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Abstract  16 

The Early Cretaceous Kuwajima Formation, Tetori Group, Japan has yielded various aquatic and 17 

terrestrial vertebrates, but lissamphibian records are limited to albanerpetontids and an isolated 18 

longbone of a frog. Here we provide the first report of an associated frog specimen from the Tetori 19 

Group. The specimen is composed of a few skull elements and several postcranial bones, including 20 

the femur, ilium, and vertebrae. This new Tetori frog is distinguished from the previously reported 21 

Early Cretaceous Asian genera, Liaobatrachus from China, and Hyogobatrachus and 22 

Tambabatrachus from Japan, in having hatchet-shaped sacral diapophyses and a posteriorly tapering 23 

urostyle with a weakly developed dorsal crest. Phylogenetic analysis of this new material places it as 24 

a non-neobatrachian frog that may be related to previously described Chinese and Japanese taxa, but 25 

more complete material would be needed to establish its affinities with confidence.  26 
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Introduction 30 

Amongst extant amphibians, frogs are by far the most diverse in terms of species number (7449 31 

vs. 767 Caudata and 215 Gymnophiona, Amphibia Web 2022) and have a global distribution across 32 

both temperate and tropical regions. However, as for all lissamphibians, the early fossil record of 33 

frogs is limited and our knowledge of their evolutionary history remains incomplete. The earliest 34 

known salientians (Anura + stem taxa) are known from the Early Triassic of Madagascar 35 

(Triadobatrachus massinoti; Piveteau, 1936) and southern Poland (Czatkobatrachus polonicus; 36 

Evans and Borsuk-Białynicka, 1998). Furthermore, more derived, stem-anurans are known from the 37 

Jurassic of North America (Arizona: Prosalirus bitis; Shubin and Jenkins, 1995) and South America 38 

(Argentina: Vieraella herbsti, Notobatrachus digiustoi, Baez and Basso, 1996; Baez and Nicoli, 39 

2004). The earliest recognized crown anurans (Discoglossoidea, Rhinophrynidae, possible 40 

Pelobatidae) are from the Jurassic of Europe (Discoglossoidea: Eodiscoglossus, Hecht, 1970) and 41 

North America (Morrison Formation: Enneabatrachus [Discoglossoidea], and unnamed pelobatid-42 

like taxon, Evans and Milner 1993; the rhinophrynid Rhadinosteus, Henrici 1998). Records of 43 

Jurassic anurans from Asia are rare. The Daohugou Biota of northeastern China is one of the best-44 

known Asian Jurassic deposits, and has yielded an impression of a metamorphosing tadpole (Yuan et 45 

al., 2004). However, this specimen lacks evidence of an ossified skeleton and its identification has 46 

been questioned (Sullivan et al., 2014). Therefore, certain records of Jurassic anurans from Asia are 47 

limited to an isolated atlas from Western Siberia (Skutschas et al., 2016).  However, the anuran 48 

record improves significantly in the Early Cretaceous, with taxa recorded from North and South 49 

America, Africa, the Middle East, Europe, and Asia (e.g. Roçek, 2008). Several articulated anuran 50 

specimens have been reported from the Yixian and Jiufotang formations (Barremian–Aptian) of the 51 

Jehol Group, China, and many of these frogs are now attributed to species of the genus 52 
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Liaobatrachus (Dong et al., 2013). A second frog genus, Genibatrachus (Gao and Chen, 2017; Xi et 53 

al., 2019), has been recovered from the Guanghua Formation, Inner Mongolia (Barremian–Aptian).  54 

In Japan, Cretaceous frog remains are much rarer. The Tetori Group of western Honshu 55 

(Barremian-Aptian) comprises a series of well-known Japanese Mesozoic deposits that includes the 56 

fossil-rich Okurodani and Kuwajima formations. These formations have yielded a diversity of 57 

vertebrate remains. However, amphibian fossils are very rare. They include two specimens of the 58 

enigmatic salamander-like Albanerpetontidae (Matsumoto and Evans, 2018) and isolated frog 59 

postcranial elements. The latter includes an ilium and a vertebra from the Okurodani Formation 60 

(Barremian–Aptian; Evans and Manabe, 1998), and an isolated left tibiofibula from the Kuwajima 61 

Formation (Barremian–Aptian: Matsuoka, 2000). In addition, articulated specimens of two named 62 

frog genera, Hyogobatrachus and Tambabatrachus, were described from the slightly younger 63 

(Aptian) Sasayama Group, Hyogo Prefecture, Japan (Ikeda et al., 2016). 64 

Here we report on an anuran specimen (SBEI 1778) from the Kuwajima Formation containing 65 

an association of skull and postcranial elements representing a single individual. Three-dimensional 66 

preservation of individual elements, as revealed through Micro-Computed Tomography, provides 67 

new information on little-known Tetori frogs, and extends our knowledge of Asian anurans from the 68 

Jurassic and Cretaceous.     69 

 70 

 71 

Geological Setting 72 

 The Mesozoic (Middle Jurassic to Early Cretaceous) marine and freshwater deposits of the 73 

Tetori Group are widely distributed within the Inner Zone of central Japan (Fukui, Gifu, Ishikawa, 74 

and Toyama prefectures). The Tetori Group has traditionally been divided into three subgroups; the 75 

Kuzuryu, Itoshiro, and Akaiwa Subgroups in ascending order (Maeda, 1961). The fossil material 76 

described in this paper was collected from the upper part of the Kuwajima Formation, Itoshiro 77 

Subgroup, at the “Kaseki-kabe” locality (Fossil-Bluff) in Kuwajima district, Hakusan City, Ishikawa 78 
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Prefecture, Japan (Figure 1). A detailed distribution of the Tetori Group in the Shiramine area has 79 

been presented in previous papers (e.g. Kusuhashi, 2008) and is not repeated here. 80 

