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Quantum theory offers measurement incompatibility, that is, the existence of quantum measure-
ments that cannot be carried out simultaneously on single systems. Measurement incompatibility
is essential for probing many aspects of quantum correlations and quantum information processing.
However, its fundamental and generic link with nonclassical correlations observed in the simplest
prepare-and-measure scenario is still untold. In the prepare-and-measure scenario, we uncover that d-
dimensional classical systems assisted with shared randomness reproduce all the input-output statis-
tics obtained from any set of d-dimensional compatible quantum measurements. Thus, any quantum
advantage in one-way communication tasks with d-dimensional systems witnesses incompatibility
of the measurements on the receiver’s end in a semi-device-independent way. To witness incompat-
ibility of an arbitrary number of quantum measurements acting on an arbitrary dimension, wherein
different measurements have different outcomes, we introduce a class of communication tasks - a
general version of random access codes. We provide generic upper bounds on the success metric of
these tasks for compatible measurements. These bounds are tight whenever the dimension on which
the measurements act is not larger than the number of outcomes of any of the measurements.

I. INTRODUCTION

In the standard quantum theory, a set of quantum
measurements is called incompatible if these measure-
ments cannot be performed simultaneously on a single
copy of a quantum system [1]. This notion of measure-
ment incompatibility is one of the fundamental features
of quantum theory that differentiates quantum mechan-
ics from the formulation of classical physics. Quantum
measurement incompatibility is at the root of demon-
strating various fundamental quantum aspects ranging
from Bell-nonlocality [2, 3], Einstein–Podolsky–Rosen
steering [4–6], measurement uncertainty relations [7, 8],
quantum contextuality [9, 10], quantum violation of
macrorealism [11], to temporal and channel steering
[12–14].

Bell inequality violation is the most compelling op-
erational witness of incompatible measurements since
it relies only on the input-output statistics of bi-
partite systems [3, 15, 16]. Further, measurement
incompatibility can also be witnessed through Ein-
stein–Podolsky–Rosen steering [4–6, 17]. These proto-
cols, however, rely on entanglement. Only recently, wit-
nessing of quantum measurement incompatibility in the
prepare-and-measure scenario based on some state dis-
crimination task [18] has been proposed. It is partic-
ularly noteworthy that measurement incompatibility is
necessary but not sufficient for Bell inequality violations
employing fully untrusted devices [19, 20], whereas in-
compatibility is shown to be necessary as well as suf-
ficient in steering with one-sided trusted devices [5, 6]
and in state discrimination task with fully trusted prepa-
rations [21] (also see [22, 23]).

Notwithstanding, the generic link between measure-

ment incompatibility and nonclassical correlations in
the simplest prepare-and-measure scenario is still not
fully explored. The present article is motivated to-
wards filling this important gap in the relevant liter-
ature. Moreover, the results presented here address
whether incompatible quantum measurements are nec-
essary for probing quantum advantage in any one-way
communication task. Apart from addressing this fun-
damental question, this work aims to provide an opera-
tional witness of incompatibility for any set of quantum
measurements of an arbitrary setting - any set of an ar-
bitrary number of measurements acting on an arbitrary
(but finite) given dimension wherein different measure-
ments have different arbitrary number of outcomes.

Specifically, we consider the one-way communication
scenario consisting of two players, say, Alice (sender)
and Bob (receiver). Alice and Bob are given inputs such
that each player does not know the input of the other
player. Alice, upon receiving her input, sends classi-
cal or quantum communication to Bob. Bob, upon re-
ceiving his input and the communication sent by Al-
ice, produces the outputs. In such scenario, we show
that any quantum advantage in an arbitrary commu-
nication task over all possible classical strategies with
unlimited shared randomness implies that the quantum
measurements performed by Bob to produce the out-
puts are incompatible. Therefore, any one-way commu-
nication task in prepare-and-measure scenario serves as
a tool to witness measurement incompatibility in a semi-
device independent way. Furthermore, we point out
that whenever the figure of merit of any task is a con-
vex function of the input-output statistics, its maximum
value in classical communication and quantum commu-
nication with compatible measurements are the same.
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The result [24], that a pair of quantum measurements
is incompatible whenever it provides advantage in ran-
dom access code task, becomes a corollary of our obser-
vation.

Subsequently, we focus on a specific quantum com-
munication task in the prepare-and-measure scenario,
namely, Random Access Codes (RAC) [25]. Based on
the operational figure of merit of this task, we propose a
witness of measurement incompatibility of a set of ar-
bitrary number of quantum measurements having ar-
bitrary number of outcomes acting on arbitrary dimen-
sional state. Specifically, we derive upper bound (or, ex-
act value in specific cases) of the average success proba-
bility of RAC assisted with the best classical strategy, or
equivalently the best quantum strategy involving com-
patible measurements by the receiver. Therefore, given
any set of quantum measurements, if the average suc-
cess probability of RAC involving the given measure-
ments by the receiver exceeds the above bound, then
we can certify that the given measurements are incom-
patible. Here, it should be noted that RAC, being one
of the fundamental quantum communication protocols,
has been implemented in a series of experiments [26–
31]. Hence, the results presented in this study can be
used as experimental tool to witness measurement in-
compatibility based on present day technology. Finally,
we identify all sets of three incompatible rank-one pro-
jective qubit measurements that can be witnessed by
RAC. We next proceed by first explaining the definition
of measurement incompatibility, followed by detailed
analysis and discussions of illustrative results.

II. QUANTUM MEASUREMENT INCOMPATIBILITY

An arbitrary measurement is conceptualized by some
Positive Operator-Valued Measure (POVM) defined as
Ey ≡ {Mby |y}by with Mby |y > 0 for all by and
∑by Mby |y = 1. Here y corresponds to the choice of mea-
surement, and by denotes the outcomes of measurement
y.

A set of measurements {Ey}y with y ∈ [n] (here we
use the notation [k] := {1, . . . , k}) is compatible [1] if
there exists a parent POVM {Gκ : Gκ > 0 ∀κ, ∑κ Gκ =
1} and classical post-processing for each y given by
{Py(by|κ)} such that

∀by, y, Mby |y = ∑
κ

Py(by|κ)Gκ . (1)

Post-processing for each y is defined by {Py(by|κ)} such
that

Py(by|κ) > 0 ∀y, by, κ; ∑
by

Py(by|κ) = 1 ∀y, κ. (2)

III. INCOMPATIBILITY IS NECESSARY FOR
QUANTUM ADVANTAGE IN COMMUNICATION

TASKS

Now, we will show that incompatible measurements
are necessary for showing quantum advantage in any
communication task. Before proceeding, let us briefly
describe a generic communication scenario consisting of
two players - Alice and Bob. Alice and Bob are given in-
puts x ∈ [l] and y ∈ [n], respectively. Further, initially
neither player has any idea about the other player’s
input. Alice, upon receiving the input x sends a d-
dimensional classical or quantum system to Bob. Bob,
upon receiving the input y and the message (which is d-
dimensional classical or quantum system) sent by Alice,
outputs by ∈ [dy]. The outcome of this communication
task is determined by the set of probabilities distribu-
tions {p(by|x, y)}.

