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Abstract 

The underlying mechanism of object recognition- a fundamental brain ability- has been 
investigated in various studies. However, balancing between the speed and accuracy of recognition 
is less explored. Most of the computational models of object recognition are not potentially able 
to explain the recognition time and, thus, only focus on the recognition accuracy because of two 
reasons: lack of a temporal representation mechanism for sensory processing and using non-
biological classifiers for decision-making processing. Here, we proposed a hierarchical temporal 
model of object recognition using a spiking deep neural network coupled to a biologically plausible 
decision-making model for explaining both recognition time and accuracy. We showed that the 
response dynamics of the proposed model can resemble those of the brain. Firstly, in an object 
recognition task, the model can mimic human’s and monkey’s recognition time as well as 
accuracy. Secondly, the model can replicate different speed-accuracy trade-off regimes as 
observed in the literature. More importantly, we demonstrated that temporal representation of 
different abstraction levels (superordinate, midlevel, and subordinate) in the proposed model 
matched the brain representation dynamics observed in previous studies. We conclude that the 
accumulation of spikes, generated by a hierarchical feedforward spiking structure, to reach abound 
can well explain not even the dynamics of making a decision, but also the representations dynamics 
for different abstraction levels. 
 
Keywords: Temporal Object Recognition, Speed- accuracy Trade-off, Deep Spiking 
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1. Introduction 

Object recognition is one of the main cognitive abilities in different species, especially mammals. 
Correctly recognizing an object in an efficient time is pivotal for proper interaction with the 
environment. Imagine how accurate and fast recognition of a predator is vital for an animal 
(Chittka et al., 2009).  In order to understand the underlying mechanism of this cognitive ability, 
studies have suggested different computational models resampling humans’ or monkeys’ 
responses at both behavioral (choices) and neural levels (activities in the ventral visual pathway) 
(Riesenhuber and Poggio, 2000, Rajaei et al., 2019, Khaligh-Razavi and Kriegeskorte, 2014, 
Yamins and DiCarlo, 2016). Although there is strong evidence that both neural response (Dehaqani 
et al., 2016, Contini et al., 2017, Cichy et al., 2014, Isik et al., 2014) and behavioral choices 
(Mirzaei et al., 2013, Macé et al., 2009, Grill-Spector and Kanwisher, 2005) largely vary over time, 
the underlying mechanism is not well understood. 
In addition to the temporal representation of sensory information, the dynamic of our behavior in 
an object recognition task is affected by another process in the brain called decision-making 
process. It is a process that entails reading out the sensory representations over time and balancing 
between the speed and the accuracy to maximize the expected gain (Okazawa et al., 2020, 
Heekeren et al., 2004, Zhan et al., 2019). Similar to the temporal representation of sensory 
information, the decision-making process and thus the speed-accuracy trade-off regime, has 
commonly been ignored in the computational model of object recognition. Most of these studies 
have investigated the process of object recognition while using a non-temporal linear readout 
mechanism to map the instantaneous population activity into the behavior (Chang and Tsao, 2017, 
Majaj et al., 2015). 
The existing models which try to explain the process of object recognition in the brain have mostly 
different layers resembling different areas in the visual stream. In a hierarchical manner, these 
layers represent different features of the input stimuli from very simple (e.g., lines in specific 
angles) to very complex (e.g., faces) ones and increase the invariancy of the representations by 
pooling mechanisms between layers (Serre et al., 2007a, Kheradpisheh et al., 2016b, Riesenhuber 
and Poggio, 2000). In object recognition tasks, these hierarchical models, such as the HMAX 
model (Riesenhuber and Poggio, 1999), different extensions of the HMAX model (Farzmahdi et 
al., 2016, Zabbah et al., 2014, Rajaei et al., 2012, Ghodrati et al., 2012) and, more recently, deep 
convolutional neural network (DCNN)-based approaches (Cichy et al., 2016, Kriegeskorte, 2015), 
can categorize input images with the similar accuracy to that of humans or animals. Spiking 
versions of these models explain how neurons respond to specific features in the input stimulus 
via STDP learning rules (Kheradpisheh et al., 2018). These models are usually being evaluated by 
comparing their responses in different layers with neural or behavioral responses of humans or 
animals (see also (Cichy et al., 2016)). However, both models and evaluation methods suffer from 
two problems: (i) ignoring the dynamics of responses at both behavioral and neural levels. (ii) 
ignoring the decision-making process and thus the speed-accuracy trade-off regime. It worth 
mentioning that the underlying mechanism of response dynamic in the brain has recently been 
investigated in some studies (Kietzmann et al., 2019, Kar et al., 2019, Nayebi et al., 2022, Mirzaei 
et al., 2013). Kar et al. (Kar et al., 2019), showed that emerging to a solution in the brain for 
challenge images takes more time compared to control images. Brain behavior in presence of these 
images can better be explained by recurrent models compared to feedforward-only models. The 
necessity of recurrent connections for explaining the process of object recognition in the brain is 
also discussed in other studies (Kietzmann et al., 2019, Mirzaei et al., 2013, Nayebi et al., 2022, 



Spoerer et al., 2019). However, the underlying mechanism of behavioral and neural dynamics 
during feedforward processing is not yet investigated (see Kar et al. (Kar et al., 2019), Figure (5) 
for different dynamics during backward masking paradigm  (Fahrenfort et al., 2007)).  
In this study, in line with our recent work (Heidari Gorji et al., 2018), we proposed a hierarchical 
temporal model of object recognition using a spiking deep neural network connected to a 
biological plausible decision-making stage. The first stage of the model, which corresponds to the 
ventral stream in the brain, is comprised of several convolutional and pooling layers, in which 
neurons in each layer progressively learn frequent and salient patterns in the input image using 
STDP learning rules. Importantly, information between the layers is conveyed through spikes 
generated by trained neurons and, thus, the dynamic representation of the input stimulus is shaped. 
In a hierarchy, neurons are getting selective to more complex features from edges to faces for an 
instance. Spikes that are generated overtime in the first stage of the model are then transferred to 
the decision-making stage. There are accumulator units in this stage where the generated spikes 
are being accumulated toward a decision bound and, thus, shaping the accumulation to bound the 
mechanism, which is almost evident in the brain (Gold and Shadlen, 2007, Shadlen and Newsome, 
2001).   
Response dynamics of the proposed model can resemble that of the brain. Firstly, in an object 
recognition task, the model can mimic behavioral characteristics of humans’ and monkeys’ 
responses, not only in terms of the probability of correct response but also in terms of the reaction 
time. Secondly, similar to (Hanks et al., 2014), the speed-accuracy trade-off can be controlled with 
the decision bound of the proposed model. Finally and more importantly, the dynamics of neural 
representation for different abstraction levels (superordinate, midlevel and subordinate) in the 
proposed model match the brain representation dynamics observed in Dehaghani et al. (Dehaqani 
et al., 2016). As a result, the proposed temporal model can explain the dynamics of responses 
during object recognition in the brain from the very first layers of the temporal stream to behavioral 
responses. 

