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SUMMARY

Observations of seismic anisotropy provide useful information to infer directions of mantle
flow. However, existing global anisotropic tomography models are not consistent, particularly
in the lower mantle. Therefore, the interpretation of seismic anisotropy in terms of mantle
dynamics and evolution remains difficult. While surface and body waves are commonly used
to build radially anisotropic tomography models, they provide heterogencous data coverage
and the radial anisotropy structure retrieved using these data may be biased by the use of
imperfect crustal corrections. Normal modes, the free oscillations of the Earth, automatically
provide global data coverage and their sensitivity to shear wave (vy) and compressional wave
(vp) velocity makes them suitable to study both v and v, anisotropy in the mantle. In this
study, we assess whether current normal mode splitting data have sufficient sensitivity to lower
mantle anisotropy to potentially constrain it. We consider the uncertainties in the data and the
effect of inaccuracies in crustal thickness corrections and the assumed scaling between v, and
vs. We perform forward modelling of normal mode data using six different 3-D global radially
anisotropic tomography models to document how strong and widespread anisotropy has to be
to be observable in current normal mode data. We find that, on average 50% of the spheroidal
and 55% of the toroidal modes investigated show significant sensitivity to v, anisotropy, while
roughly 57% of the spheroidal modes also have strong sensitivity to v, anisotropy. Moreover,
we find that the normal mode data fit varies substantially for the various anisotropic tomography
models considered, with the addition of anisotropy not always improving the data fit. While
we find that crustal thickness corrections do not strongly impact modes that are sensitive to
the lower mantle, we observe a trade-off between radial anisotropy and v, scaling for these
modes. As long as this is taken into consideration, our findings suggest that existing normal
mode data sets can provide valuable information on both v, and v, anisotropy in the mantle.

Key words: Composition and structure of the mantle; Tomography; Seismic anisotropy;
Surface waves and free oscillations; Theoretical seismology.

1 INTRODUCTION

Seismic anisotropy, the dependence of seismic wave speed on direc-
tion, provides insights into mantle flow and thus dynamic processes
in the mantle. Seismic anisotropy may be due to the alignment of
intrinsically anisotropic minerals, such as olivine, following large-
strain deformation due to mantle flow (LPO or lattice preferred
orientation, e.g. Mainprice 2010), or from the alignment of struc-
tural elements, such as pockets of melt, cracks or fine layering (SPO
or shape preferred orientation, e.g. Backus 1962; Kendall & Silver
1996).

To describe the most general case of anisotropy, 21 independent
coefficients of the elastic tensor have to be defined (e.g. Montagner

& Nataf 1986). Radial anisotropy, where the medium is consid-
ered to have hexagonal symmetry with a vertical symmetry axis,
is the simplest type of anisotropy, which has been extensively in-
vestigated (e.g. Babuska & Cara 1991; Panning & Romanowicz
2006; Kustowski et al. 2008; Wang et al. 2013). Such a medium
is completely described by 5 parameters—A, C, F, L and N, called
Love coefficients (Love 1927). vy, vy, vy and v,,—related to N, L,
A and C, respectively—represent the velocity of the shear (v,) and
compressional (v,) waves, with the subscripts ‘4’ and ‘v’ denoting
horizontally and vertically polarized waves. The fifth parameter n
(related to A, F and L) characterizes the dependence on the incident
angle. Anisotropy in shear and compressional wave velocities is
defined by & = (vg/vy)* and ¢ = (v,,/v,)?, respectively. Robust
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Figure 1. Vote maps of (a) negative shear wave velocities (vs) and (b) radial
v, anisotropy (£) smaller than 1 at different depths in the mantle, incorpo-
rating six existing tomography models: SAW642AND (Panning ez al. 2010),
savani (Auer ef al. 2014), SEMUCB-WMI1 (French & Romanowicz 2014),
S362WMANI+M (Moulik & Ekstrom 2014), SGLOBE-rani (Chang ef al.
2015) and SPani (Tesoniero ef al. 2015). Dark red and blue colours imply
agreement between models, while lighter colours indicate disagreement. Red
colours in (a) indicate agreement on low vy velocities, whereas red colours
in (b) imply agreement on § < 1, that is vy, larger than vg;. Vote maps were
constructed following the methodology by Shephard et al. (2017).

constraints on radial anisotropy thus potentially help to distinguish
between horizontal and vertical mantle flow (e.g. Montagner 2002;
Long & Becker 2010; Schaefer et al. 2011; Chang et al. 2016).