In classical communication, they can use pre-shared
randomness λ, and therefore, the any typical probability
can be expressed as

p(by|x, y) =
d

∑
m=1

∫
λ

π(λ)pa(m|x, λ)pb(by|y, m, λ) dλ.

(3)
Here {pa(m|x, λ)}, {pb(by|y, m, λ)} are encoding and
decoding functions by Alice and Bob, satisfying non-
negativity and

∑
m

pa(m|x, λ) = ∑
by

pb(by|y, m, λ) = 1. (4)

While in quantum communication

p(by|x, y) = Tr(ρx Mby |y), ρx, Mby |y ∈ B(C
d) (5)

Here B(Cd) stands for the space of all operators act-
ing on d dimensional complex Hilbert space. Let l, n, dy
be some natural numbers. Given the scenario x ∈ [l],
y ∈ [n], by ∈ [dy], we define the set all probabilities ob-
tainable by d-dimensional classical communication

Cd := {p(by|x, y)} (6)

where p(by|x, y) is given by (3), and the set of all proba-
bilities in d-dimensional quantum communication

Qd := {p(by|x, y)} (7)

where p(by|x, y) is given by (5). We are interested in an-
other set of probabilities,

QC
d := {p(by|x, y)} (8)

where p(by|x, y) is given by (5) such that the set of mea-
surements acting on d-dimensional quantum states used
by Bob {Mby |y} is compatible according to (1).
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Result 1. Given any scenario,

QC
d ⊆ Cd, (9)

that is, measurement incompatibility is necessary for any ad-
vantage over classical communication. However, measure-
ment incompatibility is not sufficient for quantum advantage.

Proof. Consider the case where Bob performs a single
POVM measurement {Gκ}, which is the parent POVM
of the measurement set {Mby |y}. Thanks to the Frenkel-
Weiner theorem [32], which implies that the set of
input-output probabilities p(κ|x) with a single quan-
tum measurement on d-dimensional quantum states
can be always be reproduced by a suitable classical d-
dimensional communication in the presence of shared
randomness. That is, ∀ρx, there exists classical strategy
π(λ), pa(m|x, λ), pb(κ|m, λ) such that

Tr(ρxGκ) =
d

∑
m=1

∫
λ

π(λ)pa(m|x, λ)pb(κ|m, λ) dλ. (10)

Here note that the scenario considered by Frenkel-
Weiner [32] is a bit different since Bob does not receive
any input y therein. That is why Bob’s output κ depends
only on the message m sent by Alice and classical shared
randomness λ. On the other hand, Bob receives the mes-
sage m as well as an input y in the aforementioned com-
munication scenario. Hence, in the communication task,
Bob’s output by depends on m, y and classical shared
randomness λ (see Eq.(3)).

Let us now focus on the aforementioned communica-
tion scenario and take into account the following decod-
ing function,

pb(by|y, m, λ) = ∑
κ

Py(by|κ)pb(κ|m, λ), (11)

where {Py(by|κ)} is the post-processing to obtain Mby |y
from the parent POVM defined in (1). One can check
that this is indeed a valid decoding function.

Next, we show that an arbitrary p(by|x, y) ∈ QC
d in

the communication scenario can always be reproduced
by a suitable classical strategy involving the decoding
function (11). An arbitrary p(by|x, y) ∈ QC

d can always
be expressed as p(by|x, y) = Tr(ρx Mby |y), where Mby |y
satisfies (1). Now, with the help of (10), one can show
the following,

Tr(ρx Mby |y)

= ∑
κ

Py(by|κ)Tr(ρxGκ)

= ∑
κ

Py(by|κ)
(

∑
m

∫
λ

π(λ)pa(m|x, λ)pb(κ|m, λ)dλ

)

= ∑
m

∫
λ

π(λ)pa(m|x, λ)

(
∑
κ

Py(by|κ)pb(κ|m, λ)

)
dλ

= ∑
m

∫
λ

π(λ)pa(m|x, λ)pb(by|y, m, λ) dλ. (12)

Therefore, an arbitrary probability distribution
p(by|x, y) obtainable from compatible set of mea-
surement can be reproduced by a suitable classical
strategy, inferring that QC

d ⊆ Cd.
Since the figure of merit of any communication task is

some arbitrary functions of the probabilities p(by|x, y),
we can infer that any advantage in such tasks over clas-
sical communication can be attained only if the set mea-
surements {Ey ≡ {Mby |y}by}y is incompatible.

Finally, we note that there exists incompatible qubit
measurements such that the probabilities obtained from
them for arbitrary quantum states are within C2 (see Sec-
tion IV-A of [33]). This completes the proof. ut

We are often interested in linear functions of
{p(by|x, y)} due to their practical importance in quan-
tum communication complexity tasks [34–36], quan-
tum key distribution [37], quantum randomness gener-
ation [38, 39], quantum random access codes [24, 40],
oblivious transfer [36, 41] and many other applications.
To find the optimum value of any linear function of
{p(by|x, y)}, it is sufficient to consider classical strategy
without shared randomness (see Lemma 1 in the Ap-
pendix A for detailed explanation). As a consequence,
all probability distributions {p(by|x, y)}, that are ob-
tained from classical strategy without shared random-
ness, can always be reproduced by the following quan-
tum strategy. Upon receiving the input x, Alice sends
the quantum state ρx such that ρx is diagonal in some
basis. Bob, upon receiving the input y and the state ρx,
performs a fixed measurement {Gκ}, which is indepen-
dent of y and nothing but the measurement in that ba-
sis, followed by some post-processing depending on y.
Therefore, we have another useful result.

Result 2. The maximum value of any linear function of
{p(by|x, y)} obtained within the two sets Cd andQC

d is same.

Above results have profound implications in practice.
As a consequence of them we are able to conclude that
any arbitrary communication task can serve as a witness
of measurement incompatibility. Next, we will propose
incompatibility witness for an arbitrary set of measure-
ments for a family of communication tasks, namely, the
general version of random access codes [25].