2- Materials and methods 

When an image is presented to the human visual system (HVS), various components of the image, 
such as prominent edges as well as coarse and fine information, are not processed simultaneously 
(Thorpe et al., 2001, Portelli et al., 2016). Considering these studies, we proposed a biologically 
plausible temporal model to explain the response dynamics of the brain during an object 
recognition task. 

2-1- Structure of the proposed model 
The proposed model consists of three main stages inspired by the object recognition system in the 
brain (Figure (1)). In the first stage, the input image is encoded into discrete spike trains in the 
temporal domain. Then, a deep spiking convolutional neural network (DSCNN) is used as a 
temporal feature extractor. Finally, accumulator units integrate evidence in support of possible 
choices, and the decision is made as soon as the accumulated evidence reaches a certain threshold 
(resembling the accumulation to bound model).  
The active part of the cerebral cortex in HVS corresponding to each stage of the proposed model 
is highlighted in the upper part of Figure (1). 
2-1-1 Temporal feeding 



In this stage, we aim to model the behavior and characteristics of the ganglion cells and the lateral 
geniculate nucleus cells (Delorme et al., 2001, Kheradpisheh et al., 2016b, Masquelier and Thorpe, 
2007). Thus, a difference of Gaussian (DoG) filter is used to precisely approximate the function 
of these sensitive cells according to (Kuffler, 1953).  
Then, the output of this contrast detector filter is presented in the time-domain based on the 
amplitude of the detected contrast. Information from high contrast components in the image 
transfers sooner than the low-contrast ones. In other words, the higher the contrast amplitude, the 
faster the response would be. This rank-order coding, is efficient to replicate V1 like responses 
(Delorme et al., 2001). For simplicity, the contrast map is decomposed into discrete-slot temporal 
maps, in which each slot corresponds to a specific contrast slot and, thus, determines how fast the 
information will be transmitted.  
2-1-2- Temporal feature representation (spiking convolutional neural network (SCNN)) 
The Spatio-temporal representation of the input image is then transferred to the next stage where 
a deep SCNN is used to simulate the neural responses of hierarchical layers in the ventral stream 
during the object recognition process. These layers progressively extract appropriate features for 
recognition tasks, from very simple features (i.e., edges or curves) to more complex ones (i.e., 
faces or cars) via an unsupervised learning algorithm (Kheradpisheh et al., 2018). Multiple spiking 
convolutional layers in the network structure form response selectivity to these features with 
different complexity levels via spike time-dependent plasticity (STDP) learning algorithm. A 
spiking pooling mechanism provides invariancy in neural responses to image local variations such 
as scale and displacement.  
The following describes the convolution and pooling layers in the SCNN. 
Spiking convolutional layer: A convolutional layer contains several kernels to detect similar 
visual properties in different locations. Each neuron receives spikes from neurons of previous 
layers within a specific receptive field (window). Spikes of all the neurons are generated based on 
the integrate-and-fire model. Based on this model, the membrane potential of a neuron is stated in 
terms of the synaptic inputs from presynaptic neurons. An action potential (spike) is generated 
when the membrane potential reaches a pre-determined threshold. In each time step t, the 
membrane potential of the i-th neuron is updated as follows: 

(1) 
 

where Vi(t) is the membrane potential of the i-th convolutional neuron, Wij is the synaptic weight 
between the j-th presynaptic neuron and i-th postsynaptic neuron, and Sj is the spike train of the j-
th presynaptic neuron. Sj (t - 1) is equal to 1 if the j-th presynaptic neuron generates a spike in time 
step t; it is set to 0 otherwise. 
Vi controls the generation of action potential (spike) in the i-th neuron; if Vi exceeds a pre-
determined threshold (Vthr), a spike is generated and Vi is reset to potential Vi = 0, i.e.:  

(2)  
There is also a lateral inhibition mechanism in all the convolutional layers. When one neuron fires 
in a particular position, it inhibits other neurons in that position i.e., their potentials are reset to 
zero.  Neurons can generate as many spikes as they can. However, to increase the speed of the 
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proposed model in the training phase, we limit the number of spikes to one spike (i.e., each neuron 
can only generate one spike).  
Spiking pooling layers: Pooling layers which are interleaved between convolutional layers as 
shown in Figure (1) compress visual information and, thus, resemble what occurs in complex cells 
in the visual cortex(Serre et al., 2007b). Pooling neurons are of the integrate-and-fire type, with 
intra-synaptic weight and thresholds all set to one.  
Finally, at the end of the temporal feature representation stage, there is a global aggregation layer 
where spikes generated from different locations of each kernel are being integrated; in each time 
step t, the output of this layer is calculated using Eq. (3): 

(3) 
 

In Eq. (3), Oi(t) is the output of the global aggregation layer corresponding to the i-th kernel, and 
m, n is the output size of the previous convolution layer. Also,  is the neuron spike 
corresponding to locations j and k of the output of the i-th filter. 
STDP algorithm: As mentioned above, learning occurs only in convolutional layers. The learning 
process is layer by layer, in a way that the learning process in each layer starts whenever it finishes 
in the previous layer. When a new image is presented, neurons of each convolutional layer 
compete; those which fire earlier trigger the STDP algorithm to learn the input pattern. Weights in 
the STDP algorithm are updated as follows: 

(4)  
 

where i and j refer to pre-and post-synaptic neurons, ti and tj are the corresponding spike times, 
respectively.  is the synaptic weight modification, and a+ and a- are two parameters specifying 
the learning rate. The sign, not the amount of time difference between the two spikes, affects the 
weight changes. The multiplicative term ensures the weights remain within [0,1] 

where Wij is within [0,1]. Finally, Eq. (5) is used to calculate CL as a criterion to stop the learning 
procedure (convergence) in the convolutional layers. 

(5) 
 

where  is the i-th synaptic weight of the f-th kernel and nw is the total number of synaptic 
weights (independent of the features) in that layer. CL tends to zero if each of the synaptic weights 
converges toward zero or one. Therefore, we stop the learning of the l-th convolutional layer 
whenever CL is sufficiently close to zero.  
The number of layers, size of the filters and learning parameters are set empirically. 
2-1-3- Temporal decision making 
After two stages of temporal coding, the input image will be represented in the spike trains of 
neurons in CNN. Neurons in the last layer on the CNN provide momentary evidence regarding the 
previously learned category-based patterns in the input image. Spikes of these neurons are 
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transferred to the decision-making stage, in which a decision about the category of the input image 
is made via accumulating the bound model which is a well-known model of the decision-making 
process in the brain. In this stage, two accumulator units, corresponding to two categories of the 
input image, integrate the generated spikes in favor of each category. The decision will be made 
as soon as each of these accumulators reaches a pre-set threshold. 
 

