ré,, it will be more
useful to first apply the transformation (28), and then compute higher-order terms with
respect to (26) with ug — —ug. To explain why, observe that the instanton equations
for a hypo-structure of type Z, i.e. (26) with ¢, vo vanishing, has at least one of a;
or ap vanishing identically, and if both vanish we have the abelian solution. From
the boundary conditions of Propositions A.3, A.7, which of a; or a> must necessarily
vanish will depend on how we extend the bundle P; to the singular orbit: we have
ay vanishing for Py 1q and P;_;; for [ > 0, while a vanishes for P; ¢ and P;_;; for
[ <0.

However, we can always reduce our analysis to a single ODE system with, say, a;
vanishing identically by applying (28) to (26) and mapping ug +— —ug: this is the
same as pulling back these equations by the diffeomorphism exchanging the factors of
SU(2) in the SU (2)%-orbits on the total space of the bundle. This has been previously
explained for the solutions Q(ZXI, and we can apply the same reasoning to the family
R!,: the caveat here is that if we exchange the factors on the singular orbit S2, then
the bundle P; and the Calabi—Yau structure on the principal orbits now extend over
§? = SU(2)%/SU(2) x U (1) rather than our convention S = SU (2)?/U (1) x SU (2).

With this explained, let us denote Py 1 the bundle obtained from P ¢ by exchang-
ing the factors of SU(2)2, and pull-back the local one-parameter family of invariant
instantons Ré, on Pi o to alocal one-parameter family of invariant instantons on Py i.
Corollary A.8 ensures that these solutions actually extend to SU (2)? /SUR)x U(),
and for later reference, we compute some higher-order terms in the power-series:

Lemma 3.17 In a neighbourhood of the singular orbit, solutions to (26) on Py 1 with
¢ = 0 are in a one-parameter-family, pulled back via (28) from the one-parameter
family R,.

3 3
ag=—1-7 (6/2 - 1) P+00h am=€+ ge’ (6/2 - 1) P +0a%  (36)
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4 ODE Analysis
4.1 Solutions to the Instanton Equations

Using the description of solutions to (26) near the singular orbit, we will now describe
the qualitative behaviour of the solutions as we move away from this orbit. We will
focus first on the case ¢ vanishes i.e. instantons: in this case, the requirement of
quadratic curvature decay in Lemma 3.7 is equivalent to considering bounded solu-
tions.

We will start with the smoothing 7*S>. A single explicit solution to (26) on the
smoothing was found in [13, Theorem 2]:

1 4
= =0 = == | — 37
ap = ¢ ay=az 2‘/ 3003 — o) 37

given locally by the power-series Sg in (35) with & = 0. We now show that this
instanton actually lies in a one-parameter family:

Theorem 4.1 Invariant instantons with quadratic curvature decay on Pig — T*S3
are in a one-parameter family Sg, —1 < & <1, up to gauge. Moreover,

(i) The isometry exchanging the factors of SU(2) on the principal orbits of T*S3
sends Sg +— S_g, with explicit fixed point So given by (37).

(i) $1 = AL S_y = AS, and Sg, —1 < & < 1 are irreducible with lim_, o Sg (1) =
ACaH.

Proof of Theorem 4.1 We will prove that the local solutions S¢ given by the power-
series (35) near the singular orbit exist for all time if |§| < 1 and are otherwise
unbounded.

First, we formulate (26) with ¢ = 0 in terms of a4 = a;) + a2, a— = a; — ay:

ao = folara— —ao) a4 = fylaoa— —ay) a— = f-(apay —a-)  (38)
where we define

43 _ 33+ )

3 _
fo="2 p fo=
"

2A0 ' 200

As the functions fo, fi, f— are all strictly positive on (0, 00), the following lemma is
immediate: ]

Lemma 4.2 Critical points of (38) fort € (0, 00) are given by the following triples
(a07 a+, a—):

(1,1, 1) 1,-1,-1 (-1, 1, -1 (-1,-1,1) 0,0,0)
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Proof This follows by a simple computation: note that these critical points are just the

canonical connection A®" and the flat connections Aki, A; under the symmetries (27)
and (28). O

We will define a subset S C R”" to be forward-invariant for an ODE system
x = F (x, t) if a solution x(¢) contained in S at some non-singular initial time #*, must
remain in S for all forward time ¢ > ¢* for which the solution exists.

Lemma 4.3 The following sets in R? are forward-invariant for (38):
0,00° (0,17 (1,007

Proof (i) We bound a solutions (ag, a+, a—) lying in the quadrant (0, oo)3 with
boundary ap = 0, ay = 0, and a— = 0. We can exclude the axes at intersections
of these planes by local uniqueness to ODEs, since (38) has three families of
solutions given by setting any two of (ag, a4, a_) to be identically zero.

Atag = 0,ay > 0,a_ > 0, ap = foara— > 0, with equality iff a; = 0 or
a_ = 0. Since a solution cannot hit any of the axes, this implies both are zero if
ap = 0, but since (0, 0, 0) is a critical point, by uniqueness one cannot have this
situation either, and hence the inequality is strict. This implies a solution with
ap > 0,a; > 0,a_ > 0 for some non-zero time cannot leave this region at
apo=0,ay >0,a_ > 0.

One obtains the same result for a4 and a_ by repeating the proof with permuted
subscripts 0, +, —.

(i) We show that the boundary of the unit cube also bounds solutions lying inside
it. By the symmetry of permuting 0, 4+, —, and the previous result, it will be
enough to show this for the top face of the cube i.e. prove that a solution with
Il >ay > 0,1 >ay > 0,1 >a_ > 0 cannot leave this region via ag =
1,1 >a4 >0,1 >a_ > 0.Wehave,atay = 1,1 > a4 > 0,1 >a_ >0,
ap = fo(aya— — 1) < 0, with equality iff both a; = a_ = 1. However, since
(1, 1, 1) is a critical point for (38), this cannot be the case, hence the inequality is
strict, and we cannot have a solution with 1 > ap > 0,1 > a4 > 0,1 >a_ >0
leaving this regionatag = 1,1 > a4 > 0,1 > a_ > 0, arguing as before.

(iii) The proof that the quadrant (1, c0) bounded by the planes ag = 1, a; = 1, and
a_ = 1 goes almost exactly as for the previous part of the lemma: atag = 1, ay >
l,a_ > 1,a9 = fo(aga— — 1) > 0 with equality iff both a; = a_ = 1, hence
the inequality is strict, and we cannot have a solution leaving this region via
ap=1l,ar >1,a_>1.

O

Having established these results, we can immediately see from the local solutions
Se in (35) for some sufficiently small non-zero time (ag, a4, a_)é € (0,1)3 for 0 <

& < 1, and (ag, a4, a_)g e (1, c>o)3 for 1 < &, so we have a rough bound on the
behaviour of our solutions as t — co. However, we can use the previous lemma to
show an improved statement:

Lemma 4.4 The following sets in R? are forward-invariant for (38):
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() S0 = {(ap, at,a_) € R3 | ara_ > ap > 1,apa— > ay > 1,apay > a_ >
1}

(i) So := {(ag,ay,a_) e R3 |0 <aya_ <ap < 1,0 <apa_ < ay < 1,0 <
apay < a_ < 1}

Proof Given an ODE system x = F (x, r) in R", if one has a hypersurface 4(x) = 0
such that Vi - F (x, 1) > 0, where V is the gradient of &, and “.” denotes the standard
dot product on R”, then for all time for which a smooth solution x(¢) exists, it can
only cross hypersurface i(x) = 0 in the same direction as Vh.

In the case of (38), we use the hypersurfaces {(ag, a4+, a_) € R3 | ag = ata_},
{(ap,ay,a-) € R3 | at = apa-}, and {(ap, ay,a-) € R3|a_ = atap}:

(1) Seo is the region in (1, oo)3 bounded by these three paraboloids, with triple
intersection at (1, 1, 1), and intersecting pairwise along three line segments in
R3. We can exclude the intersections: note that {(aj, at,a-) €1, o0)3 | at =
apa—,a— = apa+} = {(ap, ay,a-) € [1, 00) | a_ = as, ap = 1}, which lies
in the boundary of (1, 00)> so using the previous lemma, and the symmetry of
permuting 0, 4, —, it will be enough to prove that a solution contained in S, at
some initial time, cannot leave via {(ao, a+, a—) € (0, oo)3 | ap = aya_}. We
calculate for h = aja_ — ag, withag > 1,ay > 1,a_ > 1:

Vh - (él(), (.l+, d*)|h=0 = (—1, a—, a+)

- (folaya— — ap), fi(aga— —ap), f-(aoas — a-Nlg—q.a.

—asa (fia =D+ f@>=1)>0

Repeating the proof with indices 0, 4+, — permuted gives the result for surfaces
defined by agpa— — a4 = 0 and apa — a_ = 0, respectively.

(i) Sp is also bounded by these three paraboloids, but in (0, 1)3, Vh (as we have
defined it) points outward. As for the intersections, we can again exclude them,
as before for (ag, ay,a-) € (0, 00)3, but also for {(ag, ay,a_) € [0,177 |
ay = apa—,a— = apay} = {(ag,ar,a_) € [0,1P7 | ay = a_,ap = 1} U
{(ag, ay,a_) € [0, 11 | ay = a_ = 0}, which lies in the boundary of the unit
cube. Now the calculation is exactly the same as the previous part of the lemma,
with0) < a9 < 1,0 <ay < 1,0 <a- < land h = ara_ — ap, giving
Vh - (ag, 4, a-)lp—g < 0.

O

Note that solutions (ag, a4, a—) to (38) lying inside Sy, Soo have ag, a4, a— mono-
tonic in 7. We can then use this fact to determine their asymptotic behaviour:

Lemma 4.5 A solution (ag, ay, a_) to (38) lying inside Sy at some time t* > 0, exists
for all forward time t > t*, and is asymptotic as t — oo to (0,0, 0). A solution
(ag, a4, a_) lying inside Soo at some time t* cannot be bounded for all t > t*.