 The rock wall behind the “Kaseki-kabe” was excavated between 1997 and 2000 for the 81 

construction of a road tunnel. The upper part of the Kuwajima Formation was drilled out during 82 

construction and blocks of material were set aside for study by scientists. Since then, these blocks 83 

have been processed by researchers and volunteers, and have yielded a large number of fossils, 84 

including the specimen described in this paper (SBEI 1778). However, as the rock was removed by 85 

heavy machinery and then put aside for study, it is impossible to know precisely where in the 86 

formation each specimen was found, other than roughly by facies type.  87 

The Kuwajima Formation is composed of thick, coarse-grained sandstone and alternating beds of 88 

fine-grained sandstone and mudstone. Three facies have been identified in the sequence; Facies I, 89 

carbonaceous swamp; Facies II, shallow lake; Facies III, vegetated swamp (Isaji et al., 2005). Facies 90 

I contains isolated vertebrate fossils and mollusks that are poorly preserved. Facies II consists of 91 

silty matrix mixed with angular fine-grained quartz sands and contains fractured leaves and stems, 92 

numerous viviparid gastropods and unionid bivalves. Facies III consists of well-sorted silty dark 93 

greenish-grey mudstones and occasional angular very fine-grained quartz sands and contains in situ 94 

plant remains, terrestrial vertebrates and rare aquatic species (Isaji et al., 2005). Together, the three 95 

facies have yielded a wide range of vertebrates, dominated by aquatic-semiaquatic taxa, including 96 

fish (Yabumoto 2005, 2014; Yabumoto et al., 2006), choristoderes (Matsumoto et al., 2007; 97 

Matsumoto et al., 2014), and turtles (Hirayama et al., 2012), but also including terrestrial lizards 98 

(Evans and Manabe, 2008; Evans and Matsumoto, 2015), dinosaurs (Barrett et al., 2002; Ohashi and 99 

Barrett, 2009), pterosaurs (Unwin and Matsuoka, 2000), mammals (Rougier et al., 2007; Kusuhashi, 100 

2008), and tritylodonts (Setoguchi et al., 1999; Matsuoka and Setoguchi, 2000; Matsuoka et al., 101 

2016), as well as eggshells (Isaji et al., 2006). However, the locality is unusual in that lissamphibians 102 

are rare and limited to frogs (Evans and Manabe, 1998; Matsuoka, 2000) and albanerpetontids 103 

(Matsumoto and Evans, 2018), with currently no record of salamanders. All lissamphibian remains, 104 

including the material described herein, were recovered from Facies III. 105 



5 

 

 The age of the Kuwajima Formation is generally agreed to be Early Cretaceous. Analysis 106 

of zircon U-Pb from a tuff bed in the lower part of the Kuwajima Formation yielded a date of 130.7 107 

± 0.8 (2 SE) Ma (Matsumoto et al., 2006). Supporting evidence of this date comes from the 108 

Okurodani Formation in Gifu Prefecture, the lateral equivalent of the Kuwajima Formation (Maeda, 109 

1952), where zircon U-Pb analysis gave ages of 130.2 ± 1.7 and 117.5 ± 0.7 (2 SE) Ma (Kusuhashi 110 

et al., 2006). These two formations share faunal components: e.g., the lizard Sakurasaurus, and the 111 

choristodere, Monjurosuchus. The most recent study, combining these data, dated the Kuwajima 112 

Formation as Barremian to early Aptian (Sano, 2015). 113 

 114 

Material and methods 115 

Manual preparation of the block SBEI 17785 (50 x 45 x 20 mm) revealed several associated 116 

limb bones and partially exposed vertebrae (Figure 2A, B). These elements overlapped one another, 117 

and it seemed likely that further elements were hidden in the matrix. However, this specimen was 118 

designated as a natural treasure of Ishikawa Prefecture in 2006, and further preparation of the block 119 

was not permitted, especially with the risk of damaging surface elements. The specimen was 120 

therefore scanned using micro-computed tomography (µCT Toscaner 30000 micro CN) at the Tokyo 121 

Metropolitan Industrial Technology Research Institute of Tokyo, Japan. The slice distance was 122 

0.034003 mm (100 kv, 30 μA). However, several exposed elements on the matrix were not visible 123 

on the resulting µCT image, as shown by the black square in Figure 2 (C and D). The specimen was 124 

therefore rescanned courtesy of the Nikon XTH-255 XT at a slice thickness of 0.02100804 mm (175 125 

kV, 166 µA) and the resulting scan provided clearer and more informative images. Additional 126 

elements are shown within the black square in Figure 3 (C–E). In all cases, image reconstructions 127 

were made using AVIZO v.8 software. Elements exposed on the surface of the matrix were studied 128 

under the microscope (Nikon SMZ-10), but bones hidden under the matrix were examined and 129 

described from the 3D images reconstructed from µCT data. Individual elements were measured by 130 

using a caliper (Mitutoyo CD-S20M).   131 

 132 
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Institutional abbreviations 133 

IBEF:  Izumi Board of Education, Fukui, Japan; IVPP: Institute of Vertebrate Paleontology and 134 

Paleoanthropology, Beijing, China; SBEI: Shiramine Board of Education, Ishikawa, Japan.   135 

