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Abstract

We offer an approach to cooperation in repeated games of private monitoring in which players construct 
models of their opponents’ behavior by observing the frequencies of play in a record of past plays of the 
game in which actions but not signals are recorded. Players construct models of their opponent’s behavior 
by grouping the histories in the record into a relatively small number of analogy classes for which they 
estimate probabilities of cooperation. The incomplete record and the limited number of analogy classes lead 
to misspecified models that provide the incentives to cooperate. We provide conditions for the existence 
of equilibria supporting cooperation and equilibria supporting high payoffs for some nontrivial analogy 
partitions.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).

JEL classification: C70; C72; C73
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1. Introduction

1.1. Motivation

It is intuitive that repeated interactions, by allowing the participants to link future behavior to 
current actions, can give rise to different incentives than those of isolated interactions. Models 
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of repeated games of perfect monitoring (Fudenberg and Maskin (1986)) capture this intuition 
well, most simply in the Nash reversion equilibria presaged by Friedman (1971), in which players 
cooperate as long as there has been no defection, and then revert to the perpetual play of a Nash 
equilibrium of the stage game upon the first defection.

One might hope that analogous arguments would continue to hold in the face of the imper-
fections that inevitably complicate the monitoring of others’ actions, as long as the monitoring 
is informative enough. Unfortunately, there is no counterpart of the Nash reversion equilibrium 
under private monitoring, no matter how precise the monitoring.1 A player who receives a signal 
suggesting that her opponent defected in the first period will cling to the equilibrium hypothe-
sis (that the opponent has cooperated), attributing the signal to an unlikely draw from the noisy 
monitoring technology, and hence will cooperate rather than risk triggering a punishment by 
defecting. This ensures that first-period signals and hence actions have no effect on subsequent 
actions, giving players a license to defect in the first period, disrupting the putative equilibrium.

In this paper, we suggest an alternative approach to cooperation. Two players, say Alice and 
Bob, are to play a repeated game. To form a belief about Bob’s behavior, Alice examines a 
record reporting the realized behavior in past plays of the repeated game by other players. Alice 
groups the histories of play in these past games into a relatively small number of analogy classes 
and then estimates for each such analogy class, essentially by running a regression, the average 
frequency with which each action is played. Alice then assumes that this model describes Bob’s 
behavior. In particular, at each history in her current game with Bob, Alice assumes Bob’s behav-
ior matches the estimate she has calculated of the average behavior (in the record) in the analogy 
class containing the history. The result is a misspecified model (as Alice may be attributing to 
Bob a strategy that is not feasible given Bob’s observations). This misspecification plays a crit-
ical role in resolving the tension between the equilibrium hypothesis of cooperation (and hence 
the desire to continue cooperating despite adverse signals) and the incentive-producing belief 
that defecting will prompt an adverse opponent reaction. In particular, Alice’s efforts to extract 
a model of Bob’s behavior from the record of past play may lead her to believe both that Bob 
is likely cooperate, and that a defection on Alice’s part will make Bob significantly more likely 
to defect. Finally, we note that Alice and Bob’s play may itself form an observation in a record 
observed by future players, but there are no strategic links across (repeated) games. Alice and 
Bob’s incentives arise entirely out of their behavior in their interaction, while they form their 
expectations about this behavior from observing the record of others’ past interactions. We study 
the steady states in which the observations generated by Bob and Alice’s play coincide with the 
observations from past play on which Alice and Bob built their representation of their opponent’s 
behavior.

Formally, we examine analogy-based expectation equilibria (Jehiel (2005)), with the restric-
tion that histories with the same action profiles must belong to the same analogy class, reflecting 
the hypothesis that private signals are inaccessible to outside observers and thus do not appear 
in the record of past play. We begin in Sections 2–3 with the prisoners’ dilemma, examining a 
simple model with two such analogy classes in which histories are bundled according to whether 
they exhibit instances of defection. The consequent misspecification gives rise to incentives sup-
porting cooperation. Intuitively, because they hold a constant expectation of their opponent’s 
behavior in each analogy class, players subjectively perceive that a defection would trigger a 
punishment akin to that of the familiar Nash reversion strategy, leading players to initially coop-

1 As Fudenberg et al. (1994) show, noisy monitoring need not pose difficulties as long as the monitoring is public.
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erate. More precisely, their misspecified representation of their opponent’s strategy leads players 
to reason as if they were facing a stopping problem, determining when they should switch from 
cooperating to defecting, which they do when their subjective belief that their opponent has de-
fected at least once crosses an endogenously-determined threshold. Section 4 discusses in more 
detail the forces behind the result, the interpretation of analogy classes, applications and exten-
sions.

1.2. Relationship to the literature

Matsushima (1991) exploits reasoning similar to the intuition offered in the previous subsec-
tion to establish a precise and general result. If the players in a repeated game of independent 
private monitoring adopt pure strategies that are measurable with respect to their beliefs,2 then 
the only equilibria of the repeated game play a stage-game Nash equilibrium in every period.

Subsequent approaches to repeated games of private monitoring accordingly exploit relax-
ations of Matsushima’s three conditions. Mailath and Morris (2002, 2006) relax the independent-
signals condition, providing a folk theorem for repeated games in which the players’ signals are 
almost public. Adverse signals are now likely to be (highly) correlated, allowing players to create 
incentives by attaching punishments to such signals. Sekiguchi (1997) and Bhaskar and Obara 
(2002) relax the restriction to pure strategies, providing folk theorems for the repeated prisoners’ 
dilemma based on “belief-based” equilibria in mixed strategies. For example, if players mix be-
tween a Nash reversion strategy and the strategy of always defecting, then adverse signals are an 
indication that the latter is likely to have been realized, prompting changes in future behavior that 
create incentives. The belief-free approach pioneered by Ely and Välimäki (2002) and Piccione 
(2002) similarly allows mixed strategies (though first-period actions are pure, unlike the belief-
based approach), providing folk-theorem results supported by equilibria in which players mix 
between actions so as to ensure that their opponents are always indifferent between cooperat-
ing and defecting. As the name suggests, beliefs are irrelevant in belief-free equilibria, avoiding 
the potentially intricate updating of beliefs in the belief-based approach of Sekiguchi (1997)
and Bhaskar and Obara (2002), while raising potential difficulties in purifying the equilibrium 
mixtures (cf. Bhaskar et al. (2008)).

The belief-free folk theorems developed by Ely and Välimäki (2002) and Piccione (2002) re-
quire that monitoring be nearly perfect. Matsushima (2004) and Yamamoto (1965) relax this 
requirement. Intuitively, they replace a single period in the belief-free equilibria of Ely and 
Välimäki (2002) and Piccione (2002) with a multi-period review phase, allowing precise infor-
mation to be extracted from a sequence of individually less informative signals. For this to work, 
however, it is important that signals be independent, so that the information received by a player 
in the midst of the review phase does not provide clues as to how likely she is to pass the review 
(and hence how important is adherence to the prescribed equilibrium). Sugaya (2022) retains the 
convention of a review phase, while extending the folk theorem to the case of correlated signals.

We focus on the ability to maintain cooperation (rather than a full folk theorem) in the repeated 
prisoners’ dilemma with independent private monitoring. The most relevant comparisons are 
then the belief-based equilibrium of Sekiguchi and the belief-free equilibria of Ely and Välimäki. 
Some of our results do not require that monitoring be nearly perfect. These results depend on 
a misspecification in the players’ model of their interaction, viewing opponents’ behavior as 

2 The requirement is that if two histories for player i induce identical beliefs over the opponents’ histories, then i must 
take identical actions at these histories.
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constant across the analogy classes used to partition the historical record, rather than the review 
phases of Matsushima (2004) and Yamamoto (1965). Compte and Postlewaite (2015) similarly 
work with a model in which histories are grouped together into categories, though with a different 
motivation for the grouping and a different equilibrium construction. Section 4.3 explains the 
features our approach shares with that of Sekiguchi (1997), Ely and Välimäki (2002), and Compte 
and Postlewaite (2015).

2. Analogical reasoning and cooperation

2.1. The stage game

We examine the workhorse model of cooperation, the repeated prisoners’ dilemma, with the 
stage game given by

C D

C 1,1 −k,1 + k

D 1 + k,−k 0,0
. (1)

It is a normalization to choose the payoffs of mutual defection and mutual cooperation to be 0 
and 1. We simplify the analysis by restricting attention to the commonly examined one-parameter 
class of games in which the payoff premium to defecting, given by k, is independent of the actions 
of one’s opponent. The larger is k, the more tempting is defection, making it more difficult to 
sustain cooperation.

If this game is infinitely repeated under perfect monitoring and with common discount factor 
δ, then there exists an equilibrium supporting permanent mutual cooperation if and only if the 
players are sufficiently patient and the premium on defecting is sufficiently small, i.e., if and only 
if

δ ≥ k

1 + k
. (2)

Perhaps the best known strategy supporting cooperation is the Nash reversion strategy, in which 
both players cooperate after any history featuring no defections, and defect otherwise.

2.2. The repeated game

We now suppose that a pair of players is matched to play the repeated prisoners’ dilemma, 
playing the stage game given in (1) in each period 0, 1, . . . . The players have a common discount 
factor δ, which we interpret (and hereafter refer to) as a continuation probability, governing the 
random length of the game. Hence, after each period, an independent draw is taken determining 
whether the game continues (probability δ) or terminates. The continuation probability may be 
either high (denoted by δ) or low (denoted by δ). At the beginning of the game, the continuation 
probability is randomly drawn, with probability α of continuation probability δ, and is known by 
both players.3

3 Our interpretation is that some relationships are likely to last longer than others, depending on contextual features 
of the relationship that are known by both players. Members of a special commission assembled by the US Congress to 
report on a specific project will have a low continuation probability. Staff members of US Senators have high continuation 
probabilities. The summer interns at a firm have a low continuation probability, while the firm’s partners have a higher 
continuation probability. We capture this diversity as simply as possible, in the form of two continuation probabilities.
4
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We assume that the continuation probability δ is sufficiently low that the only equilibrium in 
such a game features defection after every history, and so our analysis focuses on games with 
high continuation probabilities.4

If player i plays C in some period t , then player j privately observes the signal c with proba-
bility 1 −ε and observes signal d with probability ε ∈ [0, 1/2]. Similarly, when i plays D in some 
period t , then player j privately observes the signal c with probability ε and observes signal d
with probability 1 − ε. The signals are drawn independently across players and periods. Players 
do not observe other’s signals. The case of ε = 0 corresponds to perfect monitoring; ε = 1/2
corresponds to no monitoring.

A history at time t is denoted by ht and includes a choice of discount factor δ as well as action 
profiles ak ∈ {C,D}2 and signal profiles sk ∈ {c, d}2 for all periods k < t . The corresponding 
private history of player i is denoted by ht

i and consists of δ and the own-action-and-signal pair 
(ak

i , s
k
i ) of player i for k < t . The set of histories is denoted by H , with typical element h. The 

set of private histories for player i is denoted by Hi , with typical element hi .
A strategy for player i is denoted by σi : Hi → � {C,D}, describing the (possibly mixed) 

action taken after every possible private history hi . Players thus have perfect recall of their own 
histories. The strategy profile is denoted by σ .

2.3. Modeling opponents

The analogy-based expectations equilibrium (Jehiel (2005)) that we examine rests on the three 
common pillars of equilibrium concepts for sequential games—a model of the opponent’s be-
havior satisfying some consistency condition, Bayesian updating of beliefs within this model in 
response to experience, and best responses to the updated beliefs. The departure from more fa-
miliar concepts lies in providing an empirical foundation for the model of opponents’ behavior, 
rather than assuming that these models simply appear as part of the equilibrium concept.

We assume that currently-matched players have access to a record of previous plays of the 
game by other agents. The current players adopt the frequencies of behavior observed in the 
record as their model of their opponent’s behavior in their current interaction.5

This record exhibits two imperfections. First, the record includes both high continuation prob-
ability interactions (in proportion α) and low continuation probability interactions (in proportion 
1 − α). The current player cannot observe the continuation probability attached to each observa-
tion of a previous game in the record. Second, the record reports the actions taken by each player 
in each period of each observation, but not the signals observed by the players.

4 For our purpose, the universal defection arising in such games is what matters. Any alternative specification (for ex-
ample, based on varying the monitoring technology or the stage-game payoffs) that would give rise to the same behavior 
would be equivalent. For example, these games may be played by sequences of short-lived players.