In the upper mantle, radial anisotropy is needed to explain the dis-
persion properties of both Rayleigh and Love waves simultaneously
(e.g. Anderson 1961), leading to the inclusion of radial anisotropy
in the Preliminary Reference Earth Model (PREM; Dziewonski &
Anderson 1981). At these depths, radial anisotropy has also been
observed consistently in different studies, finding for example radial
anisotropy in v, greater than 1 (fast vy;,) beneath the central Pacific
at 250 km depth (e.g. Montagner & Tanimoto 1991; Auer et al.
2014) and £ < 1 (fast v,,) beneath the East Pacific Rise (e.g. Gu
et al. 2005; Moulik & Ekstrom 2014).

While the bulk of the lower mantle is generally considered to be
isotropic (Meade et al. 1995), the presence of seismic anisotropy
has been invoked at the top as well as at the base of the lower
mantle, both in regional studies of shear wave splitting (e.g. Lay &
Helmberger 1983; Kendall & Silver 1996; Walpole ef al. 2017) and
in global tomography models that have been developed over the last
decades (e.g. Panning & Romanowicz 2006; Kustowski ez al. 2008;
French & Romanowicz 2014; Auer et al. 2014; Moulik & Ekstrom
2014; Tesoniero et al. 2015; Chang et al. 2015). For more details
about seismic anisotropy in the lower mantle inferred from seis-
mological observations, and its connection to mantle dynamics, we
refer the reader to comprehensive reviews of, for example Nowacki
et al. (2011), Romanowicz & Wenk (2017) and Nowacki & Cottaar
(2021).

Unlike global isotropic models, that nowadays show a large con-
sistency between the imaged seismic anomalies throughout most of
the mantle (Fig. 1a), global anisotropic models show substantial dif-
ferences, even on the largest scales (Fig. 1b; e.g. Chang et al. 2014).
Discrepancies between models are likely due to the fact that mod-
els employ different data types, model parametrizations, inversion

techniques and theoretical approximations. A particular issue that
arises in attempts to map anisotropy globally in the lowermost man-
tle is that the isotropic velocity structure leaks into the anisotropic
structure retrieved in tomographic inversions (e.g. Kustowski et al.
2008; Chang et al. 2015). This is mainly due to an imbalance be-
tween vg,- and vg,-sensitive data used for probing the lowermost
mantle in global anisotropic tomography inversions. Complemen-
tary data such as normal mode measurements are needed to ad-
dress this issue, as discussed further below. Moreover, it has been
demonstrated that inversions for deep anisotropic mantle structure
are severely influenced by the crustal model used for crustal cor-
rections of body wave and surface wave data (e.g. Ferreira et al.
2010; Panning ef al. 2010; Chang & Ferreira 2017). Consequently,
the presence of large-scale anisotropy in the deep mantle remains
debated at present-day.

Besides body waves and surface waves, which are most com-
monly employed in studies of seismic anisotropy, normal modes
(Earth’s free oscillations) are also sensitive to the anisotropic struc-
ture of the mantle (e.g. Dahlen & Tromp 1998). The advantage of
using normal modes in global tomography is that they automatically
provide global data coverage and are directly sensitive to both v, and
v, anisotropy, removing the need of scaling relationships to describe
v, structure. Normal mode splitting measurements were included
by Moulik & Ekstrom (2014) and Moulik & Ekstrom (2016) to
constrain radial v, anisotropy in the mantle, which decreased trade-
offs between isotropic velocity and anisotropy. These studies did
not include observations of core-mantle boundary (CMB) Stone-
ley modes (Koelemeijer et al. 2013), that are highly sensitive to
structures in the lowermost mantle, nor the recent toroidal mode
measurements reported by Schneider & Deuss (2021). At the same
time, these older studies focused on v, anisotropy without consid-
ering anisotropy in v,. Furthermore, normal mode measurements
were combined with other observations in joint inversions, making
it not straightforward to unravel their specific ability to constrain
radial anisotropy. Finally, while the effect of crustal corrections on
body wave traveltimes (Ritsema et al. 2009), body wave waveforms
(Marone & Romanowicz 2007; Panning et al. 2010) and surface
waves (Ferreira et al. 2010) has been investigated, it is not clear to
what extent normal mode models are affected by the use of different
crustal corrections.