 

Figure (1). The general structure of the proposed model with three stages. In the first stage (temporal feeding), DOG 
filters are used to simulate the on-center off-center behavior of ganglion and geniculate cells. Then, the contrast values 
are being temporally codded, in a way that higher values will be sent to the next stage faster than lower values. The 
next stage (temporal feature representation) extracts more complex features using spiking neural networks which are 
simulating the ventral stream in the brain. There is another temporal coding in this stage. Patterns that are more similar 
to those previously learned ones will more potentiate the corresponding neurons and, thus, generate spikes sooner than 
the less similar patterns. Finally, spike trains will be accumulated in the temporal decision-making stage until reaching 
a specific level of threshold. The number and size of DOG, convolution and pooling filters are given as m@i×j×k at 
the bottom of the figure, where m shows the number of filters and i×j×k the size of each filter. Also at the top of the 
filters is the output size of each filter. (Of course, assuming an image with dimensions of 256 × 256 as input).  

2-2- Implementing the proposed model 

In the following, implementing various stages of the proposed structure, i.e., temporal coding of 
input images, feature representation, and decision making, is discussed. 

2-2-1- Temporal feeding 
In this paper, a DoG filter with the size of 7 × 7 pixels is constructed using Gaussian kernels with 
the standard deviations of 1 and 2. Higher values in DoG response show sharper edges and lower 
values are associated with smooth edges. Then, the output of the DoG filter is decomposed into 30 
slot s based on the uniform multi-thresholding on the pixel values. Each of these 30 (considered 
as 30 different time points) slot s is applied as the input to the proposed model sequentially.  



2-2-2- Temporal feature representation  
In this stage, a spiking convolutional neural network with three convolution layers and three 
pooling layers is proposed. The initial weights of the convolution filters are randomly selected 
within [0, 1]. Using STDP, weights of convolution layers are being updated in an unsupervised 
fashion. 
In the first experiment, the first, second and third layers of spiking convolution have 4, 20 and 10 
kernels with the size of 5×5, 4×16×16 and 20×5×5, respectively. The size of the spiking pooling 
windows of the first and second layers is 7 × 7 and 2 × 2, respectively, with the size of strides 6 
and 2. The third pooling layer performs a global pooling process that has 10 outputs due to the 
presence of 10 filters in the third layer of convolution.  
Also, in the second experiment, the first, second and third layers of spiking convolution have 4, 
50, and 30 neural maps (filters) with the dimensions of 5×5, 4×19×19, and 50×7×7, respectively. 
The size of the spiking pooling filters of the first and second layers is 7×7 and 4×4, respectively, 
with the size of strides 6 and 4. The third pooling layer performs a global pooling process that has 
30 outputs due to the presence of 30 filters in the third layer of convolution.  
It is important to note that we use simpler model for the first task, because this task is simpler than 
the second one. The simpler model in the representation stage speed-up the process. These models 
can temporally represent the input stimulus in neural firing rates and can accumulate represented 
information toward possible choices over time. 
2-2-3- Temporal decision-making stage 
For this stage, we use the accumulation to bound model. First, we empirically determine category-
selective neurons from neurons in the last layer of the feature representation stage and call them 
category-selective neurons. This selection is based on the number of spikes generated by the 
neuron while presenting the images from a specific class. For example, car selective neurons are 
those that generate the greatest number of spikes when car images are shown and the fewest 
number of spikes in response to face images and similar for face-selective neurons. Then, the sum 
of the output of these neurons in each class is fed into two units of the decision model. These units 
accumulate the generated spikes in their inputs over time. A decision is made when the 
accumulated spikes reach a pr-set threshold. In the first experiment, we examine the behavior of 
the model for two different thresholds 20 and 30. Then, in another analysis we change the threshold 
in a wider range 0-50, and study the performance and reaction time of the decision. 

3- Experiments and evaluation 

In this paper, to evaluate the performance of the proposed model and its brain plausibility behavior, 
two different experiments are designed. In the first experiment, the decision of the model in 
response to images with different levels of noise is examined. In the second experiment, the neural 
representation in the model is compared with that in the inferior temporal (IT) cortex. We use 
logistic regression (Eq. (6)) and hyperbolic tangent function (Eq. (7)) as well-known psychometric 
and chronometric functions in behavioral studies to evaluate the probability of correct response 
and time of the response, respectively.  

 (6) 
correct 0 1Logit[P ] C=b +b



where Logit(P) is shorthand for log(p/1-p), βi are regression coefficients and C stands for different 
stimulus strength. Fitting is by maximum likelihood under a binomial error model (i.e., a GLM). 

 (7) 

where RT is the response time of the model and C stands for stimulus strength.  
Also, we consider the regression models (Eq. (8) and Eq. (9)) to evaluate the number of spikes and 
the time of the peak response respectively. 

 (8) 
 (9) 

where NS in Eq. (8) is the number of spikes at peak response, TP in Eq. (9) is the time of the peak 
response, βi and αi are regression coefficients and C stands for different stimulus strength. 
In the following, using Eq. (10) we evaluate the effect of the decision threshold and different 
stimulus strengths on the reaction time. 

 (10) 

where RT is the response time of the model, βi are regression coefficients, C stands for stimulus 
strength and θ is decision threshold.  
We also use the “separability index” (SI) to quantify the discriminability of object categories in 
the neural population responses in both model and IT cortex. 
Separability index: The separation of two categories of images in RN can be defined as the ratio 
of the between- and the within-category scatter matrices (Duda et al., 1973).   
Consider an M-category problem, in which there are ni stimuli of category Ci, so that the mean 
vector of each category and the mean of the total data are given by:  

 
(11) 

 
(12) 

where is the jth and n is the number of total stimuli.  
Then, the within-category scatter for each class and the whole data set is calculated by Eq. (13) 
and Eq. (14), respectively. The between-category scatter matrix is given by Eq. (15): 
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(15) 

Because we use the representation of images in neural space with N neurons, SW and SB have size 
N by N. Finally, the SI is calculated as follows:  

 
(16) 

where ||S|| is the norm of S. In this paper, we use a spectral norm (or ||S||) (Horn and Johnson 
(McCarthy et al., 1990)). 

3-1- Designed datasets 
We use two different datasets in our experiments. In the first experiment, dataset-I is used for a 
two-category object classification problem; in the second experiment, dataset-II is employed to 
examine the temporal representation of classification levels in object recognition.  