5 Young’s (1993) analysis of conventions is similarly based on the assumption that current players play best responses 
to the frequencies of play in a record of past play by other agents. Young emphasizes the dynamics that arise because 
current players take a sample of a record that is perturbed by mutations. To make the transition from Young’s model to 
ours, one would replace the stage game by a repeated game, assume that players observe the entire record instead of 
only a sample, assume there are no mutations in the record, and assume players evaluate the record via analogy classes. 
We view the latter difference as fundamental, giving rise to reasoning via misspecified models that has no counterpart in 
Young’s analysis. Fudenberg and Levine’s 1993a, 1993b self-confirming equilibrium similarly assumes that players play 
best responses to beliefs consistent with frequencies of play in a record, with the leeway in forming out-of-equilibrium 
beliefs playing an important role.
5
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Remark 1. Three features in this formulation of the record may be thought of as creating a 
tension. First, players can observe the continuation probability in their own interaction, but not 
in the interactions in the record. Our view is that the record contains a variety of games that are 
similar to the current interaction, none of which are exactly the same, with the players being 
unable to distinguish many of these differences. Second, the record does not report the private 
signals observed by the players, though each player obviously observes their signals in their own 
interaction. This is what we would expect from signals that are private, i.e., observed only by 
their recipient. Indeed, subsequent observers may not even understand what form these signals 
might take, or what means the players in previous interactions may have had for collecting and 
using information. Third we assume that actions are reported in the record, even though they are 
unobservable in the current interaction. We view information about actions as becoming available 
as time passes, so that players may be forced to work only with signals in their current interaction, 
even as their actions ar visible to players in later games. �

Each previous play of the game thus contributes an observation to the record listing the actions 
taken in each period of a previous game. These observations will be of various lengths (recalling 
that δ is a continuation probability), though all will be finite. A previous game that terminated in 
its t th period specifies the pair of actions taken in that game in each of its periods 0 through t .

A player uses the record to estimate the probability that her opponent in her current inter-
action will cooperate, given that the current interaction has reached some period t with history 
ht . In principle, the player might aspire to attach a different probability to each history, just as 
the strategies in a standard repeated game can attach different probabilities to different histories. 
However, the number of such histories is (countably) infinite, putting the estimation of a prob-
ability for each beyond the reach of any plausible data set, regardless of recent advances in big 
data. Hence, the player classifies histories into analogy classes, and then calculates the empirical 
frequency of C and D actions in the record for each analogy class. She then attaches this proba-
bility to every history in the analogy class and assumes these probabilities describe the behavior 
of her current opponent. We defer until Section 4 the question of how these analogy classes are 
determined.

Formally, each player i is endowed with an analogy partition Ani , that is a partition of H . 
We require that if two histories h and h̃ agree in the sequence of actions, then h and h̃ nec-
essarily belong to the same analogy class in Ani . This reflects our assumption that the record 
reports actions but not signals. However, a single analogy class may also contain histories with 
different sequences of actions, presumably reflecting a view that these differences are relatively 
unimportant. We let ai denote a typical analogy class in Ani , and for every history h we refer 
to ai (h) as the analogy class in Ani to which h belongs. For each analogy class ai , player i
identifies all histories in the record corresponding to ai after which an action is taken (histories 
after which the game ends with no further actions are irrelevant), and then calculates the pro-
portion of cooperation at these histories. An analogy-based expectation for player i is denoted 
by βi : Ani → � {C,D}, where βi(ai ) is the frequency of cooperation by player j observed at 
histories in ai (in the record of interactions).6 These expectations constitute player i’s model of 
her opponent.

6 It is possible that the record contains no histories corresponding to some analogy class ai . In this case, we place no 
restrictions on the belief βi(ai ). Jehiel (2020) explains how one could instead use trembles to discipline such beliefs. 
Such analogy classes do not arise in our analysis.
6
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Example 1. For example, suppose that Ani contains just two analogy classes, the first including 
histories in which there has never been a defection (a1), and the second including histories in 
which there has been a defection (a2). To keep the illustration simple, suppose the record consists 
of just the following two observations of past plays of the game:

Observation 1 : Player 1 : CCCC

Player 2 : CCDD

Observation 2 : Player 1 : DD

Player 2 : DD

.

The first observation comes from a game that lasted four periods, while the second comes from 
a game that lasted for only two periods. The following table lists the nonterminal histories that 
appear in these two observations, the observation from which each history is drawn, the analogy 
class containing the history, and the actions taken at that history:

History Observation AnalogyClass Actions
∅ 1 a1

C
C

C
C

1 a1
C
C

CC
CC

1 a1
C
D

CCC
CCD

1 a2
C
D

∅ 2 a1
D
D

D
D

2 a2
D
D

Notice that a given observation contributes multiple histories. A game that lasts four periods is 
informative about what actions are taken after the null history as well as histories of lengths one, 
two and three. The histories CCCC

CCDD
and DD

DD
do not appear on this list because these are terminal 

histories after which no actions occur, and hence are not relevant in estimating frequencies of 
play.

Four of the histories in this record fall into analogy class a1. There are five observations of 
C after these histories and three observations of D, and so player i’s estimate βi(a1) of the 
incidence of cooperation after histories in a1 is 5/8. Two histories fall into analogy class a2. 
There is one observation of C after these histories and three observations of D, and so player i’s 
estimate βi(a2) of the incidence of cooperation after histories in a2 is 1/4. �
2.4. The equilibrium concept

The analogy-based expectations equilibrium concept, introduced by (Jehiel (2005)), requires 
that the players’ actions are best responses to their beliefs, and that these beliefs match the fre-
quencies contained in an infinite number of draws from the equilibrium strategies. In practice, the 
players will have access to a finite record of past plays. Indeed, this was part of our motivation 
for restricting attention to a small number of analogy classes. As a result, in practice the players’ 
beliefs will be perturbed by estimation error. This estimation error disappears with an infinite 
record, and the analogy-based expectations equilibrium concept thus isolates the implications of 
7
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assuming players’ beliefs are given by the empirical frequencies of play in a limited number of 
analogy classes, without the confounding effects of estimation error.

For each strategy profile σ and history h, we let P σ (h) denote the probability of reaching 
history h when players play according to σ (given the monitoring technology and realization of 
δ). If the record identifies which player chose the various actions in the record and players make 
use of this information, then we say that player i’s belief βi is consistent with the strategy profile 
σ if for every ai ∈ Ani that is reached with positive probability (i.e., such that there exists h ∈ ai

with P σ (h) > 0), we have:

βi(ai ) =
∑

h∈ai
P σ (h)σj (h)∑

h∈ai
P σ (h)

, (3)

where σj (h) is identified with σj (hj ), with hj being player j ’s private history associated to h. 
Player i only considers the actions of player j in the record when constructing βi(ai) (as in 
Section 4.2.1).

Alternatively, the data may report profiles of actions but not which player chose which actions, 
or players may not make use of the information about who chose which action. To cover such 
applications, we should coarsen further the analogy partitions, forcing the players to work with 
analogy partitions that bundle histories that can be obtained from one another by permuting the 
roles of players i and j . We then replace (3) by

βi(ai ) =
∑

h∈ai
P σ (h)( 1

2 (σi(h) + σj (h)))∑
h∈ai

P σ (h)

so as to reflect that the behaviors of both players (not just j ) contribute to the aggregate frequency 
observed by player i. When symmetric strategies are considered, the two notions of consistency 
and the resulting equilibria are the same. In Section 3, we can thus apply either formulation, 
interpreting the setting as one in which players observe and make use of identities in the record, 
or (equivalently) either do not have such information or do not make use of it.

The belief βi for player i induces a βi -perceived strategy of player j , denoted by σβi

j and 
defined by

σ
βi

j (h) = βi(ai (h)) for every h ∈ H.

We see here how the players’ analogy-based models can give rise to misspecification. The esti-
mated strategy σβi

j is not in general an admissible strategy for player j since j ’s strategy has to 

be measurable with respect to Hj and σβi

j need not be so.

Let P σi,σ
βi
j (h) be the (subjective) probability that player i attaches to reaching history h (for 

each h ∈ H ) under the strategy profile (σi, σ
βi

j ). Then we say that σi is a best-response to the 
expectation βi if σi is a best-response after every private history for player i, i.e., if for each 
private history of length τ ∈ {0, 1, . . .} that arises with positive probability under (σi, σ

βi

j ), the 
strategy σi maximizes

E
P

σi ,σ
βi
j

{ ∞∑
t=τ

ui(ai(t), aj (t))δ
t−τ | hi

}
, (4)

where ai(t) ∈ {C, D} is the action taken by player i in period t and ui is player i’s stage-game 

payoff function. Notice that given the probability measure P σi,σ
βi
j , player i’s maximization 
8



P. Jehiel and L. Samuelson Journal of Economic Theory 208 (2023) 105609
problem is identical to that of a conventional repeated game. The distinctive features of the 
analogy-based expectations equilibrium all appear in the formation of beliefs.7 Section 3.3
presents examples in which the best responses satisfying (4) are readily identified.

Definition 1. A strategy profile σ is an analogy-based expectation equilibrium given a profile of 
analogy partitions An if and only if there exist a profile β of analogy-based expectations such 
that for every player i

1) βi is consistent with σ , and
2) σi is a best-response to βi .

We think of an analogy-based expectation equilibrium as a steady state of a learning process 
involving populations of players who would have access from previous play to the frequencies 
of behaviors in each of their analogy classes.

Remark 2. Throughout the course of the interaction player i uses her signals to update her beliefs 
about which analogy class contains the current history, and hence her beliefs about her opponent’s 
behavior, and plays best responses to these beliefs. Player i thus conditions her current actions 
on her past actions and past signals, while modeling opponents’ actions as depending only on 
analogy classes, which contain no signals but possibly the past actions of both players. In some 
sense, player i appears to believe that she is more sophisticated than her opponent. But, our 
preferred interpretation here is that this reflects not inconsistency but ignorance.

Player i uses all of the information at her disposal when choosing actions, and assumes that 
opponents do the same. However, player i need not be aware of her opponent j ’s payoff struc-
ture or of the information structure of player j (what j observes about the actions of i). Player 
i may entertain a wide range of possible information structures for player j , involving various 
signals and actions. A committed Bayesian would endow player i with a belief over the possi-
ble information structures of player j (and similarly for j ), and solve for an equilibrium of the 
consequent game of incomplete information. We view this as taking us beyond the small worlds 
(Savage (1972)) in which such an analysis is appropriate. Instead, we model player i as con-
structing the best empirical model of j allowed by the record, and then best responding to this 
model.

Related ideas appear in other approaches that capture various aspects of bounded rationality. 
Player i in a cursed equilibrium Eyster and Rabin (2005) fails to recognize that j ’s actions 
depend on j ’s information, even as i conditions her actions on her information. Every player 
above level zero in a level-k equilibrium (Nagel, 1995; Stahl and Wilson, 1995) believes they are 
more sophisticated than some others in the game. A player in a behavioral equilibrium (Esponda, 
2008) or a Bayesian Network personal equilibrium (Spiegler, 2016) has a misspecified model 
of the opponent’s or nature’s behavior (respectively). Each agent in a Berk-Nash equilibrium 
(Esponda and Pouzo (2016)) entertains a model of her opponent’s behavior that may be unrelated 
to her own. �

7 Best-responses are defined only at private histories hi arising with positive probability, as otherwise it is not clear 
with which distribution one should define the expectation operator. Beliefs are defined after every history, ensuring 
sequential rationality. As is familiar in the literature, adding trembles would allow us to deal with all histories. The 
resulting refinement is irrelevant for our purpose.
9
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3. Equilibrium

The equilibrium concept itself provides no guidance as to how many analogy classes a player 
is likely to use in examining the data, nor how these classes are to be determined. Our intuition 
is that the number of analogy classes is likely to be small, reflecting either limitations of the 
historical record or parsimony in the players’ reasoning. Toward that end, we suppose that players 
arrange histories into two analogy classes, clean and dirty. A clean history is one in which no 
player has defected. A dirty history is one in which at least one player has defected.

Section 3.1 characterizes properties that any equilibrium must satisfy. Section 3.2 develops 
sufficient conditions under which a fixed-point argument establishes the existence of an equilib-
rium satisfying various special cases of these properties. These sufficient conditions are not tight; 
useful alternative sufficient conditions may well exist.

3.1. Equilibrium characterization

3.1.1. The strategies
Each player uses the record to calculate the probability p that a player cooperates after a clean 

history, and the probability q that a player cooperates after a dirty history. Section 2.3 contains 
an illustration of such a calculation.

In grouping together the various dirty histories, player i does not distinguish whether it is 
player i who has defected, player j who has defected, or both (even if the record provides such 
information). Obviously, this may make a difference—player j may be more likely to defect 
after histories in which player j has already defected than after histories in which only i has 
defected—and so player i’s categorization of the histories potentially obscures some information. 
Given that i cannot estimate behavior after every one of the infinite number of histories, this is 
unavoidable.

Once player i has played D, player i will continue playing D thereafter. After such an event, 
player i will expect player j to play C with probability q irrespective of what player i does, 
since there is no uncertainty for player i that the history is dirty, thereby leading player i to find 
D optimal. Building on this observation, the candidate equilibrium behavior is that each player 
initially views the history as clean (and hence the opponent as cooperating with probability p), 
and cooperates in the high-continuation-probability interaction case. As long as i continues to 
cooperate, player i will update the probability i attaches to the event that the history is clean in 
light of the signals i receives and the probabilities p and q . Once this probability drops below a 
threshold, player i switches to defecting. Once player i defects, she defects thereafter.

The estimated probabilities p and q are equilibrium phenomena—the estimated probabilities 
must match the empirical frequencies of behavior, which in turn must be optimal given the es-
timated probabilities. Even before solving the fixed-point problem, we can infer that p and q
will both be positive, but less than one. The probability p will be positive because players with 
high continuation probabilities initially cooperate, and so the record will include clean histories 
exhibiting cooperation. This probability will be less than one because players with low continu-
ation probabilities defect after the (clean) null history, and because there may be clean histories 
in a high-continuation-probability exhibiting a first defection. It may then take some time for 
the other player in such a high-continuation-probability interaction to become sufficiently pes-
simistic as to defect, giving us some dirty histories with cooperation and hence positive q . But 
eventually, all players defect on dirty histories, ensuring q < 1.
10
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Once the behaviors of players have been determined for fixed (p, q) (the subject of the next 
subsection), the construction of analogy-based expected equilibria boils down to solving a fixed 
point in the two-dimensional (p, q) space. This is a potentially simpler than the usual construc-
tion of equilibria in such games, which involves fixed points in higher dimensional spaces.