Proof We begin by looking at solutions lying in Sg. Forward-time existence and bound-
edness of these solutions follows from the boundedness of Sy, and since ag, a4, a—
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are all (strictly) monotonically decreasing in Sy, the solution (ag, a4, a—) must have
a limit lying in the closure. To determine that limit, we reparameterise (38) in terms
of the variable s, as in the explicit solutions given by (19):

. 4x?
ap = —(aya— — ap)
"w
3(v3 + v
PO C e ) R, (39)
2p
3(v3 — vp)
a_ = ——(apay —a-)
2p

In particular, by using (19), one can check that Afy — Co > 0 as s — oo for
some strictly positive constant Cyp, and similarly A f+ — Ci+ > 0. If a solution
(ag, ay,a—) to (39) lying in Sy does not have aya_ — ag — 0 ass — oo, then we
get a contradiction: otherwise for s sufficiently large we can bound @ above, away
from 0. Said more explicitly, if we do not have a;a— — ap — 0, then we do not have
ap — 0, so for some constant Cj < 0, there exists s* >> 0 such that dao(s) < CE‘)‘
for all s > s*. Integrating this inequality would give the contradiction ag — —o0 as
s — 00, thus we must have aya_ —ayg — 0ass — oo.

One then repeats this argument for a. (s), to obtain that a solution in Sp must tend
to a critical point of this system in the closure of S as s — oo: either (0, 0, 0), or
(1,1, 1) by Lemma 4.2. Since ag, ay, a— are all strictly decreasing, we must have
(ap, a+,a-) — (0,0,0).

Now we deal with solutions (ag, a+, a—) to (38) lying in Soo. These have ag, a4, a—
strictly increasing as long as the solution exists, so again, if a solution is bounded and
exists for all time, it must have limit lying in the closure of Sx. Let us assume this
is the case and derive a contradiction: since the right-hand side of (39) has a limit as
s — o0, this implies that (ag, @+, a—) must also have a limit. Since A fy — Cop > 0
we have, for a fixed constant C(’)k > 0, some S > O such that forall s > S:

ap > Cgaya— — ap)

and likewise for a4. As such, a bounded solution existing for all time cannot have
simultaneously ag, a4+, a— — 0 as s — 00, since this would require (ag, ay, a—) —
(1, 1, 1), which is impossible by the monotonicity of ag, a, a—. Therefore, at least
one of ag, a4+, a— must be bounded below away from O for s sufficiently large, and
hence the corresponding ag, a4, a— must be unbounded above as s — 0. O

We can now conclude the proof of Theorem 4.1: the first point is clear by applying
the symmetry outlined in (28) to the local power-series of (ao, a+, a—)g, i.e. (35), and
noting that the fixed point & = 0 is the explicit solution (37). For the rest, by using
(35), one finds the flat connection (ag, at,a—); = (1, 1, 1) is a critical point, and

o — d_ay = —19—0 (g2 _ 1) £ + 0
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45 — 63&2
40

(52 - 1) £12 + 0"

ay —aga_ =1 — €2 — (52— 1) 2+ 0%

27
a_ —ayayg = ——
+a0 20
In particular, for non-zero ¢ sufficiently small, and 0 < & < 1, we have
(ap, ay,a-)g () € 8o, while for 1 < & we have (ap, ay,a-); (1) € So. Using
the symmetry (28) for & < 0, Theorem 4.1 follows. O

On O(—1) & O(—1) and O(—2, —2) there are multiple ways of extending the
invariant bundle P; to the singular orbit. The local solutions on each extension exhibit
a slightly different behaviour:

Theorem 4.6 Invariant instantons with quadratic curvature decay on Pola —
O(—1) ® O(—1) are in a one-parameter family R, € > 0, up to gauge. Moreover,

(i) Ry = A;, and R¢ are irreducible for € > 0.
(ii) limy— oo Re(t) = A fore > 0.

Theorem 4.7 Invariant instantons with quadratic curvature decay on Prgog —
. . / /

O(=1) & O(—1) are in a one-parameter family R, 0 < € < 1, up to gauge.

Moreover,

(i) R/ isabelian, R, = A", and R, are irreducible for 0 < ¢ < 1.
0 1 1 €
(i) lim; oo R, (1) = A" for 0 <€’ < 1.
€

For insantons over O(—2, —2), we also split the statement of the theorem into two
cases. The first case is similar to the situation of Theorem 4.7:

Theorem 4.8 Invariant instantons with quadratic curvature decay on Pi_j;; —
. _ . . [

O(=2,—-2) with I = 0, 1, are in a one-parameter family Qal,O <a < 1, upto

gauge. Moreover,

@) Qé is abelian, Q(l) = A?, Q} = A;, and Qla, are irreducible for 0 < oy < 1.
(i) lim; o0 QL (1) = A" for 0 < oy < 1.

The second case exhibits a new phenomenon: now, the instantons appearing at the
boundary of the moduli-space of instantons with asymptotics A" are not themselves
flat, but are asymptotic to the flat connection:

Theorem 4.9 Invariant instantons with quadratic curvature decay on Pi_j; —>
O(=2,=2) with | # 0,1, are in a one-parameter family Qél, 0 <o <a™ for
some af™ > 0, up to gauge. Moreover,

@) Qf) are abelian, and Qfx, are irreducible for 0 < a; < alcrit.

(ii) lim; o0 QL (1) = A" for 0 < &y < ef™, lim o0 Q' ) = A forl <0,

and im0 Q' i (1) = A forl > 1.
1
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Proof of Theorems 4.6, 4.7, 4.8 Most of what is required to prove these theorems boils
down to studying the qualitative behaviour of a single ODE system. We study solutions
to (26) with ¢ = 0,a; = 0:

. 4r ) 3
) =—— (aﬁ(u1—uo)+aou1+uo) ay=——ax(a+1)  (40)

nw 2\
where we have a generic family of Calabi—Yau structures defined by hypo-structures of
type Z, so that ug, u1, u, A are non-degenerate solutions to hypo-evolution equations
(13). We consider forward-invariant sets for this system, see also Fig. 1 below: O

Lemma 4.10 The following sets in R? are forward-invariant under (40):

(i) Half-planes {(ag, a2) € R* | £a, > 0}
(ii) Roo :={(a0,a2) € R? | ag < —1,1 < a2}
(iii) Ro :={(ag,a2) e R® | =1 <ap < 1,0 <ar < 1}

Proof (i) Since there is always a non-trivial abelian solution (ag, 0) to (40), by
uniqueness a solution hitting a; = 0 at some time t* > 0 must be there for
all time ¢ > 0. Furthermore, since the symmetry (27) exchanges the upper/lower
half-planes, we can reduce to the case of ap > 0 in what follows.

(ii) In the following, we will split the upper half-plane into four quadrants centred
around the critical point (—1, 1), and look at the sign of ag along ag = —1 and
a along ap = 1.

Since A > 0 for all + > 0, and a > 0 by assumption, the sign of a»
is the same as that of —(ag + 1), and the sign of ag is the same as that of
- ((a% — D(uy —ug) + (ap + 1)u1).Thenéz2 > Oforallay < —1.Since A > 0,
solutions to the hypo-equations (13) must have u| £ u strictly increasing. In addi-

tion, we must have u = ‘/u% — u% > 0 for all time ¢ > 0, so u; £ up must be
strictly positive for all time ¢ > 0, and hence also ;. Thus at g = —1, we have
that ag < 0iff ap > 1. Thus a solution in R, at some initial time t* > 0, cannot
leave via either of its boundaries ag = —1 or ap = 1, and since the intersection
(—1, 1) is a critical point, the solution must remain in R, for all time ¢ > ¢*.
(iii) As shown in the first part of the lemma, no solution can hit a, = 0, the bottom
of Ro, unless it is contained in a; = 0 for all time. From the proof of the second
part of the lemma, we see that a solution in R¢ cannot exit Ro via. the top

ar) = 1,ap > —1, or the side ag = —1, ap < 1. All that remains to show is that
the side ag = 1, 1 > a» > 0 is bounding. This follows from the fact that u; £ ug
must be strictly positive, since atag = 1, a9 = — ;% ((a% (u1 —uo)+u;+ug) < 0.

O

These sets determine the behaviour of solutions lying inside them:

Lemma 4.11 A solution (ag, az) to (40) lying inside Ry at initial time t* > 0 exists
for all forward time t > t*, and is asymptotic as t — oo to (0, 0). A solution lying
inside R oo at initial time t* > 0 cannot be bounded for all t > t*.
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Fig. 1 Distinguished sets for a2
(40), and possible asymptotics:
the flat connection A; at Reo
(ag, az) = (—1,1) and A" at A
(ag. az) = (0,0)
Ri1 Ro
_1 Acan 1 aO

Proof For the bounded set R, it is clear that solutions exist for all time, but it remains
to prove their asymptotic behaviour. Since ay < 0 in Ry, ay is strictly decreasing, and
as it is bounded below, a; must have a limit a; € [0, 1) as 1 — oo. To get a limit
for agp, notice that the first equation for the ODEs (40), together with hypo-evolution
equations (13), gives

d

= (aoy,z) = —4) (a%(“l —up) + MO) (41)

Weritten in integral form on the interval ¢ > ¥, this is the equation:

1 t
ap(t) = —— <</ 4% (ag(ul — uo) + uo)) + ao(t*)uz(t*)> (42)
123 r*

Since the hypo-structure X, u1, ugp, ; is asymptotically conical as a function of ¢ and
ap bounded, as t — 0o (42) gives

1t . o 2up (a3 -1 _ .
ao(t)N—t—4/ 4 (a§r2+(a§—1)u0) ~—a§—¥+0(l 4~ a2
T

for some T > t* sufficiently large. Hence we also have a limit ag — —&% ast — oo.

Since ap > 0, integrating the second equation of (40) gives us, as t — 00:

"3 L3
ax(t) = ax(T) exp (—/T ﬁ(ao + 1)) ~ ay(T) exp ((51% - 1)/T Z)

where C is some constant of integration. As a; < 1, this implies a; — 0, and thus
also ap — 0.