The aim of this study is to investigate the ability of normal modes
to observe both v, and v, anisotropy in the Earth’s mantle and to
assess the additional insights they may bring to tomographic in-
versions. Rather than basing our investigations on theoretical sen-
sitivity kernels, we make use of the data uncertainties of existing
normal mode observations to study what current normal-mode data
may be able to resolve, akin Koelemeijer er al. (2012). We ex-
pand on their investigations of radial anisotropy by using realistic
anisotropy structures as imaged by global tomography. Given the
variability in seismic anisotropy in such models, we base our study
on six existing tomography models, which display differences in
seismic anisotropy both in terms of amplitudes and wavelengths.
Using forward modelling, we compare model predictions to both
data uncertainties and the actual observations, as well as to the effect
of different crustal thickness corrections.

This manuscript is structured as follows. Section 2 briefly sum-
marizes important aspects of normal mode theory relevant to this
study. In Section 3, we discuss the details of the data sets considered,
the input models used as well as the way we compute crustal correc-
tions and the concept of observability. Throughout Section 4 we use
observability to investigate how strong and widespread anisotropy
should be to be observed by current normal mode data. These
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investigations allow us to identify which normal modes are par-
ticularly useful for detecting seismic anisotropy in specific regions
of'the mantle. Section 5 details the trade-offs that may exist between
radial anisotropy and other parameters, such as crustal thickness and
the scaling between v, and v,. In Section 6, we compute the misfit
between observed and predicted splitting functions for the different
tomography models used in the forward modelling, both with and
without lateral variations in anisotropy. This way, we examine the
effect of anisotropic versus isotropic structure on normal mode data
fit, and we quantify how well existing global tomography models
fit current normal mode observations. Finally, in Section 7 we dis-
cuss some limitations of our approach as well as implications and
guidance for future inversions of normal mode data for 3-D global
radial anisotropy.

2 NORMAL MODE THEORY

Free oscillations or normal modes of the Earth arise after large
earthquakes (typically with moment magnitude M,, > 7.4) when
the Earth resonates like a bell. Due to the finite size of the Earth,
only discrete resonance frequencies are permitted. Two different
types of normal modes exist: (i) spheroidal modes, which involve
vertical and horizontal motion, and (ii) toroidal modes, which in-
volve horizontal motions only. Spheroidal mode multiplets ,,S; and
toroidal mode multiplets , 7} are characterized by their radial order
n and angular order /. Each multiplet consists of 2/ + 1 singlets with
azimuthal order m. For a spherically symmetric, non-rotating, per-
fectly elastic and isotropic (SNREI) Earth model, all 2/ + 1 singlets
of a given mode are degenerate, that is have the same frequency.
Earth’s rotation, ellipticity and aspherical structure—including to-
pography on internal boundaries and lateral variations in isotropic
and anisotropic structure—remove this degeneracy, resulting in so-
called splitting of the multiplet. In the real Earth, normal modes
may exchange energy (‘coupling’), but in this study we only con-
sider multiplets in isolation (‘self-coupling’) though some of the
observed self-coupled splitting functions were obtained using pair
or group-coupling. The self-coupling approximation is commonly
used in tomographic applications, but does limit us to study even-
degree heterogeneity only.

The splitting of a given mode is conveniently described by split-
ting function coefficients, introduced by Woodhouse et al. (1986).
Using perturbation theory, these coefficients, denoted as ¢y, are lin-
early related to the perturbations of the reference Earth model as
follows:

e = / Smo(r)K(r)dr + 3 b 1Y (1)
0 d

where s and # are the angular order s and azimuthal order ¢ describing
lateral heterogeneity in the Earth. In the isotropic case, dm,, are the
coefficients for perturbations in shear wave velocity (v,), compres-
sional wave velocity (v,) and density (o). In the anisotropic case,
dmy; include perturbations in vy, vg,, Vs, Upy and p. 8k refer to
perturbations in topography at internal boundaries. K(r) and H?
are the sensitivity kernels associated with the perturbations, com-
puted in this study for the anisotropic PREM model (Dziewonski &
Anderson 1981).