3.1.2. Restless bandits
We first fix probabilities p and q and examine an individual player’s problem. As we have 

noted, a player who has once defected will thereafter always defect. Each player must then 
solve a stopping problem, determining how long to cooperate before switching to defection. 
We formulate this stopping problem as a restless bandit problem. There are two arms, a C arm 
(corresponding to cooperating) and a D arm (corresponding to defecting).

We let zt , the probability the player attaches in period t to the event that the history is clean, 
be the state of both arms at time t . We have z0 = 1, since all interactions start with the empty 
history, which is clean. As long as the C arm is pulled, zt will evolve in response to the signals 
the player receives. If the D arm is pulled at time t , then both arms are in state 0 at time t + 1.

If the C arm is pulled at time t , then a c signal is observed and both arms move to state8

φ(z, c) = zp(1 − ε)

zp(1 − ε) + z(1 − p)ε + (1 − z)[q(1 − ε) + (1 − q)ε] (5)

with probability zp(1 −ε) +z(1 −p)ε+(1 −z)[q(1 −ε) +(1 −q)ε]; while a d signal is observed 
and both arms move to state

φ(z, d) = zpε

zpε + z(1 − p)(1 − ε) + (1 − z)[qε + (1 − q)(1 − ε)] (6)

with probability zpε + z(1 − p)(1 − ε) + (1 − z)[qε + (1 − q)(1 − ε)].
We can use these expressions to calculate that, given current state z, the expected value of the 

next state is pz. Hence, as long as p < 1, the player expects a decline in the probability that the 
history is clean.

This gives us a restless bandit (the states of unpulled arms evolve) rather than a simple bandit 
(only the state of the pulled arm evolves). Each time the C arm is pulled, it generates a current 
payoff of

zp + (1 − z)q + [z(1 − p) + (1 − z)(1 − q)](−k) = − k + (zp + (1 − z)q)(1 + k).

When the D arm is pulled, it generates a current payoff of

(zp + (1 − z)q)(1 + k).

8 This is the probability player i attaches to the event that the period-t + 1 history is clean, given probability z that the 
period-t history is clean and given that i played C and observed signal c, and is readily constructed from the following 
accounting of outcomes:

Current history Probability Signal/Next history Probability
Clean z c/Clean zp(1 − ε)

Clean z d/Clean zpε

Clean z c/Dirty z(1 − p)ε

Clean z d/Dirty z(1 − p)(1 − ε)

Dirty 1 − z c/Dirty (1 − z)[q(1 − ε) + (1 − q)ε]
Dirty 1 − z d/Dirty (1 − z)[(1 − q)(1 − ε) + qε]

.

11
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It is clear that once the D arm is pulled, it is then optimal to thereafter pull the D arm. As a 
result, it is straightforward to calculate the value of the D arm, which is given by

W(z) = (1 − δ)[(zp + (1 − z)q)(1 + k)] + δq(1 + k)

= (1 − δ)z(p − q)(1 + k) + q(1 + k). (7)

We can view the D arm as paying q(1 + k) the first time it is pulled as well as every subsequent 
time, and can view (1 − δ)z(p − q)(1 + k) as an initial bonus the player receives (only) the first 
time he pulls the D arm. Only the initial bonus depends on the belief zt .

3.1.3. Equilibrium in the bandit problem
The most interesting case is that in which p > q , so that players are more likely to cooperate 

after clean histories than after dirty histories.

Lemma 1. For fixed p > q , there exists an optimal policy in the bandit problem. An optimal 
policy is characterized by a cutoff belief z such that a player cooperates if the belief z exceeds z
and defects if z is less than z.

Proof. The existence of an optimal policy is standard, having been established by Whittle 
(1983), and follows from dynamic programming arguments.

The statement that the optimal policy takes the form of a cutoff belief z is the intuitive result 
that if there is a belief at which one is willing to cooperate, then learning that the history is more 
likely to be clean will also make one willing to cooperate. To establish this, let V (z) be the value 
of cooperating at belief z, and thereafter proceeding optimally (with the existence result ensuring 
that this is well defined). Suppose it is optimal to cooperate at belief z, or V (z) ≥ W(z). Now 
consider z′ > z. We know, from (7), that

W(z′) − W(z) = (1 − δ)(p − q)(1 + k)(z′ − z).

We also know that V is given by the sum of the current payoff (1 − δ)[−k + (zp + (1 − z)q)(1 +
k)] plus a continuation payoff, allowing us to write

V (z′) − V (z) = (1 − δ)(p − q)(1 + k)(z′ − z) + δ[EV (φ(z′, ·)) −EV (φ(z, ·))].
It follows from (5) that φ(z, ·) is increasing in z, and V (z) is increasing in z (since an agent with 
belief z′ can mimic the actions of a player with belief z < z′, with the former securing a higher 
expected payoff), and so E(V (φ(z, ·))) is increasing in z. A comparison then gives

V (z′) − W(z′) ≥ V (z) − W(z).

Hence, we must have V (z′) ≥ W(z′), and so we have the desired threshold result. �
3.2. Existence of equilibrium in the repeated game

An equilibrium in the repeated game requires not only a solution to the bandit problem for 
fixed values of p and q , but also that this solution generates a record of past plays that is in turn 
consistent with p and q . Hence, given p and q , the repeated play of the consequent solution of 
the bandit problem would induce values p̂ and q̂ in the record, where these are the probability of 
cooperating after a clean history and after a dirty history. We seek a fixed point with p = p̂ and 
q = q̂ .
12
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3.2.1. Universal defection
It is no surprise, given that we are working with the prisoners’ dilemma, that there is an equi-

librium in the repeated game featuring relentless defection. If the candidate equilibrium strategies 
specify defection after every history, then the record will include only observations of the form

DDDDDD

DDDDDD .

The length of the observations will vary, but all observations will exhibit mutual defection in 
every period. The only clean histories in the record will then be null histories, since these are 
the only histories which exhibit no instances of defection. The only actions observed after such 
histories are defections, and so players observing this record will estimate p = 0. All other his-
tories are dirty, and again the only actions observed after such histories are defections, and so 
players observing this record will estimate q = 0. Player i thus believes that her opponent will 
defect after every history, regardless of i’s actions. Player i’s best response is then similarly to 
always defect, giving an equilibrium featuring relentless defection. Notice that this argument 
would apply no matter what the analogy classes.

3.2.2. Cooperation
We turn to the existence of nontrivial (i.e., exhibiting at least some cooperation) equilibria. It 

is intuitive that we can sustain cooperation only if p > q:

Lemma 2. In any nontrivial equilibrium, p > q .

Proof. Rewrite the current payoffs in the restless bandit problem from pulling the C arm, the 
first pull of the D arm, and subsequent pulls of the D arm, as

C : −k + q(1 + k) + z(p − q)(1 + k)

first D : q(1 + k) + z(p − q)(1 + k)

subsequent D : q(1 + k).

We can now focus attention on the key aspects of these payoffs by subtracting q(1 + k) from 
each payoff, yielding an equivalent restless bandit problem with payoffs

C : −k + z(p − q)(1 + k)

first D : z(p − q)(1 + k)

subsequent D : 0.

If p ≤ q , then any strategy in which the player chooses C at least once is dominated by the 
strategy of always choosing D, ensuring the equilibrium is trivial.9 �

We now show that we have a nontrivial equilibrium as long as either the monitoring is 
sufficiently precise, the high continuation probability is sufficiently high, or low-continuation-

9 Intuitively, we can say that in each period the player has the option of paying a fee k in order to receive a bonus of 
z(p − q)(1 + k). In the first period that player fails to pay the fee, the bonus is again paid, but the bonus is then never 
again paid. The player will pay the fee only if the bonus is positive, which requires p > q .
13
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probability interactions are sufficiently few. In each case, we require that the temptation to defect, 
captured by k, not be too large.10

Proposition 1. Let ε ∈ (0, 1/2) and α ∈ (0, 1).
[1.1] Suppose

k <
δα2

4 − δα2
.

Then there exists ε such that for all ε < ε, a nontrivial equilibrium exists.
[1.2] Suppose

k <
α2

4 − α2 .

Then there exists δ such that for all δ > δ, a nontrivial equilibrium exists.
[1.3] Suppose

k <
δ

2 − δ
.

Then there exists α such that for all α > α, a nontrivial equilibrium exists.

Appendix 5.1 contains the proof.
The argument proceeds by first showing that a necessary and sufficient condition for the exis-

tence of a nontrivial equilibrium is

k

1 + k
≤ δp(p − q). (8)

Notice that if p = 1 and q = 0, this is equivalent to the criterion (2) found in the conventional 
repeated prisoners’ dilemma. The results then follow by establishing bounds on the values of 
p and q under the various conditions. In doing so, we find that a large continuation probability 
plays two roles. First, as is typical in repeated games, we need the future to be sufficiently impor-
tant. Second, an increase in δ can decrease the estimate of q extracted from the record, making 
defecting less attractive.

3.2.3. The value of cooperation
Proposition 1 ensures the existence of an equilibrium with some cooperation, but makes no 

statement as to how much cooperation we can expect. There remains the possibility that co-
operation is a fleeting phenomenon with negligible payoff implications. Our next proposition 
establishes conditions under which the equilibrium payoff approaches 1, the payoff of the Nash 
reversion equilibrium in a game of perfect monitoring. Appendix 5.2 proves:

Proposition 2. [2.1] Suppose δ satisfies

δ >
k

1 + k
. (9)

10 No such restriction on k is required in the standard perfect-monitoring formulation, and indeed this restriction be-
comes moot in the limit as both the monitoring technology becomes arbitrarily precise and low-continuation-probability 
interactions become arbitrarily rare.
14
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Then there exists α < 1 such that for α ∈ (α, 1), there exists a sequence of equilibria such that, 
in the limit as ε → 0, the equilibrium payoff approaches 1, the payoff of persistent, mutual coop-
eration.

[2.2] Suppose δ satisfies

δ >
2k

1 + k
. (10)

Then there exists a sequence of equilibria such that, in the limit as α → 1, the equilibrium payoff 
approaches 1, the payoff of persistent, mutual cooperation.

In each case, we require that high continuation probabilities be sufficiently high, relative to 
the temptation to defect k. This is expected—without a sufficiently likely future, we cannot get 
cooperation off the ground. The additional conditions ensure that this cooperation is persistent 
rather than transitory.

The key to persistent cooperation is ensuring that the posterior belief that the history is clean 
does not decline too rapidly. The first result ensures this by requiring that low-continuation-
probability interactions be relatively rare and then examining the limit as the monitoring becomes 
arbitrarily precise. The paucity of low-continuation-probability interactions ensures that the esti-
mate of p drawn from the record is large, in turn ensuring that players think it unlikely that their 
opponents have spontaneously switched from cooperation to defection. The precise monitoring 
ensures that erroneous (posterior-depressing) signals are unlikely.

This first result requires the probability ε of mistaken signals to be small relative to 1 − α, 
the probability of low-continuation-probability interactions. This order of limits brings us back 
to the reasoning that ensures the Nash reversion strategy is not an equilibrium in a conventional 
repeated game of private monitoring. To deter defection, adverse signals must be interpreted as 
reflecting defection. In the first period of a conventional repeated game of private monitoring, 
the equilibrium hypothesis of Nash reversion strategies precludes this, with the players instead 
interpreting the adverse signal entirely as a whim of the noisy monitoring technology. Letting 
α < 1 in our context ensures that players will consider the possibility that an adverse signal 
reflects a defection. However, if ε is relatively large, it will still be considered overwhelmingly 
likely that the noisy monitoring technology is at fault. To create the requisite incentives, the 
monitoring technology must be relatively precise, ensuring that adverse signals are sufficiently 
likely to reflect defection, captured by the requirement that ε be small relative to 1 − α.

The second condition places no restriction on the precision of the monitoring, requiring only 
that low-continuation-probability interactions players be relatively few. This result relies on the 
observation that if low-continuation-probability interactions are relatively rare, then adverse sig-
nals will be interpreted as quirks of the noisy monitoring rather than indications of defection. 
This allows the posterior that the opponent is clean to remain high, as needed for long-lasting 
cooperation. Notice that this is just the opposite of the reasoning exploited by the first condition, 
and the latter reasoning gives rise to precisely the type of inference that scuttles cooperation in 
standard repeated games of private monitoring. If adverse signals are interpreted as quirks of 
the noisy monitoring, how do incentives to cooperate arise? The argument in the current setting 
relies on the misspecification in the players’ models of their interaction to verify the incentives 
to cooperate are not disrupted in the process. We return to this in Section 4.1.
15



P. Jehiel and L. Samuelson Journal of Economic Theory 208 (2023) 105609
3.3. Examples

We illustrate the results with two examples. To keep the notation uncluttered, we set δ = 0
and denote δ simply by δ.