3-1-1- Dataset-I 
The purpose of designing this dataset is to investigate the behavior of the model in two-class noisy 
decision space. In this dataset, face images are collected from the Caltech dataset (Griffin et al., 
2007) and car images are collected from the Internet. The entire dataset consists of 350 face images 
and 350 car images with the size of 256 × 256 pixels. Some examples of these images are shown 
in Figure (2). Ten images from each set are selected randomly for testing. Using them, 120 
different noisy images with different degrees of perceptual difficulty were formed via the proposed 
algorithm-I, as follows: 

 
Figure (2) A few examples of Caltech and car face images (Griffin et al., 2007) 

Algorithm-I 
Input: Selected images from car and face classes in Caltech(Griffin et al., 2007) 
Output: Images with different degrees of perceptual difficulty 
1. Fourier transform is taken from all images. 
2. The average amplitude of all the images is calculated. 
3. The noise phase matrix is calculated as a product (1 - stimulus stiffness) in the interval (-π, π). 
4. Hybrid phase matrix is calculated from the sum of the phase matrix of the face (car) image with 
the noise phase matrix. 
5. Using the hybrid phase matrix and the mean amplitude matrix, the inverse Fourier transform is 
obtained. 
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Some examples of the obtained noisy images from algorithm-I are shown in Figure (3). The image 
with a strength of 40% is formed from 40% of the original image and 60% of the noise in phase. 
With 10 face images and 10 car images, 10,000 images with different strengths are formed, which 
are fed into the proposed model at 30 different temporal slot s. To test the network, several of these 
different stimuli with different strengths, which are 0, 20, 40, 60, 80 and 100%, respectively, are 
selected. 
 
 

      

      
100% 80% 60% 40% 20% 0% 

Figure (3) Several examples of visual stimuli with different strengths 

3-1-2- Dataset-II  
The second experiment aims to investigate the temporal representation of different abstract levels 
of categorization in a multi-class problem in the proposed model. Therefore, the corresponding 
dataset is selected to examine different levels of classification in object recognition, including 
superordinate level, midlevel and subordinate level classifications. For this purpose, eight different 
classes are selected as shown in Figure (4), which contains examples of images from each class. 
Inanimate classes include images of cars, airplanes, chairs, and tables. Animal classes also include 
images of monkeys, birds, dogs and human faces. All the images, except face images, are collected 
from the ImageNet dataset (Deng et al., 2009); face images are selected from the Caltech database 
(Griffin et al., 2007). In addition, face images are divided into two classes, i.e., male and female, 
as well as images of dogs which are divided into two classes (different breeds) to study the 
subordinate level classification. 



 
Figure (4) Hierarchical category structure of the dataset (2). Three category levels are defined: 1) superordinate level: 
animate vs. inanimate; 2) midlevel (basic level): face vs. body, bird vs. monkey, chair vs. table, car vs. plane; 3) 
subordinate level: man vs. woman, dog1 vs. dog2.  

 

4- Results 

The proposed model generates a temporal representation of the input stimulus in its feature 
representation stage. Once trained, neurons within this stage become selective to the features of 
the car and face in the input image. The presence of these features in the input stimulus causes 
more activation in the corresponding neurons. This will result in increasing the probability of 
generating spikes and stimulating next layers. Face (car) related spikes represented in the neural 
activity of the face-selective (or car-selective) neurons are then accumulated over time by an 
accumulator in the decision-making stage. Upon reaching a decision threshold, the model decides 
whether the input image is a face or a car. In the following, we first, show the firing pattern of the 
face and car selective neurons in response to either of these image categories. Then, we compare 
the speed and the accuracy of making a decision in the proposed model with what we expect from 
previous studies. Afterward, we study the role of decision bound in the model and compare it with 
its reported role in the brain. Finally, we focus on the temporal representation in the model and 
compare it with the representation in the inferotemporal cortex reported in previous 
electrophysiological studies.  

4-1 The proposed model generates stimulus-difficulty and category-dependent spike trains. 
Figure (5) shows spikes trains in the second stage of the model, replicating the behavior of the 
ventral stream in the brain. There are 20 neurons (Freiwald and Tsao, 2010) in the output of the 
second stage of the proposed model which represent neurons in the inferotemporal cortex (IT). 
Among them, 4 neurons for the face class and 4 neurons for the car class are selected which are 
called category-selective neurons (face-selective or car-selective neurons). Here, we use images 
with 20% strength in panels A and B and images with 80% strength in panels C and D. In panels 
A and C, the input images are face and, in panels B and D, the input images are car. As shown in 



this Figure, not only the number of spikes but also the timing of the spikes is being affected by the 
category and the strength of the input image. Neurons’ responses reach their peak activity 
significantly faster, when the input image is their preferred one (face image for face neurons and 
car image for car neurons) compared to non-preferred input image (t-test, t=-18.9623, p-
value=3.35e-60). In other words, face-selective neurons generate more and faster spikes in 
response to face images than the car-selective ones (panels A and C). It is similar for car-selective 
neurons in comparison with the face-selective ones when the input image is the car (panels B and 
D). In addition, both the number of spikes (Eq. (8), β1=0.1905, p-value=3.46e-174) and the time 
of the peak response (Eq. (9), α1=-0.0623, p-value=3.36e-32) are significantly modulated with the 
strength of the stimulus. These results are consistent with the previous findings (Afraz et al., 2006, 
Emadi and Esteky, 2013), which showed that stimulus strength and the category of the input image 
(preferred or non- preferred) affect the timing and the number of spikes in category selective 
neurons. 

 
Figure (5): Raster plot and averaging firing rate of the car (blue) and face (red) selective neurons. Images with 20% 
strength in panels A and B and images with 80% strength in panels C and D are used. In panels A and C, we give the 
images of the face and, in panels B and D, we submit the images of the car to the model.  

 
4-2 Consistent with behavioral studies, the model decides faster and more accurately as the 
signal-to-noise ratio increases in the input stimulus. 
In order to investigate how well our proposed temporal object recognition model decides about the 
category of the input natural stimulus with different levels of difficulty, we use images in a dataset 
(1) with different noise levels (called stimulus strength). Then, we calculate the probability of 
correct decision as well as the average response time at each noise level. We also use logistic 
regression and hyperbolic tangent function as well-known psychometric and chronometric 
functions in behavioral studies (Shadlen et al., 2006) to investigate how well they can explain 
model’s behavior. 
Figure (6) panels A, B shows the recognition accuracy (performance) and response time of the 
model at 6 different noise levels in the input image (indicated on the x-axis) for different decision 
thresholds (indicated by different colors). The model, consistent with human behavior (Heidari-
Gorji et al., 2021, Grill-Spector and Kanwisher, 2005) responds faster (Eq. (7), β1=5.7477 p-



value=7.49e-05) and more accurately (Eq. (6), β1=0.0684, p-value=1.67e-07) as the stimulus 
signal to noise ratio increases. For example, when the threshold is 20 and the stimulus is the 
strongest one (red line, stimulus strength = 100%), the model can decide whether the stimulus is 
face or car with 100% accuracy (Figure (6) panel A red curve). This decision is made faster than 
decisions about weaker stimulus (Figure (6) panel B red curve), indicating that the input image 
provides high-frequency features which are very close to the previously learned features. In the 
weakest stimulus, the model spends more time observing the input image (receiving more time 
slots) and thus, makes its decision based on more information.  
We also do same analysis on two well-known non-spiking deep neural networks, VGG-16 and 
ResNet-50, using a softmax on the last layer as a decision-making mechanism (Figure (6) panels 
E and F). In order to extract reaction time, like Spoerer et al. (Spoerer et al., 2019), we assume that 
the decision uncertainty reported by softmax represents reaction time. Models are pre-trained (see 
Spoerer et al. (Spoerer et al., 2019) for details) and then fine-tuned on the face-car dataset. It is 
important to note that these models (similar to our proposed model) are fed only with the strongest 
stimulus strength (100%) during fine-tuning phase. Although decision certainty/reaction time and 
the accuracy of non-spiking deep models differs as a function of signal to noise ratio of the input 
image, as shown in the Figure (6) panels E and F, they are more shaping a step function instead of 
a gradual changing from less-certain/slow to high-certain/fast classification.  