IV. INCOMPATIBILITY WITNESS FOR SETS OF
MEASUREMENTS OF ARBITRARY SETTING

Take the most general form of a set of measurements.
There are n measurements, defined by {Mby |y} where
y ∈ [n] each of which has different outcomes, say, mea-
surement y has dy outcomes, that is, by ∈ [dy], and
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FIG. 1. An unknown measurement set of arbitrary settings,
{Mby |y}by ,y, is provided; we only know the dimension (d) on
which this set of measurements act. Our task is to certify the
incompatibility of this set of measurements. Here, the notation
[k] := {1, · · · , k} for any natural number k.

these measurement are acting on d-dimensional quan-
tum states (see FIG. 1). In order to witness incompati-
bility of this set we introduce the most general form of
random access codes with Bob having this set of mea-
surements. Alice gets a string of n dits x = x1x2 · · · xn
randomly from the set of all possible strings in which
xy ∈ [dy] for all y ∈ [n]. While Alice communicates a d-
dimensional classical or quantum system to encode the
information about obtained string, the task for Bob is to
guess the y-th dit when y is chosen randomly. The fig-
ure of merit is the average success probability defined
by the following linear function

S(n, ~d, d) =
1

n ∏y dy
∑
x,y

p(by = xy|x, y) (13)

that is fully specified by n, ~d = (d1d2 · · · dn), and d. Since
this (13) is a linear function of p(by|x, y), by Result 2, the
maximum value over Cd and QC

d is the same and de-
noted by SC(n, ~d, d). Precisely,

SC(n, ~d, d) = max
{p(by |x,y)}∈Cd

S(n, ~d, d)

= max
{p(by |x,y)}∈QC

d

S(n, ~d, d). (14)

Hence, SC(n, ~d, d) can be evaluated by maximizing
the average success probability either over all classical
strategies, or over all quantum strategies involving com-
patible measurements only.

Whenever a set of measurements in the scenario spec-
ified by n, ~d, d gives S(n, ~d, d) > SC(n, ~d, d) in above-
introduced general version of the random access codes,
we can conclude that the measurements are incompati-
ble. Hence, in order to witness measurement incompat-
ibility, we need to know SC(n, ~d, d). Now we present an
upper bound on SC(n, ~d, d) for arbitrary n, ~d, d.

Result 3. The following relation holds true for arbitrary
n, ~d, d,

SC(n, ~d, d) 6
1
n
×min

{
1 + ∑

i,j
i<j

d
didj

, n− 1 +
d

∏y dy

}
.

(15)

This upper bound in Eq. (15) is obtained for QC
d , that

is, by taking the existence of a parent POVM of the mea-
surements {Mby |y}by ,y performed by Bob. The proof of
this result is presented in the Appendix A. When the
outcome of all the measurements are same, which is
dy = d̃ for all y, the above bound simplifies to

SC(n, d̃, d) 6
1
n
×min

{
1 +

n(n− 1)d
2d̃2

, n− 1 +
d
d̃n

}
.

(16)
Hence, in different types of RAC involving an arbitrary
set of quantum measurements by Bob, if the average
success probability exceeds the aforementioned upper
bounds on SC, then we can conclude that the measure-
ments by Bob are incompatible.

On the other hand, whenever

d 6 min
y

dy (17)

we find out the exact value of SC(n, ~d, d). Say, ki is
the number of sets among [d1], · · · , [dn] such that dit
i ∈ [dy]. For example, consider the random access codes
with n = 4 and d1 = 2, d2 = 3, d3 = 4 and d4 = 3.
That is, Alice gets a string of four dits x = x1x2x3x4 ran-
domly, where x1 ∈ [2], x2 ∈ [3], x3 ∈ [4] and x4 ∈ [3]. In
this case, k1 = 4, k2 = 4, k3 = 3, k4 = 1. Also, we denote
dmax = maxy dy.

Result 4. If (17) holds then

SC(n, ~d, d) =
1

n ∏y dy
∑
[(

dmax

∏
j=1

C
αj
nj

)
max

i=1,··· ,d
{ni}

]
(18)

with

αj = k j −
dmax

∑
i=j+1

ni, C
αj
nj =

αj(αj − 1) · · · (αj − nj + 1)
nj(nj − 1) · · · 1

and where the summation is taken over all possible integer
solutions of the following equation

dmax

∑
i=1

ni = n (19)

such that ni 6 ki for all i,

Note here that (18) is obtained for Cd by considering
the classical strategies. The detailed proof is given in
the Appendix B. For a particular case of Result 4 wherein
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dy = d̃ = d for all y, the proof is previously given in [40].
Hence, when d 6 miny dy, the necessary criteria for a set
of measurements to be compatible is given by,

S(n, ~d, d) 6 SC(n, ~d, d), (20)

where SC(n, ~d, d) is given by (18).
For n = 2, dy = d̃ for all y, and d 6 d̃, the expression

(18) simplifies to (for details, see the Appendix C)

SC(2, d̃, d) =
1

2d̃2

(
d + 2dd̃− d2

)
. (21)

And for n = 3, dy = d̃ for all y, and d 6 d̃, the expression
(18) simplifies to (for details, see the Appendix C)

SC(3, d̃, d) =
d

3d̃3

(
d2 − 1 + 3d̃(d̃ + 1− d)

)
. (22)

The particular case of Result 3 for n = 2 can be found in
[24], and moreover, it is shown that any pair of rank-one
projective measurements that are incompatible provides
advantage in RAC [8]. In order to showcase the generic
applicability of Results 3-4, we consider an arbitrary set
of three rank-one projective qubit measurements, which
using the freedom of unitary can be expressed as

Mx1|1 = (1/2)U [1+ (−1)x1 σz]U†

Mx2|2 = (1/2)U
[
1+ (−1)x2

(
ασz +

√
1− α2σx

)]
U†

Mx3|3 = (1/2)U
[
1+ (−1)x3

(
βσz + γ

√
1− β2σx

±
√

1− β2
√

1− γ2σy
)]

U† (23)

where x, x2, x3 ∈ [2], the variables α, β, γ ∈ [−1, 1], and
U can be arbitrary unitary operator acting on C2. We
obtain the following result.

Result 5. Any set of three incompatible rank-one projective
qubit measurements, except for the sets defined by (23) with

(α, β, γ) = {(±1/2,±1/2,−1), (±1/2,∓1/2, 1)}

and arbitrary U, yields larger value than SC(n = 3, d̃ =
2, d = 2) = 3/4.

This result is proved with the help of numerical opti-
mizations and the proof is put over to Appendix D.