3.3.1. Example 1: Perfect monitoring
If ε = 0, so that monitoring is perfect, we recover familiar results. Suppose each player adopts 

the strategy of cooperating after clean histories and defecting after dirty histories. Then the ob-
servations contained in the record will be either perpetual defection, arising in low continuation 
probability games, or perpetual cooperation, arising in high continuation probability games.

Given this record, each player will estimate an interior value for p, since they observe coop-
eration after all of the (clean) histories that appear in high continuation probability games, but 
defection after the null (and hence clean) history in low continuation probability games. Each 
player will estimate q = 0, observing dirty histories only in low continuation probability games 
whose players routinely defect. We see here the motivation for including low continuation prob-
ability games in the analysis, since otherwise there would be no observations on which to form 
this estimate.

When will the proposed behavior constitute an equilibrium? We can calculate the probability 
p:

p = α
∑∞

t=0 δt

α
∑∞

t=0 δt + (1 − α)
=

α
1−δ

α
1−δ

+ 1 − α
= α

α + (1 − α)(1 − δ)
. (11)

The numerator calculates the frequency of clean histories in the record after which a player 
cooperates. The denominator calculates the frequency of all clean histories.11

To confirm that we have an equilibrium, we need only verify the incentive constraint that a 
player be willing to cooperate at a clean history. The payoff from cooperating is given by

11 Given the proposed equilibrium behavior, the distribution of observations in the record will be the following:

Observation Probability Observation Probability

∅D
D (1 − α) ∅C

C α(1 − δ)

∅CC
CC αδ(1 − δ)

∅CCC
CCC αδ2(1 − δ)

.

.

.
.
.
.

.

For example, with probability (1 − α), a low continuation probability is drawn, in which case both players defect and 
then the game ends, giving observation ∅D

D . (Low continuation probability interactions would also contribute longer 
interactions had we not simplified by setting δ = 0.) With probability αδ2(1 − δ), for example, a high continuation 
probability is drawn (probability α), the players cooperate in the first period and the game continues two additional 
periods (probability δ2) during which they also cooperate, and then the game ends (probability 1 − δ). Now we calculate 
the proportion of cooperation at clean histories. The total incidence of clean histories (the denominator in (11) is given 
by 1 (every observation contains the clean history ∅) plus αδ (proportion αδ of the observations contain the clean history 
∅C

C ) plus αδ2 (proportion αδ2 of the observations contain the clean history ∅CC
CC ) plus.... Rearranging this sum gives the 

denominator of the intermediate expression in (11). All but 1 − α of these clean histories exhibit only cooperation (with 
the 1 − α remainder, corresponding to the clean history ∅ in low continuation probability interactions, exhibiting only 
defection), and subtracting 1 − α from the denominator in (11) gives the numerator.
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V = [p + (1 − p)(−k)] + pδV = (1 + k)p − k

1 − pδ
,

while the payoff from defecting is W = (1 + k)p, and hence the incentive constraint V ≥ W is

1 + k

k
p2δ ≥ 1,

or, using our solution for p and rearranging,

δ ≥ k

1 + k

(
α + (1 − α)(1 − δ)

α

)2

.

This inequality holds for sufficiently large δ, but is more demanding than the corresponding 
requirement (2) from the classical perfect monitoring game. The two criteria coincide when 
α = 1 (and hence p = 1). As α falls below one, so does the estimated value of p, and hence the 
value of cooperation, thus making the equilibrium condition more stringent.

3.3.2. Example 2: Imperfect monitoring
This example, returning to imperfect monitoring, illustrates the forces behind Proposition 2.1.
The posterior probability that the history is clean, given that i has hitherto always cooperated, 

that i has a prior probability z that the history is clean, and that i observes a c signal, is denoted 
by φ(z, c) and given by (5). Two forces appear in forming this posterior belief. First, a c signal 
is an indication that it is likely the history is clean, and so tends to push the posterior upward. 
However, there is always the 1 − p probability that a player defects at a clean history and hence 
the history turns dirty, and this pushes the posterior downward. When the prior z is very large, we 
expect the second force to dominate, as the good signal carries almost no information. When z
is relatively small, the c signal is more informative, and so we expect the first force to dominate. 
This suggests that we can find a fixed point z∗ as the value of z that solves

z = zp(1 − ε)

zp(1 − ε) + z(1 − p)ε + (1 − z)[q(1 − ε) + (1 − q)ε] .
We can solve for (using the presumption that p > q , so that this makes sense)

z∗ = p(1 − ε) − [q − 2qε + ε]
(p − q)(1 − 2ε)

.

In equilibrium, i’s posterior belief that the history is clean starts at 1, and then drifts downward 
toward z∗ as long as i observes a constant stream of c signals. In general, c signals push i
posterior either downward toward z∗ from above, or upward toward z∗ from below.

The posterior probability that the history is clean, given that i has hitherto always cooperated, 
and that i has a prior probability z that the history is clean and i observes a d signal, is denoted 
by φ(z, d) and given by (6). One can check that this posterior is always less than z—it is always 
bad news to observe a d signal. As ε approaches 0, this posterior also approaches 0—when 
monitoring is arbitrarily close to perfect, a d signal makes it arbitrarily likely that the opponent 
has defected and hence the history is dirty.

A pure strategy for player i is a function that maps from the collection of finite strings of c
and d signals into the set of actions {C, D}. We can immediately add the restriction that if any 
string maps to D, then so does every continuation of that string. Once player i defects, i takes it 
for granted that the history is dirty, hence j ’s behavior is thereafter impervious to any actions of 
i, ensuring that i finds it optimal to thereafter defect.

We show:
17
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Proposition 3. For all sufficiently large α < 1 and δ, there exists ε∗(α) such that for all 
ε < ε∗(α), there exists an equilibrium in which high-continuation-probability agents initially 
cooperate, and continue to cooperate until receiving their first d signal, and then thereafter de-
fect. As α → 1, the required lower bound on δ approaches k/(1 + k).

This gives us an equilibrium of the type described in Proposition 2.1, with a value approaching 
one, the value of permanent cooperation.

Remark 3. We could alternatively keep ε fixed, so that monitoring is inherently noisy. We would 
then have equilibrium strategies exhibiting cooperation as long as the probability the history is 
clean remains above a cutoff z, with the first d signal no longer necessarily prompting defection. 
If any of the conditions of Proposition 1 are met, we will have z < 1 and hence the equilibrium 
will exhibit at least some cooperation. If α approaches 1 (now with ε fixed), the value of this 
cooperation will again approach one, as in Proposition 2.2. �

The proof of Proposition 3 makes the nature of our equilibrium construction clear, and so we 
present it in the remainder of this section.

The posterior that the history is clean, following a d signal, is higher when the prior probability 
of being clean is higher (this requires p > q , which we will verify), and hence we can give an 
upper bound on the posterior z− by looking at the update when the prior is 1:

z− ≤ pε

pε + (1 − p)(1 − ε)
.

We have a bound on q , given by q ≤ ε/2. To see this, consider a dirty history in which just 
one player (say j ) has defected. Then in the next period j defects with probability 1 and i
cooperates with probability ε (the probability that i has seen a c signal in the most recent period, 
despite j ’s defection), giving a probability of cooperation of ε/2. The value of q is less than this, 
since the record also contains dirty histories in which both players defect in the next period with 
probability 1.

We can calculate p, obtaining12:

p = α + (1 − ε)αδ
∑∞

n=0(δ(1 − ε)2)n

1 + αδ
∑∞

n=0(δ(1 − ε)2)n
.

12 Following the logic of footnote 11, the following table gives the relative frequencies with which clean histories of 
various lengths appear in the record, and the probability of cooperation after histories of such length:

Length Frequency Probability
of History of Cooperation

0 1 α

1 αδ (1 − ε)

2 αδ2(1 − ε)2 (1 − ε)

3 αδ3(1 − ε)4 (1 − ε)

.

.

.

To obtain the first term, we note that with probability one, every game contributes a null history to the record, which is 
clean, and players cooperate after this history if they have a high continuation probability, which occurs with probability 
α. For the second term, note that with probability αδ, a game also contributes a 1-period history to the record, which is 
clean. After this history, each player cooperates with probability 1 − ε, which is the probability they received a c signal 
in the previous period. Subsequent terms are analogous.
18
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We can simplify to

p =
α + α(1 − ε) δ

1−δ(1−ε)2

1 + αδ
1−δ(1−ε)2

= α
(1 − δ(1 − ε)2) + (1 − ε)δ

(1 − δ(1 − ε)2) + αδ
.

The key characteristic we will use is that p goes to α
1−δ+αδ

as ε goes to zero. Hence, as long as 
ε < 1/2 is sufficiently small, we have p > q , as needed. In addition, this gives

lim
ε→0

z∗ = 1.

We can also calculate

lim
ε→0

z− = 0.

This latter calculation reflects the fact that as ε approach zero, a d signal is overwhelmingly 
likely to have come from a defection rather than an erroneous signal. This alone is not enough 
to ensure that z− approaches zero—if p approaches 1, defections may themselves be yet more 
overwhelmingly unlikely than erroneous signals. However, p is approaching α

1−δ+αδ
, ensuring 

that a d signal is interpreted as a defection, and hence that z− is arbitrarily small.
It remains to confirm incentives. We know from Lemma 1 that there is a cutoff belief z such 

that player i cooperates for higher beliefs and defects for lower beliefs, and so we need to show 
that z− < z < z∗.

Let V (z) be the value for a player who has hitherto not defected and observed no d signals, 
believes the history to be clean with probability z (≥ z∗), and who cooperates in the current 
period. Then we have

V (z) = (1 − δ)[(zp + (1 − z)q) + (1 − (zp + (1 − z)q))(−k)]
+δ[zp(1 − ε) + z(1 − p)ε + (1 − z)q(1 − ε) + (1 − z)(1 − q)ε]V (φ(z, c))

+δ[1 − (zp(1 − ε) + z(1 − p)ε + (1 − z)q(1 − ε) + (1 − z)(1 − q)ε)]W(φ(z, d)),

recalling that φ(z, c) is the posterior that the history is clean following prior z and signal c. The 
first line is the current-period payoff, the second line is the discounted value of the probability 
of a c signal times the continuation payoff V (φ(z, c)) in the event of such a signal, and the third 
line is the discounted probability of a d signal times the continuation payoff W(φ(z, d)) in the 
event of such a signal. This value is decreasing in z, and obtains its infimum in the limiting case 
of z = z∗ = φ(z∗, c). Letting V ∗ denote this value, it is the solution to

V ∗ = (1 − δ)[(z∗p + (1 − z∗)q) + (1 − (z∗p + (1 − z∗)q))(−k)]
+δ[z∗p(1 − ε) + z∗(1 − p)ε + (1 − z∗)q(1 − ε) + (1 − z∗)(1 − q)ε]V ∗

+δ[1 − (z∗p(1 − ε) + z∗(1 − p)ε + (1 − z∗)q(1 − ε) + (1 − z∗)(1 − q)ε)]W(φ(z∗, d)).

From (7), we have W(z) = (1 − δ)z(p − q)(1 + k) + q(1 + k). The incentive constraints for 
equilibrium are

V (z∗) ≥ W(z∗)
V (z−) ≤ W(z−).

To check these conditions, we first note that as ε gets small, we have z∗ → 1, z− → 0, and 
q → 0, and hence we have limiting values for W(φ(z, d)) and W(z−) of 0. This in turn ensures 
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that V (z−) = (1 − δ)(−k), giving the second incentive constraint—players will prefer to defect 
when the strategies call for them to do so. We can also solve for

V (z∗) = p + (1 − p)(−k).

The first incentive constraint, given by p + (1 − p)(−k) ≥ (1 − δ)p(1 + k), then becomes

δp ≥ k

1 + k
,

which, using our limiting expression for p, becomes

αδ

1 − δ + αδ
≥ k

1 + k
.

If we were to now let α approach one, then we would recover the limit δ ≥ k
1+k

from the tradi-
tional repeated game of perfect monitoring.

4. Discussion

4.1. The importance of misspecified models

Equilibrium cooperation rests on three pillars. First, player i must believe that player j will (at 
least sometimes) cooperate. Second, player i must believe that if i defects, then j will be more 
likely to defect. Third, the difference in j ’s behavior must be large enough to make it worthwhile 
for i to forsake the immediate payoff gains from defection.

The basic difficulty is a tension between conditions one and two. Under a Nash reversion 
equilibrium hypothesis, j ’s interpretation of a first-period d signal is that i cooperated and the 
signal is erroneous. Given this, j will continue to cooperate. However, condition two then fails 
for i, as i now does not fear that a first-period defection will make it more likely that her opponent 
defects.

In our setting, player i’s model of the interaction is that all interactions start clean, giving 
rise to the prospect of cooperation and hence the first condition. In addition, i believes that a 
defection renders the history dirty, and hence defection more likely, giving the second condition. 
The proofs of Propositions 1 and 2 complete the argument by showing that the difference p − q

in the probability of defection after clean and dirty histories is sufficiently large, giving the third 
condition.

Player i’s assessment of the adverse consequences of a defection reflect the misspecification 
inherent in i’s analogy classes. Player j cannot observe i’s action, and indeed the monitoring may 
be sufficiently noisy (as allowed in Proposition 2.2) that j receives virtually no information about 
i. Nonetheless, i observes that histories with a defection exhibit more subsequent defection than 
do histories without, and this empirical regularity leads player i to overestimate the potential of an 
initial defection to induce opponents to defect. This overestimation is the key to Proposition 2.2. 
We can illustrate the mechanics of this misspecification in a particularly stark setting, in the 
process making it clear that players in our setting can support cooperation under conditions that 
would ordinarily consign them to persistent defection.