Now we come to solutions lying in R. Since Ry is forward-invariant, and a
solution lying in R, has @y > O for all finite ¢, the statement for finite 7 follows
directly from the previous lemmas. All that is left is to prove that if a solution exists
for all time in R, then it cannot be bounded. We will assume that it is, and derive a
contradiction:
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If a solution is bounded, then since a; is strictly increasing in R, a2 must have a
limit as ¢ — o0, and as before, the integral formula (42), and the boundedness of ag
gives that (ag, a») must have a limit lying on the curve ag = —a%. Since aj is strictly
increasing, we can bound a, away from 1, thus for some ¢ large enough, we can also
bound ag away from —1. Call this bound C, i.e. there exists T, such that for r > T
we have ag < C < —1. Then we also have that

3
Z ——a(C+1
ay > —5-a(C+ 1)

So by integrating this inequality, we get

3 "1
ax(1) = ax(T) exp (—Z(C + 1)/T X)

. . _3C+h ..
but the right-hand side growsto O(t~ 2 ) ast — 00, hence we have a contradiction.

m}

We now conclude the proof of Theorem 4.6, by applying our analysis above to the
local power-series R, of Proposition 3.14 with § = 0, so that (ag, a2), € Ro fore > 0
while (ag, a2), € R for € < 0 at sufficiently small non-zero time. Taking € = 0
gives the flat connection (ag, az)y = (—1, 1), which is a critical point of (40).

Theorems 4.7 and 4.8 also follow from what has been said. In the first case, in order
to apply the results of the previous lemmas, one must first pull-back the Calabi—Yau
structure via the involution ug +— —uo by exchanging the factors of SU(2) on the
principal orbits, which pulls back the local solutions to solutions of the form (36).
These invariant instantons extend on the singular orbit SU (2)2 /SU(2) x U(1) rather
than SU (2)2/U (1) x SU (2) as is our convention, but one can fix this by again applying
the involution lifted to the total space of the principal bundle i.e. (28). Similarly for the
latter case, to consider / = 0, one considers the local solutions on Py for the original
Calabi—Yau structure pulled back via the involution, and then applies the involution
again on the total space of Py to get the result on P ¢.

With this in mind, we can apply our analysis to the local power-series (36) and
(34). We see that these situations are basically the same in terms of the gauge theory:
up to invariant gauge transformation (27), for some sufficiently small * > 0, for
1 > € > 0esp. 1 > a; > 0) we have (ag, a)e (1*) € Ry (resp. (a0, a2)y,),
while for €’ > 1, we have (ap, a2)¢ (t*) € Roo (resp. (ap, a2)y, (t*)). We also see
that (ag, az)o (0) = (—1, 0), hence by uniqueness (ag, az), must correspond to the
abelian solution to (40), and (ag, a2); (0) = (—1, 1). O

The proof for the remaining case of Theorem 4.9 requires slightly more care:

Proof of Theorem 4.9 We are again studying solutions to the ODE (40). Looking at the
local power-series solutions in Proposition 3.10, we see that they do not initially lie
in the sets Rg or R, covered in our previous analysis. However, we will show that
the only possibilities are that such solutions either enter Ro or R« in finite time, or
are otherwise asymptotic to the flat connection A;: O
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Lemma4.12 Let Ry := {(ap, a2) € R* | 1 > ar > 0, a9 < —1}. A solution (ag, a»)
to (40) lying in R at initial time t* > O can remain in R for all forward time t > t*
only if it is asymptotic to (—1, 1) as t — 00, and must otherwise enter one of Ro, Roo
in finite time.

Proof We have that, in R

. 45
ap = Y

. 3
((a% — D(uy —ug) + (ap + 1)141) >0 a = —ﬁaz (ap+1) >0

Hence, a solution lying in R can only leave in finite time via the boundaries {a, =
l,ap < —1}or{ag = —1,0 < ap < —1}, since (—1, 1) is a critical point for (40).
Since ay is strictly positive on the first boundary, and ay is strictly positive on the
second, this proves that if a solution leaves R in finite time, it must actually leave the
boundary and end up in the regions R0, Ro, respectively.

If a solution remains in R | for all forward time, then by monotonicity (ag, a2) has a
limit lying in the closure. The existence of a limit, combined with the integral formula
(42), gives that (ag, a) must also tend to a point lying on the curve ap = —a%, which
only intersects the closure of R at (—1, 1). ]

‘We must also prove a comparison lemma for two solutions to (40), which will allow
us to compare our power-series solutions away from the singular orbit at r = 0

Lemma 4.13 (Forward-Comparison) Let (ag. a2), (do, d2) be two solutions to (40). If
ao(t™) < apg(t®), ax(t*) > ar(t*) > 0, at initial time t* > 0, then ap(t) < ao(t),
ax(t) > ax(t) > 0, for all forward time t > t* for which these solutions exist.

Proof Let t > t* > 0 be the first time for which the condition ag < ag, ax > a»
fails. By uniqueness of solutions to ODEs, we cannot have both ag(t) = ao(t) and
ar(t) = an(t), hence we must have exactly one of these. In the first case, at ¢

. 4h o o
ap —ap = —?((Clz —ay)(uy —up)) <0

but this implies ag(t**) — ap(t**) > 0 for some t* < t** < ¢, which contradicts ¢
being the first time the condition fails. In the second case, at ¢

. 2 3 A
ay —ar = ——((agp — ag)az > 0
2 —a ZA(( 0 — do)az
but this implies ap(t**) — a(t**) < 0 for some t* < t** < ¢, which is again a

contradiction. O

Another ingredient we will need is a slight improvement on the comparison lemma,
restricted to solutions lying in R

Lemma 4.14 (Improved Comparison) Let (ag, a2), (&o, &2) be two solutions to (40),
with ag(t*) < ag(t®), ax(t*) > ap(t*) > 0, at some initial time t* > 0. Then a — a»
is strictly increasing Vt > t* for which (ag, ap) (t) € R;.
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Proof By the forward-comparison lemma, ag < do, a; > dp > 0 for all time ¢ > t*,
and by definition (ap +1) < 0 for all time ¢ > ¢* such that (ag, a2) (t) € R;.
Rewriting @, — a, using (40)

; 3, . .
dz—az:ﬁ(az(ao—ao)—l—(az—a2)(a0+1))>0

for all such 7, and hence ay — a» is strictly increasing in ¢ as claimed. O

With these out the way, we are almost ready to prove the theorem. First of all,
it is clear that the one-parameter family nyl of local solutions to the ODEs (40)
given by Proposition 3.10 with 8; = 0,; > 0 are all contained in R for some
t* > 0 sufficiently small, and up to gauge transformation (27) we can assume this
one-parameter family has oy > 0. The local solution with oy = 0 is clearly the abelian
solution by uniqueness.

If (ag, a2), = (ag‘, ay ) and (ag, a2)y = (ag‘/, ag‘,) are any two of these solutions,
then near the singular orbit:

/ 6
o o 2 2\ 21 2142
— —_— — t~ 4+ 0(t
% ~ % 1(U; + Up) (“ ¢ ) )

ay —a¥ = (oz — o/) M+ o@'th

(43)

So, by the forward-comparison lemma, if (ag, a2),, hits the boundary of Ry in finite
time (and thus enters it if o; > 0) then so does (ag, aZ)sz’ forall0 < oel’ < ;. Similarly,
if (ao, a2), hits the boundary of R« in finite time (and thus enters it), then so does
(aop, az)al/, for all al/ > «;. By continuous dependence on initial conditions for singular
initial value problems, these sets are disjoint open intervals in Rxq. Clearly, the set
a; € R for which (ao, a2),, hits the boundary of Ry in finite time is non-empty
since it contains 0, so to complete the theorem, we must prove

1. There exists a; > 0 such that (ag, a2),, enters R in finite time.
2. There is at most one o; such that (ag, a2),, remains in R for all time.

The latter statement follows directly from our improved forward-comparison lemma:
if @ > o then al (r) < ag (1), a$ (1) > a$ (t) forall 1 > 0, and ar(r) — a§ (1) > 0
when the solutions are in K. However, if two distinct solutions lie in R for all
time ¢ > 0, they must both be asymptotic as t — oo to (—1, 1) which would be a
contradiction as a3 — ag‘, can be bounded below away from 0.

The former statement can be proved via a rescaling argument, which we state below
as a proposition:

Proposition 4.15 Fix [ > 1. Then 3oy > 0,1 > 0 such that (ap, az)y, (t*) € Reo,
where (ap, a2)y, is the one-parameter family of solutions wa to (40) neart = 0 given
in Proposition 3.10.

Proof As has been said previously, every local solution (ag, az) is contained in the
region R for small ¢ > 0. Since these solutions can only fail to exist for all forward
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time if they leave in finite time via R, it suffices to consider the case that, for all ¢y,
these solutions exist for all time.