4-3 The decision bound controls speed-accuracy regimes in a way that the brain does.  
Logistic and hyperbolic tangent functions are widely used as psychometric and chronometric 
functions in behavioral studies (Spoerer et al., 2019, Bogacz et al., 2010). These functions can 
explain more than 99% of the variance of the accuracy (R2~0.99 for threshold=30, black curve in 
Figure (6) panel A) and more than 94% of the variance of the reaction time (R2~0.94 for 
threshold=30, black curve in Figure (6) panel B) of the proposed model. Decreasing the decision 
bound (threshold=20 Figure (6) panels A and B red curve) the variance of the accuracy explained 
by the behavioral psychometric function is still higher than 90% (R2~0.94 for threshold=20, red 
curve in Figure (6) panel A). However, explained reaction time variance by the behavioral 
chronometric function reduce to 73% (R2~0.73 for threshold=20, red curve in Figure (6) panel B). 
This reduction is mainly because of the reduction in the reaction time variance for low threshold. 
Overall, in all cases at least more than 73% of the variances generated by the model can be 
explained by behavioral psychometric and chronometric functions. This result provide support in 
favor of the capability of the model to generate reaction times and choices in a way that brain does. 
Moreover, changing the decision bound in the model affect both the reaction time (t-test, t=-10.88, 
p-value=1.12e-22) accuracy (t-test, t=-4.15, p-value=1.06e-04). Importantly, it differently affects 
the reaction time in different stimulus strengths (Eq. (10) (interaction between strength and 
threshold) β2=0.4162, p-value=5.41e-11). The reaction time in weak stimuli is being more affected 
by the change in the decision bound compared to the strong stimuli. This effect is qualitatively 
consistent with what previous studies have shown (Figure (6) panels C and D). Figure (6) panels 
c and d adapted from (Hanks et al., 2014) shows how the behavior of a monkey in different speed-
accuracy trade-off regimes alters during a perceptual decision-making task.  



 

 
  

Figure (6) Performance and reaction time of monkeys, proposed model and non-spiking deep neural networks in the 
face-car categorization task. (A) demonstrates recognition accuracy (probability correct) as a function of stimulus 
difficulties for the six different thresholds. Lines are the fit of the logistic regression (see method) (B) displays the 
reaction time (number of slots) of the proposed model in terms of the different difficulties of the input image. Lines 
are the fit of a hyperbolic tangent function (see methods). As the difficulty level of the images decreases, the accuracy 
and recognition speed of the model increase. (C and D) are adapted from (Hanks et al., 2014) and show probability 
correct (C) and reaction time (D) in two different regimes of speed-accuracy trade-off during a reaction time task with 
a random dot motion stimulus. Data points in these panels are generated based on Figure (2) panel A in (Hanks et al., 
2014). We use the same functions as in panels A and B for curve fitting. (E and F) performance (E) and reaction time 
(F) for two non-spiking deep neural networks (VGG16 blue , ResNet-50 red). Lines are fitted of same functions as A 
and B. 

4-4 Spikes generated at different times in the model convey relevant, but not redundant, 
evidence about the input category.  
In order to investigate whether generated spikes at different points at time convey informative 
evidence about the stimulus category, we examine the speed-accuracy trade-off in the model. As 
shown in Figure (7) panel A as the threshold increases, the accuracy of the model increases while 
the speed decreases. This shows the decision bound in the proposed model is truly playing its 
expected role (Wenzlaff et al., 2011, Van den Berg et al., 2016, Drugowitsch et al., 2012) and, 
more importantly, generated spikes in the second stage of the model are temporally informative 
and decorrelate in a way that accumulating more spikes results in improving the accuracy. 
Considering that this effect is consistent in all stimulus strength and given that the model in its 
decision-making stage accumulates spikes which are generated in the previous layer (the last layer 



of the second stage), we conclude these spikes at each time point (momentary evidence) not only 
contain information about the class of the input stimulus but also encode the level of uncertainty 
at that input.  
In addition, increasing the threshold changes the decision time as well. As shown in Figure (7) 
panel B, the decision time of the model ranges from a very fast response (for low decision 
threshold) to a very slow response where the model should wait for the whole information in the 
input stimulus. Thus, even those spikes that are generated very late (which are about low-frequency 
features and not very similar to the patterns that the model learned) are important to improve the 
accuracy, independent of the stimulus strength.   

 
Figure (7) panel A shows the relationship between model performance and different decision bounds for different 
stimulus difficulties. Panel B shows the relationship between reaction time and different decision thresholds for 
different stimulus difficulties. 

4-5 Temporal representation of semantic information in the model resembles 
neurophysiological findings.  
The temporal representation in the model is based on a simple assumption that different timings 
of spikes are mainly due to the different contrast levels in the stimulus and the similarity of the 
extracted features with the pre-learned ones. However, one may speculate that these assumptions 
are enough for the model to generate the observed results on the stimulus with artificial noise 
levels. The second experiment aims to investigate whether the model can explain the temporal 
representation of the semantic information (not being manipulated by artificial noise) in the brain. 
Thus, we compare the temporal representation of different levels of categorization on natural 
images in the model with that of the brain (Dehaqani et al., 2016).   
We use two different analyses to compare the temporal representation of semantic information in 
the model with that of the brain when both receive natural images as the input stimulus (this 
experiment is performed on the dataset (2)). As shown previously by Dehaghani et al. (Dehaqani 
et al., 2016), different levels of categorization such as superordinate, midlevel and subordinate are 
represented at different times in the brain.  
In the first analysis, to better visualize the model outputs (like (Dehaqani et al., 2016), Figure (4) 
panel A), we represent the features in two dimensional space using PCA. Then, we employ these 
two dimensions as the coordinates to show each image in Figure (8) panel A (the surrounding 
scatter plots). This analysis demonstrates very detailed separation between images in different 
periods of time. Four circles surrounding the SI diagram stand for four time periods: 10, 16, 20 
and 30. Colored squares (each color is specific to a class) are used when images are in one of the 
four animal classes (monkey, bird, dog and human face), and colored circles (each color is used 