Let ε = 1/2, so that signals carry no information. To keep things simple, we again let δ = 0
and denote δ simply as δ. As before, each player believes that the opponent cooperates with 
probability p after clean histories and probability q after dirty histories, and player i’s strategy is 
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to cooperate as long as the posterior probability zt of a clean history remains above a threshold 
z, and defect when zt < z.

In equilibrium, each player will cooperate, as the posterior probability that the history is still 
clean continually falls, until some period T + 1, at which point zT +1 dips below the threshold z, 
and the players then defect. As a result, the record will consist entirely of interactions in which 
the two players initially cooperate, and then simultaneously defect for the first time, and then 
continue to defect. The first simultaneous defection makes the history dirty, and the subsequent 
defections ensure that the record never exhibits cooperation after a dirty history. The players’ 
estimate q of the probability of cooperation after a dirty history is thus 0.

Since i’s model of player j is that in each period of a clean history, j cooperates with proba-
bility p, the probability that the history is still clean (given no defection by i) upon having arrived 
at period t is

zt = pt . (12)

Notice that as t increases, the probability that j has not yet defected declines.
Next, let us fix T and calculate the probability p. In equilibrium, a player who has drawn a 

high continuation probability will cooperate in periods 0, . . . , T for some T , and then defect. We 
then have

p(T ) = α(1 + δ + · · · + δT )

α(1 + δ + · · · + δT +1) + 1 − α
= α(1 − δT +1)

α(1 − δT +2) + (1 − α)(1 − δ)
. (13)

The numerator calculates the frequency of clean histories after which a player cooperates.13 The 
denominator calculates the frequency of all clean histories.

As T grows from 0 to ∞, the value of p(T ) grows from α/(1 + δα) to α/(1 − δ + δα). 
The latter value approaches 1 as either α (because then there are no low-continuation-probability 
interactions, which are the only ones exhibiting defection after clean histories when T = ∞) or 
δ (because the low-continuation-probability defections are then swamped) approaches 1.

Our task is to find T such that the induced values of zT ≥ z ≥ zT +1 and p(T ) satisfy the 
incentive constraints. The incentive constraints for these periods will ensure the incentive con-
straints hold in other periods. The value of cooperation in period T is zT [p(1 + δp(1 + k)) +
(1 −p)(−k)] + (1 − zT )(−k). The value of defecting in period T is (1 + k)zT p. Subtracting the 
second from the first, player i prefers to cooperate if zT [p(−k + δp(1 + k)) + (1 − p)(−k)] +
(1 − zT )(−k) ≥ 0, or

zT ≥ k

(1 + k)δp2 .

The equilibrium condition is then

zT ≥ k

(1 + k)δp2 ≥ zT +1. (14)

We can use (12) and rearrange to obtain

13 Cooperation requires that a high continuation probability, giving us the initial α. Then, with probability 1 we get a 
period-0 history added to our list, with probability δ we also get a period-1 history added to the list, with probability δ2

we get a period-2 history, and so on, through probability δT that we get a period-T history. After that, there is no more 
cooperation.
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(p(T ))T +2 ≥ k

(1 + k)δ
≥ (p(T ))T +3.

We clearly have (p(T ))T +2 > (p(T ))T +3. Both functions initially increase in T and then decline 
to zero as T → ∞. As long as k is not too large and δ not too small, there will exist a value T
satisfying (14) and hence an equilibrium in which cooperation persists for the first T periods.

One might wonder whether, as the continuation probability δ approaches one, this initial co-
operation fades into insignificance, with payoffs approaching zero (δT → 1), or whether payoffs 
are bounded away from zero (δT < 1). The latter is the case.14

Now consider what happens as α → 1, as in Proposition 2.2. It remains the case that 
for fixed α, we have limT →∞(p(T ))T +2 = 0, but also the case that for large T , we have 
limα→1(p(T ))T +2 = 1. Hence, as α approaches 1, as long as k/(1 + k)δ < 1, the equilibrium 
value of T will grow arbitrarily large. The equilibrium payoff will thus approach the payoff of 
permanent mutual cooperation, as in Proposition 2.2.

It is obviously impossible for i’s actions to affect j ’s behavior in this case. Nonetheless, i
interprets the regularity in the record that defection tends to be followed by increased defection 
as indicating a link between a defection by i and j ’s subsequent behavior, prompting i to initially 
cooperate. While cases in which players receive no information about opponents’ actions are 
likely to be exceptional, the point is that analogical reasoning can support cooperation in noisy 
monitoring situations that standard equilibria could not.

4.2. What difference does an analogy make?

What determines the players’ analogy classes? We explore two possibilities. To keep things 
simple, we continue to let δ = 0 and to denote δ simply as δ.

14 To see this, we first note that

pT ≈ k

1 + k
(15)

as δ gets close to 1. To verify this, note that it suffices for (15) that p converges to one. But if p does not converge to 
one, then (14) ensures that T would remain bounded, at which point (13) ensures that p converges to one, leading to a 
contradiction. We can thus use (15) to write

p ≈ 1 − y

T
(16)

where e−y = k
1+k

. Rewrite (13) as

p = 1 − αδT +1 + 1 − α

α(1 − δT +2) + (1 − α)(1 − δ)
(1 − δ) (17)

and postulate that δ ≈ 1 − x
T

+ o( 1
T

), implying that δT → e−x as δ converges to 1. We then have that

αδT +1 + 1 − α

α(1 − δT +2) + (1 − α)(1 − δ)
(1 − δ) ≈ αe−x + 1 − α

α(1 − e−x)

x

T
(+o(

1

T
)).

Inserting into (17) and identifying the 1/T terms in (16) and (17), we have

αe−x + 1 − α

α(1 − e−x)
x = − ln

k

1 + k
.

This gives us a positive value of x, with e−x < 1 being the limit of δT .
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4.2.1. More analogy classes
One possibility is that the analogy classes are shaped by the nature of the information con-

tained in the record. For example, the record in our two-analogy-class example may report 
profiles of actions while not distinguishing which player took which action. The players may 
eschew some analogy classes because the data are too thin to provide reliable estimates. Other 
analogy classes may be combined because they yield similar probabilities of cooperation. In 
general, the analogy classes in this interpretation reflect primarily characteristics of the data.

In this section, we illustrate the issues that arise when comparing different configurations of 
analogy classes by examining a model with three analogy classes. These analogy classes refine 
the two-class partition of Sections 2–3 by allowing players to take account of which participant 
in a dirty history has defected.

A history for player i is deemed healthy if there has been no past defection by either player. 
A history for player i is infected if player i has defected at least once in the history. A history for 
player i is exposed if player i has cooperated throughout, but player j has defected at least once.

Player i’s model of player j is that j is initially healthy, and that j cooperates with probability 
p when healthy, cooperates with probability q when exposed, and cooperates with probability 
r when infected. As long as i continues to cooperate, i will view j as being either healthy or 
infected, and will update the probability i attaches to the event that j is healthy in light of the 
signals i receives. Once i defects, player i now views player j as being either exposed or infected.

The candidate equilibrium strategies are that each player begins by cooperating. The proba-
bility that player i attaches to j being healthy will fall over time, reducing the probability that 
j is cooperating, until i switches to thereafter defecting. At this point, i is infected. Player j is 
either exposed or infected, and will at some point switch to being infected.

A helpful first observation is that being infected is an absorbing state—once player i defects, 
then player i will thereafter defect. Player i’s model of player j is such that once i is infected, 
i’s actions have no effect on j ’s transition from exposed to infected. Instead, player i models 
j as making the transition to infected the first time j ’s draw of an action comes up with the 
probability 1 − q action D. Hence, once i defects, no subsequent signals or beliefs will cause i
to cooperate. This in turn allows us to conclude that r = 0.

Once again we can formulate player i’s maximization problem as a restless bandit problem, 
with details in Appendix 5.3. We can then show that we have a nontrivial equilibrium as long as 
players are sufficiently patient and the monitoring is sufficiently precise. Appendix 5.3 proves:

Proposition 4. Suppose

k <
δα2

4 − δα2
(18)

Then there exists ε such that for all ε < ε, a nontrivial equilibrium exists.

The argument behind this result first shows that a necessary and sufficient condition for the 
existence of a nontrivial equilibrium is

pδ(p − q)

1 − qδ
≥ k

1 + k
. (19)

The next step is to place some bounds on the values of p and q . The important relationship here 
is that q approaches zero as does ε. We then argue that α/2 is a lower bound on p. Inserting this 
bound in (19) and letting ε and hence q approach zero, we obtain (18).
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Now we fix the continuation probability δ and show that, as the monitoring structure becomes 
increasingly precise and the proportion of impatient players shrinks, then there exists an equi-
librium with payoff approaching 1, the payoff of the Nash reversion equilibrium in a game of 
perfect monitoring.

Proposition 5. Fix δ ≥ k
1+k

. Then there exists a sequence of equilibria such that, in the limit as 
first ε → 0 and then α → 1, the equilibrium payoff approaches 1, the payoff of persistent mutual 
cooperation.

The bound δ ≥ k
1+k

on the continuation probability is precisely the bound for the Nash re-
version strategy to be an equilibrium in the standard repeated game of perfect monitoring. The 
argument, which follows that of Proposition 2 and is hence omitted, proceeds by establishing the 
sufficient condition that, for small ε and large α, we have

p(1 − ε) − ε

p(1 − ε) + (1 − p)ε − ε
≥ k

1 + k

1 − qδ

δp(p − q)
.

We then show that as ε goes to zero so does q , and then as α goes to 1 so does p, reducing this 
condition to δ ≥ k

1+k
.

The sufficient conditions for supporting cooperation are more demanding in the case of three 
analogy classes. Proposition 4 requires ε small while Proposition 1 does not, and Proposition 5
requires an order of limits while Proposition 2 does not. This is initially unexpected. Under 
two analogy classes, the punishment consists of receiving q(1 + k) forever, while under three 
analogy classes, q(1 + k) is received only temporarily, until the opponent switches from exposed 
to infected, giving a seemingly more severe punishment.

It may well be that three analogy classes gives rise to a more severe punishment that more 
readily supports cooperation. However, the reverse may also occur. The proof of Proposition 1
shows that a sufficient condition for a player to cooperate in the two-analogy-class case is given 
by (8):

k

1 + k
≤ δp(p − q),

while the counterpart (19) of this condition appearing in the proof of Proposition 5 shows that 
the with three analogy classes a necessary condition for cooperation is:

k

1 + k
≤ δp(p − q)

1 − qδ
.

Since 1/(1 − qδ) > 1, the second condition appears less demanding, but this misses the fact that 
the two-analogy-class system gives a smaller estimate of q than does three analogy classes. With 
three analogy classes, the estimate of the probability q is taken from the set of exposed histories, 
which quite often lead to cooperation, with the first defection converting the history to infected. 
With two analogy classes, in contrast, the set of histories from which q is estimated includes 
(among others) every history in which both players have defected, contributing many instances of 
defection to the frequency calculations, giving a smaller value of q and hence a more intimidating 
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punishment. One can then construct examples in which cooperation is possible under two but not 
three analogy classes.15

4.2.2. Information design
We have thus far taken the analogy classes to be exogenously fixed, focusing attention on the 

extent to which such analogy classes can support cooperation in an analogy-based expectation 
equilibrium. This may be appropriate if the specification of the analogy classes is fixed by the 
nature of the information in the record or by cognitive limitations of the players.

An alternative is that a designer chooses the analogy classes and the attendant equilibrium in 
order to maximize the players’ payoffs. The designer can perhaps be viewed as a third party in 
charge of recording and disclosing feedback from past interactions. The designer’s objective is 
to maximize the players’ payoffs,16 while the designer faces the constraint that the players form 
their models of their opponents’ behavior in an empirical fashion as formalized in the analogy-
based expectation equilibrium.

We continue to assume that signals are not accessible from past interactions, which puts con-
straints on the type of analogy partitions that can be considered by the designer. Depending on the 
context, additional constraints may arise. For example, the record may keep track of actions but 
not the identity of the players taking those actions, restricting the designer to analogy classes sim-
ilar to those examined in Sections 2–3. There may also be constraints on the number of analogy 
classes if it is more costly for the designer to disclose (or difficult for players to absorb) a larger 
number of aggregate statistics. But beyond these constraints, the designer is free to consider the 
analogy partitions of her choice.

This perspective has some similarity with the information design perspective developed in 
the Bayesian persuasion literature pioneered by Kamenica and Gentzkow (2011), but with some 
notable differences. Most importantly, the sender in a game of Bayesian persuasion shapes the 
monitoring technology determining the information that is transmitted to the receiver in the game 
that the sender plays with the receiver. In contrast, the monitoring technology remains the same in 
our game regardless of the analogy partitions. Instead, the information design we are considering 
concerns the feedback from past interactions that determines how the new players in the current 
game model their opponents. The analogy-based expectation equilibrium is the tool we use to 
model the effect of such feedback in the steady state, in contrast to the Bayes-Nash equilibrium 
in the Bayesian persuasion literature. Nonetheless, one can view the perspective suggested here 
as extending the question of information design to a repeated-game setting.