V. CONCLUSION

By characterizing the set of quantum correlations in
prepare-and-measure scenarios produced from any set

of compatible measurements, we have shown in this ar-
ticle that incompatible measurements at the receiver’s
end is necessary for demonstrating quantum advantage
in any one-way communication task. Further, based on
this result, we have presented a semi-device indepen-
dent witness of measurement incompatibility invoking
generalized random access codes. Interestingly, we have
completely characterized the sets of three incompatible
projective qubit measurements that can be detected us-
ing our proposed witness. It might be noted that some
of the results derived in [8, 24] appear as natural corol-
laries of the results obtained here.

The significance of the result presented here lies in the
fact that the classical bound of the success metric of any
one-way communication task becomes an upper bound
on the metric of the task under compatible set of mea-
surements. Consequently, violating the classical bound
of any one-way communication task can be used as a
sufficient criteria to witness measurement incompati-
bility. Further, the present study establishes that mea-
surement incompatibility is the fundamental quantum
resource for non-classicality in any one-way communi-
cation task or, more generally, in prepare-and-measure
scenarios.

Our study opens up the possibilities of several open
questions. First of all, deriving more efficient incompati-
bility witnesses based on different communication tasks
is worth for future studies. Secondly, our results may
be generalized to propose semi-device witnesses for in-
compatible quantum channels [42] and quantum instru-
ments [43, 44]. Though we have proved that QC

d is a
subset of Cd for any d, we strongly anticipate that QC

d is
in fact a strict subset of Cd. It needs further investigation
to prove this. Finally, proposing operational witnesses
for all incompatible extremal POVM [45] is another fun-
damentally motivated open problem.
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Appendix A: Proof of Result 3

Proof. For a given set of measurements, the maximum average success probability in quantum theory is given by [8]

SC(n, ~d, d) =
1

n ∏y dy
∑

x1x2···xn

||χ||, (A1)

where,

χ = Mx1|1 + Mx2|2 + · · ·+ Mxn |n. (A2)

Here ||χ|| denotes operator norm of χ, which is nothing but the maximum eigenvalue of the operator χ. An alter-
native definition of measurement incompatibility, which is equivalent to the standard one (1), is associated with the
existence of a parent POVM whose appropriate marginals give rise to all the individual measurements [1]. Precisely,
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if the measurements {Mby |y} are compatible then there exists a parent measurement, G ≡ {G(b1, · · · , bn)}, with
∏n

y=1 dy elements from which all the measurement operators can be reconstructed by taking marginals as follows

Mxy |y = ∑
b1,··· ,by−1,by+1,··· ,bn

G(b1, · · · , by1 , xy, by+1, · · · , bn), (A3)

where

∑
b1,··· ,bn

G(b1, · · · , by1 , by, by+1, · · · , bn) = 1d×d. (A4)

Let us first expand χ in terms of the parent POVM using (A3),

χ = ∑
b2,b3,··· ,bn

G(x1, b2, b3 · · · , bn) + ∑
b1,b3,··· ,bn

G(b1, x2, b3, · · · , bn) + · · ·+ ∑
b1,b2,b3,··· ,bn−1

G(b1, b2, b3, · · · , bn−1, xn). (A5)

Each term in the above expansion can be split into two terms in the following way

χ = ∑
b3,b4,··· ,bn

G(x1, x2, b3, b4, · · · , bn) + ∑
b2,··· ,bn
b2 6=x2

G(x1, b2, · · · , bn)

+ ∑
b1,b4,··· ,bn

G(b1, x2, x3, b4, · · · , bn) + ∑
b1,b3,··· ,bn

b3 6=x3

G(b1, x2, b3, · · · , bn)

+ · · ·
+ ∑

b2,b3,··· ,bn−1

G(x1, b2, b3, · · · , bn−1, xn) + ∑
b1,··· ,bn−1

b1 6=x1

G(b1, · · · , bn−1, xn). (A6)

In the above Eq. (A6), there are two sums in each line, and there are total n lines. Let us denote the first sum and the
second sum in the ith line by S i

1 and S i
2 respectively, where i ∈ {1, · · · , n}. Hence, Eq. (A6) can be expressed as

χ =
n

∑
i=1

(
S i

1 + S i
2

)
, (A7)

where

S i
1 = ∑

b1,··· ,bi−1,bi+2,··· ,bn

G(b1, · · · , bi−1, xi, xi+1, bi+2, · · · , bn), (A8)

and

S i
2 = ∑

b1,··· ,bi−1,bi+1,··· ,bn
bi+1 6=xi+1

G(b1, · · · , bi−1, xi, bi+1, · · · , bn). (A9)

Here the index i is taken to be modulo n. Each G(· · · ) in the above sums will be termed as an element.

Let us now make an observation that there is no common element between the S i
2 and S i+1

2 . The common element

between S i
2 and S j

2 with i, j ∈ {1, · · · , n} and j > i + 1 is

∑
b1,··· ,bn

bi+1 6=xi+1
bj+1 6=xj+1

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)

6
n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn) (A10)
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where the index i, j is taken to be modulo n. Hence, we have

n

∑
i=1
S i

2 6 ∑
i,j∈{1,··· ,n}

j>i+1

( n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)

)
+other terms with no common element.

(A11)
Next, let us focus on S i

1. It can be checked that

n

∑
i=1
S i

1 =
n

∑
i=1

( n

∑
k=1

k 6=i,i+1

∑
bk

G(b1, · · · , bi−1, xi, xi+1, bi+2, · · · , bn)

)
. (A12)

Replacing S i
2 and S i

1 using (A11) and (A12) in (A7), we have

χ 6 ∑
i,j∈{1,··· ,n}

i<j

( n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)

)
+ other terms with no common element

6 ∑
i,j∈{1,··· ,n}

i<j

( n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)

)
+ ∑

b1,··· ,bn

G(b1, · · · , bn). (A13)

Substituting the above expression into (A1) and employing the triangle inequality for norm, we find that

SC(n, ~d, d) 6
1

n ∏y dy

(
∑

x1,··· ,xn
∑

i,j∈{1,··· ,n}
i<j

∣∣∣∣ n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)
∣∣∣∣

+ ∑
x1,··· ,xn

∣∣∣∣ ∑
b1,··· ,bn

G(b1, · · · , bn)
∣∣∣∣). (A14)

Due to (A4) the second term of the above expression can be evaluated as

∑
x1,··· ,xn

∣∣∣∣ ∑
b1,··· ,bn

G(b1, · · · , bn)
∣∣∣∣ = ∑

x1,··· ,xn

∣∣∣∣1d×d
∣∣∣∣ = n

∏
y=1

dy. (A15)