We start by rescaling the Calabi—Yau structure along the fibre C;, 5 of O(-2, —2),
by defining, for some § > 0:

A(81)

As(t) o= —— (u1)s (1) == u1(81) (44)

Near the singular orbit 2 x S2, we have the power-series expansions A = 37 4+ O (¢°),
u1 = U; + O (#?) for some fixed Calabi—Yau structure, and hence, for fixed 7, A5 (1) —
3t, (uy)s (1) = Uy as 8 — 0.1°

In terms of the rescaled Calabi—Yau structure, the instanton equations (40) for
(aS, ag) (t) = (ap, az) (6t) become the family of ODEs, parameterised by 4:

482)»5

)
ao—_
(ul)g—u

(a2 )y — o) + a0 (un)s +u0) 63 = ———az (a + 1)
(2) 2Xs

(45)

One can always rescale the one-parameter family of (local) solutions (ag, az)y, to
(40) to obtain solutions to (45) for fixed § > 0, but one can show that there is a one-
parameter family of (local) solutions extending to the singular orbit for any § > 0.
To verify this claim, we apply the boundary conditions A.3 for extending an invariant
connection to the singular orbit, which allows us to write ag = tl_ng for some
smooth X g The ODEs (45) can now be written as the singular [VP:

apg+20 —1

a=0(@) X5 = 5

X5+ 0(@) (46)

which, for every 6 > 0, has a one-parameter family of solutions by fixing X% (0) as
some constant «;. These solutions are determined by the local power-series:

ad=1-214 0@ & =it M+ ou"th (47)
and by comparing the two power-series, it is clear that the rescaled solutions

(@0, @2),, (81) to (45) for any § > 0 have «; = ;8' 1.
Meanwhile, for § = 0, (45) can be solved explicitly:

ad=1-2I ad = igr' ! (48)
We can always fix x; = 1 for this solution by a further rescaling of ¢, so as § — 0,

a solution (aj, a3) to (45) has (aj, a3) (1) — (1 — 21, +'~"). By assumption, for all §
these solutions exist for all time, and therefore we can always find 7 > 1,6 < 1, such

10" we consider the metric on O(—2, —2), rescaled by the diffeomorphism ¢ + §t, this rescaling is the
adiabatic limit as § — O of the product of the rescaled metric on the fibres and the two copies of CP! of
fixed volume. See §4.2 for a similar discussion.
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that (aj, a3) (T) € Roo. If we set §(e) such that 8'~/ = o, and take * = T8, then
the solution (ag, az),, to the instanton equations (40) can be rescaled to a solution of
(45), so it must satisfy (ag, a2)q, (t*) € Roo for some o sufficiently large. O

This concludes the proof of Theorem 4.9, in the case / > 1. As before, one can con-
sider the case I < 0 in the same way, by first considering solutions for the pulled-back
Calabi—Yau structure by exchanging the factors of SU (2) on the underlying manifold,
and then applying this diffeomorphism again on the total space of the principal bundle.

O

4.2 Bubbling

Having described the one-parameter family R, of solutions to (26) on O(—1)dO(—1)
in Theorem 4.6, a natural question would be to ask about the behaviour of solutions as
€ — 00. We will show that there is a familiar bubbling phenomenon in this setting: after
a suitable rescaling of the metric, the one-parameter family of Calabi—Yau instantons
R converge as € — oo to an anti-self-dual connection along the co-dimension four
calibrated singular orbit §* = CP' c O(=1)®O(—1). We use this result to obtain the
expected removable-singularity statement, which says that as R, bubbles off this anti-
self-dual connection, if we do not perform this rescaling, it will uniformly converge
on compact subsets of O(—1) & O(—1) \ CP' to the instanton R(, of Theorem 4.7,
which extends smoothly over CPP!. Recall that the abelian instanton R, is determined
by the unique solution to the ODE (40) on [0, co) with a; = 0, which has explicit
form (31) with C = =2, ugp = —1,u1(0) = 1.

Let us first discuss this rescaling in detail: as O(—1) @ O(—1) has the structure of a
vector bundle, fibre-wise multiplication equips it with an natural SU (2)2-equivariant
action of R . Let s5 denote the corresponding R-action for some § > 0, i.e. the map
fixing the singular orbit and sending ¢ — ¢ on the space of principal orbits. Pulling
back the Riemannian metric g on O(—1) & O(—1) as given in (16) by s5:

sig =67 (dt2 + 22 (77“’)2 + % (1 + uo)g ((1)2)2 + (w2)2)>

+3 = )y (D2 + (')?) (49)

where As, (41 + uo)g, and (4] — ug)s are defined as

A(81) (w1 + uo) (81)
Ja(0) = T )y () =
(w1 —uo)s (t) := (w1 — uo) (81) (50)
We will refer to the limit § — 0 as the adiabatic limit, and recall that here, ug = —1,

and that A(t) = %t +0EH,u; =1+ %t2 +O0@*) neart = 0,50 Ag, (4] £ up);s have
well-defined point-wise limits as § — 0.

Near the adiabatic limit, restricted to any finite distance from the singular orbit,
55 g is approximated by the metric 82gr + gp for some § sufficiently small, where g
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denotes a lift of the Euclidian metric on the fibre R* and gp denotes a round metric
on the base S2. Here, the lift of the Euclidian metric on R* to the fibres identifies

%n” = u! —u?, v2, w? with the standard orthonormal basis of one-forms on S° C R?,
and v', w! as an orthonormal basis of one-forms for the singular orbit S2, viewed

upstairs on SU(2)> — SU(2)?/U(1) x SU(2).

One can always obtain a solution to the Calabi—Yau instanton equation (2) on
the flat Calabi—Yau 3-fold C3 by pulling back any anti-self-dual connection on C? to
C3 = C?xC, soatleast at the level of tangent spaces, if we pull-back some Calabi—Yau
instanton by ss on some sufficiently large neighbourhood of CP' c O(-)®O(-1)
in the adiabatic limit, there should appear an anti-self-dual connection pulled back
from the fibre. However, the fibre bundle O(—1) & O(—1) is non-trivial, so to make
this a global statement, one must first choose a connection on this bundle: we will see
in the next lemma that this connection will be forced onto us by the symmetries of the
problem.

Lemma4.16 Up to gauge and rescaling, there is a unique non-flat SU (2)?-invariant
anti-self-dual connection A on R*. A has a unique lift A% to the fibres of
O(=1) ® O(—1) as an SU (2)*-invariant connection on Po1a:

Adsd . e <E1 QW —uH+ Er v+ E3® w2) +E ®u! (51)
Proof We first explain how to view the SU (2)?-invariant bundle Py 1qa over O(—1) @
O(—1) as abundle over the fibres: there is an obvious SU (2)2-equivariant U (1)-action
on S3 x R*, viewed as SU(2) x H, where SU(2)? acts on the left and U (1) on the
right, and this U (1)-action induces the quotient map ¢ : SBxR* > O(=1)®O(-1).
By definition of Py 14, its pull-back via g is also the pull-back of an SU (2)-invariant
bundle over R?, via the projection 7 : §3 x R* — R* onto the second factor. Here,
we view R* as a co-homogeneity one manifold with group diagram {1} C SU(2) €
SU(2), and define the SU (2)-invariant SU (2)-bundle over R* by the homomorphism
Id : SUQ®2) — SU(2), i.e. the singular isotropy group SU(2) acts via the identity
homomorphism on the fibre SU(2).

The canonical connection of Py 1q over the singular orbit §?2 = SU@2)?*/U) x
SU(2) is just the flat Maurer—Cartan form AZ, and this clearly pulls back via g over
$3 x R* as the canonical connection (pulled back via 1) on the singular orbit {0} =
SU(2)/SU(2) of the SU (2)-invariant bundle over R*. Using this choice of reference
connection, a connection defined on g* Py 14 over S 3 x R*descends to O(— 1) O(—1)
if and only if the corresponding adjoint-valued one-form is basic with respect to the
U (1)-action. Furthermore, the one-form u' is the unique SU (2)-invariant connection
on the principal U (1)-bundle 3 — $2, and this induces connection on the associated
vector bundle O(—1) @ O(—1) — S2. We can use this connection to project any
(adjoint-valued) one-form on 3 x R* to its semi-basic component, and thus uniquely
lift any U (1) x SU (2)-invariant SU (2)-connection over R* to a connection over
O(=1)® O(-1).

With this understood, we now describe the invariant anti-self-dual connection 4254
over R*. Since the SU (2)-invariant bundle is trivial restricted to the principal orbit
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§3 ¢ R*, up to gauge transformation, we can always put any SU (2)-invariant con-
nection A on this bundle into the form:

A=u1E ®u2+a2E2®v2+a3E3®w2

for some «; () satisfying «; (0) = 1, so that this connection extends to the singular
orbit as the canonical connection.

The basis of self-dual forms (up to cyclically permuting u?, v, w?) for the
Euclidean metric!! can be written as tdt A u? — t2v? A w2, so the SU(2)-invariant
anti-self-dual equations can be written as the ODE system:

to; = —2a; + ZOlelk

where ijk are cyclic permutations of (123). Imposing the additional SU (2)-
symmetry'Z, we set o] = ap = 3, giving

16 = —2a + 20 (52)

which has the explicit solution o = (l + /ctz)_1 for any « € R, and it is not hard to
see that these are the only solutions to (52) extending over the singular orbit. Clearly,
this exists for all # > 0 if and only if ¥k > 0, and when ¥ > 0 we can always fix the
solution to have k = 1 by rescaling ¢. This defines the connection:

1
ABd . — e (E1 QU+ Er Qv+ Ez® wz) (53)

over R*. The extra symmetry ensures, implicitly, that A% is U (1) x SU (2)-invariant,
s0 it can be uniquely lifted to the connection A%d = gd _ ( L 1) Ei®u' as

1412
previously explained. O

With these preliminaries out of the way, we can now state the main theorem of this
section:

Theorem 4.17 Let §(¢) = ~/2¢~L. Then, as € — 00

(i) sfRe(t) — ABY(r).
(i) Re(t) — R((t) uniformly on compact subsets of (0, 00).

Proof of Theorem 4.17 (i) We start by rewriting the instanton equations in terms of the
rescaling (49), and the lift from an invariant connection on the fibre as in the previ-

ous lemma. If we define (ag, ag) (1) = (1_2“0 , az) (8t), and consider some invariant

1T the slightly non-standard orientation convention here arises from the disparity between orientation con-
ventions for (49) and the SU (2)-action.