 136 

Anatomical abbreviations 137 

ang, angulosplenial; cp, coronoid process; crv, crista ventralis; dc, dorsal crest; den, dentary; fem, 138 

femur; gr, groove; hum, humerus; il, ilium; sd, shallow depression; mg, Meckelian groove; mtt, 139 

metatarsals; mx f, maxilla foramen; phan, phalanx; ptg, pterygoid; radu, radioulna; sacd, sacral 140 

diapophysis; tars, tarsal; tibf, tibiofibula; uro, urostyle; vert, vertebra. 141 

 142 

 143 

Systematic Palaeontology 144 

 145 

Amphibia Linnaeus, 1758 146 

Lissamphibia Haeckel, 1866 147 

Salientia Laurenti, 1768 148 

Anura Rafinesque, 1815 149 

Genus and species indet. 150 

 151 

Description 152 

 153 

 SBEI 1778 is a block of grey mudstone on which several anuran bones are visible on the 154 

surface of the matrix: a left dentary, a left humerus, two metatarsals, fragments of tibiofibula, a right 155 

radioulna, two tarsals, three vertebrae (Figures 2A, B; 3C, D). The µCT images revealed additional 156 

skeletal materials under the matrix, including a left pterygoid, left and right angulosplenials, a femur 157 

(side undetermined), two metatarsi, two phalanges, six vertebral centra, and a right ilium. Although 158 

all elements are disarticulated, there is no replication of elements and the size of individual bones is 159 
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consistent with the remains being those of a single individual. In total, thirty-four elements are 160 

preserved in SBEI 1778, of which twenty-seven are identifiable and seven are too fragmentary for 161 

identification. 162 

The postcranial morphology of anurans changes through ontogeny (e.g., Vera and Ponssa, 163 

2014). The centra of early post-metamorphic juveniles have a wide notochordal canal, which is at 164 

least partially closed mid-centrum in adults (Roçek et al., 2012). In SBEI 1778, the notochordal 165 

canal is closed in all preserved centra (Figure 5C), which suggests that this was a young-adult or 166 

adult individual. 167 

  168 

Skull 169 

Four skull elements are preserved in SBEI 1778: left pterygoid, left dentary, and left and right 170 

angulosplenial. The pterygoid is triradiate, and the anterior ramus is longer than the posterior and 171 

medial rami (Figure 4A, B). A groove along the lateral margin of the anterior ramus is a facet for the 172 

maxilla (Figure 4C, mx f). The tip of the anterior ramus may have attached to the palatine, but there 173 

is no clear facet on the CT image, and this part may be broken. The posterior ramus forms a 174 

dorsoventrally expanded flange that is articulated with the quadratojugal. The medial ramus is 175 

slightly dorsally inclined and forms a shallow process for the pro-otic (Figure 4C). 176 

The dentary is missing its mid-section, but both anterior and posterior ends are nearly complete 177 

(Figure 4D–E). The dentary is a slender, mediolaterally compressed element, with a shaft that is 178 

weakly curved in dorsal view (Figure 4E). Both dorsal and ventral margins are sharp-edged. The 179 

dentary symphysis is expanded dorsoventrally with a smooth articular surface, and the 180 

mentomeckelian bone is obviously fused to the dentary (Figure 4G).  181 

The right angulosplenial is nearly complete (Figures 4H–K), but only the anterior part of the 182 

left bone is preserved. The angulosplenial measures 12.3 mm along its long axis, and tapers 183 

anteriorly, forming a sharp tip. The ventral margin is rounded (Figure 4K), whereas the dorsal 184 

margin forms a thin edge (Figure 4J). This dorsal margin bears a coronoid process that is longer than 185 
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wide and is concave in its central part (Figure 4I). The Meckelian groove extends the length of the 186 

bone (Figure 4H, I).   187 

 188 

Vertebral column 189 

SBEI 1778 preserves at least nine vertebrae (Figure 3A, B, D, F, G), as well as an isolated left 190 

sacral diapophysis (Figure 5D) and the urostyle (Figure 3A, B).  191 

 The vertebral centra are longer than high (1.8 mm in mid-ventral length; 0.86 mm in mid-192 

central height; vert. 1 in Figures 3A, 5A–C). The articular surface of each centrum is oval and 193 

dorsoventrally compressed (Figure 5C). All preserved centra are amphicoelous with a notochordal 194 

canal that is closed in the mid-centrum (Figure 5A–C). Transverse processes and neural spines are 195 

broken in most vertebrae, except for a few transverse processes that are partially exposed on the 196 

matrix surface (Figures 3D, 5D). One of the transverse processes (Figure 5D) is flat and is shaped 197 

like an elongated rectangle, with a slightly waisted proximal end. In dorsal view, the process is 198 

posteriorly inclined at roughly 10º. An isolated sacral diapophysis is exposed on the surface of the 199 

matrix (Figure 3D). It is moderately dilated and is hatchet-shaped in dorsal view (Figure 5E). 200 

Vertebrae 4, 8 and 9 are closely associated with the detached sacral diapophysis, and one of these 201 

elements may therefore represent the body of the sacral vertebra (Figure 3G). However, as the 202 

detailed morphology of these vertebrae, including the position of rib attachments, is not clear from 203 

the µCT data, the sacral vertebra cannot be identified with any confidence.  204 

The urostyle is nearly complete and is 13.2 mm along its long axis (Figure 5F–H). In lateral view, 205 

the proximal end of the urostyle is dorsoventrally expanded, but it tapers gradually toward the 206 

posterior end (Figure 5H). The condylar fossa is dorsoventrally compressed and elliptical, forming a 207 

shallow monocondylar articulation (Figure 5I). The canalis coccygeus is obscured on this specimen, 208 

due to the poor preservation state. A shallow groove extends along the lateral surface of the urostyle 209 

shaft, and the dorsal margin bears a weakly developed crest (Figure 5F, H). There are no transverse 210 

processes.  211 

 212 
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Forelimb 213 

Most of the proximal part of the left humerus is preserved (up to 9.8 mm in length, Figure 6A–C), 214 

except the articular head. It is slightly expanded. Although the mid-shaft of the humerus is 215 