When analogy partitions can differentiate the actions of the two players (i.e., actions are not 
recorded in an anonymous way), as in Section 4.2.1, then the optimal design problem has a 
straightforward solution. The following proposition identifies an optimal analogy partition for α
and δ large enough.

15 For example, fixing α ∈ (0, 1) and ε ∈ (0, 1/2), letting δ → 1 ensures that q → 0 in the two-analogy-class case. 
For sufficiently large δ, the necessary condition under three analogy classes will be more demanding than the sufficient 
condition under two analogy classes if

p2
2 >

p3(p3 − q3)

1 − q3
,

where p2 is the equilibrium value of p from the two-analogy-class case, and so on.
16 We keep things simple by assuming the designer entertains only symmetric equilibria.
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Proposition 6. Consider the analogy partition specifying that each player i’s history is dirty 
if i has ever defected, and is clean otherwise. There exist δ∗ and α∗ such that for all δ > δ∗
and α > α∗, it is an analogy-based expectation equilibrium that players in high continuation 
probability interactions cooperate after clean histories and defect after dirty histories, while 
players always defect in low probability interactions. This leads to a payoff no smaller than the 
one attained in any analogy-based expectation equilibrium whatever the analogy partitions.

Proof. The equilibrium path induced by these strategies is that players in high continuation pay-
off interactions always cooperate, while those with low continuation payoffs always defect. The 
players will then estimate that q , the probability of cooperating after a dirty history, is zero, since 
all such histories appear in low continuation payoff interactions. The probability of cooperation 
after a clean history will be

p = α(1 + δ + δ2 + . . .)

α(1 + δ + δ2 + . . .) + (1 − α)
= α

α + (1 − α)(1 − δ)
.

The incentive constraint that cooperation is optimal at clean histories for players with high con-
tinuation probabilities is

p − (1 − p)k ≥ (1 − δ)p(1 + k),

which will obviously hold if α and δ are sufficiently large. It is clear that independently of 
the analogy partitions, no analogy-based expectation equilibrium can deliver a higher payoff, 
establishing the final part of the proposition. �

We leave for future research the study of the best analogy partitions when other considerations 
preclude the construction in Proposition 6, such as when the record does not report the identities 
of the players taking the various actions and thus analogy partitions must be anonymous.

4.3. Relationship to the literature

Escaping Matsushima. As noted in Section 1.2, any attempt to support cooperation in the face of 
private monitoring must break free of Matsushima’s 1991 three conditions (independent signals, 
pure strategies, strategies measurable with respect to beliefs about opponent histories). Like the 
bulk of the literature that followed Matsushima (1991), we retain the independent monitoring 
(with Sugaya (2022) pioneering the extension to arbitrary signal structures), while relaxing the 
restriction to pure strategies. The mixtures in conventional models ensure that adverse signals 
are informative about behavior, and hence can prompt incentive-creating reactions, rather than 
be interpreted as quirks of the noisy monitoring. Analogously, the agents’ inability to distinguish 
low and high continuation probability interactions in the record ensures that no player expects an 
opponent to cooperate with probability one, again allowing signals to be interpreted as conveying 
information about behavior that prompts incentive-creating responses.

Belief-Based Equilibria. Our analysis then proceeds on two fronts. Proposition 2.1 exploits rea-
soning similar to that in Sekiguchi (1997). Players in Sekiguchi’s analysis initially mix between 
always defecting and playing a counterpart of the Nash reversion strategy. Each agent i who 
chooses the latter continually updates her beliefs until the probability that the opponent both 
initially chose the Nash reversion strategy and is still cooperating becomes low enough that i
switches to defecting. Each player’s behavior thus consists of a string of cooperation, until mak-
ing a permanent switch to defection.
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The initial probability attached to always defecting in Sekiguchi’s equilibrium is the func-
tional equivalent of the low-continuation-probability interactions in our analysis, and the sub-
sequent beliefs are the counterpart of our agents’ beliefs that the history is still clean. The 
equilibrium described in Proposition 2.1 again yields an initial string of cooperation for each 
player, but both players ultimately switch to perpetual defection. Conceptually, our formulation 
differs in that prior beliefs emerge from an empirical interpretation of the data and are then pro-
cessed via a misspecified model, rather than coming to life as part of the equilibrium concept 
in a correctly-specified model. The resulting behavior is qualitatively similar, though we have 
effectively purified Sekiguchi’s initial mixture.

Belief-Free Equilibria. In a belief-free equilibrium, each player i is in each period indifferent 
between playing C and D. Players cooperate in the first period and in each subsequent period 
each player i chooses a mixture that depends only on i’s previous action and signal. Each player 
is more likely to cooperate after having received a c signal, with this difference in the opponent’s 
future behavior calibrated to make a player indifferent between playing C and D in each period.17

The behavior thus exhibits a form of stationarity, with the previous-period outcome determining 
current-period behavior, no matter what the current period. Supporting payoffs close to those 
of perpetual cooperation is then a matter of verifying that as players become patient and the 
monitoring precise, the mixtures can be chosen so as to place relatively little weight on defection, 
allowing high payoffs to be sustained throughout the interaction.

Proposition 2.2 follows Ely and Välimäki (2002) in exploiting the dependence of i’s current 
action on i’s previous action. However, the mechanisms are quite different. The continually ad-
justed actions in a belief-free equilibrium (as seen in footnote 17) induce a stationary pattern of 
behavior, while players in our construction typically have strict incentives and play pure strate-
gies, beginning with a persistent string of cooperation and culminating in persistent defection. 
Payoffs close to those of perpetual cooperation in a belief-free equilibrium can be obtained (un-
der appropriate conditions) by tuning the mixtures appropriately. Supporting such payoffs in our 
setting is a matter of verifying that the switch to cooperation can be postponed so long as to 
have a negligible effect on payoffs. Unlike the belief-free equilibrium, this does not require that 
monitoring become close to perfect.18 The indifferences supporting the mixtures in a belief-free 
equilibrium reflect correct beliefs about the strategies of their opponents. In the equilibrium of 

17 Letting πXy be the probability attached to cooperate after having played X ∈ {C, D} and received signal y ∈ {c, d}, 
we have

πCc = (VC − δVD)(1 − 2ε) + (1 − δ)[k + ε − (1 − ε)(1 + k)]
δ(1 − 2ε)(VC − VD)

πCd = (VC − δVD)(1 − 2ε) + (1 − δ)[ε − (1 − ε)(1 + k)]
δ(1 − 2ε)(VC − VD)

πDc = (1 − δ)[k + VD(1 − 2ε) − kε]
δ(1 − 2ε)(VC − VD)

πDd = VD[(1 − 2ε) − kε]
δ(1 − 2ε)(VC − VD)

,

where VC and VD are the expected continuation to player i when player j plays C and when j plays D. The values VC

and VD must be chosen so that these are all probabilities, and can both be chosen arbitrarily close to one for sufficiently 
large δ and small ε.
18 Section 1.2 notes that Matsushima (2004) and Yamamoto (1965) relax the nearly-perfect-monitoring requirement 
by building review phases into the equilibrium. Our equilibria have no counterpart of review phases, with an obvious 
indication of the difference being that the switch to defection is permanent in our equilibria.
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Proposition 2.2, agent i’s preference to defect after having once defected reflects the fact that i
has estimated an average of j ’s behavior across the histories in the analogy class dirty, causing i
to overestimate the subsequent probability that j will defect.

Community Enforcement. We can compare our perspective to that of the community enforce-
ment literature pioneered by Kandori (1992). In a community enforcement setting, infinitely-
lived members of a population in each period are matched into pairs to play a single iteration 
of the stage game, and then proceed to the next period to be matched anew. Players observe 
nothing about past play except the actions taken in their own interactions. In particular, players 
do not observe the identities of their past partners, nor do they have any information about the 
past behavior of their current partners. Nonetheless, players recognize that their current actions 
will affect the future play of the community, and this link plays a role in creating the equilibrium 
incentives.

In our setting, a pair of agents is matched together to play an infinitely repeated game. This is 
the only game these two agents will play. However, the agents observe information about previ-
ous plays of the games by other players. A current player uses this information about past play to 
form their beliefs about the play of their opponent. A player recognizes that a current action may 
affect the play of their current opponent in future periods of the current game, and this link plays 
a role in creating the equilibrium incentives, but potential links between play in the current game 
and the beliefs and hence potentially behavior of future players, who may observe the current 
game as part of the record, are irrelevant for incentives in the current game. Community enforce-
ment thus features a population of players who are continually and randomly matched to play a 
stage game, with relatively little information flow across periods and with incentives created by 
strategic links between current and future games. In our setting, each player engages in a single, 
repeated game, with relatively rich information flows from past games shaping beliefs but with 
no strategic links between games.

Misspecification. Compte and Postlewaite (2015) examine a model of cooperation in the re-
peated prisoners’ dilemma that shares with our analysis the classification of histories into cate-
gories. Their interpretation is that players resort to categorization not because they must estimate 
opponents’ play from a limited record, but because the set of feasible strategies is limited by 
psychological considerations and cognitive limitations. Their analysis focuses on cases in which 
players can be in one of two mental states, with a strategy induced by attaching an action to 
each state and specifying rules for how the players move between states. The mental states are 
reminiscent of our analogy classes, but because the restriction is placed directly on the strategies 
of both players, the players are effectively solving a game with limited strategy space with the 
usual mutual best-response requirement.

As we noted in Section 2.4, our model joins a collection of misspecification-based equilibrium 
concepts, while applying such reasoning to the question of cooperation in repeated games.19

Interestingly, Hansen et al. (2021) report that oligopolistic firms often use machine learning 
algorithms to investigate their demand curves. In doing so, each firm i typically assumes firm 
j ’s pricing behavior is fixed and unresponsive to i’s behavior. In our terms, each firm i puts all 
histories into a single analogy class. Hansen, Mishra and Pai identify conditions under which 
the firms’ algorithms (unknowingly) induce correlated price experiments, causing each firm to 
underestimate the price sensitivity it faces and leading the firms to set high, effectively collusive 

19 Jehiel and Samuelson (2012) apply similar ideas in a model of reputation building.
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prices. One can view the machine learning as the counterpart of our sampling from a record, 
the assumption that opposing firms do not react to one’s own pricing as the counterpart of our 
analogy classes, and the collusive behavior as the counterpart of our cooperative outcomes.

Monitoring. The equilibria we have constructed in general feature only temporary cooperation, 
though the expected duration of cooperation may be long relative to the expected length of the 
relationship.

A theme that emerges from observational studies, taking different forms in different settings, 
is the importance of improving the monitoring in making lasting cooperation possible.20 Our in-
terpretation of this literature is that one cannot typically expect to sustain permanent cooperation 
without converting private monitoring into public monitoring.21 We view our model as applying 
to cases in which monitoring is inherently private and communication is unreliable or communi-
cation alone is ineffective in supporting cooperation. Here, we are not surprised that punishments 
may eventually get triggered. Relations between countries, where institutions to provide moni-
toring are sparse, are one obvious area of application, as are relations between firms when the 
specter of antitrust enforcement is sufficient to deter effective communication.

We find that cooperation can still be immensely valuable. The time scale on which cooperation 
breaks down may be so long as to make the payoff effects of cooperation effectively permanent; 
this is the implication of Proposition 2. We thus have a situation in which institutions may last 
a very long time, and cooperation may also last a very long time, but eventually either the insti-
tution or the cooperation degenerates or disappears. One could argue that in the Roman empire, 
cooperation broke down (which then led to the demise of the empire) while in the British empire, 
cooperation persevered but the empire withered away.

Experiments. We can interpret the results of two experiments in light of our model. First, Aoy-
agi et al. (2019) report experimental results for the repeated prisoners’ dilemma with private 
monitoring. Two of the three most popular strategies (consisting of always-defect and a lenient 
version of Nash reversion, and together comprising 56% of all strategies) necessarily eventually 
always defect, and this is also one possibility for the second most popular strategy (which they 
refer to as Sum2). This is qualitatively consistent with our equilibria, in which cooperation even-
tually dissipates. They also find that overall cooperation in private monitoring games reaches 
approximately the levels found in perfect-monitoring games. This is consistent with our finding 
that seemingly temporary cooperation can be quite valuable.

Second, Section 4.1 explains how equilibria supporting cooperation can arise when signals 
are arbitrarily noisy, perhaps even uninformative. Aoyagi and Frechette (2009) reports results of 
repeated prisoners’ dilemma experiments in which subjects received no feedback as to their op-
ponents’ actions. Consistent with the equilibria sketched in Section 4.1, the players do sometimes 
cooperate, with an average incidence of cooperation of .31.22 Fig. 1 shows the average incidence 
of cooperation in each period (aggregated over all games) and the average incidence of coopera-
tion in each of the games (aggregated over periods) in the ten-game sequence of repeated games. 

20 See, for example, Blomquist et al. (1994), Ellickson (1991), Harrington and Skrzypacz (2007, 2011), Levenstein and 
Suslow (2006), Marshall and Marx (2012), Ostrom (1990), Porter (1983) and Ulen (1978, 1980).
21 Perfect monitoring may be literally impossible, so the goal may better be described as making the monitoring pubic 
and sufficiently close to perfect that the results of Mailath and Morris (2002, 2006) apply.
22 The average incidence of cooperation is the number of times the action C was observed divided by the total number 
of actions. The results are complied from the original data from Aoyagi and Frechette’s 2009 experiment, available at 
http://people .cess .fas .nyu .edu /frechette /data /Aoyagi _2009a _data .txt.
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The former hints at a slight tendency for cooperation to increase as the play within a game pro-
ceeds, while the latter suggests that cooperation decreases as participants gain experience with 
the game.