Next, Consider the first term in (A14) given by,

∑
x1,··· ,xn

∑
i,j∈{1,··· ,n}

i<j

∣∣∣∣ n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)
∣∣∣∣ = ∑

i,j∈{1,··· ,n}
i<j

βi,j (A16)

where

βi,j = ∑
x1,··· ,xn

∣∣∣∣ n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)
∣∣∣∣

6 ∑
x1,··· ,xn

Tr

 n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)



=
n

∑
r=1
r 6=i,j

∑
xr

Tr

∑
xi ,xj

n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)


=

n

∑
r=1
r 6=i,j

∑
xr

Tr

(
∑

b1,··· ,bn

G(b1, · · · , bn)

)
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=
n

∑
r=1
r 6=i,j

∑
xr

Tr(1d×d)

= d
n

∏
y=1
y 6=i,j

dy. (A17)

Hence, the first term in (A14) given by,

∑
x1,··· ,xn

∑
i,j∈{1,··· ,n}

i<j

∣∣∣∣ n

∑
k=1
k 6=i,j

∑
bk

G(b1, · · · , bi−1, xi, bi+1, · · · , bj−1, xj, bj+1, · · · , bn)
∣∣∣∣ = d ∑

i,j∈{1,··· ,n}
i<j

n

∏
y=1
y 6=i,j

dy (A18)

By substituting the bounds from (A15)-(A18) in (A14), we obtain

SC(n, ~d, d) 6
1

n ∏y dy

d ∑
i,j∈{1,··· ,n}

i<j

 n

∏
y=1
y 6=i,j

dy

+
n

∏
y=1

dy

 , (A19)

which reduces to the first expression of (15).

For the other bound, let us use the fact that in (A5) only the term G(x1, x2, · · · , xn) occurs n times and all the other
terms can occur at most (n− 1) times to get an upper bound on χ as follows

χ 6 G(x1, x2, · · · , xn) + (n− 1) ∑
b1,··· ,bn

G(b1, · · · , bn). (A20)

Replacing this bound into (A4) and employing the triangle inequality for norm, we get

SC(n, ~d, d) 6
1

n ∏y dy

(
∑

x1,··· ,xn

∣∣∣∣G(x1, · · · , xn)
∣∣∣∣+ (n− 1) ∑

x1,··· ,xn

∣∣∣∣ ∑
b1,··· ,bn

G(b1, · · · , bn)
∣∣∣∣) . (A21)

We already have a bound given by (A15) on the second sum in the above equation. The first term is bounded by d
since

∑
x1,··· ,xn

∣∣∣∣G(x1, · · · , xn)
∣∣∣∣ 6 ∑

x1,··· ,xn

Tr (G(x1, · · · , xn))

= Tr

(
∑

x1,··· ,xn

G(x1, · · · , xn)

)
= Tr (1d×d)

= d. (A22)

Therefore, we arrive at

SC(n, ~d, d) 6
1

n ∏y dy

(
d + (n− 1)∏

y
dy

)
, (A23)

which reduces to the second expression of (15). This completes the proof. ut

Appendix B: Proof of Result 4

In order to provide a detailed proof of Result 4, we first state a general feature of communication tasks.
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Lemma 1. Consider a general form of a linear function of {p(by|x, y)},

S = ∑
x,y,by

cx,y,by p(by|x, y). (B1)

The maximum value of S within Cd, which we denote by SC, is obtained by deterministic strategies and can be written only in
terms of decoding function {pb(by|y, m)}.

Proof. Replacing the expression of p(by|x, y) for classical communication (3) into (B1), we see that

SC = max
{pa(m|x,λ)}
{pb(by |y,m,λ)}
{π(λ)}

∑
x

(
∑
y,by

cx,y,by p(by|x, y)
)

= max
{pa(m|x,λ)}
{pb(by |y,m,λ)}
{π(λ)}

∫
λ

π(λ)

∑
x

∑
m

pa(m|x, λ)

∑
y,by

cx,y,by pb(by|y, m, λ)


 dλ

= max
{pb(by |y,m,λ)}
{π(λ)}

∫
λ

π(λ)

∑
x

max
m

∑
y,by

cx,y,by pd(by|y, m, λ)

 dλ. (B2)

This is achieved when pa(m∗(λ)|x, λ) = 1 for all x, λ, where for each λ, m∗(λ) is defined as follows

∑
y,by

cx,y,by pb(by|y, m∗(λ), λ) ≥ ∑
y,by

cx,y,by pb(by|y, m, λ) ∀ m ∈ [d]. (B3)

Now, the above expression (B2) is a convex sum with respect to π(λ) and thus, we can omit the dependence of λ by
taking the best value of [∑x maxm

(
∑y,by cx,y,by pd(by|y, m, λ)

)
] over different choices of λ as follows

SC = max
{pb(by |y,m)}

∑
x

max
m

∑
y,by

cx,y,by pb(by|y, m)

 . (B4)

Therefore, it is sufficient to consider deterministic decoding, that is, pb(by|y, m) ∈ {0, 1} to achieve SC. Moreover,
given any decoding strategy {pb(by|y, m)}, the best encoding function is

pa(m∗|x) = 1, where ∑
y,by

cx,y,by pb(by|y, m∗) ≥ ∑
y,by

cx,y,by pb(by|y, m) ∀ m ∈ [d]. (B5)

This completes the proof. ut

Proof of Result 4. The proof is essentially a generalization of the proof given in Section II-A of [40], which was re-
stricted for the particular case where d = dy for all y. We know from the above lemma that the optimal encoding and
decoding functions are deterministic. Thus, this can be written in a functional form as

E(x1 · · · xn) = m if pa(m|x) = 1, (B6)

and

Dy(m) = by if pb(by|y, m) = 1. (B7)

Here, E(x1 · · · xn) is a function whose domain is the set of inputs x = x1 · · · xn and range is the set messages [d]. And
Dy(m) is a function whose domain is the set of messages [d] and range is the set [dy]. We say the decoding strategy
is ‘identity decoding’, denoted by {D̃y}, if

∀y, D̃y(m) = m. (B8)
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We want to show that, without loss of generality we can take {D̃y} for the maximum success probability. Consider an
encoding E(x) (B6) and a decoding {Dy} (B7) that may not be {D̃y}, that is, there may exists y such that Dy(m) 6= m.
Let D←y (by) is the preimage of by, that is, D←y (by) = {m ∈ [d] : Dy(m) = by}.