dorsoventrally compressed, the crista ventralis is partially preserved as a low keel (Figure 6A, B), 216 

and the shaft is oval in cross-section. 217 

The right radioulna is preserved. The proximal head is nearly complete, but the distal head is 218 

damaged (Figure 6D–G). The shaft is dorsoventrally compressed, giving its cross-section the shape 219 

of a flattened disk. The middle portion of the shaft is waisted and slightly curved along the radial 220 

margin (Figure 6E, G). A shallow groove runs along the midline of the shaft, marking the border 221 

between the ulna and radius (Figure 6E), but there is no clear division of these two parts on the 222 

proximal head (Figure 6D). The distal end is damaged.  223 

 224 

Pelvic girdle and hindlimb 225 

The right ilium, femur, fragments of tibiofibulae (two pieces, unlikely to be single bone), 226 

two tarsals, two metatarsi, two possible phalanges are preserved in SBEI 1778. 227 

The ilium is in two pieces and is damaged at both ends (~14.2 mm along the long axis of the 228 

blade; Figure 7A–C). Although the acetabular region is damaged, a remnant of the acetabular surface 229 

is visible as a shallow depression (Figure 7 A, B). There is no trace of a dorsal tubercle. The iliac 230 

blade is slender and curves dorsally at the posterior end (Figure 7A). It is mediolaterally compressed, 231 

with an ovoid cross-section and no development of a dorsal crest (Figure 7B). The medial surface of 232 

the blade bears a groove along most of its length, whereas the lateral surface is smooth (Figure 7A, 233 

C).  234 

 A single femur is preserved on the block. As it lies close to the ilium, it is probably the 235 

femur of the right side but this remains uncertain as the bone lacks distinctive features and is missing 236 

its proximal and distal heads (Figure 7D, E). The femoral shaft is slender (~13 mm in length), almost 237 

straight (Figure 7D, E), and ovoid in cross-section at the mid-shaft (width: 1.26 mm; Figure 7F). A 238 

femoral crest is partially preserved on the proximal part of the shaft (Figure 7D).  239 
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 Left and right tibiofibulae are preserved on SBEI 1778 (Figure 8A–C). The left tibiofibula is 240 

exposed on the matrix surface and only preserves the distal end (Figure 8A). The right tibiofibula 241 

lies under the matrix, and its proximal and its distal ends are incomplete (Figure 8 B, C). The shaft of 242 

the right bone is slender and waisted in the mid-section. On each bone, the lateral margin of the shaft 243 

is thicker than the medial one in posterior view (Figure 8). A distinct groove marks the boundary 244 

between the tibia and fibula on the proximal and distal parts of the mid-shaft.  245 

 Matsuoka (2000) reported an isolated tibiofibula (SBEI1222: Figure 8D) from the same 246 

locality as SBEI 1778 (12.76 mm in length). The long shaft is waisted in the distal half, and the 247 

proximal head is wider than the distal one. The mid-shaft and the distal end are relatively narrower 248 

than those of SBEI 1778 (Figure 8A, C). Whether SBEI 1778 and 1222 represent the same species at 249 

different ontogenetic stages, or different species, is uncertain.   250 

 Two proximal tarsals (?tibiale and fibulare) are exposed on the matrix (Figure 2); one is 251 

nearly complete (Figure 8E, F), and the other one has only the proximal head preserved (Figure 8G). 252 

The well-preserved proximal tarsal (Figure 8E, F) is slender (9.6 mm in length) and straight, but it is 253 

strongly waisted at the mid-shaft, and both ends are mediolaterally compressed. As both the 254 

proximal and distal heads are damaged, we cannot be certain whether or not the proximal tarsals 255 

were originally fused, but it seems unlikely given that one is almost complete.  256 

 Two metatarsi are also visible on the matrix surface (Figures 2, 3A). These are both of 257 

similar lengths (5.1 mm and 5.2 mm), and are roughly half the length of the proximal tarsals. 258 

 259 

Comparisons 260 

   Most recent phylogenetic analyses of Anura based on molecular and/or combined evidence data 261 

recognize two major ‘groupings’ among living taxa, namely a monophyletic Neobatrachia and a 262 

paraphyletic assemblage of anurans including Ascaphus, Leiopelma, Costata (Discoglossidae, 263 

Alytidae, Bombinatoridae), Xenoanura (Pipidae, Rhinophrynidae) and Anomocoela (Scaphiopodidae, 264 

Pelobatidae, Pelodytidae and Megophryidae) (e.g. Pyron and Wiens, 2011). SBEI 1778 has 265 

amphicoelous vertebrae, a primitive character state shared with the extant genera Ascaphus (North 266 
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America) and Leiopelma (New Zealand), the Jurassic frogs Prosalirus (North America), Vieraella 267 

(South America) and Notobatrachus (Argentina), the Jurassic-Cretaceous “Eodiscoglossus” (Europe 268 

and possibly Siberian Russia), and several Cretaceous Asian genera, as listed on Figure 9. Of these 269 

non-neobatrachian taxa, SBEI 1778 is distinguished from the extant Ascaphus, Leiopelma, 270 

Discoglossus, Pelobates and Pipa, and the Jurassic/ Cretaceous genera Prosalirus, Vieraella, 271 

Notobatrachus, and Eodiscoglossus santonjae in the following character states: closed notochordal 272 

canal in amphicoelous vertebrae (vs. open in Ascaphus, Leiopelma, Prosalirus, Vieraella, 273 

Notobatrachus, Middle Jurassic “Eodiscoglossus” oxoniensis; opisthocoelous vertebrae in 274 