12 5ne can show, however, that the additional SU (2)-symmetry arises a-posteriori as a consequence of the

general solution to the SU (2)-invariant anti-self-dual equations extending to the singular orbit.
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connection A defined by (ag, az) (), as in Proposition 3.2, then
SEA®) = db() <E2 @V +E3® wz) +ad(VE ® WP —u) + E1 @ ul

Written in this way, the instanton equations (40) for (agp, ay) (¢) becomes the following
one-parameter family of ODEs for (ag, ag) (1):

.B_L 52_5 28213 Y -8__1 IR,
(10 - (Ml + uO)S ((a2) a0> + (Ml _ uO)(S ((1 ag )) 612 - )\,5 (1 a )az
(54)

(54) has a one-parameter family of solutions for each § > 0 by rescaling the family of
solutions R, to (40), and we now show that one still obtains a one-parameter family as
8 — 0. Considering the boundary conditions Proposition A.7 for extending (ag, ag)
to t = 0, we can write ag =1—17*Xo, ag = 1 — 12X, for some smooth functions
Xo, X2, so that, in a neighbourhood of ¢+ = 0, (54) becomes the well-defined initial
value problem:

tXo =2(Xo— X2) + O(t%) tX,=2(Xo—X2)+0@» (55

hence, once we fix the parameter « := X((0) = X»(0), the continuous dependence
of (54) on § gives existence of a sufficiently small open neighbourhood of t = 0
such that, for each 6 > 0, solutions to (54) are in a one-parameter family. These are
determined by the power-series:

ab =1 —«t* + 0@* ad =1—«xt* +0@% (56)

Comparing with the power-series in Proposition 3.14 for R., we see that the rescaled

solutions (%, az) (8t) for § > 0 have k = 82¢ /2, and so the family of solutions
€

(ag, ag) exist for all time if k > 0, § > 0 by Theorem 4.6.

By continuity, the solutions must also exist for all time for k > 0 as § — 0, but as
the resulting equations:

160 =2 ((a§)2 - a8> 160 =2 (aoo - 1) al (57)

have the explicit solutions ag = ag = (1 + Kt2)71 as in (52), this is already guaran-
teed.

We now set 8 (€) = +/2ke~! for some given x > 0, which we can always fix to be 1
by a further rescaling. By rescaling the family R, = (ao, a2). to the instanton equations

(40), we get a solution (ag, ag) (t) = ( l—2a0 , (12) (81) to (54). As we have just shown,
€

the solution has ad (1), a3(t) — (1 + tz)_l as 8 — 0, hence s} R (1) — A®(r). O
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Remark 4.18 Since (l + Kl2)_l blows up in finite time if k < 0, by keeping the
freedom to vary «, this rescaling argument can be used to show that local solutions of
Theorem 4.6 with € < 0 are not only unbounded but blow up in finite time.

Proof of Theorem 4.17 (ii) Let (ag, a2). (t) = (ag, aé) (t) denote the one-parameter
family of solutions to (40) corresponding to R.. Using the local power-series in Propo-
sition 3.14, it follows that aé ("), a§ (t*) are both strictly monotonic (increasing and
decreasing, respectively) functions of € > 0 for any fixed t* > 0, since we can take
some 0 < #** < t* sufficiently small to compare the power-series for (ag, a2). and
(ao, ap)o at t** for any pair €, €’ by their first few terms, and then use the forward-
comparison lemma to recover monotonicity at#*. Since (ag, az), () lies in the bounded
set Ro for all + > 0, € > 0, this implies (ag, a2), (t) converges point-wise on (0, co)
as € — 00.

Since a§ (¢) is strictly decreasing in ¢ for all + > 0, € > 0, if we assume that the
point-wise limit inf¢ a5 (t*) for any fixed +* > 0 is non-zero, then we can use the
inequality a5 (1) > a5(t*) > inf. a5(¢t*) > O forall € > 0, ¢ < t* to uniformly bound
a5 away from zero on (0, t*) and derive a contradiction with the first part of the main
theorem. Explicitly, by part (i), forany ¢ > 0,7 > 0,3e(e, T) such thatVe > e(e, T),
the rescaled solution (ag, a2), (v2€~1T) satisfies |a5 (vV2e~1T) — (1 + T?) 71| < e.
By the assumption L := inf, ai(t*) > 0, we can pick &, T such that 0 < ¢ <

L — (14 T?)~!, and then apply our inequality to any € > max{e(e, T), 2 (tz*)z}:

e<L—(1+TH " <a5(V2e"1T)| — (1 +TH7Y
<laS(vV2e"1T) — (1 + 7%

since v/2¢~1T < t*. However, this demonstrates the existence of an € > e(g, T)
such that the inequality |a5 (v 2¢71T) — (1 + T2)_1| < ¢ fails, and hence we have a
contradiction.

This previous discussion implies that a5 converges uniformly to zero on any com-
pact interval contained in (0, 00), and by using (41) to express the derivative a; purely
in terms of a5 (up to some fixed functions of ), we also get the uniform convergence
of a on this interval. Now consider the initial value problem defined by the ODE
(40) with (ag, ap) (t*) = (ag, a2). (t*) for some fixed initial time t* > O: this has
unique solution (ag, a@2). (t) on (0, 00), and continuous dependence on initial condi-
tions guarantees that the limit as € — oo is the unique solution to (40) with a, = 0,
and ao(t*) = sup, aj(t*). Since this solution must be contained in the closure of R,
by Remark 3.9, this must be identified with R(/) on (0, 00), the unique solution to (40)
bounded on (0, co) with ap = 0. O

Bubbling on O (-2, —-2)
In the rest of this section, we will discuss bubbling phenomena for instantons on

O(-2, —2): we will see that the one-parameter families of Calabi—Yau instantons
Qél on O(—2, —2) can be understood, in an appropriate adiabatic limit, as anti-self-

dual instantons for the Eguchi—Hanson metric on the cotangent bundle of CP', fibred

@ Springer



SU(2)2-Invariant Gauge Theory Page410of55 121

along a co-dimension four calibrated sub-manifold CP' ¢ O(—2, —2). Although this
discussion is unnecessary for understanding the main results of this article, we include
a brief sketch of the details, omitting any explicit proofs.

First, recall that the Eguchi-Hanson metric is SU (2) x U (1)-invariant, and can be
written on T*CP' \ CP' Z R. x SU(2)/ Z», up to scale, as

gen = di? +¢* (1 = g™ + 0% + u?) (58)
where ¢t > 0 is the radial geodesic arc-length extending over CP'atr = 0, u,v,w
are the basis of left-invariant one-forms dual to Eq, E», E3z on SU (2), and ¢(z) is the
unique solution to ¢ = 1 — ¢~* on [0, 0o) with ¢(0) = 1.
One can show that, up to gauge, SU (2)-invariant anti-self-dual connections for the
Eguchi—-Hanson metric are in [ € Z.¢ one-parameter families Ai}"l, 0 <k <1,and
these are additionally U (1)-invariant. Written in the temporal gauge

K]—a0E1®u+a2(E2®v+E3®w) 59)

with coefficients o (7), o2 (), explicit up to a smooth change of variable 7 — ¢:

I 21y} 21\
) = — 1+K<(,02_) 1—K(¢2 )
Q@ -+ 1 o° + 1

() w©

21
1k (55)

By considering the orbit of the one-parameter family Ai{‘l, 0 < k¥ < 1 under con-
stant (#-independent) invariant gauge transformations, these invariant families can be
understood in terms of the moduli-spaces of anti-self-dual connections for the Eguchi—
Hanson metric constructed by Nakajima in [12]: he shows, under certain assumptions,
that connected components of the moduli-space are themselves a copy of Eguchi—
Hanson. In our invariant set-up, the parameter x corresponds to (a parameterisation
of) the radial parameter 7, and these gauge orbits correspond to the orbits of the co-
homogeneity one action of SU(2) on T*CP".

Observe that the moduli-space of invariant anti-self-dual connections Aeh behaves
similarly to the moduli-space of invariant Calabi—Yau instantons for the metrlcs on
O(-2, —2) in Theorems 4.8, 4.9: k = 0 is the unique abelian solution for each /, and
at k = 1 there is a transition in the asymptotic behaviour of Aeh from the canonical
connection (g, o) = (0, 0) to the flat connection («g, op) = (1 1). Any solutions
with « greater than this critical value become unbounded (at least here, in finite time),
and only when [ = 1 are these critical solutions A? ; themselves flat.

If we pick overall scale for the family of metrics on O(—2, —2) such that one of
the copies of CP' ¢ O(—2, —2) has ﬁxed volume U; — Uy = 1, and consider the
rescaling s as in (49), (50) with 8% = z (U 1 + Up), then one can show that by varying

oy =
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in this one-parameter family of metrics, %)»5 — @1 — ¢4, % (U1 +up)s — <p2, and
(u1 —ug)s — 1 in the adiabatic limit as § — 0. In other words, near this adiabatic
limit, the metric s5 g is approximated by a fibration 82gen + gp of arescaled Eguchi—
Hanson metric over a round metric on the base CP! , for some § sufficiently small.
With this established, the similarity between the moduli-spaces of instantons on
O(-2, —2) and anti-self-dual connections on Eguchi—Hanson is somewhat less mys-
terious: if one considers the one-parameter family of instantons Qfx, foroy = 1. /k8' !
for some fixed, / > 0, x > 0, and pulls back via this rescaling, it can further-
more be shown that s§ Qf)l[ (1) — Azh(t) as § — 0 along the fixed-volume copy

of CP!' ¢ O(-2, =2).

Remark 4.19 Since the explicit solution (60) blows up in finite time if k¥ > 1, up to
exchanging the copies of CP! C (-2, —2), one can use this rescaling argument
to show that the instantons Qfx] for metrics on O(—2, —2) with U £ Uj sufficiently
close to 0 must also blow up in finite time if ¢ is sufficiently large.

4.3 Solutions to the Monopole Equations

In this section, we analyse the qualitative behaviour of solutions to the monopole
equations (26) with non-zero Higgs field ® away from the singular orbit. Assuming
that the connection is not an instanton, we first show that there are no solutions for
O(=2, =2), or O(—1) & O(—1) with quadratic curvature decay:

Proposition 4.20 There are no irreducible invariant monopoles on O(—2, =2) or
O(—1) ® O(—1) with quadratic curvature decay.