Subsequently, we consider the following quantity

D←1 (b1) · · ·D←n (bn) = {m1 · · ·mn : D1(m1) = b1, · · · , Dn(mn) = bn}, (B9)

which is noting but the set of dit-string {m1 · · ·mn} that is mapped to the sting b1 · · · bn. We define another encoding
function {Ẽx} as follows

Ẽ(D←1 (x1)D←2 (x2) · · ·D←n (xn)) = m if E(x1 · · · xn) = m. (B10)

The above definition of Ẽ is not complete since it is not defined if xi /∈ [d] since D←y (xi) ∈ [d]. In those cases, we take
any encoding strategy. Now, we note that Ẽ is well-defined encoding function. Also note that Ẽ is a valid encoding
for the random access codes considered by us only if d 6 miny dy. Because, if d > dy for some y, then the domain of
Ẽ may have a string of n dits that does not belong to x.

Suppose, for any input pair x1 · · · xn, y so that the encoding E and decoding {Dy} guesses the correct dit xy. Hence,
if the encoding strategy is given by, E(x = x1 · · · xn) = m, then the decoding strategy is given by, Dy(m) = by = xy.
Therefore, we have D←y (xy) = m. As a consequence, the new encoding Ẽx and the ‘identify decoding’ {D̃y} also
provides the correct answer for at least one input pair from {D←1 (x1)D←2 (x2) · · ·D←n (xn)}, y. Hence, the average
success probability for the strategy consisting of the encoding Ẽx and the ‘identify decoding’ {D̃y} is greater than or
equal to that for the strategy with encoding E and decoding {Dy}. Therefore, we can consider ‘identity decoding’
without loss of generality.

Next, from Eq.(B4), the expression for SC pertaining to the random access codes for ‘identity decoding’ can be
written as

SC =
1

n ∏y dy
∑
x

max
m

(
∑
y

P(by = xy|y, m)

)
=

1
n ∏y dy

∑
x

max
m

(
∑
y

δxy ,m

)
, (B11)

and for the ‘identity decoding’, the best encoding can be determined from (B5) as follows

pa(m∗|x) = 1, where ∑
y

δxy ,m∗ ≥∑
y

δxy ,m ∀ m ∈ [d]. (B12)

Hence, the best encoding pertaining to the ‘identity decoding’ is just sending the dit that belongs to [d] and occurs
maximum times in the input string x1 · · · xn.

Finally, we provide an expression for SC for the best classical strategy derived above. In an input string x1 · · · xn,
say, the dit i occurs ni number of times. The maximum value of a dit can be maxy dy. Alice sends message m such
that nm = maxi=1,··· ,d ni. As a result, out of n different values of y, they get success (maxi=1,··· ,d ni) times. As the
total number of dits is n, the set of values of ni should satisfy

dmax

∑
i=1

ni = n, (B13)

where dmax = maxy dy. Moreover, dit i may not belongs to all [dy] and thus, ni can not take all the solutions of
the above equation. Say, ki is the number of sets among [d1], · · · , [dn] such that dit i ∈ [dy]. Therefore, we are only
interested in those solutions where ni 6 ki.

Given such a solution of {ni}, there will be many possible number of input dit strings x having that {ni}. Next,
let us evaluate the number of input dit strings x that can have an arbitrary {ni}. In any input string, at most kdmax
number of input dits can have the value dmax. In the given set of input dit strings having {ni}, the dit dmax occurs

ndmax number of times. Hence, the dit dmax can be arranged in Ckdmax
ndmax

different possible ways. Next, in any input
string, at most kdmax−1 number of input dits can have the value (dmax − 1). However, among these kdmax−1 number
of input dits, ndmax number of dits have already taken the value dmax in case of the given set of input strings. Also, in
the given set of input dit strings having {ni}, the dit (dmax− 1) occurs ndmax−1 number of times. Therefore, for any of

the above-mentioned arrangements of the the dit dmax, the dit (dmax − 1) can be arranged in Ckdmax−1−ndmax
ndmax−1 different

possible ways. Proceeding in this way, it can be shown that an arbitrary dit j can be arranged in C
αj
nj different possible
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ways with αj = k j −∑dmax
i=j+1 ni for any arrangement of the dits- dmax, (dmax− 1), · · · , j + 1. Therefore, given any {ni},

there will be
(

∏dmax
j=1 C

αj
nj

)
(with αj = k j −∑dmax

i=j+1 ni) number of input dit strings having that {ni}. Combining these
facts we obtain (18). ut

Appendix C: Derivation of Eq.(21) and Eq.(22)

From Result 4, we can write the following for n = 2, dy = d̃ for all y, and d 6 d̃,

SC(2, d̃, d) =
1

2d̃2 ∑
{ni}∈S

[
N{ni} max

i=1,··· ,d
{ni}

]
(C1)

where N{ni} is the number of input dit strings having a given {ni}; and S denotes the set of {ni} satisfying

d̃

∑
i=1

ni = 2 (C2)

such that ni 6 2 for all i.
Next, let us characterize the set S . It can be noted that there are the following two types of {ni} ∈ S :

1. For each i ∈ [d̃], ni = 2 and nj = 0 for all j 6= i and j ∈ [d̃].

There are d̃ number of such {ni} ∈ S . However, maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying
ni = 2 for any i such that i ∈ {d + 1, · · · , d̃} and nj = 0 for all j ∈ [d̃] and j 6= i. Hence, only d number of
{ni} ∈ S belonging to this class contribute to the sum of (C1). It is straightforward to check that for each of
these d number of {ni} ∈ S , N{ni} = 1 and maxi=1,··· ,d{ni} = 2.

2. For each i, j ∈ [d̃] with i 6= j, ni = nj = 1 and nk = 0 for all k /∈ {i, j} with k ∈ [d̃].

There are Cd̃
2 number of such {ni} ∈ S . However, maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying

ni = nj = 1 for any i, j with i 6= j, i, j ∈ {d + 1, · · · , d̃} and nk = 0 for all k ∈ [d̃], k 6= i, k 6= j. There are C(d̃−d)
2

number of such {ni} ∈ S satisfying this. Hence, only Cd̃
2 −C(d̃−d)

2 number of {ni} ∈ S belonging to this second

class contribute to the sum of (C1). It can be checked that for each of these Cd̃
2 − C(d̃−d)

2 number of {ni} ∈ S ,
N{ni} = 2 and maxi=1,··· ,d{ni} = 1.

Therefore, we have from Eq.(C1)

SC(2, d̃, d) =
1

2d̃2

[
2d + 2

(
Cd̃

2 − C(d̃−d)
2

)]
=

1
2d̃2

[
d + 2dd̃− d2

]
. (C3)

Similarly, following the same analysis as above, we can get the expression for n = 3, dy = d̃ for all y, and d 6 d̃,

SC(3, d̃, d) =
1

3d̃3 ∑
{ni}∈S

[
N{ni} max

i=1,··· ,d
{ni}

]
(C4)

where N{ni} is the number of input dit strings with a given {ni}; and S denotes the set of {ni} satisfying

d̃

∑
i=1

ni = 3 (C5)

such that ni 6 3 for all i. Now there are three cases that satisfy Eq.(C5):
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1. For each i ∈ [d̃], ni = 3 and nj = 0 for all j 6= i and j ∈ [d̃].