Discoglossus, Pipa; procoelous vertebrae in Pelobates); hatchet-shaped sacral diapophysis (vs. rod-275 

like in Vieraella and Prosalirus; slender in Leiopelma, Notobatrachus; fan-like in Pelobates, Pipa), 276 

iliac blade lacking a dorsal crest (vs. crest present in Discoglossus, Eodiscoglossus santonjae, Pipa, 277 

Prosalirus,) and iliac blade ovoid in cross-section (vs. circular in Ascaphus, Leiopelma).   278 

 279 

Japanese Cretaceous frogs 280 

 The Okurodani Formation, Tetori Group, is considered to be a lateral equivalent of the 281 

Kuwajima Formation (Maeda, 1952) (Figure 9). Two isolated unnamed anuran bones, a left ilium 282 

(IBEF VP 28) and a dorsal vertebra (IBEF VP29), are known from these deposits (Evans and 283 

Manabe, 1998). The ilia of SBEI 1778 and IBEF VP28 are roughly similar in length (~12–14 mm), 284 

and both have iliac blades that are ovoid in cross-section, with a weakly developed supracetabular 285 

region. However, whereas the Okurodani frog has a low dorsal tubercle and a slight iliac crest, the 286 

iliac blade of SBEI 1778 seems to lack both. Unfortunately, further comparison is difficult due to the 287 

lack of a complete acetabulum in SBEI 1778. The vertebral centra of both SBEI1778 and IBEF 288 

VP29 are amphicoelous, but the transverse processes are broken off in both. SBEI 1778 could 289 

belong to the same taxon as the Okurodani Formation frog (e.g. IBEF 28, 29), or represent a distinct 290 

taxon of similar morphological grade. Without further specimens, this remains undetermined.  291 

        The Japanese Cretaceous species Hyogobatrachus wadai and Tambabatrachus kawazu from the 292 

Sasayama Group are each represented by a single articulated specimen (Ikeda et al., 2016). H. wadai 293 
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is largely complete, with both skull and postcranial skeleton preserved; Tambabatrachus kawazu 294 

lacks most of the skull, parts of the pectoral girdle, and the manus and pes. According to Ikeda et al. 295 

(2016), the two species differ from one another in several ways, including the orientation of the 296 

vertebral transverse processes and of the sacral diapophyses; the presence (Hyogobatrachus) or 297 

absence (Tambabatrachus) of transverse processes on the urostyle; the size of the olecranon process 298 

on the radioulna;  and the robusticity of the iliac shaft. Both of the Sasayama species share the 299 

following similarities with SBEI 1778: amphicoelous vertebrae without a patent notochordal canal; 300 

hatchet-shaped sacral diapophyses; an ilium lacking a dorsal crest or dorsal protuberance; hind limb 301 

elements of similar relative proportions; and (probably in SBEI 1778) unfused proximal tarsal bones. 302 

SBEI1778 differs from Hyogobatrachus in characters of the urostyle: low dorsal crest (vs. absent), 303 

monocondylar sacro-urostylar articulation (vs. bicondylar sacro-urostylar articulation), absence of 304 

transverse processes on the urostyle (vs. transverse processes present), and urostyle tapering 305 

posteriorly (vs. extending with similar width toward the distal end). SBEI 1778 resembles 306 

Tambabatrachus in the absence of transverse processes on the urostyle, but differs in lacking any 307 

waisting between the iliac blade and acetabular region (vs. slight waisting in Tambabatrachus, Ikeda 308 

et al. 2016), and having a monocondylar (vs. bicondylar) sacro-urostylar articulation and a slight 309 

midline urostylar crest (vs. none). There is also a marked size difference between the Sasayama 310 

frogs and SBEI 1778. Hyogobatrachus and Tambabatrachus are small frogs with a snout-vent length 311 

of 26.8 mm in Hyogobatrachus wadai and 26.0 mm in Tambabatrachus kawazu at maturity (Ikeda et 312 

al., 2016). Although most elements of SBEI 1778 are incomplete, the urostyle is relatively well-313 

preserved (13.2 mm in length), and this is 150% larger than that of Hyogobatrachus wadai (8.9 mm 314 

in length). However, size characters should be treated with caution in frogs, as there is often a 315 

considerable size disparity between males and females of the same species (e.g. Woolbright, 1983), 316 

with females often being the larger morph (e.g. Shine, 1979). Larger animals also have a greater 317 

muscle volume, resulting in more marked crests and ridges at attachment sites. Nonetheless, SBEI 318 

1778 is distinct from the Sasayama frogs in having a mono- vs. bicondylar sacro-urostylar joint.  319 

 320 
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Other Cretaceous Asian frogs 321 

Early Cretaceous frogs have been recorded from several other localities across Asia, most 322 

notably within the Jehol Biota of China, but also in Mongolia and other parts of China (Figure 9). 323 

SBEI 1778 resembles the Chinese frog genus Liaobatrachus (including L. grabaui, L. beipiaoensis, 324 

L. macilentus, and L. zhaoi, Dong et al., 2013) from the Yixian Formation in the absence of both a 325 

dorsal crest and dorsal protuberance on the ilium, and in the primitive presence of a monocondylar 326 

sacro-urostylar joint, but it is distinguished from all referred species of Liaobatrachus in having 327 

hatchet-shaped sacral diapophyses (vs. broadly dilated, fan-like diapophyses; Dong et al., 2013), in 328 

having a shorter coronoid process of the angulosplenial, 25% of the long axis (vs. long; Dong et al., 329 

2013; pars. obs. RM [34% of the length]), and in lacking transverse processes on the urostyle (vs. 330 

processes present). In addition, the dentary is distinguished from that of Liaobatrachus beipiaoensis 331 

(Gao and Wang, 2001) in the presence of sharp dorsal and ventral margins (vs. a thin edentate dorsal 332 

crest). SBEI 1778 also differs from an unnamed specimen from the Jiufotang Formation, IVPP 333 