Splitting function coefficients can be visualized using splitting
function maps c(9, ¢):

21 s

c0.4)=Y ) ca¥!(0.¢) )

s=0 t=—s

Normal mode anisotropy observability 665

(a) oSis

Sun‘ace<} -

CMB

(b) S26

(c) 1S14

Z \_{‘,::::

ICB

(8) oT22

(d) oT1o

Surface

CMB

ICB

Sensitivity to: —— Vg ——- Vg — Vpn — =V

Figure 2. Example sensitivity kernels of spheroidal and toroidal modes for
mantle structure at degree s = 2. We show the sensitivity to horizontally and
vertically polarized shear wave velocity (bold and dashed red lines, respec-
tively) and horizontally and vertically polarized compressional wave velocity
(bold and dashed black lines, respectively), calculated for the anisotropic
PREM model. Horizontal lines indicate the surface and the radii of the
core-mantle boundary (CMB) and inner core boundary (ICB). Each panel
is normalized independently. Kernels for other spherical harmonic degrees
are presented in Fig. S1.

where Y/ are the complex spherical harmonics of Edmonds (1960).
At a given latitude 6 and longitude ¢, the splitting function can be
interpreted as the local, depth-weighted frequency relative to the
degenerate frequency of the multiplet.

Fig. 2 shows examples of anisotropic sensitivity kernels K(r) at
degree (s = 2) for a few relevant spheroidal and toroidal normal
modes. As expected, spheroidal modes show more sensitivity to
v, than vy,. For fundamental modes, the sensitivity to vy, becomes
progressively shallower for higher / (Figs 2a and b). Some modes
of the first overtone branch (n = 1, 11 </ < 14) are sensitive to vy,
in D” (Fig. 2¢). This CMB Stoneley mode behaviour continues into
the second overtone branch until / = 24 and then the sensitivity to
D” shifts to the third overtone branch. Fundamental toroidal modes
are mainly sensitive to vy, in the upper mantle, and, as for spheroidal
modes, their sensitivity becomes shallower for higher / (Figs 2d and
e). The recent measurements of toroidal mode overtones (Schneider
& Deuss 2021) provide improved sensitivity to vy, in the lower
mantle (e.g. Fig. 2f). A comparison between sensitivity kernels for
degree 0, 2 and 4 is shown in Fig. S1.

3 DATA AND METHODOLOGY

3.1 Normal mode observations

Splitting function measurements are generally obtained from the
non-linear, iterative, least-square inversion (Tarantola 1987) of seis-
mic spectra (e.g. Resovsky & Ritzwoller 1998; Deuss ez al. 2013) or
alternatively using autoregressive estimation (Masters et al. 2000).
Here, we use measurements with corresponding uncertainties from
Masters et al. (2000), Deuss et al. (2013), Koelemeijer e al. (2013)
and Koelemeijer (2014) for spheroidal modes, while for toroidal
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modes we use observations from Resovsky & Ritzwoller (1998)
and Schneider & Deuss (2021). In the case of duplicate measure-
ments, we only use the most recent observations. To determine data
uncertainties, most of these studies use a bootstrap resampling tech-
nique to remeasure splitting coefficients, making sure to leave out
entire events in each inversion. Since we are primarily interested
in mantle anisotropy, we do not use inner core-sensitive modes, re-
sulting in a data set of 149 spheroidal modes and 52 toroidal modes
(see Table S1 for a complete overview).