There are d̃ number of such {ni} ∈ S . However, maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying
ni = 3 for any i with i ∈ {d + 1, · · · , d̃} and nj = 0 for all j ∈ [d̃] and j 6= i. Hence, only d number of {ni} ∈ S
belonging to this class contribute to the sum of (C4). For each of these d number of {ni} ∈ S , we have that
N{ni} = 1 and maxi=1,··· ,d{ni} = 3. Hence, the contribution to the sum is 3d.

2. For each i, j, k ∈ [d̃] with i /∈ {j, k}, j /∈ {i, k}, k /∈ {i, j}, ni = nj = nk = 1 and nl = 0 for all l /∈ {i, j, k} and
l ∈ [d̃].

There are Cd̃
3 number of such {ni} ∈ S . Moreover, maxi=1,··· ,d{ni} = 0 for each of those {ni} ∈ S satisfying

ni = nj = nk = 1 for any choice of i, j, k with i, j, k ∈ {d + 1, · · · , d̃}, i /∈ {j, k}, j /∈ {i, k}, k /∈ {i, j} and nl = 0

for all l ∈ [d̃] and l /∈ {i, j, k}. There are C(d̃−d)
3 number of such {ni} ∈ S satisfying this. Thus, only Cd̃

3 − C(d̃−d)
3

number of {ni} ∈ S belonging to this class contribute to the sum of (C4). It can be checked that for each of

these Cd̃
3 − C(d̃−d)

3 number of {ni} ∈ S , N{ni} = 3! and maxi=1,··· ,d{ni} = 1. Therefore, the contribution to the

sum will be (3!)
(

Cd̃
3 − Cd̃−d

3

)
.

3. For each i, j ∈ [d̃] with i 6= j, ni = 2, nj = 1 and nk = 0 for all k /∈ {i, j} with k ∈ [d̃].
The feasible solutions of Eq.(C5) that contribute to the Eq.(C4) are of two types:

(A) i ∈ [d] and j ∈ [d̃]− {i}. The number of possible such {ni} ∈ S is given by, d(d̃− 1). Also, for each such
{ni}, we have that N{ni} = 3 and maxi=1,··· ,d{ni} = 2. Therefore, the contribution to the sum appearing in
Eq.(C4) by this case is 6 d(d̃− 1).

(B) i ∈ {d + 1, · · · , d̃} and j ∈ [d]. The number of possible such {ni} ∈ S is given by, d(d̃− d). And for each
such {ni}, we have that N{ni} = 3 and maxi=1,··· ,d{ni} = 1. Hence, the contribution to the sum appearing in
Eq.(C4) for this case is given by, 3 d(d̃− d).

Therefore, the total contribution to the sum of Eq.(C4) is given by, 6 d(d̃− 1) + 3 d(d̃− d) = 3 d(3 d̃− d− 2).

Therefore, we have from Eq. (22) that

SC(3, d̃, d) =
1

3d̃3

[
(3!)

(
Cd̃

3 − Cd̃−d
3

)
+ 3 d(3 d̃− d− 2) + 3d

]
=

d
3d̃3

(
d2 − 1 + 3d̃(d̃ + 1− d)

)
. (C6)

Appendix D: Proof of Result 5

Let us take three arbitrary orthonormal basis {|ψ1
1〉, |ψ1

2〉}, {|ψ2
1〉, |ψ2

2〉}, {|ψ3
1〉, |ψ3

2〉} in C2 such that Mxy |y =

|ψy
xy〉〈ψ

y
xy |with xy ∈ [2] for all y ∈ {1, 2, 3}. A unitary can always be applied to these three measurements. Therefore,

without any loss of generality, we can assume that

|ψ1
x1
〉〈ψ1

x1
| = 1

2
[1+ (−1)x1 σz] with x1 ∈ [2], (D1)

|ψ2
x2
〉〈ψ2

x2
| = 1

2

[
1+ (−1)x2

(
ασz +

√
1− α2σx

)]
with x2 ∈ [2], (D2)

|ψ3
x3
〉〈ψ3

x3
| = 1

2

[
1+ (−1)x3

(
βσz + γ

√
1− β2σx ±

√
1− β2

√
1− γ2σy

)]
with x3 ∈ [2]. (D3)

where −1 ≤ α, β, γ ≤ 1.
For the above-mentioned given set of three rank-one projective qubit measurements, the maximum average suc-

cess probability in quantum theory is given by,

SC(n = 3, d̃ = 2, d = 2) =
1

24

2

∑
x1,x2,x3=1

||Mx1|1 + Mx2|2 + Mx3|3||. (D4)
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By definition, ||Mx1|1 + Mx2|2 + Mx3|3|| is nothing but the maximum eigenvalue of (Mx1|1 + Mx2|2 + Mx3|3), which
can be evaluated easily. Subsequently, it can be checked that

2

∑
x1,x2,x3=1

||Mx1|1 + Mx2|2 + Mx3|3|| = 12 +

√
3 + 2α− 2β− 2αβ− 2γ

√
1− α2

√
1− β2

+

√
3− 2α + 2β− 2αβ− 2γ

√
1− α2

√
1− β2

+

√
3− 2α− 2β + 2αβ + 2γ

√
1− α2

√
1− β2

+

√
3 + 2α + 2β + 2αβ + 2γ

√
1− α2

√
1− β2. (D5)

We have found out the minimum of the above expression (D5) by performing numerical optimization. It turns out
that

min
α,β,γ∈[−1,1]

(
2

∑
x1,x2,x3=1

||Mx1|1 + Mx2|2 + Mx3|3||
)

= 18. (D6)

In other words,

min
α,β,γ∈[−1,1]

(ξ1 + ξ2 + ξ3 + ξ4) = 6, (D7)

where

ξ1 =

√
3 + 2α− 2β− 2αβ− 2γ

√
1− α2

√
1− β2,

ξ2 =

√
3− 2α + 2β− 2αβ− 2γ

√
1− α2

√
1− β2,

ξ3 =

√
3− 2α− 2β + 2αβ + 2γ

√
1− α2

√
1− β2,

ξ4 =

√
3 + 2α + 2β + 2αβ + 2γ

√
1− α2

√
1− β2.