V13235 (Wang et al., 2007; Dong et al., 2013), in having amphicoelous vertebrae without a patent 334 

notochordal canal (vs. fully notochordal), more expanded sacral diapophyses (vs. unexpanded), a 335 

monocondylar sacro-urostylar joint (vs. bicondylar), and lacking transverse processes on the urostyle 336 

(vs. transverse processes present). Late Cretaceous species of the group Gobiatidae (Mongolia, 337 

Uzbekistan, Kazakhstan) (e.g. Spinar and Tatarinov, 1986; Gubin, 1999; Roçek, 2008; Skutschas 338 

and Kolchanov, 2017) are also differentiated from SBEI 1778 in having bicondylar sacro-urostylar 339 

joints and at least one pair of transverse processes on the urostyle (Roçek, 2008).  340 

 Genibatrachus from the Lower Cretaceous Guanghua Formation in Inner Mongolia (Gao 341 

and Chen, 2017) is distinguished from all the Japanese taxa in having procoelous vertebrae and 342 

unexpanded sacral diapophyses. Isolated frog remains (maxilla, urostyle, tibiofibula, proximal 343 

tarsals) from the Early Cretaceous Khilok Formation of Transbaikalian Russia were attributed 344 

to ?Discoglossidae (Skutschas, 2003), but without opisthocoelous vertebral centra this attribution 345 

cannot be confirmed. Nonetheless, if the Russian specimens belong to a single taxon, it differs from 346 
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SBEI 1778 in having a bicondylar sacro-urostylar joint, and proximal and distal fusion of the tibiale 347 

and fibulare. 348 

 349 

Phylogenetic analysis  350 

In order to examine the phylogenetic position of SBEI 1778 among other Asian frogs, SBEI 1778 351 

was coded into the morphological data matrix of Ikeda et al. (2016), with the addition of three early-352 

branching neobatrachian species (Hadromophryne natalensis, Heleophryne purcelli, Sooglossus 353 

sechellensis, Pyron and Wiens, 2011) to provide an additional outgroup. The analysis was run using 354 

TNT (version1; Goloboff et al., 2008) with the New Technology search option with Ratchet (1000 355 

random addition sequences: 20 iterations). Caudata was the designated outgroup taxon. The resulting 356 

trees were re-analysed by using a Traditional search mode to fully explore all possible topologies. 357 

The bootstrap consensus tree was analyzed with 5000 replicated resampling. This analysis yielded 358 

the four most parsimonious trees (MPTs, Length 200), and the strict consensus tree placed SBEI 359 

1778 as the sister taxon of the Chinese Liaobatrachus rather than the Japanese taxa, Hyogobatrachus 360 

and Tambatrachus. However, when character traits were mapped on the tree, SBEI 1778 and 361 

Liaobatrachus were found to share a single character state, monocondylar sacro-urostylar 362 

articulation (character no. 45) (Figure 10), a trait generally considered primitive. When the analysis 363 

was re-run with character 45 de-activated,  the analysis yielded 31 MPTs (Length 193). In the Strict 364 

Consensus tree from this second analysis, SBEI 1778 was placed on the stem of a clade comprising 365 

the Chinese Liaobatrachus and the Japanese Hyogobatrachus and Tambatrachus. This instability in 366 

the position of SBEI 1778 is probably due to the large amount of missing data (88%), especially for 367 

elements with diagnostic characters (e.g. premaxilla, frontoparietal, prefrontal). SBEI 1778 thus 368 

represents a non-neobatrachian grade frog of uncertain affinity. It may be related to one or more of 369 

the previously named Early Cretaceous frogs from China and Japan, but further material is needed 370 

for comparison, particularly from the skull.  371 

  372 

Discussion 373 
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 SBEI 1778 is the first associated anuran specimen combining both postcranial and skull 374 

elements (e.g. pterygoid, dentary and angulosplenial) from the Kuwajima Formation, Tetori Group, 375 

of Japan. The Kuwajima Formation has yielded a diversity of small vertebrates, but amphibian 376 

records are very rare (Isaji et al., 2005; Matsumoto and Evans, 2018). This is unlikely to be a 377 

sampling bias, because the ‘Kaseki-kabe’  locality has been well studied for more than twenty 378 

years, and several thousand specimens, both associations and individual elements, have been 379 

collected over that time. There may be several reasons for the lack of amphibian records in this 380 

area, including palaeoenvironmental conditions and sedimentary environment.  381 

The average annual temperature during deposition of the Kuwajima Formation may have 382 

been relatively low, 10 ± 4 °C (Amiot et al., 2011), but similar temperatures were estimated for 383 

the Jehol Biota of China (Amiot et al., 2011), where frog fossils are more abundant. Moreover, 384 

although many extant neobatrachian frogs are distributed within the tropics (Wiens, 2007), 385 

others (e.g. Ranidae, Bufonidae) occur in temperate regions, as do many non-neobatrachians. 386 

Ambient temperature is therefore unlikely to have been a factor.  387 

 Although the Jehol Biota has yielded several frog specimens, salamanders are far 388 

more common. This reflects habitat differences. The Jehol sediments represent a lake 389 

environment (e.g. Pan et al., 2012) and the remains of aquatic-semiaquatic vertebrates (fish, 390 

salamanders, choristoderes) are more likely to be preserved than those of predominantly 391 

terrestrial taxa, including adult frogs (Wang et al., 2010). This may also explain, at least in part, 392 

why small terrestrial animals are rarer in the floodplain environment of the Kuwajima 393 