The incidence of cooperation in these games is noticeably lower than that of comparable ex-
periments with monitoring (Aoyagi and Frechette, 2009, Table 2, p. 1146), but there is noticeably 
more cooperation than in one-shot prisoners’ dilemma games (Dal Bó, 2005, Table 5, p. 1599, 
lines 1 and 4). These results suggest that cooperation in a repeated prisoners’ dilemma without 
monitoring is conceivable, though the equilibrium presented in Section 4.1 is not a perfect match 
for the data.

A tighter experimental test of our approach would provide subjects with information about 
the behavior observed in similar interactions, and would examine whether players form beliefs 
that are consistent with grouping the histories in the record into analogy classes. Varying the 
information contained in the record would allow a comparative static analysis of how analogy 
classes are formed.

4.4. Beyond the prisoners’ dilemma

Our equilibrium construction relies heavily on the fact that the prisoners’ dilemma has only 
two actions. Can we extend the analysis to more general games?

While we leave for future research the study of general repeated games, we suggest how 
our two-analogy-class construction can be extended to the simplest instance of the setting that 
provided much of the early motivation for examining collusion, the Cournot duopoly. In the stage 
game firms 1 and 2 choose quantities x1 and x2. Prices are then given by

p1 = f (x1, x2) + ε1

p2 = f (x2, x1) + ε2,

where f : R2+ → R is decreasing in both arguments and ε1 and ε2 are identically-distributed 
random variable with zero means and full support on R. Profits are then given by

π1(x1, x2) = x1[f (x1, x2) + ε1]
π2(x1, x2) = x2[f (x2, x1) + ε2].

Our interpretation is that the firms are selling differentiated substitutes. The function f describes 
demand conditions in the market, with f (xi, xj ) giving the expected price received by firm i
when i sets quantity xi and firm j sets quantity xj . The expected price of i is decreasing in firm 
i’s quantity, as expected, and is also decreasing in firm j ’s quantity, as is expected in the case of 
substitutes. The random variables ε1 and ε2 capture idiosyncratic shocks to the firms’ demands. 
We keep things simple by building symmetry into the function f determining expected prices as 
well as into the demand shocks, and by assuming that marginal costs are constant, at which point 
one can incorporate the marginal costs into the function f .

In the stage game, the firms simultaneously choose quantities x1 and x2, and then the ran-
dom variables ε1 and ε2 are drawn and prices are realized. Firm 1 (and similarly firm 2) chooses 
its quantity x1 to maximize its expected profit given x2, and hence solves maxx1 x1f (x1, x2). 
We assume that xif (xi, xj ) is strictly concave in xi for all xj , so that best-response functions 
are downward sloping, and that the stage game has a unique Nash equilibrium, denoted by 
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Fig. 1. Summary of data from the no-monitoring treatment of Aoyagi and Frechette (2009). Participants played ten 
repeated-prisoners’-dilemma games, each of random length. The top panel shows the incidence of cooperation in each 
period, aggregated over all games. The sample sizes for later periods become small, as few games lasted that long. The 
bottom panel shows the average incidence of cooperation, aggregated over periods in a game and aggregated over all 
games in each position, for positions one through ten in the sequence of ten repeated games.

(xN , xN).23 Let (xM, xM) denote the profile that maximizes the sum of the players’ payoffs 

23 Sufficient conditions for these assumptions are straightforward and encompass the standard specifications found in 
the literature, such as a linear specification for f . Notice that realized prices may be negative. This common convention 
(see Matthews and Mirman, 1983 for an early example) simplifies the analysis.
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in the stage game, in which each player produces half of the monopoly output, and note the 
familiar result that xM < xN .

When players are matched to play the repeated game, with probability α they are drawn to 
have a zero continuation probability. With the complementary probability they are drawn to have 
a higher continuation probability δ.24 In the repeated game, we assume that firms observe their 
own quantities and prices, but not those of the opponent. Firm i’s quantity and price allow i to 
draw inferences about j ’s quantity.

The record consists of sequences of quantities but not prices. Analogously to our treatment 
of the prisoners’ dilemma in Sections 2–3, suppose players arrange histories into two analogy 
classes, clean and dirty. There exists a quantity x∗ ∈ [xM, xN), described in more detail presently, 
such that a history is clean if it contains only quantities smaller than x∗, and is otherwise dirty.

As in the prisoners’ dilemma, there will always exist an equilibrium in which every player 
chooses xN after every history. We are interested in conditions under which the following can-
didate equilibrium is indeed an equilibrium. In this equilibrium, firms with zero continuation 
probabilities produce output xc. High-continuation probability firms initially produce x∗. They 
continue to do so as long as the posterior probability z that the history is clean remains above 
a cutoff z∗. If z dips below z∗ and player i has hitherto played only x∗, then player i plays an 
action xBR(z) > x∗ that depends on the belief z. Once player i has played such an action, then i
plays the action xd in every subsequent period.

The quantity xc is the myopic best response to a clean history. Firms with zero continuation 
probabilities maximize myopically, and hence choose xc at the null (and hence clean) history. 
The quantity xd is the myopic best response to a dirty history. This action is played by firms 
who know (because of their past actions) the history is dirty. The quantity xBR(z) is the myopic 
best response to a history that is clean with probability z and dirty with probability 1 − z. A 
firm choosing xBR(z) knows that subsequent history will be dirty, and hence plays a myopic best 
response to belief z.

The record will then consist of some observations in which players immediately play xc, 
because they have drawn a low continuation probability. In other (high continuation probability) 
observations, both players will initially play x∗. This will continue until one player (or both, if 
both players’ posteriors dip below z∗ for the first time in the same period) plays xBR(z) for a 
value of z just below z∗. There may then appear some periods in which one player plays xd

while the other plays x∗, with the latter player then playing xBR(z) (for a different value of 
z) and subsequently xd .25 We have written the game as symmetric, but different monitoring 
realizations may cause the players’ beliefs to fall below z∗ in different periods. More generally, 
the strategies described here would also apply to a game with asymmetric payoff functions or 
error distributions.

Player i will estimate from the record a distribution ρ describing behavior at clean histories 
that puts a mass of probability ρxc on quantity xc (from observing clean null histories in low con-
tinuation probability interactions), puts a mass ρx∗ on quantity x∗, and distributes the remaining 

24 As in Section 2–3, the low continuation probability interactions preclude the existence of a trivial equilibrium in 
which all agents attach probability 1 to clean histories, clinging to this belief no matter what they observe, while being 
left free by the absence of any data to conjecture that deviations will bring severe punishments.
25 Possible high-continuation-probability histories thus are either (i) a sequence of x∗

x∗ followed by a single period of 
xBR(z)

xBR(z)
followed by a sequence of x

d

xd , or (ii) (i) a sequence of x
∗

x∗ followed by a single period of x
BR(z)
x∗ followed by a 

(possibly empty) sequence of x
d
∗ followed by a single period of xd

BR followed by a sequence of x
d

d .
x x (z) x
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probability among a collection of quantities xBR(z). Similarly, player i will estimate from the 
record a distribution θ describing behavior at dirty histories that puts masses of probability θx∗
and θxd on quantities x∗ and xd , with the remaining probability distributed among a collection of 
quantities xBR(z). Player i’s view is that the history is initially clean, with the history switching 
to dirty upon the first play by either player of any quantity larger than x∗.26

Given this model of the interaction, player i’s best response, conditional on having always 
played x∗ and conditional on now playing some quantity less than or equal to x∗, is to play 
x∗. To see this, we note that player i’s current payoff is increasing in xi when xi ≤ x∗ and 
xj < xN . Player i’s view is that the nature of the history (clean or dirty) evolves independently 
of her quantity as long as that quantity does not exceed x∗, and that any larger quantity renders 
the history dirty. Player i will thus continue playing x∗ as long at the probability z of a clean 
history remains sufficiently high. Once this probability z dips below z∗, player i will choose a 
best response xBR(z) > x∗ to her estimate of the current quantity produced by her opponent, 
maximizing her current payoff at the cost of inducing a dirty history. Player i then regards the 
history as dirty, and plays xd , a best response to the behavior described by the distribution θ .

We can now pursue analogous reasoning to obtain counterparts of Lemma 1, Proposition 1 and 
Proposition 2. As long as x∗ is sufficiently likely after clean histories and xd sufficiently likely 
after dirty histories, a counterpart of Lemma 1 ensures that the proposed behavior is optimal. We 
can then establish conditions analogous to those of Propositions 1–2, involving some combina-
tion of precise monitoring (in the form of shrinking variance of the distributions governing ε1
and ε2), patience and unlikely low continuation probabilities, to ensure that some cooperation 
appears, and that this cooperation has significant payoff effects.

Players in this interaction have all the more reason to group histories into analogy classes, 
since the infinite set of possible actions multiplies the number of histories. Our example groups 
actions into two analogy classes, intuitively viewed as “good” or “bad.” This is a simple view 
of the world, but not an unrealistic view. We can well imagine participants characterizing their 
relationship in terms of “things are OK” or “something is wrong.”

It is a familiar result that collusive agreements in Cournot duopoly are plagued by incentives 
to cheat by expanding output. As a result, players at clean histories in our setting produce either 
the largest quantity consistent with keeping the history clean (x∗), or a quantity that renders 
the history dirty. Players willing to tip the history to dirty maximize their current playoff by 
producing xBR(z) (where z is their current posterior of a clean history), while players who know 
they face dirty histories maximize their current payoff by producing xd .

There will be multiple equilibria, for two reasons. First, as we have noted, there is always 
an equilibrium in which every player chooses xN after every history. In addition, we have not 
yet tied down the value x∗. There will typically be multiple equilibria of the type we have just 
described, characterized by different values of x∗. If the players could choose between such 
equilibria, they would choose x∗ to be as close to the joint profit maximizing quantity xM as 

26 Hence, for player i = {1, 2}, we have

xc = arg max
xi

Eρxif (xi , xj )

xBR(z) = arg max
xi

Ezρ+(1−z)θ xif (xi , xj )

xd = arg max
xi

Eθ xif (xi , xj ).
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possible. This would also be the choice of an information designer intent on maximizing payoffs. 
However, equilibria also exist in where the analogy classes happen to incorporate larger values 
of x∗, supporting some but not the most extreme possible collusion.

We regard this approach as being more broadly applicable. The key is that, just as the 
economist writes a model of a more complicated strategic interaction, so can we expect the 
participants in the interaction to employ models in their reasoning. We especially view modeling 
their opponents’ strategies as challenging for the participants, prompting them to turn to informa-
tion about past play for help, and in turn forcing them to organize histories into analogy classes. 
The formation of these analogy classes is likely to depend heavily on context, making general 
statements elusive, but we expect the tendency to think in terms of relatively few analogy classes, 
perhaps as some version of “good” and “bad,” to be helpful in supporting cooperation.

4.5. Questions

Many questions remain. Could cooperation be sustained without bundling observations made 
in long interaction games and short interaction games and/or without bundling observations that 
correspond to different history of actions (still in accordance with the premise that signals are 
not in the record)? We suspect that if players adopt the finest analogy partition on histories of 
actions and monitoring is uninformative (as in Section 4.1), then it would no longer be possible 
to support cooperation. This follows because the records of past play (assuming there are some 
history-independent trembles) would reveal that one own’s action has no effect on the opponent’s 
behavior and thus players would find it optimal to defect. Whether cooperation can be sustained 
with better monitoring technologies should be explored.

Does analogical reasoning in private-monitoring games allow equilibria in which players re-
coordinate on cooperation after a punishment has been triggered, and could such a construction 
allow higher payoffs to be supported? We suspect not, but the question remains open.

Could one establish a folk theorem, fixing a monitoring structure and then showing that for 
any feasible, individually rational payoff, there is a specification of analogy classes supporting 
that outcome? Again, we suspect not. By expanding the number of analogy classes, one moves 
the game closer to a conventional game of private monitoring, raising the possibility that we 
could recover the constructions of Sekiguchi (1997) or Ely and Välimäki (2002). However, even 
upon allowing our players plentiful analogy classes, they remain hampered by the absence of 
signals from the record. This precludes them from duplicating the understanding of opponent 
behavior required for conventional folk theorems.

5. Appendix: Proofs

5.1. Proof of Proposition 1

[STEP 1] We first convert our restless bandit into an equivalent restless bandit with one arm 
whose payoff is constant. Let z(p−q)(1 +k) be denoted by h(z). In period 0, the player makes no 
decision, and receives payoff h(z0). In period 1, the player chooses either C, for payoff −(k/δ) +
Eh(z1|z0), or chooses D, for a payoff of 0. In period 2, assuming C was chosen in period one, 
the player chooses either C, for payoff −(k/δ) + Eh(z2|z1), or chooses D, for a payoff of 0. 
In general, the D arm gives a payoff of 0 and is an absorbing action, while in each period t the 
C are gives payoff −k/δ +Eh(zt |zt−1). The idea is that no matter what, the player receives the 
period-0 bonus h(z0). Then, in the ordinary representation, the player can pay the cost k in period 
34



P. Jehiel and L. Samuelson Journal of Economic Theory 208 (2023) 105609
0 in order to also receive a bonus in period 1, which from period 0’s point of view has the value 
Eh(z1|z0). But we can then represent this as the player paying in period 1 the cost k/δ for the 
reward Eh(z1|z0). Continuing in this way, we obtain an equivalent bandit whose D arm always 
gives a payoff of 0. The optimal policy is again a threshold policy that cooperates above some 
belief z and defects below that belief.