for a class) are used when images are in one of the four non-animal classes (car, plane, chair and 
table). According to Figure (8) panel A, by the time point of 10, the images are very close to each 
other, and no separation takes place. The separation of squares and circles (superordinate level) 
continues until the time point 20; however, images in the midlevel category are again getting closer 
to each other after the time point 16.  
The second analysis aims to investigate how the proposed model represents different images at 
different levels of categorization. To do so, the output of the model is separated based on the class 
of the corresponding input image. Then, the representation similarity between the classes is 
calculated in pairs (there are 8 image classes with total of 28 similarities extracted in pairs for 
midlevel, 16 for superordinate and 2 for subordinate). We employ the similarity index (SI) as 
(Dehaqani et al., 2016) to show the extent, to which the representation of different classes is 
separated from each other. The SI values are greater when there is more similarity within classes 
and less similarity between classes. The average SI at each level of abstraction is considered as the 
SI value for that level. As an example, in order to calculate the SI for superordinate level 
classification, we average all the SIs calculated for the superordinate level of each class (one of 
which is animate and another is inanimate). Similarly, the SI for midlevel classification is the 
average of all SIs in each midlevel class (the difference between subordinate level classes, such as 
men and women, is not considered here). Finally, for the subordinate level, the SI is averaged for 
men-women classes and for dog1-dog2 classes. 
SI diagram in Figure (8) panel B shows the dynamics of separability index of features represented 
in the feature representation stage of the model which stands for inferotemporal (IT) cortex in the 
brain. In each time slot, using t-test, we showed whether the SI value is significant or not (p-
value<0.0016 Bonferroni corrected). Peak latency is defined as the time that the SI exceeds 90% 
of its maximum value. Similar to what Dehaghani et al. (6) and Cichy et al. (Cichy et al., 2014) 
have reported, we observed that neurons in the last layer of the model represent mid-level 
categories (e.g., human faces) earlier than the superordinate level (e.g., animal) categories (Figure 
(8) panel C, p-value=0.0016). The model separates the midlevel with a higher SI than other 
categories (t-test, t=-3.1484, p-value=3.71e-07), which is again consistent with what is observed 
in IT neurons (Dehaqani et al., 2016). It is noticeable that the model has no special mechanism or 
training procedure for processing different levels of categorization.  
Importantly, we show that the observed temporal pattern of the separability index (SI) doesn’t exist 
in the first layer’s representation (Figure (8) panel D). To do so, we calculate SI in a similar way 
for the output of the DOG filter where the contrast information is represented. As shown in Figure 
(8) panel D contrast representations cannot shape a significant non-zero separability index (p-
value<0.0016 Bonferroni corrected).  
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Figure (8) panel A representation of different categories in PCA (first two components) space in different time slots. 
Panel B Separability index of different levels of abstraction over time. Different symbols are used to show the 
significance level. Dots show non-significant SI value (compared to zero) stars show SI which are significantly differ 
from zero with (p-value<0.0016). Shaded areas show standard error. Panel C peak latencies of SI for mid and super 
ordinate level representation. Peak latency is defined as the time that the index exceeds 90% of its maximum value. 
Error bars are standard error. Panel D separability index for the output of the DOG filter where the contrast information 
is represented.  

 



4-6 Dynamical representational dissimilarity matrix (DRDM)  
Representational dissimilarity matrix (RDM) is widely used as a method to compare representation 
in the brain with that of the computational models (Kriegeskorte et al., 2008). However, as shown 
in previous studies (Dehaqani et al., 2016, Cichy et al., 2014, Kar and DiCarlo, 2021, Kar et al., 
2019), the representation of input stimulus in the brain is not static. As the result of temporal coding 
in the brain, representations at different time points convey different information about the sensory 
stimulus. In order to make a reasonable comparison between models and the brain behavior in 
terms of representations, we suggest a DRDM, instead of a static RDM, in a way the dissimilarity 
matrix is calculated at different time points. Since the proposed model temporally encodes the 
input stimulus in its feature representation stage (second stage), we can compare DRDM with that 
of the brain reported in the literature. Each row (i) and column (j) of the matrix stand for a single 
image and each matrix stands for a single point at a time (k). To calculate this matrix, the 
correlation between the spike’s vectors which are generated in the last layer of the deep spiking 
network at time k for images i and j is calculated. Then, the dissimilarity value is 1-correlation. 
This diagram illustrates the within-class similarities and between-class differences presented in 
Figure (9) panel A at different time points (16 and 20). Before time point 16, the matrix is very 
sparse and, thus, they are not plotted here. As illustrated in Figure (9) panel A, at time point 16, 
the classes are well separated. In this time step, blue squares are formed around the diameter, 
indicating the similarity of the features within the class, and values outside the original diameter 
show the degree of greater dissimilarity. There are also two larger squares at the top of the figure 
which belong to the class of human faces (containing male and female images related to the 
subordinate level of abstraction) and the dog image class (containing two different breeds of dogs 
related to the subordinate level of abstraction). The formation of these two large squares indicates 
that, at this time point, subordinate level separation has not yet occurred well. Also in time step 
20, the within-class differences of animate and inanimate categories are being vanished, while 
between-class differences are being appeared. Therefore, as expected, the information represented 
in this time step provides better separation for the superordinate abstraction level. In Figure (9) 
panel B, there are three abstract true matrices of mid-level, super-level and sub-level. These 
matrices are formed in an ideal representation. In Figure (9) panel C, using the kendall τA 
calculation (Khaligh-Razavi and Kriegeskorte, 2014), the correlation between DRDM matrices 
and True matrices is shown which is similar to previous finding, slots 16 and 20 have the highest 
τA for mid-level and super-level respectively, indicating that representation in these time slots are 
more similar to the true representation matrices.   
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Figure (9) panel A Dynamic Representational Dissimilarity Matrix (DRDM) for dataset (2) in 2-time steps. Panel B 
Three abstract true matrices of mid-level, super-level and sub-level. Panel C Correlation between DRDM matrices 
and True matrices using Kendall's τA.  Error bars indicate the standard errors. Asterisks indicate significant RDM 
correlations (ns: not significant, p<0.05: *, p<0.01: **, p<0.001: ***, p<0.0001: ****).  