Formation (Isaji et al., 2005). However, this does not explain the absence of aquatic salamander 394 

fossils. The fine-grain deposits of the Yixian and Jiufotang formations are certainly more 395 

suitable for the preservation of fragile vertebrates like amphibians, but this seems an 396 

unsatisfactory explanation for the absence of salamanders in the Kuwajima Formation. Thus, 397 

the reason for the rarity of amphibian fossils in the Kuwajima Formation, and particularly the 398 

absence of salamanders, remains unresolved.  399 



16 

 

 The new Kuwajima frog specimen, SBEI 1778, preserves a limited number of postcranial 400 

elements for comparison with other Early Cretaceous Asian frogs (sacral diapophyses, ilium, 401 

urostyle and vertebrae). SBEI 1778 shares some similarities with the Early Cretaceous Chinese 402 

Liaobatrachus, and Japanese Hyogobatrachus and Tambabatrachus, but is distinct from them, based 403 

on the combination of hatchet-shaped sacral diapophyses; a monocondylar sacro-urostylar joint; 404 

absence of transverse processes on the urostyle; posteriorly tapering urostyle with weakly developed 405 

dorsal crest. However, there are too few diagnostic characters in SBEI 1778 to designate it as the 406 

type of a new species. The phylogenetic analysis places SBEI 1778 as a non-neobatrachian frog that 407 

may be related to Liaobatrachus, which is chronologically close to the Kuwajima Formation, and/or 408 

to Hyogobatrachus and Tambabatrachus which come from a slightly younger deposit (Figure 9). 409 

However, this hypothesis of relationship is weakly supported due to the large amount of missing data. 410 

Additional material of the Tetori frog (or frogs) is needed, especially the discovery of cranial 411 

elements and a complete ilium, in order to understand how it fits into the evolutionary history and 412 

distribution pattern of Early Cretaceous Asian frogs

 414 

 415 

Conclusions  416 

 A rare frog specimen from the Early Cretaceous Kuwajima Formation, Ishikawa 417 

Prefecture, Japan, containing 28 bones of a single individual within a matrix, is attributed to a non-418 

neobatrachian grade frog based on the combination of amphicoelous vertebrae and a monocondylar 419 

sacro-urostylar joint. This new Tetori frog is distinguished from other Asian species of similar 420 

grades, such as the Japanese Hyogobatrachus and Tambabatrachus, and the Chinese Liaobatrachus 421 

by a combination of iliac, sacral and urostylar characters. This new specimen, which is not complete 422 

enough to be named, provides additional information on the diversity of anurans in the Early 423 

Cretaceous of East Asia, but more material is needed to understand its relationships and evolutionary 424 

history.  425 

 426 



17 

 

Acknowledgments  427 

Our thanks go to Masatoshi Okura (Aichi Prefecture) for advice preparation; Tadahiro Ikeda 428 

(Museum of Nature and Human Activities, Hyogo) for access to Hyogobatrachus and 429 

Tambabatrachus; Liping Dong (Institute of Vertebrate Paleontology and Paleoanthropology, 430 

Beijing) for providing an image of the angulosplenial of Liaobatrachus; Akira Monkawa (Tokyo 431 

Metropolitan Industrial Technology Research Institute), Tadashi Komuro and Tetsuya Nakamura 432 

(Nikon) for µCT scanning; Tsuyoshi Hibino and Kento Otsuka (Hakusan City Board of Education, 433 

Ishikawa Prefecture) for access to the specimens described here. AM acknowledges Takanobu 434 

Tsuihiji (National Museum of Nature and Science) for his support and help. We also acknowledge 435 

the mayors and administrations of Kuwajima District (Hakusan City), and Ishikawa Prefecture, 436 

Japan, for their hospitality. We are also grateful to Pavel Skutchas (Saint Petersburg State 437 

University) and an anonymous reviewer for their helpful comments to improve an earlier version of 438 

the manuscript.   439 

 440 

References  441 

Amphibia Web: Browse by Family [online]. [Cited 6 February 2022]. Available from: 442 

https://amphibiaweb.org/lists/index.shtml. 443 

Amiot, R., Wang, X., Zhou, Z., Wang, X., Buffetaut, E., Lecuyer, C., Ding, Z., Fluteau, F., Hibino, 444 

T., Kusuhashi, N., Mo, J., Suteethorn, V., Wang, Y., Xu, X. and Zhang, F., 2011: Oxygen 445 

isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. 446 

Proceedings of the National Academy of Sciences of the United States of America, vol. 108, 447 

p. 5179–5183. 448 

Baez, A. M. and Basso, N., 1996: The earliest known frogs of the Jurassic of South America: review 449 

and cladistic analysis. Münchner Geowissenschaftliche Abhandlungen, Reihe A (Geologie 450 

Paläontologie), vol. 30, p. 131–158. 451 

Baez, A. M. and Nicoli, L., 2004: A new look at an old frog: the Jurassic Notobatrachus Reig from 452 

Patagonia. Ameghiniana, vol. 41, p. 257–270. 453 



18 

 

Barrett, P. M., Hasegawa, Y., Manabe, M., Isaji, S. and Matsuoka, H., 2002: Sauropod dinosaurs 454 

from the Lower Cretaceous of Eastern Asia: taxonomic and biogeographical implications. 455 

Palaeontology, vol. 45, p. 1197–1217. 456 

Dong, L., Roçek, Z., Wang, Y. and Jones, M. E. H., 2013: Anurans from the Lower Cretaceous Jehol 457 

Group of Western Liaoning, China. PLOS ONE, vol. 8, e69723, doi: 458 

/10.1371/journal.pone.0069723. 459 

Evans, S. E. and Borsuk-Białynicka, M., 1998: A stem group frog the Early Triassic of Poland. Acta 460 

Paleontologica Polonica, vol. 43, p. 573–580. 461 

Evans, S. E. and Manabe, M., 1998: Early Cretaceous frog remains from the Okurodani Formation, 462 