3.2 Mantle models

For our analysis we use six radially anisotropic tomography mod-
els from the literature: (i) SAW642AND (Panning et al. 2010), (ii)
savani (Auer et al. 2014), (iii) SEMUCB-WMI1 (French & Ro-
manowicz 2014), (iv) S362WMANI+M (Moulik & Ekstrom 2014),
(v) SGLOBE-rani (Chang et al. 2015) and (vi) SPani (Tesoniero
et al. 2015). While the first five models only describe variations in
shear wave anisotropy, the latter also includes compressional wave
anisotropy. Most of these models combine observations of body
waves (traveltimes and/or waveforms) and surface waves (mostly
phase velocities), with the exception of S362WMANI+M that also
includes normal mode splitting function measurements (albeit only
up to 3 mHz). For all models, we use the same v, — v, and p — vy
scaling relationships as used in the construction of the models (i.e.
scaling factors of 0.5 or 0.55 for v, — vy and 0.3 - 0.4 for p — vy,
depending on the model).

Given our focus on the sensitivity of normal modes to both v, and
Vv, anisotropy, we are interested in variations in both £ and ¢, which
only model SPani provides. For SAW642 ANb and SEMUCB-WM1,
we calculate ¢ consistently with how the models were constructed,
that is using dIng = —1.5 x dIn& (Panning & Romanowicz 2006).
For S362WMANI+M, savani and SGLOBE-rani, we scale vari-
ations in vy, and vy, accordingly to vy, and vy, using the same
v, — Vs scaling relations as used in the construction of the isotropic
parts of the models, as specified above.

Not all models use the 1-D model PREM as reference model (e.g.
S362WMANI+M describes variations relative to model STW105
(Kustowski et al. 2008)). To ensure all variations are with respect to
the same reference model and thus consistent with the normal mode
kernels, we compute (where necessary) the absolute velocities in
each model and then recalculate velocity perturbations with respect
to PREM. For all models, we keep n the same as in PREM.

We summarize some characteristics of the (an)isotropic shear
wave velocity structure of these tomographic input models in Figs 1
and 3. As discussed before, isotropic shear wave velocities are
consistent across all models, but the overall agreement on the
anisotropic parts of the models is poor (Fig. 1). Some common fea-
tures can still be identified. For example, radial anisotropy greater
than 1 (§ > 1) is found beneath the Central Pacific at shallow depths
(~150 km, Fig. 3) in all models. Radial anisotropy smaller than
1 (¢ < 1) is associated with the Large-Low-Velocity-Provinces
(LLVPs) in the lowermost mantle, which may however mostly
be an artefact caused by the leakage of isotropic structure into
anisotropic structure (e.g. Kustowski et al. 2008; Chang et al. 2014).
Vs > Vg, S is generally found in the regions that surround the LLSVPs
in the bottom few hundred kilometres of the mantle, where isotropic
shear wave velocities are higher than average (Romanowicz & Wenk
2017).

However, the discrepancies between the models are larger than
these similarities. First of all, the amplitudes of anisotropy anoma-
lies vary significantly between models, especially in the lower man-
tle (e.g. at 1800 km depth, Fig. 3), where the resolution and ro-
bustness of anisotropy anomalies are weak (e.g. Chang et al. 2014).
This may be due to high damping values used in some models
to moderate the trade-off between isotropic and anisotropic struc-
ture. The length scales of heterogeneity are also different, with
SPani and SGLOBE-rani containing smaller wavelength features
than models such as SEMUCB-WM1 and SAW642ANb. More-
over, the anisotropy patterns vary across models. For example, at
the base of the mantle (~2800 km), fast vy, anomalies are found
under north-western Africa in model S362WMANI+M, while fast
v, anomalies are observed in models SAW642ANb and SPani.

In all models, the radial average of radial anisotropy decreases
in amplitude with depth until the D" region (Fig. 4a). However,
details vary with SAW642ANDb showing the strongest anisotropy
in the upper mantle and only models SEMUCB-WM1, SPani and
S362WMANI+M displaying significant anisotropy in the D” re-
gion. These differences in anisotropy patterns and amplitudes ob-
served across the six tomography models allow us to test a wide
range of realistic (constrained by observations) input structures for
normal mode predictions. Moreover, the current limited constraints
on global anisotropy in the lower mantle highlight that additional
data such as normal mode measurements may enhance the quality
of future global anisotropy models.