In order to prove Result 5, it is sufficient to show that (ξ1 + ξ2 + ξ3 + ξ4) = 6 only if the three projective measure-
ments are compatible, or (α, β, γ) = {(±1/2,±1/2,−1), (±1/2,∓1/2, 1)}.
Since −1 ≤ α, β, γ ≤ 1, we divide the regions of α, β and γ into the following sub-regions:

i. α, β, γ ∈ [0, 1],

ii. α ∈ [−1, 0]; β, γ ∈ [0, 1],

iii. α, β ∈ [−1, 0]; γ ∈ [0, 1],

iv. α, β, γ ∈ [−1, 0],

v. α, γ ∈ [0, 1]; β ∈ [−1, 0],

vi. α, γ ∈ [−1, 0]; β ∈ [0, 1],

vii. α, β ∈ [0, 1]; γ ∈ [−1, 0],

viii. α ∈ [0, 1]; β, γ ∈ [−1, 0].

We start by considering the above-mentioned sub-region (i), i.e., α, β, γ ∈ [0, 1]. In this case, we note the following
holds from numerical evaluation,

min
α,β,γ∈[0,1]

(ξ1 + ξ2) = 2, (D8)
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and

min
α,β,γ∈[0,1]

(ξ3) > min
α,β∈[0,1]

√
3− 2α− 2β + 2αβ = 1, (D9)

since the derivative of the above expression is zero at α = 1 or/and β = 1.
Next, we evaluate the maximum as well as minimum of (ξ1 + ξ2 + ξ3) numerically under the constraint that

(ξ1 + ξ2 + ξ3 + ξ4) = 6. It is obtained that

min
α,β,γ∈[0,1]

(ξ1 + ξ2 + ξ3) = max
α,β,γ∈[0,1]

(ξ1 + ξ2 + ξ3) = 3, when ξ1 + ξ2 + ξ3 + ξ4 = 6. (D10)

Therefore, we have that

ξ1 + ξ2 + ξ3 = 3, when ξ1 + ξ2 + ξ3 + ξ4 = 6. (D11)

Hence, the following is implied from (D8), (D9), (D11),

ξ1 + ξ2 = 2, ξ3 = 1, and ξ4 = 3, when ξ1 + ξ2 + ξ3 + ξ4 = 6. (D12)

Next, it can be checked that ξ3 = 1 only if α = 1 or/and β = 1. Now, when α = 1, then ξ4 = 3 implies that β = 1.
Similarly, when β = 1, then ξ4 = 3 implies that α = 1. Therefore, when α, β, γ ∈ [0, 1], then (ξ1 + ξ2 + ξ3 + ξ4) = 6
holds only if α = β = 1.

Next, consider the sub-region (iii), i.e., for α, β ∈ [−1, 0]; γ ∈ [0, 1]. We note that if α → −α and β → −β
then the four expressions ξi interchange among themselves as we can readily verify ξ1 → ξ2, ξ2 → ξ1, ξ3 → ξ4,
ξ4 → ξ3. Thus, following the similar calculation for the sub-region (i), we find that ξ1 + ξ2 + ξ3 + ξ4 = 6 holds
only if α = β = −1. Similarly, for sub-regions (vi) and (viii), one can show that ξ1 + ξ2 + ξ3 + ξ4 = 6 holds only if
−α = β = 1 and α = −β = 1, respectively.

Next, let us focus on the sub-region (iv), i.e., when α, β, γ ∈ [−1, 0]. In this case, we obtain the following by
performing numerical optimizations,

min
α,β,γ∈[−1,0]

(ξ1 + ξ4) = max
α,β,γ∈[−1,0]

(ξ1 + ξ4) = 2, when ξ1 + ξ2 + ξ3 + ξ4 = 6,

min
α,β,γ∈[−1,0]

(ξ2 + ξ4) = max
α,β,γ∈[−1,0]

(ξ2 + ξ4) = 2, when ξ1 + ξ2 + ξ3 + ξ4 = 6,

min
α,β,γ∈[−1,0]

(ξ1 + ξ3) = max
α,β,γ∈[−1,0]

(ξ1 + ξ3) = 4, when ξ1 + ξ2 + ξ3 + ξ4 = 6,

min
α,β,γ∈[−1,0]

(ξ2 + ξ3) = max
α,β,γ∈[−1,0]

(ξ2 + ξ3) = 4, when ξ1 + ξ2 + ξ3 + ξ4 = 6.

Hence, we can infer that whenever ξ1 + ξ2 + ξ3 + ξ4 = 6,

ξ1 + ξ4 = ξ2 + ξ4 = 2, ξ1 + ξ3 = ξ2 + ξ3 = 4. (D13)

Therefore, we have ξ1 = ξ2 if ξ1 + ξ2 + ξ3 + ξ4 = 6. Also, it can be easily checked from the expressions of ξ1, ξ2, ξ3
and ξ4 that

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 = 12. (D14)

By putting ξ1 = ξ2 = ξ, ξ3 = 4− ξ, ξ4 = 2− ξ, we get from (D14) that

2ξ2 + (4− ξ)2 + (2− ξ)2 = 12. (D15)

The possible solutions of the above equation are ξ = 1 and ξ = 2.
Before proceeding, let us point out the following observations that can be checked numerically,

min
α,β,γ∈[−1,0]

(ξ1) = min
α,β,γ∈[−1,0]

(ξ2) = 1. (D16)

First we take ξ = 1. It can be shown that α, β, γ ∈ [−1, 0], ξ1 = ξ2 = 1 only if α = −1 and β = −1. Next, let us take
ξ = 2. Consequently, we have that ξ1 = ξ2 = 2, ξ3 = 2, ξ4 = 0. It can be checked that the unique solution of these
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four equations is given by, α = −1/2, β = −1/2, γ = −1.
Next, we remark that for the remaining sub-regions (ii),(v),(vii) wherein the variables α, β, γ changes their signs

with respect to the sub-region (iv) where α, β, γ ∈ [−1, 0], the four expressions ξi interchange among themselves.
Thus, a similar calculation applies to these three regions and consequently, the solution for ξ1 + ξ2 + ξ3 + ξ4 = 6 are
the same with the appropriate signs.

Finally, let us note that there are, in general, two cases where we do not observer any advantage. Firstly, α = ±1
and β = ±1, which implies that the three measurements {Mx1|1}, {Mx2|2} and {Mx3|3} are compatible. Secondly,
(α, β, γ) = {(±1/2,±1/2,−1), (±1/2,∓1/2, 1)}, which are obtained in sub-regions (iv),(ii),(v),(vii), implies that the
three measurements are incompatible. This completes the proof.
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