Proof We look at solutions to the monopole equations (26) with vy = 0, v3 = u, i.e.
for a hypo-structure of type Z given by (12):

YA
a0=E((a%+a%—l)uo—(ao—a%~|—a%)u])

. 6

¢=—;a1a2

= (a0 — Dar — 2" g o
a1 = —(ap — Day — a

1= 55 (ao 1 2

) 3 uy +u

a, = —ﬁ(ao + Dar — 2"y

Recall from Lemma 3.7 that a weak condition for solutions (ag, ai, az, ¢) was to
assume at least boundedness of ag, a, a>. We will show that there are no such solutions
to (61) existing for all time: in particular, we show that if a solution exists for all time
with ag bounded and ¢ non-zero, then a; — a, must have at least exponential growth
at infinity, provided certain initial conditions are satisfied. These initial conditions
will be satisfied by the local solutions extending to ¢ = 0 obtained in the previous
propositions, up to certain easily-verified symmetries: O
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Lemma 4.21 The following involutions are symmetries of (61):

(a07 ay, az, 4)) = (a()’ —ay, —ap, d’) (62)
(ao, a1, az, §) = (ag, —ay, az, —¢@) (63)

‘We now find the set in which our solutions remain for all time:

Lemma 4.22 The set R}, = {(ap, a1, a2, §) € R* | a; > 0 > a», ¢ > 0} is forward-
invariant under (61).

Proof We let ¢ be the first time a solution (ag, aj, az, ¢) leaves Rjo However, none
of the possibilities for a solution to leave R, can hold at 7:

(1) a; =0,a2 <0, ¢ > 0, since it implies a; > 0.
(i) ap =0,a; > 0, ¢ > 0, since it implies ay < 0.

(iii) a; = az = 0, ¢ > 0 coincides with the reducible solution a; = a» = 0, which by
uniqueness of solutions implies this solution coincides with the reducible solution
for all time.

(iv) Since ¢ (t9) > 0 for some 7y < ¢, if we assume ¢ (¢) = 0, then by the mean value
theorem d)(tl) < 0 for some 7y < #; < t which implies aj(t1)az(t;) > 0.

m}

Remark 4.23 Although we have shown explicitly from the ODEs that solutions pre-
serve |¢| > 0, it also follows more generally, since the function |CI>|2 M — Ris
sub-harmonic for any monopole (A, ®) over an arbitrary Calabi—Yau 3-fold M. In the
invariant co-homogeneity one setting, this implies that if |®(r)|?> = 0 for some 7 > 0,
then it vanishes for all # by the maximum principle.

We also prove that solutions lying in this set, if they exist for all time, are (expo-
nentially) unbounded as t — oo:

Lemma 4.24 If (ag, a1, az, ¢) be a solution to (61) existing for all time t > t* with ag
bounded, lying in R& at initial time t*, then a; (t) — ap(t) is unbounded ast — oo.

Proof Since the CY-structureis AC, A ~ tast — 00, hence %(aozl:l) — Qast — o0
by assumption. We also have that ulﬂﬂ — 1 in the same limit. Since a; > 0 > ay,
then for every € > 0, 37* > 0 such that V¢ > T* the following inequalities hold:

3 3
ﬁ(ao — Da; > —eay — ﬁ(ao + Day < —eay

uip — uo uip — U (64)
——ay > —(1—€ay —

a < —(1 —e)ay

Let T := max{t*, T*} for our fixed initial time 7*, and ¢ = ¢(t*) > 0. Since ¢ is
strictly increasing in R, we have ¢(¢) > ¢ for t > t*. Putting all our inequalities
together on ¢ > T, we obtain the following:

i —ar > (29 — g+ 1)(a1 — a)
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and if we choose ¢ < ———, then by integrating:
29+ 1)

ai(t) — ax(t) > (a(T) — ax(T)) exp((t — T))

This completes the proof the proposition, since in all cases, using the symmetries
(62), (63), for the power-series solutions near the singular orbit, one can reduce to the
case of the monopole lying in R, for some small initial time:

1. For local solutions (R’, \Il’)e,’a, defined by Proposition 3.15, since €', 8’ # 0 by
assumption i.e. we do not have an instanton, then up to symmetry one can assume
€’,8 > 0. Hence (ao, ar, az, ¢)o g lies in RE,.

2. For local solutions (Ql, ®l)0t1 4 defined by Proposition 3.10, since a;, §; # 0
by assumption, up to symmétry one can assume «; < 0,8 > 0. Hence
(a0, a1, az, $)y, p, lies in Rjo This also covers the case / < 0, by exchang-
ing the factors of SU (2) on the principal orbits, and considering the Calabi—Yau
structure on O(—2, —2) pulled back via this diffeomorphism.

3. Forlocal solutions (R, ¥), 5 defined by Proposition 3.14, since § # 0 by assump-
tion, then up to (63), one can also assume § > 0. While the image of a solution
under (62) may not extend to the singular orbit, existence of a bounded solution
extending to the singular orbit would imply existence of a bounded solution in
R, under the symmetry.

(]
The existence of invariant monopoles on 7*S> was shown in [13]: by restricting the
monopole equations to the R3-fibre over a point in $3, ie. solving (26) with ag = 0,
a1 = ay, Oliveira constructed a one-parameter family of invariant monopoles for 7*S3,
first by considering the local solutions (S, @) , with & = 0 of this system, and then
applying PDE methods for invariant monopoles in R>. Due to a computational error
in [13, Lemma 6, Appendix A], Oliveira did not consider local solutions (S, De »
with £ non-zero, but we fix the resulting gap in the proof of the main theorem [13,
Theorem 1] by imposing quadratic curvature decay:

Proposition 4.25 Invariant monopoles with quadratic curvature decay on Py —
T*S3 are in a one-parameter family (S, @), = (S, @), x > 0, up to gauge.
Moreover,

(1) lim;— 00 (S, @), (1) = (Acan, CIDX), where ®, is a constant non-trivial Higgs
field.

(ii) (S, D)o = So where Sy is the instanton of Theorem 4.1, with a trivial Higgs
field.
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Proof We rewrite the monopole equations (26) with a4 := aj £ ap:

. 4
ap = — (a+a— — ao)
n

. 3(v3 + vo)

a; = Z—(aoa_ —aq)—2a4+¢
M (65)
) 3(v3 — vo)
a_ = ——(apa+ —a-) +2a_¢
2A1L

.3 1 1
¢ = P ((E(ai +a%) - 1) vy — E(ai - a%)m)

for u, A, v3, vo explicit solutions to the hypo-equations given in (19), and recall from
Lemma 3.7, that we are interested in solutions with ag, a4, a_, t¢a, t¢pa_ bounded.
There are three parts to the proof:

1. Solutions to (65) extending over the singular orbit with ag, a_ % 0 are unbounded.

2. Solutions to (65) with ag, a— = 0, which have local power-series (S, @), , given
in Proposition 3.12 for & = 0, are bounded iff y > 0.

3. In this case, solutions with x > 0 have a; — 0, ¢ — ¢, ast — oo for some
constant ¢, > 0, and ra ¢ bounded. The solution with &, x = 0 is the explicit
instanton (37) found in [13].

To prove the first part, we will recall the symmetries (27) and (28) of the problem: O

Lemma 4.26 The following involutions are symmetries of (65):

(a()s a+s a—, ¢) = (Cl(), —Cl+, —a—, ¢) (66)
(ao, ay,a—, ¢) — (—aop, a+, —a—, P) (67)

We can also prove a strict monotonicity condition for ¢:
Lemma 4.27 (Monotonicity) A solution (ag, a4, a—, ) to (65) With +p(t*) >
0, x¢(t*) > 0 at some initial time t* > 0, has £¢(t) > 0, x£d(t) > 0 for all

t>r*

Proof We calculate
6 /5 2
Bsco= -z (@ @3 = w) + a2 @3 +00) ¢

In particular, since é # 0foray =a_ =0, and (v3 + vg) > 0 for r # 0, we have
¢ > 0atd = 0iff > 0. Hence any critical point for ¢ must be minimum, and
since ¢(t*) > 0, we must have ¢>(t) > 0,¢(t) > 0 forall t > t*. The proof for
(1) <0,¢(t) < 0is similar. O

Using this, we find a set that contains our solutions for all time:
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Lemma 4.28 A solution (ag, a+, a—, ¢) to (65) lying in Soio = {(ao, ay,a—,¢) €
R* | ap > 0,ap > 0,a_ > 0, ¢ > 0} ar some initial time t* with £¢(t*) > 0,
remains there for all forward time t > t*.

Proof Let ¢t be the first time a solution (ag, a+, a—, ¢) leaves Sgto. However, none of
the possibilities for a solution to leave SE can hold at ¢:

(1) ap =0,a— > 0, a4 > 0, since it implies ag > 0. The same is true if we permute
indices 0, +, —.

(i) a = 0,a— = 0,a9 > 0, since then ay = a_ = 0. By local uniqueness and
existence for ODEs, from (65), one sees that the solution musthavea, =0, a_ =
0, at least for some small interval (+ — €, 4 €). Again one obtains similar results
by permuting indices.

(iii) ap = a4 = a— = 0 coincides with solution (0, 0, 0, —37), where I = 29, which
is a solution to (65) for any choice of initial condition ¢ (¢) for ¢ > 0.
(iv) ¢ = 0 is impossible by monotonicity. O

We can now use monotonicity to bound ¢ away from zero, which will show that
solutions in SE must be unbounded as t — oo:

Lemma 4.29 A solution (ag, ay,a—, ¢) to (65) lying in S;Eo with :I:q'b > 0 at some
initial time t* > 0 cannot have a bounded for all forward time t > t*.

Proof We start with the case S1.. Since at.ap > 0, we have the following inequality:

3(v1 —
a— > (2¢ — 3(s = v0) a—
2A0
Since 3(”23770) — 0 and ¢ strictly increasing, then for fixed #*, 3T > t* such that
vVt > T:
Z 3(v3 — vo)
=¢(") > ———(¢
¢ =) T )

Then, since a_ > 0, integrating the inequality for a_ gives

a—(t) = a_(T)exp((t — T)¢)

The proof for S is almost identical, since now:

3
iy > (=g~ 2T (68)
201
with ¢ < 0 monotonically decreasing and 3(”2*7*’;’0) — 0. |

To complete the proof of the first part of the theorem, one only need apply this lemma
to the power-series solution (S, @) , of Proposition 3.12. Up to symmetry, we can take
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x>§ > 0, so for some 0 < ¢* sufficiently small, the solution (ao, a+, a—, @) , ()
lies in ST, with é(*) > 0, and hence we obtain that these solutions are unbounded.