5- Discussion 

Object recognition and making a choice regarding the recognized object are important and vital 
abilities of the brain, either in humans (Aboudib et al., 2016, Andersen, 1995) or in much less 
developed creatures, like rodents (Bogacz et al., 2010, Dehaqani et al., 2016). The processes of 
object recognition and deciding about that in both representation (Delorme et al., 2010) and 
decision-making (Deng et al., 2009) parts take different times for different objects. For example, 
representation of ambiguous objects in the IT cortex (Farzmahdi et al., 2016) and the decisions to 
recognize them are slower and less accurate than those which are less ambiguous (Fukushima and 
Miyake, 1982, Ghodrati et al., 2014). Importantly, this speed and the accuracy can be adjusted via 
the decision process in the brain. Our brain, especially in those situations where the accurate choice 
is more rewarding than faster one, spends more time and collects more information in order to 
increase the probability of making a correct choice. On the other hand, in those situations when 
the speed is more rewarding (for example when we are doing a project very close to a deadline), 
we will make faster choices with the cost of being less accurate. Thus, this is not only the stimulus 
which determines our choice, but the speed-accuracy trade off regime of our decision process can 
also affect it. As a result, we believe that a reliable explanation for the underlying mechanisms of 
object recognition in the brain should be able to explain the choice considering the speed-accuracy 
trade off regimes as well as the temporal representation of input stimulus, otherwise we cannot 
distinguish between mechanisms that make similar choices but with different speeds.  
In this work, we proposed a temporal feedforward model, explaining the process of object 
recognition in the brain in different speed-accuracy trade-off regimes. To this end, we consider not 
only the structure and the function of ventral stream as the brain areas which represent input 
stimulus, but also the lateral intraparietal cortex, which is accounted for making decision in 
different speed-accuracy trade-off regimes.  
We proposed a spiking model for object recognition, in which the input image was represented in 
spike trains. Then generated spikes were accumulated toward decision bounds. The model 
consisted of three stages: neurons in the first stage, like V1 neurons in the occipital cortex, were 
selective to edges in different orientations. The timing of spikes generated in this layer depended 
on the contrast of the stimulus in the receptive field of the neuron. In the middle stage of the model, 
neurons were being selective to more complex shapes. In a deep structure spikes at the late layer 
of the model were generated in favor of different pre-defined categories in the input stimulus.  
Finally, in the last stage -the decision-making stage-  these generated spikes were being 
accumulated in accumulator units until reaching a threshold. The model decided about the category 
of the input image as soon as any of the accumulators reached their threshold. 
Multiple experiments showed that the proposed model can replicate what was expected from 
humans or animals while making decisions about an object. Firstly, we showed that the speed and 
the accuracy of the model in an abject recognition task with noisy stimuli followed a tangent 
hyperbolic chronometric and a sigmoid psychometric function, respectively in keeping with 
various studies of perceptual decision-making (57,58)(Heidari Gorji et al., 2018, Okazawa et al., 



2020, Okazawa et al., 2021). We demonstrated that the decision bound in the decision-making 
stage of the model truly adjusted the speed and the accuracy of a decision, in a way that has been 
observed in behavioral studies (Hanks et al., 2014). The fact that the probability of correct choices 
increases if the decision stage of the model accumulates more information over time (higher 
decision bound) indicates that the represented temporal evidence in the second stage of the model 
is not redundant.  
One may speculate that the above observations stem from the artificial noise we used in our 
images. Achieving a higher reaction time and lower performance for noisier stimulus might not be 
the result of a brain plausible temporal feature extractor, but the result of the way that we produce 
noise in the input image. In the next experiment, which is an important analysis in our study, we 
did not control the strength of the input evidence, instead, we used a set of different natural images 
in different categories (which is widely used in previous neurophysiological and behavioral 
studies) and compared the temporal representation of different abstract levels of categorization 
(superordinate, subordinate, and midlevel) with that in the brain. Results were consistent with 
those of the previous studies (Dehaqani et al., 2016, Cichy et al., 2014) in terms of the average 
peak and  average strength of the decoding over time (Figure (8)). Moreover, the DRDM analysis 
represented that how single images within an abstract level of categorization were similarly 
represented over time. Thus, the second experiment, provided stronger evidence about the 
plausibility of temporal representation in the proposed model compared to previous models 
(Heidari Gorji et al., 2018, Kiani et al., 2013, Spoerer et al., 2019). Thus, we believe the model is 
a good candidate for delving deeper into the underlying mechanisms of core object recognition in 
the brain through computational modeling.  
Bearing the structure of the model in mind, we may conclude that the representation dynamics in 
the brain in a rapid feedforward categorization task stems from three factors: (i) the contrast levels 
existing in the input image, (ii) the similarity of extracted features with those of pre-learned ones, 
and (iii) the decision bound which controls the speed and the accuracy trade-off. All these factors 
can affect reaction times when making a choice about a natural stimulus. Although these factors 
have been discussed separately in different studies, we showed that all should be considered to 
explain the object representation, the time, and the accuracy of object recognition in the brain.    
According to (Macé et al., 2009, Dehaqani et al., 2016, Mack and Palmeri, 2015), classification at 
the midlevel was faster than the superordinate and subordinate levels because of the more within-
class similarity and more between-class dissimilarity of features at the midlevel than the sub and 
superordinate levels. Results of our model in line with this hypothesis suggested that faster 
separation of the midlevel was not the effect of specific circuits or connections; instead, this is due 
to the contrast of different parts of the images and the more similarity between the learned and the 
presented features. 
It is worth discussing that classic models of core object recognition in the brain neither have a 
mechanism for temporal representation (Riesenhuber and Poggio, 1999) nor for speed-accuracy 
trade-off. Recent studies give the role of temporal representation to recurrent connections (Spoerer 
et al., 2019, Kietzmann et al., 2019, Kar et al., 2019, Nayebi et al., 2022, Mirzaei et al., 2013) and 
leave the question of underlying mechanism of temporal dynamics in feedforward processing 
open. On the other hand, most of these models still suffer from the lack of a speed-accuracy trade-
off mechanism and those which proposed such mechanism (Spoerer et al., 2019, Nayebi et al., 
2022) are less plausible in terms of biological evidence (see below). In contrast, making a bridge 
between decision science and the science of object recognition, our model explains not only 