3.3 Crustal models

Accurate crustal corrections are needed to avoid mapping crustal
features into mantle structure during tomographic inversions. Gen-
erally, crustal corrections involve corrections for variations in
crustal velocities and topography on crustal interfaces. For nor-
mal modes, the effect of crustal velocities is typically neglected as
the crust is only a fraction of the wavelength of the data. We have
verified that the effect of crustal velocities on normal mode split-
ting functions is only <0.5% compared to the effect of variations
in crustal topography, consistent with work by Moulik & Ekstrom
(2014). Therefore, we also neglect variations in crustal velocities,
with our crustal corrections thus made up of three different contri-
butions, including a correction for surface topography, water depth
and Moho depth. While surface topography and water depth can
safely be assumed to be known, Moho depth variations (or crustal
thickness variations when combined with surface topography) have
larger uncertainties and are thus of primary interest here. Over the
years, crustal thickness models have been developed using different
methods and data. Some are a priori models based on compilations
of seismic reflection data, geophysical modelling or tectonic fea-
tures (e.g. Nataf & Ricard 1996; Mooney et al. 1998), while others
are obtained from actual inversions of seismic data (e.g. Meier et al.
2007).

Here, we investigate the effect of crustal thickness variations
on normal modes using five different crustal models: CRUSTS.1
(Mooney et al. 1998), CRUST2.0 (Bassin et al. 2000), CRUST1.0
(Laske et al. 2013), CRUST-SG (Chang et al. 2015) and CRUST-
SEM (French & Romanowicz 2014). CRUSTS.1, CRUST2.0 and
CRUST1.0 have all been developed using data from seismic refrac-
tion experiments, sediment thickness and receiver functions as well
as gravity measurements, with updates in these data sets resulting in
finer crustal thickness grids (from 5° spacing for CRUSTS5.1 to 2° for
CRUST2.0 and 1° for CRUST1.0). On the other hand, CRUST-SG
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Figure 4. Radial average of & (representing vy anisotropy) with depth for the
six models used in this study, showing in (a) the amplitude of anisotropy in
the original models, while in (b) the maximum radial value of € is normalized
to 1.05. The insert magnifies how the amplitude of anisotropy changes below
670 km.

and CRUST-SEM were developed conjointly with mantle tomog-
raphy models SGLOBE-rani (Chang et al. 2015) and SEMUCB-
WMI1 (French & Romanowicz 2014), respectively. In particular,
Chang et al. (2015) first applied crustal corrections to all data using
CRUST2.0, and then estimated crustal thickness perturbations in
a joint inversion, primarily using short-period surface wave group
velocity data. French & Romanowicz (2014) instead iteratively ad-
justed their crustal model using fundamental mode dispersion data,
while fitting a large waveform data set in inversions for mantle struc-
ture. We note that in CRUST-SEM the Moho depth in the oceans is
fixed at 30 km and thus is not realistic, with this model primarily
representing an ‘equivalent’ crustal structure that fits the used data
well.

3.4 Observability

We calculate synthetic splitting functions for the six mantle to-
mography models presented in Section 3.2 along with the asso-
ciated crustal thickness model that was used in the construction
of the mantle model, that is we use CRUST2.0 for SPani, savani,
SAW642ANDb and S362WMANI4+M, CRUST-SG for SGLOBE-
rani and CRUST-SEM for SEMUCB-WMI. Other contributions
to the crustal corrections are given by the surface topography and
water-land distribution, which we consider to be well-known and
take from CRUSTS. 1. No corrections are made for Earth’s rotation
and ellipticity, as the observed splitting functions have already been
corrected for those effects. These predicted splitting function co-
efficients are subsequently used to estimate the observability of v
and v, anisotropy in the mantle, as explained in more detail below.

The concept of observability was introduced by Koelemeijer et al.
(2012) as a useful tool to determine whether the signal in synthetic
data due to particular structures in the mantle is significant enough
compared to the data uncertainties. We thus calculate observability
for v; and v, radial anisotropy in the mantle for different spherical
harmonic degrees s according to:

aniso __ ,iso

aniso 1 - |C., Cst
D ®

t=—s Ost

where s and ¢ are the angular and azimuthal orders of the spherical
harmonic expansion used to describe heterogeneity in the Earth,
cnise and % are the predicted splitting function coefficients for
the full anisotropic model or just its isotropic part, respectively,
and 0% are the associated uncertainties in the observed splitting
function coefficients. Ifthe effect of anisotropy is larger than the data
uncertainties, that is O™° > 1, then we consider the anisotropy to
be observable. On the contrary, when O° < 1, the signal due to
anisotropy is not large enough to be observed by current normal
mode observations. The ability of normal modes to observe seismic
anisotropy therefore depends on several factors: the strength of
anisotropy in the models themselves, the uncertainties in the data
as well as the theoretical sensitivity of normal modes, which may
all vary for different spherical harmonic degrees.