To prove the second and third parts of the theorem (cf. [13, Theorem 1]), we need
to prove local solutions (S, ®)q , with & = 0, i.e. solutions to the ODE:

3 . 3 /1
it = —as ((U;TZUO) + 2¢> b= <§ai(v3 —w) + vo) (69)

have fixed asymptotics a; — 0, ¢ — ¢, > 0 only in the case x > 0, and if x < 0
are these solutions are unbounded as + — oco. By uniqueness, the local solution with
x = 0, & = 0is the instanton (37) with ¢ = 0.

We first note that the sign of a is preserved by (69), hence by using the gauge
symmetry (66) we can always reduce to the case a; > 0 in the following. Assuming
this, we can prove the existence of a set in which solutions become unbounded:

Lemma 4.30 Solutions to (69) withay > 0,¢ < 0, qb < 0 at some initial time t* > 0,
cannot have a bounded for all forward time t > t*.

Proof This proceeds almost identically to the proof of Proposition 4.29, only now we
have the inequality (68) is an equality. Again we have ¢ < 0 monotonically decreasing
by Lemma 4.27, and integrating the inequality for @ in terms of ¢ (t*), we have that
there exists 7 > t*, such that for all t > T':

ay(t) = ayp (T)exp(—(t — T)p(t")) -
We also prove the existence of a set in which solutions are bounded for all time,
and have the desired asymptotics:

Lemma 4.31 Solutions to (69) withay > 0,¢ > 0, é > 0 at some initial time t*, are
bounded for all t > t*, and have (a4, ¢) — (O, ¢X) ast — oo, for some constant
¢y > 0. Moreover, ta ¢ is bounded for all t > t*.

Proof We already have lower bounds for a4 and ¢p. We now prove an upper bound for ¢:
we have the inequality ¢ < — %‘) , and hence by integrating ¢ must be bounded above.
Since ¢ is also strictly increasing, this implies the existence of a limit ¢ — ¢, > 0
ast — oo.

For a., since > 0, and ¢ > O strictly increasing, we have the inequality

ay < —2a4¢(t*). Integrating this, we get

3(v3tvo)
Py

0 <ar(t) <ap(®)exp(=2(t — "o ("))
giving us the required asymptotics for a, tpa . O

The final two parts of the proof of the Theorem 4.25 are now immediate, since local
solution (S, @) , to (69) given by Proposition 3.12 with § = 0, x < 0 satisfies the
conditions of Lemma 4.30, while for x > O they satisfy the conditions of Lemma
4.31. O
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A Extending Invariant Bundle Data to the Singular Orbit

By considering SU (2)?-invariant instantons and monopoles on the space of principal
orbits, we obtained ordinary differential equations depending on geodesic parameter
t € R.y. In this appendix, we check the boundary conditions for these data to extend
smoothly to the singular orbits at t = 0.

First, in a general setting for extending homogeneous bundles over the principal
orbits of co-homogeneity one manifolds to the singular orbits, we let M denote a co-
homogeneity one manifold with group diagram H C H' C K, and H'-representation
V, and let the structure group be denoted G. Any K -invariant G-bundle P over M
must be of the form P, = K x g/ (V x G) for some homomorphism A : H — G,
which we denote the singular homomorphism. It is not difficult to see that P, restricted
to a principal orbit K /H is a homogeneous bundle K x g G, where H acts on G via
group homomorphism A|.

Focussing on the case of SU (2)2-invariant SU (2)-bundles over the co-homogeneity
one manifolds T7*S3, O(—1) @ O(—1), and O (-2, —2), let us describe and classify
the possible extensions of homogeneous bundles in this way. Recall from §3.1 that
homogeneous bundles P, over the principal orbits are classified by the integer n, and
an additional j € Z; in the case of homogeneous bundles P, ; over the principal orbit
of O (-2, -2):

Proposition A.1 Up fo equivariant isomorphism, the SU(2)2-invariant SU (2)-bundles

extending Py, P, j to the singular orbit are given by

(i) Extending over S> = SU(2)?/ASU2): Py, Py extend to Py, Py defined by
singular homomorphisms 1d, 0, respectively.

(ii) Extending over S* = SU(2)>/U(1) x SU(2): P, extends to P, defined by
singular homomorphism (" x 0 for all n, and P also extends to Py 14 defined by
singular homomorphism (° x Id.

(iii) Extending over s$? = SU(2)2/SU(2) x U(l): P, extends to Py, defined by
singular homomorphism 0 x (" for all n, and P\ also extends to Piq o defined by
singular homomorphism 1d x (.

(iv) Extending over $2 x §%2 = SU(2)2/U(1)2: Py, ; extends to P, defined by
singular homomorphism ,,>ol x Z™, where l +m = n, and either j = m mod2 or
Jj = I mod2.
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where 1d, 0 : SU((2) — SU(2) denote the identity and the trivial homomorphism,

respectively, and 2" denotes the n'"-power of the diagonal embedding ¢ : U(1) —
SU(2).

Proof The first two parts of the proposition follow directly from the previous dis-
cussion, and the group diagrams AU(1) C ASU(2) C SU(2)%, and AU(1) C
U(l) x SU2) C SU(2)? for T*S3 and O(—1) @ O(—1), respectively. The third
part follows via exchanging the factors of SU (2)2 for O(—1) & O(—1), i.e. writing
the group diagram as AU (1) C SUR2) x U(1) C SU(2)2.

The group diagram for O (-2, —2) is given by K> _» C U(1)? c SU(2)2, so the
singular homomorphisms are classified by a pair of integers (I, m):

. . ei19|+im92 0
(61917 6192) — ( O e*iléh*im@z (70)

where principal isotropy group K> > is uniquely defined as the kernel of (70) with
(I, m) = (2, —2). One can realise the isomorphism K, _» = AU(1) x Zy C U(1)?
in exactly two ways, either with Z, C U(1)? defined as the subgroup generated by
(€% €™y or Zy C U(1)? defined as the subgroup generated by (¢!, ¢%™), equiv-
alent up to the automorphism exchanging the factors of U(1) C U(1)?. The first of
these isomorphisms is given by K _» 3 (¢/%1, €/%2) 1> (%1, ¢!1). (7, &/ 2700 ¢
AU (1) x Zy, and if we rewrite (70) as

i0)—i6 m i (I 0
@ %) > e 0 eltmin
’ 0 671924»101 0 e—t(l+n1)61

and fix the Z,-generator (€27 /™), then (70) restricts to AU (1) x Zy C U(1)? as
the homomorphism (22) with j = m mod2 and / + m = n. By exchanging the factors
of U(1) ¢ U(1)?, which also exchanges (I, m) in (70), we get the homomorphism
(22) with j =Imod2 and [ + m = n. O

With a little extra work, the following proposition can also be seen from the previous
discussion:

Proposition A.2 Any SU (2)%-invariant SO (3)-bundle over O(—1) @ O(—1), T*S?
or O(=2, =2) admitting irreducible invariant connections has a lift to an SU(2)2%-
invariant SU (2)-bundle.

Proof By definition, an invariant SO (3)-bundle lifts if the singular homomorphism
lifts. On the other hand, to admit irreducible invariant connections, the invariant S O (3)-
bundle restricted to the space of principal orbits must lift to the invariant SU (2)-bundle
P i.e. if we denote the principal isotropy group by H, the homomorphism H —
SO(3) lifts to the homomorphism H — SU(2) given by (22) with n = 1. The
statement for 7*S3 and O (—1) @ O (—1) is then immediate from Proposition A.1.
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As for O (=2, —2), the SO(3)-bundles are classified by the singular homomor-
phisms U(1)?> — SO(2) c SO3):

1 0 0
@, ) > [0 cos (16 +m6>) sin (1) + mb») (71)
0 —sin (16] 4+ m0y) cos (16] + m6y)

which lift to the SU (2)-homomorphism (70) when /, m are both even. By the assump-
tion of irreducibility, we require [ + m = 2, so it suffices to consider the case where
[, m are also both odd. Restricted to K _» C U (1)2, this gives

o 10 0\ /1 0 0
@, ey > [0—=1 0 | [0 cos(26)) sin(26) (72)
00 —1 0 —sin (261) cos (26;)

up to the automorphism exchanging the factors of U (1) C U (1)2. Recall from Remark
2.1 that both ('™, €2'7), (€27, ¢'™) K> > act trivially on the tangent space of the
principal orbits of O (=2, —2), but one of (¢/™, ¢*™), (¢*™, ¢™) acts non-trivially
on s0(3) by (72), and so every invariant s0(3)-valued connection one-form on the
principal orbit can only take values in the set of fixed-points (1) C so0(3) and must
therefore be reducible. m|

If there is a lift of the invariant S O (3)-bundle, then clearly any invariant connection
or Higgs field can also be lifted. Consequentially, in the irreducible case, the invariant
gauge theory can also be lifted.

Returning now to the invariant SU (2)-bundles P, in Proposition A.1, we seek to
describe the conditions for extending SU (2)2-invariant connections on P, and sections
of the adjoint bundle QY (AdP,) over the singular orbit. For any SU (2)2-invariant
connection A, it will suffice to describe the conditions for extending SU (2)2—invariant
adjoint-valued one-forms Q! (AdP;), since we can use the canonical connection d
of P, over the singular orbit as an SU (2)2-invariant reference connection to write
A—dx e QY(AdP)).

Observe that an SU (2)%-invariant section of AdP; can be identified with an H'-
equivariant map V — su(2), where (H ' V) are the singular isotropy groups and
their representations as above. Similarly, an SU (2)%-invariant element of Q! (AdP;)
is determined by an H'-equivariant map L : V — su(2) ® (V* @ p*), where p* is the
space of left-invariant one-forms on the singular orbit SU (2)>/H’, and H’, A (H /) act
via the adjoint on p*, su(2), respectively.