dynamics of making decisions about objects but also dynamics of representation of abstract 
information. The later one is less being discussed in previous studies. Finally, as shown by Wang 
2002 (and later works in his lab), a neuronal implementation of the accumulation to bound model 
is a recurrent spiking network. Thus, in terms of the necessity of recurrent connections, our results 
are in line with (Spoerer et al., 2019, Kietzmann et al., 2019, Kar et al., 2019, Nayebi et al., 2022, 
Mirzaei et al., 2013). However, we are showing that these recurrent connections are not necessarily 
needed at the representation level but may be at the decision-making level.  
Spoerer et al. (Spoerer et al., 2019), assume that reaction time is the time that the entropy of the 
model’s posterior reaches a threshold. Thresholding on the posterior entropy as a mechanism of 
decision making is less evident in the literature compared to thresholding on the accumulated 
momentary evidence (which is used in our model). Although both may reflect a same concept, our 
proposed implementation of decision-making layer has much stronger biological supports 
(Shadlen and Kiani (Kiani et al., 2013)). Moreover, representation of reaction time in Spoerer et 
al. (Spoerer et al., 2019) model suffers from some minor issues which are not the case for our 
model: 1-Setting the threshold on the entropy (uncertainty) will result in a reverse relation between 
threshold level and decision accuracy/time; i.e. lower thresholds cause higher accuracy/reaction 
time. However, it has been shown that decision threshold has a direct relation with 
accuracy/reaction time; i.e. higher threshold results in higher accuracy/reaction time (Hanks et al. 
(Hanks et al., 2014)). 2- In order to calculate the entropy brain needs another neural mechanism 
which is not explained in the Spoerer et al. (Spoerer et al., 2019), however the neural 
implementation of the accumulation of momentary evidence in our model is well-known (Wang 
(Wang, 2002)). 3-Spoere et al. (Spoerer et al., 2019), assume that reaction time is the same as 
certainty, however although decision certainty is informed by reaction time, these two are not the 
same (Kiani et al. (Kiani et al., 2014)). In the bounded accumulation of momentary evidence 
model, which is used in our study, decision certainty can be represented differently from reaction 
time. In this model decision certainty represented by the distance of the looser accumulator from 
the decision bound while reaction time is the time that the winner accumulator spend to reach the 
decision bound.  
We compared our spiking feedforward model with two non-spiking feedforward deep models 
(VGG-16 and ResNet-50 used in Spoerer et al. (Spoerer et al., 2019)) in shaping accuracy and 
reaction time as a function of signal to noise ratio (Figure (6) panels E and F). These models lack 
both temporal representation and speed-accuracy trade-off mechanisms. However, we can assume 
that decision certainty in these models can compensate for the lack of the first mechanism (i.e. 
temporal representation). In a way that, a more certain decision implies that stronger information 
was represented over time (Spoerer et al. (Spoerer et al., 2019)) and thus faster decision is made.  
Yet, the lack of the second mechanism (i.e. speed-accuracy trade-off) cannot be compensated 
because there is no potential mechanism in these models for changing speed-accuracy trade-off. 
As a result, we can expect that, represented certainty in these models can explain some variations 
of reaction times but not all. As shown in Figure (6), they are more shaping a step function instead 
of a gradual changing from less-certain/slow to high-certain/fast classification. This effect is in 
line with our expectation that these models can only explain a part of variance in reaction times. 
Finally, we believe that the present work provides a new perspective for understanding the 
underlying mechanism of object recognition in the brain in three ways: 1- We proposed a 
feedforward computational model which provides a dynamical representation of a static input 
image. 2- The model makes decision based on a biologically plausible decision-making model, 



and thus can replicate neural and behavioral responses in different speed-accuracy trade-off 
regimes. 3- The proposed model explains temporal advantages of different abstract levels’ 
representation in the brain. 
We also conducted another analysis to compare the results of Grill-Spector and Kanwisher (Grill-
Spector and Kanwisher, 2005) and Mack and Palmeri (Mack and Palmeri, 2015) with the behavior 
of the model in timing of the levels of the categorization. Grill-Spector and Kanwisher (Grill-
Spector and Kanwisher, 2005) showed that a comparable performance on identification task (sub-
ordinate level categorization) requires substantially more processing time compared to detection 
and categorization in the midlevel. Mack and Palmeri (Mack and Palmeri, 2015), in support of the 
previous separated works, systematically evaluated the effect of exposure time on the 
categorization level advantages. They showed that mid-level advantage appears only when the 
exposure time is less limited. We used the support vector machine (SVM) to classify the temporally 
represented information in different layers of the model in each time slot. The results are illustrated 
in Figure (10). As shown in this Figure the 3rd convolution layer, reaching to the performance of 
80% for mid-level categorization takes around 10 time slots, while it takes 20 time slots for the 
sub-ordinate categorization to reach the same level of accuracy. This is similar to Grill-Spector 
and Kanwisher (Grill-Spector and Kanwisher, 2005). However, the model never shows an 
advantage of super-ordinate over mid-level in last representation layer (i.e. 3rd convolution layer), 
but this is to somehow evident in 2nd convolution layer where there are super-level advantages for 
lower exposure duration. Although making a strong conclusion in favor of these hypothesizes 
needs a systematic design of experiment for the model, these analyses show the potential of the 
proposed model to investigate different hypothesis in the field of object recognition and decision 
making especially those that are dealing with the recognition time and the speed-accuracy trade-
off. It should be noted that in this experiment, we used images in dataset II (the train and the test 
set is similar to those we used for training and testing the proposed model). There are 8 image 
classes with a total of 28 pairs for midlevel, 16 pairs for superordinate and 2 pairs for subordinate. 
In each level of categorization, the average accuracy of these pairs is calculated as the performance 
in that level. 
 

  
Figure (10). Performance of SVM classifier on different convolution layers of the model over time. The SVM was 
trained separately on each time slot and convolution layer to perform on superordinate, mid-level and subordinate 
categorization task. Each trained SVM is used to classify new images (test set) in the corresponding time slot and the 
convolution layer. 



 
It is important to note that the existing computational models of core feedforward object 
recognition have usually ignored the brain’s dynamics in the representation and decision-making 
parts (Gold and Shadlen, 2007, Hanks et al., 2014, He et al., 2016, Heekeren et al., 2004, Heidari-
Gorji et al., 2015, Hubel and Wiesel, 1968, Kanwisher et al., 1997, Karimi-Rouzbahani et al., 
2017, Kheradpisheh et al., 2016a), such that most of them are only capable of following either the 
accuracy (Gold and Shadlen, 2007, Hanks et al., 2014, He et al., 2016, Heidari-Gorji et al., 2015, 
Kiani et al., 2013, Hubel and Wiesel, 1968, Kheradpisheh et al., 2016a) or the reaction time (Kiani 
et al., 2013) of the recognition. The structure of the proposed model in its second stage was similar 
to the one proposed by Kheradpishe et al. (Kheradpisheh et al., 2018). However, there were some 
fundamental differences in our model borrowed from biological studies. Kheradpishe et al. 
(Kheradpisheh et al., 2018) used a maximization layer as the last layer of the feature representation 
stage, assuming that the strongest evidence was enough for deciding about the input object. 
However, using this layer, they eliminated other sources of information and only used the strongest 
one. On the contrary, in our proposed model, the generated spikes of all the neurons were being 
accumulated in the decision-making stage and, thus, all sources of information were being used 
for the categorization task. Moreover, in contrast to Kheradpishe et al. (Kheradpisheh et al., 2018), 
neurons in our proposed model were being reset after generating a spike and could fire again if 
their potential reached a threshold again. More importantly, in order to shape a temporal tuning 
curve for each neuron, we decreased the threshold of neurons after being trained. Therefore, the 
number of spikes generated by a neuron depends on the similarity of the input with its preferred 
feature.  
Limitations of the model are understood by considering to the model structure. i) The model is a 
feedforward spiking implementation of the visual system. Due to lack of any feedback path, it is 
not expected to mimic the visual system in variety of object recognition problems. ii) In addition 
to the trainable parameters of the SNN, there are several parameters (such as number of time slot, 
number of filters and decision bound) which should be set to achieve the best performance. 
Nevertheless, these parameters improve the degree of the freedom of the model. iii) Due to the 
learning strategy, the proposed model can't be applied to online application especially on 3D or 
4D images.  
 
Code availability. The custom code for data analysis and models is available upon request from 
the corresponding author. 
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