Tetori Group, Japan. Paleontological Research, vol. 2, p. 275–278.  463 

Evans, S. E. and Manabe, M., 2008: A herbivorous lizard from the Early Cretaceous of Japan. 464 

Palaeontology, vol. 51, p. 487–498. 465 

Evans, S. E. and Matsumoto, R., 2015: An assemblage of lizards from the Early Cretaceous of Japan. 466 

Palaeontologia Electronica, 18. 2, 36A, p. 1–36.  467 

Evans, S. E., Milner, A. R. and Mussett, F., 1990: A discoglossid frog from the Middle Jurassic of 468 

England. Palaeontology, vol. 33, p. 299–311. 469 

Evans, S. E. and Milner, A. R., 1993:  Frogs and salamanders from the Upper Jurassic Morrison 470 

Formation (Quarry Nine, Como Bluff) of North America. Journal of Vertebrate 471 

Paleontology, vol. 13, p. 24–30. 472 

Gao, K. Q. and Chen, J., 2017: A new crown-group frog (Amphibia: Anura) from the Early 473 

Cretaceous of northeastern Inner Mongolia, China. American Museum Novitates, no. 3876, 474 

p. 1–40. 475 

Gao, K. Q. and Wang, Y., 2001: Mesozoic anurans from Liaoning Province, China, and 476 

phylogenetic relationships of archaeobatrachian anuran clades. Journal of Vertebrate 477 

Paleontology, vol. 21, p. 460–476. 478 

Goloboff, P., Farris, J. and Nixon, K., 2008: TNT, a free program for phylogenetic analysis. 479 

Cladistics, vol. 24, p. 774–786. 480 



19 

 

Gubin, Y. M., 1999: Gobiatids (Anura) from the Upper Cretaceous locality Khermeen-Tsav (Gobi 481 

Desert, Mongolia). Paleontological Journal, vol. 33, p. 77–87. 482 

Haeckel, E., 1866: Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen 483 
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 618 

Figure captions  619 

Figure 1. Distribution of the Tetori Group (shaded areas) in central Japan and location of the 620 

Kaseki-kabe” in the Shiramine (Hakusan City, Ishikawa Prefecture) area (asterisk).   621 

 622 

Figure 2. Digital photograph of SBEI 1778 (A) and rendered view of the surface from µCT data 623 

with identification of exposed elements (B). The two squares (C and D) on B indicate locations 624 

where elements were not registered by the µCT “Toscaner 30000 micro CN” are located.  625 

 626 

Figure 3. Elements segmented from µCT slice data of SBEI 1778. A, exposed side; B, the other side 627 

of A. C–G, segmented elements from rescanned data by µCT XTH-255 XT. The two squares, C and 628 

D, corresponding to the squares marked in Figure 2 B. The elements shown in Figures 4–8 are 629 

labelled in bold.  630 

 631 

Figure 4. Left pterygoid (A–C), Left dentary (D–G) and right angulosplenial (H–K) of SBEI 1778. 632 

Left pterygoid in dorsal (A); lateral (B); ventral (C) views. Left dentary in lateral (D); dorsal (E); 633 

medial (F); and anteromedial (G) views. Right angulosplenial in lateral (H); dorsal (I); medial (J) 634 

and in ventral (K) views.  635 

 636 
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Figure 5. Vertebra (A–C) shown as No. 7 in Figure 3, part of left transverse process (D), left sacral 637 

diapophysis (E), urostyle (F–I) of SBEI 1778. Vertebra in ventral (A); lateral (B); anterior (C) views. 638 

Part of transverse processes in dorsal view (D), missing part indicated by a dotted line (extant 639 

species used for these models; Discoglossus and Conraua), sacral diapophysis in dorsal view (E). 640 

Urostyle in dorsal (F); ventral (G); left lateral (H); and anterior (I) views.  641 

 642 

Figure 6. Left humerus (A–C) and right radioulna (D–G) of SBEI 1778. Left humerus in dorsal (A); 643 

anterior (B); and ventral (C) views. Right radioulna in proximal (D); dorsal (E); medial (F); and 644 

ventral (G) views.  645 

  646 

Figure 7. Right ilium (A–C) and femur (D–F) of SBEI1778. Right ilium in lateral (A), dorsal (B), 647 

and medial (C) views. Femur (side indeterminate) in anterior (D), posterior (E), and distal (F) views.  648 

 649 

Figure 8. Two tibiofibulae (A–C) of SBEI 1778, isolated tibiofibula, SBEI 1222 (D), and two tarsals 650 

(E–G) of SBEI 1778; distal end of left tibiofibula in posterior view (A), mid-shaft of right tibiofibula 651 

in anterior (B), posterior (C); the left tibiofibula of SBEI 1222 in anterior view (D); relatively well-652 

preserved proximal tarsal in lateral (E) and dorsal (F) views, and proximal half of second proximal 653 

tarsal in dorsal (G) view.  654 

 655 

Figure 9. Occurrences of Anura through time during the Jurassic-Cretaceous of Asia (A), and map 656 

of Asia (B). Black spots indicate occurrence horizons. 657 

  658 

Figure 10. Phylogenetic relationships of SBEI 1778 within Mesozoic anurans. A, strict consensus of 659 

the four most parsimonious trees (MPTs) obtained by TNT analysis of the matrix of Ikeda et al. 660 

(2016) with three additional neobatrachian species (Hadromophryne natalensis, Heleophryne 661 

purcelli, Sooglossus sechellensis); B, bootstrap consensus tree, examined by 5000 replicated 662 

resampling analysis, numbers on tree B indicate bootstrap values.  663 
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Appendix 1: Data matrix  665 
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