In order to calculate these extension conditions, we apply a similar analysis as in [7,
Lemma 1.1] applied to SU (2)?-invariant adjoint-valued forms, c.f. [11]. The general
procedure is as follows: by evaluating at some non-zero vg € V, H'-equivariant
homogeneous polynomial maps L : V — su(2) ® (V* @ p*) (respectively, L : V —
su(2) for zero-forms) give splitting of the vector space of AU (1)-invariant adjoint-
valued forms, indexed by the associated polynomial degree. Any SU (2)%-invariant
adjoint-valued form, away from O € V, can be written as the sum of AU (1)-invariant
adjoint-valued forms.
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We now summarise the extension conditions for SU (2)%-invariant elements of
Q°(AdP;), and SU (2)?-invariant connections in the temporal gauge, as obtained in
Proposition 3.2, focussing on the case that the bundle P, restricts to the homoge-
neous bundle P; over the principal orbit. We adopt the notation of writing invariant
adjoint-valued one-forms Iy, Ji, I, J> as in (25):

L =E,@v +E30w! Nh=Ev —Eu!
I :=E,Qv* + E3 @ w? hi=E3@v° — E @ w?

Proposition A.3 An invariant connection A on Pj,, withl +m = 1, extends to the
singular orbit S*> x §? = SU2)?/U(1)? ifand only if A = a1l + b1J1 + axlr +
byJr +aoE1Q@u~ 4+ (I +m)E1 @u™T, with ag(0) = [ —m, ag even, and the following
cases:

@) Ifl > 1, then ay, by must be of degree |l — 1 and a>, by of degree [
(i1) If m > 1, then ay, by must be of degree m and ay, by of degree m — 1.

Proposition A.4 An invariant section ® of AdP,,, withl + m = 1 extends to the
singular orbit S* x §? = SU(2)?/U(1)? if and only if ® = ¢ E| with ¢ even.

Proposition A.5 An invariant connection A on Piq extends to the singular orbit S =
SUQ)?/ASUQ2) ifanonlyif A = aily +b1J1 +aylo +byJr +apE1 @u™ + E1 ®
ut with ay, as, ag even, by, by odd, b} (0) = —b5(0), a1(0) — a2(0) = ao(0), and
a1(0) + ax(0) = 1.

Proposition A.6 An invariant section ® of Ad Py extends to the singular orbit §° =
SU(2)?/ASU(2) if and only if ® = ¢ E; with ¢ od.

Proposition A.7 An invariant connection A on Py 14, P10 extends to the singular orbit
$2 =SU®2)*/U(1) x SU(2) iff:

(1) On Popyg, A =atli +b1Ji +axlh +byJo +a0E1 Qu™ + E1 ® ut with ay,
az, ag by, by even, a;(0) = b1(0) = br(0) = 0, a2(0) = —ap(0) = 1, and
a (0) 4 2a5(0) = b5(0) = 0.

(2 OnPiog A=arly +biJi+arl +byJo +agE1 Qu™ +nEy Qu™ withay, by,
az, by, ag even, ay(0) = b(0) =0, ag(0) = 1.

By exchanging the factors of SU(2) C SU(2)? in Proposition A.7, we also obtain
the following corollary:

Corollary A.8 An invariant connection A on Piq o and Py,1 extends to the singular
orbit * = SU(2)?/SU(2) x U(1) if and only if:

(1) On Pro, A =atlh +b1Ji+ahh +byJa +acE1Qu™ +E1 ® ut with ay,
az, ag by, by even, ax(0) = br(0) = b1(0) = 0, a;(0) = ag(0) = 1, and
ay(0) — 24y (0) = b} (0) = 0.

(2) OnPy1, A=arli +biJi +axhh +byJr +agE1 @ u™ + E1 @ u™ with ay, by,
az, by, ag even, a1(0) = b1 (0) =0, and ap(0) = —1.
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Proposition A.9 An invariant section ® of AdPy 14, AdP g extends to the singular
orbit * = SU(2)*/U(1) x SU(2) if and only if-

(1) On Py1q, ® = ¢ Eq with ¢ even, and ¢(0) = 0.
(2) On Py, © = ¢E| with ¢ even.

In the remainder of this section, we will explicitly prove A.3 and A.4: we omit
details of the others, since these are proved similarly.

Proof of A.3 We first calculate the boundary extension conditions for invariant sections

of Q! (AdP, ). Here, denote g = su(2), p = (V!, W!, V2, W?), and V the tangent

3
m.
Clearly p @ V is a U (1)?-invariant splitting of the tangent space of O (=2, —2), and
as U (1)2-representations:

space of the fibre C, _5, spanned by the Cartesian coordinate vector fields %,

g=(E\)®(E2, E3) ER®Copm  p= (VL WH @ (V2 W?) =Cao®Cop
V=0_Cy (73)

while as AU (1) x Z,-representations :'3

g=(E1) ®(E2, E3) ER® Cogsmy p=(VLWhe(Viwhz=CeC,
Vv = R? (74)

Recall that, since [ + m = 1, the of AU (1) x Z,-invariant adjoint-valued one-forms
in g ® (V* @ p*) is spanned by the real and imaginary parts of £} ® (dxo + idxl),
(Ey +iE3)® (v —iw'), (E2 +iE3) ® (v? — iw?). To apply the power-series anal-
ysis of [7, Lemma 1.1], we use (73) to look for a basis in terms of U (l)z-equivariant
homogeneous polynomials p : V — g ® (V* @ p*), evaluatedat 1 € V = C.

First assume / > 0. By making the identification of the fibre Cartesian coordinate
one-forms dx® = dt and dx' = 3rn*¢ = 4tu~ along y (r) = (1, 1,1) € SU(2)> x C,

and by taking real and imaginary parts, we obtain the following splitting: O
Degree Polynomial p(z) Evaluation at z = 1
1 (E; ® (dxo +idx! E, ®dt, E| ® 4tu—
-1 zl’](E2+iE3)®<v1—iw]) E®v 430w, —Eow +E3®0v
2

I zl(E2+iE3)®(v —iwz) Er @ v+ Es@wl —Er ® w? + E3 @ v2

We can recover the case [ < 0 by exchanging P; ,, — Py, 1, since clearly, the polyno-
mials of degree [ — 1 and [ are exchanged by map.

13 hote the factor of Zy in K»_p = AU(1) x Zo does not appear in the representation theory, as it always

acts trivially on the tangent space and the Lie algebra of the gauge group.
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We now apply this calculation to invariant connection A of the proposition: the
canonical connection dA on Py, is given by dA = 1E1 ® u' + mE; ® u?, so writing
the SU(2)*-invariant connection A as an invariant section A — d € Q! (AdP, ),
we get

A—dr=a1(E2@v' + B30 w') +b1(E3 @ v — E2 @ wh)
+ay(Ex @ v2 + Ez @ w?)
+b(E30 0 —E@w?) +(ag— 21+ DE; @ u~

So if I > 0, we require ag(0) = 2/ — 1, ap be even, aj, by to have degree / — 1 and
as, by to have degree / to extend A. Again, one gets the corresponding claim for/ < 0
by exchanging the factors of SU (2). O

Proofof A.4 The degree of a function appearing as the coefficient of an SU (2)%-
invariant element in Q° (AdPl,m) on the principal orbits is determined by a U (1)?-
equivariant homogeneous polynomial from V = Cy _to g = (E1) @ (Ea, E3) =
R ® Cyom.

When [ + m = 1, there is a single-degree zero polynomial given by the constant

map E1, so the invariant section ® = ¢1 E; must have ¢; even. O

B Singular Initial Value Problems

For use in the following proof, we note that the Calabi—Yau structure on 7*S° is given
by (19), and we compute the power-series near ¢ = 0 of the following expressions:

4. 2 3(v3—vp) 1 3(vi+v) 9

2 =Zioa 2B _Chom T2 0@
m -t (1) o ot Q) 2 i ()
w_ L3 0wy o 0@

w222 w2 212 4

Proof of Proposition 3.12 Let (ag, a1, a», ¢) be a solution to (26) on T*S3. Using Prop.
A.S5, define smooth functions a_, Ay, ¥ suchthata; —a> = a_, a1 +ax = 1+t2A+,
¢ = ty. Then y(t) = (ao, ¥, A+, a—) must satisfy a singular initial value problem
with linearisation:

-1 0 0 1
0 —1—1 3%
dyM_| =

Yo 1 ‘2‘5_2_2%5
2 0 0 =2

at initial value yg = (5 , %(5 2_1)— g, &, x) for some &, x € R. This initial value
problem has a unique solution once we fix yo, since det(kId —dy M _1) = (k + 3)2 k2.
O
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For use in the following proofs, we note that the Calabi—Yau structure on O(—1) &
O(—1) is given by (18) with Uy = —Uy = —ug = 1, and the power-series of A, u1,
w near t = 0 satisfy

3 3
A<t>=5t+0(r3> u1=1+§z2+0<f‘) w=3t+ 0@

Proof of Propositions 3.15 Let (ag, aj, az, ¢) be asolution to (26) on O(—1)d O(—1).
Using Prop. A.7 for extending on Py o, y(t) = (ao, a1, az, ¢) satisfies a singular initial
value problem with linearisation:

200 0
0 00 —23¢
DoM1=1 00 ~ Ly
3
000 =2

at initial value yp = (1, €,0, 8’) for some €’, 8" € R. This initial value problem has a
unique solution once we fix yjp, since det(kld — dy,M 1) = (k + 2)% k2. O

Proof of Proposition 3.14 Let (ag, a1, az, ¢) be a solution to (26) on O(—1) ® O(—1).
Using Prop. A.5 for extending on Py 14, we define smooth functions Xo, X1, X2, ¢
such that ag = —1 + 12Xg, a1 = 1?°X1, a» = 1 + t*X5, and ¢ = t*y. Then
y(t) = (Xo, X1, X2, ¥) satisfies a singular initial value problem with linearisation:

-4 0 0 -8

0 -2 230
dy,M—1 = 0 -~ _—4 o0
3

-1 0 0 -2

at initial value yy = (e, —%8, —%e, 8). This initial value problem has a unique

solution once we fix yo, since det(kld — dyyM_1) = (k + 6)% k2. O
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