[STEP 2] We next establish a sufficient condition under which a player will optimally pull the 
C arm of the modified bandit in the first period. The condition for this to be the case is that the 
period-1 reward from the C arm exceed that of the D arm, or

k

δ
< Eh(z1|z0) = E{z1|z0}(p − q)(1 + k) = pz0(p − q)(1 + k) = p(p − q)(1 + k),

where the second equality uses the fact that E{z1|z0} = pz0 and the next uses the fact that z0 = 1. 
We can rearrange this as

k

1 + k
< δp(p − q). (20)

Remark 4. An alternative derivation of (20) helps illuminate the underlying forces. If coopera-
tion is ever to be optimal, it must be better to cooperate in the first period and defect thereafter 
than to defect immediately (and permanently). The payoffs from these two strategies, arranged 
by period, are:

CDD . . . : p + (1 − p)(−k) + δ[p2(1 + k) + (1 − p)q(1 + k)] + δ
2
q(1 + k) + δ

3
q(1 + k) + . . .

DDD . . . : p(1 + k) + δq(1 + k) + δ
2
q(1 + k) + δ

3
q(1 + k) + . . .

All of the payoff differences occur in the first two periods. The first strategy sacrifices some 
payoff in the first period, in order to obtain a larger payoff in the second period. The condition 
that the first strategy give a higher payoff is

− k

1 + k
+ δp(p − q) ≥ 0,

which is (20). The first term captures the payoff reduction in the first period from cooperating, 
while the second captures the payoff gain in the second period. �

[STEP 3] We next identify a lower bound z on the value of z, the boundary belief between 
cooperating and not cooperating, that applies to any equilibrium. An upper bound on the contin-
uation payoff from cooperating and an exact calculation of the payoff from defecting are given 
by:

C : [zp + (1 − z)q] + [(1 − (zp + (1 − z)q))](−k)

D : (1 − δ)[zp + (1 − z)q](1 + k) + δq(1 + k).

Given these payoffs, the condition that cooperation have a higher payoff is

z ≥ k

(1 + k)δ(p − q)
.

A lower bound on the value of z that solves this equation with equality, and hence (given that 
we have overestimated the payoff of cooperation) a lower bound z on z, is given by (setting 
δ = p = 1 and q = 0)
35



P. Jehiel and L. Samuelson Journal of Economic Theory 208 (2023) 105609
k

1 + k
.

There are then no circumstances under which a player will cooperate when her belief that the 
history is clean drops below z.

[STEP 4] We now constrain players to cooperate after the null history in high continuation 
probability interactions, while placing no other constraints on their behavior. We then construct 
a function 
 that maps values of (p, q, z) ∈ [α

2 , 1] ×[0, α2 ] ×[z, 1] into new values of (p̂, q̂, ̂z) ∈
[α

2 , 1] × [0, α2 ] × [z, 1]. The function is defined as follows. First, given (p, q), a player solves 
for the optimal value ẑ in the modified bandit. Then, given this value and the induced behavior 
(remembering the constraint that the player cooperate after the null history in high continuation 
probability interactions), and working with the updating rules defined by (p, q), we construct 
the distribution over histories, and from this infer new values (p̂, q̂). This gives us the value 
(p̂, q̂, ̂z). Notice that this function indeed maps into [α

2 , 1] × [0, α2 ] × [z, 1]. Because they are 
probabilities, p cannot exceed 1, q cannot fall short of 0, and z cannot exceed 1, giving three of 
the required bounds. The probability p is bounded below by α

2 . To confirm this, we note that in 
a patient interaction, both players cooperate in the first period, and there can be at most one (if 
the first defection is unilateral) or two (if the first defection is mutual) clean histories after which 
players defect. Hence, the probability of cooperation after clean histories in patient interactions 
is at least 1/2, ensuring that p is at least α/2. Somewhat similarly, q is at most α

2 , because only 
patient players ever cooperate after a dirty history, after which at most one can cooperate. The 
previous step has established the bound z.

The argument now involves identifying conditions under which the function 
 has a fixed 
point, and under which any such fixed point has the property that (20) holds, ensuring that the 
restriction that players cooperate after the null history in high continuation probability interac-
tions is redundant, giving us an equilibrium. It is straightforward to confirm that 
 is continuous, 
ensuring the existence of a fixed point.

First, fix k, δ and α satisfying Statement [1.1]. Using the fact that p ≥ α/2, a sufficient con-
dition for Statement (1).1] is

k

1 + k
≤ δ

α

2

(α

2
− q

)
.

Now fix α and δ. As ε approaches zero, so does q . In particular, as ε approaches zero, so does 
φ(z, d) for all z ∈ [0, 1]. Intuitively, as monitoring becomes arbitrarily precise, a bad signal is 
taken as convincing evidence of defection. Combining this with the lower bound on z, small 
values of ε ensure that (for fixed δ) the first d signal in an interaction is with arbitrarily high 
probability produced by a D action, and prompts a D action from the recipient in the next period. 
This in turn ensures that with arbitrarily high probability we observe only defection after dirty 
histories, causing q to approach 0. The sufficient condition then becomes

δ >
4k

α2(1 + k)

which rearranges to give the condition in Statement [1.1].
Second fix k, α and ε. As δ approaches one, either p approaches 1 or q approaches 0. In 

particular, suppose that p is bounded below 1 as δ → 1. Because z is bounded below, for any 
η > 0 there is a number τ such that, once player i defects, player j will defect within τ periods 
with probability at least 1 − η. This places a bound on the number of dirty histories after which 
players cooperate. However, as δ → 1, each defection gives rise to an arbitrarily large number 
36



P. Jehiel and L. Samuelson Journal of Economic Theory 208 (2023) 105609
of dirty histories, ensuring that q converges to zero. The event that q converges to zero gives the 
more demanding condition, which is (substituting δ = 1, p = α/2 and q = 0)

k

1 + k
<

α2

4
,

which is equivalent to k ≤ α2

4−α2 , giving the condition in Statement [1.2].
Third, Statement [1.3] is implied by Proposition 2.2, which is proven below. �

5.2. Proof of Proposition 2

If the history is currently clean with probability z, a player who cooperates and receives a c
signal forms the posterior φ(z, c) that the history is clean given by (5). A consistent string of c
signals will lead to the posterior z∗ solving z∗ = φ(z∗, c), given by

z∗ = p(1 − ε) − [q − 2qε + ε]
(p − q)(1 − 2ε)

.

The generalization of (20), giving a sufficient condition for an player to cooperate, holding pos-
terior z (equal to one in (20)) that the opponent is clean, is

δzp(p − q) ≥ k

1 + k
,

or, equivalently

z ≥ k

1 + k

1

δp(p − q)
≡ z. (21)

The condition that z∗ ≥ z is then

p(1 − ε) − [q − 2qε + ε]
(p − q)(1 − 2ε)

≥ k

1 + k

1

δp(p − q)
(22)

First, let ε → 0. Because (i) δ is fixed, (ii) the candidate equilibrium strategies are that players 
cooperate as long as their posterior exceeds z, and (iii) erroneous d signals become arbitrarily 
rare as ε falls, we can conclude that interactions between patient players will contribute to the 
record primarily cases in which mutual cooperation persists throughout the interaction. This 
ensures that p will approach 1 as does α. This also ensures that (given fixed α) virtually all dirty 
histories will occur among impatient players, whose defection then causes q to approach zero. 
Hence, (22) becomes (9). If this condition holds, then for values of α larger than some α < 1, we 
have a sequence of equilibria in which the probability of cooperation throughout the life of the 
interaction becomes arbitrarily large as ε approaches one.

Next, let us fix ε. Let us hypothesize that as α → 1, we have p → 1, while remembering the 
bound q ≤ 1/2. This will be the case if the probability that zt dips below z before the interaction 
ends becomes vanishingly small. For this to be the case, we require two conditions. First, we 
need z < 1, which (from (21)) will be the case (using p → 1 and q ≤ 1/2) if (10) holds. Second, 
we need

zεn

zεn + (1 − z)(1 − ε)n

to converge to 1 as does z, for all n. This is the posterior probability that the history is clean, 
given a prior of z and given that n consecutive d signals have been received, calculated in the 
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limit as p takes on the value 1 and calculated in the worst-case scenario in which q is set to 
0. This condition is obviously met. This in turn ensures that very large values of p, even the 
worst case of a relentless string of bad signals does not drive the posterior probability z below 
the defection threshold z before the interaction ends. But then, given that α is arbitrarily close to 
one, the record will indeed produce an estimate of p arbitrarily close to one. Coupling this with 
q ≤ 1/2, (22) gives (10). The result is an equilibrium in which cooperation persists throughout 
virtually all interactions, as desired. �
5.3. Details for Section 4.2.1

We first formulate the bandit problem. Let zt be the probability that i attaches to the event 
that j is not infected in period t . This will be either the probability that j is healthy (if i has not 
yet defected) or exposed (if i has defected).

The bandit is defined by two parameters, p and q . There are two arms, a C arm (corresponding 
to cooperating) and a D arm (corresponding to defecting). We let zt be the state of both arms at 
time t . If the D arm is pulled at time t , then both arms are in state 0 at time t + 1. If the C arm 
is pulled at time t , then both arms move to state

φ(z, c) = zp(1 − ε)

zp(1 − ε) + z(1 − p)ε + (1 − z)ε

with probability zp(1 − ε) + z(1 − p)ε + (1 − z)ε and to state

φ(z, d) = zpε

zpε + z(1 − p)(1 − ε) + (1 − z)(1 − ε)

with probability zpε + z(1 − p)(1 − ε) + (1 − z)(1 − ε).
Each time the C arm is pulled, it generates a current payoff of

zp + (1 − zp)(−k) = − k + zp(1 + k).

When the D arm is first pulled, it generates a current payoff of

zp(1 + k).

We have noted that once the D arm is pulled, it is then optimal to thereafter pull the D arm. 
This allows us to calculate the expected value of a path of play that begins with player i’s first 
defection. Suppose i defects for the first time in period t − 1, and as a result, period t begins with 
i attaching probability zt to the event that j is exposed, and probability 1 − zt to the event that j
is infected. Then i’s continuation payoff is27

(1 − δ)zt (1 + k)[q + q2δ + q3δ2 + q4δ3 + . . .].
We can solve for the value of

ztq(1 + k)
1 − δ

1 − δq
.

27 To see this, we note that with probability 1 − zt , player j is infected and defects thereafter, giving i a 0 payoff (since 
i is also defecting). With probability zt player i receives a payoff 1 + k each time j cooperates (and 0 otherwise). With 
probability q , j cooperates in period t . With probability q2δ, the game lasts another period and j again cooperates. With 
probability q3δ2, the game lasts yet another period, and j again cooperates, and so on.
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As a result, it is straightforward to calculate the value of the D arm, which is given by

W(z) = (1 − δ)zp(1 + k) + δpzq(1 + k)
1 − δ

1 − qδ
= pz(1 + k)

1 − δ

1 − δq
. (23)

Proof of Proposition 4. We establish conditions under which a player will optimally pull the C
arm in period 1, with the remainder of the argument mimicking that of Proposition 1. A sufficient 
condition for this to be the case is that pulling the C arm in the first period and thereafter defecting 
is better than defecting immediately. This comparison is (using the facts that z0 = 1, the expected 
value of z1 is p, and the value of defecting is linear in z):

(1 − δ)(−k + p(1 + k)) + pδW(1) ≥ W(1)

where the left side sums the current payoff from playing C plus the discounted expected value of 
defecting next period (δW(p) = pδW(1)) and the right side is the value of immediate defection. 
We can rewrite this successively as

(1 − δ)[−k + p(1 + k)] + δp

[
p(1 + k)

1 − δ

1 − δq

]
≥

[
p(1 + k)

1 − δ

1 − δq

]

(1 − δ)(−k + p(1 + k)) ≥ (1 − pδ)p(1 + k)
1 − δ

1 − qδ

p

(
1 − 1 − pδ

1 − qδ

)
≥ k

1 + k

pδ(p − q)

1 − qδ
≥ k

1 + k
. (24)

Now, for a fixed δ, let ε approach 0. This will ensure q approaches 0. (The key to this con-
clusion is that α < 1, and so p remains bounded below 1. As a result, as ε gets arbitrarily small, 
a d signal is arbitrarily more likely to have come from an action of D (and hence an infected 
opponent) than from an action of C). When player i defects, it becomes arbitrarily likely that j ’s 
posterior that i is infected gets arbitrarily close to 1, ensuring that j will defect, and hence q will 
be arbitrarily close to 0. Then, letting δ approach one completes the argument, as before. In the 
limit as δ approaches 1, the sufficient condition is then (substituting δ = 1, p = α/2 and q = 0)

α2

4
≥ k

1 + k
,

which is equivalent to k ≤ α2

4−α2 . �
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