Normal modes are sensitive to the entire mantle (and core), with
the observed frequency representing a depth-weighted average due
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to Earth structure at different depths. To understand which normal
modes are particularly able to constrain radial anisotropy at specific
depths, we also confine the anisotropy to certain depth ranges, using
only the isotropic part of the input model in the rest of the man-
tle. Since the calculation of observability involves the difference
between the anisotropic and isotropic input models, the isotropic
perturbations cancel out at all depths and the observability we ob-
tain is only due to anisotropy in the specified depth range.

As noted before (see also Figs 3 and 4), the amplitude of
anisotropy varies between the different input models. In order to
study the effect of lateral variation patterns in anisotropy alone on
the observability, we scale the anisotropy of different models by
setting the maximum radial average of anisotropy to 1.05 (i.e. the
radial average of the anisotropy perturbations is 5%). We then re-
calculate absolute and relative variations in vy, and vy,, ensuring at
the same time that the isotropic Voigt average velocities remain the
same as in the original models (following Panning & Romanowicz
(20006) for the case that n ~ 1). The resulting normalized models
are again used to compute synthetic splitting functions. The radial
average of & in both the original and normalized models is plotted
with depth for each model in Fig. 4. While the radially averaged
amplitude of anisotropy is very comparable across all the tomogra-
phy models in the upper mantle, we do note that the amplitudes in
the deepest mantle remain different (see insert in Fig. 4b).

The observability between two normalized anisotropy models
informs us whether normal modes can distinguish between different
patterns in anisotropy. A similar exercise was taken by Koelemeijer
et al. (2012) for differences between CMB topography models. In
this case, we adopt SGLOBE-rani as reference model and calculate
the observability for lateral variations in anisotropy according to:

s aniso is0)<m> aniso is0)<SG>
Qpattern _ 1 § |(Cst — Ca ) — (cst — Sy ) |
: 25 +1 o

t=—s

(4)

where superscripts <59~ and <> denote respectively the split-

ting function coefficients for the normalized anisotropic model
SGLOBE-rani and any of the other normalized anisotropy mod-
els (SAW642AND, savani, SEMUCB-WM1, S362WMANI+M or
SPani), as well as their isotropic parts. As the isotropic parts cancel
out for both models, the observability only considers the effect of
different patterns in anisotropy.

To study possible trade-offs between crustal thickness and
anisotropy, we are interested to know whether normal modes are
affected by the use of different crustal thickness models. To in-
vestigate this, we also use the concept of observability, comparing
splitting function predictions for different crustal models relative to
the reference crustal model:

s crust _ . CRUST2.0
Ocrust — 1 |Cst C:t (5)
s - data
2s+1 ~ o>

where ¢SRUST20 denote the splitting function coefficients for the
reference case of isotropic SGLOBE-rani with CRUST2.0 on top.
¢t are the splitting function predictions for isotropic SGLOBE-
rani with either crustal model CRUST1.0, CRUSTS.1, CRUST-SG
or CRUST-SEM on top. Since the underlying mantle structure is
kept the same, the observability only compares the effect of using a
different crustal thickness model to the data uncertainties.

3.5 Misfit calculation

To investigate how well the tomographic models considered in this
study fit currently available normal mode data, we calculate the L2
misfit between splitting function predictions and observations at
degree s according to:

N

1 1 2

Lf — Z Z c;rfmdel _ cgl?ta} (6)
NS 2s+1 =~

where N is the number of modes, ¢! and % are the predicted

and observed splitting function coefficients, respectively (Soldati
et al. 2013). We choose not to normalize the misfit as otherwise
small coefficients (¢, < 1) would dominate the misfit even though
they contain little information about Earth structure.

For each tomography model, the misfit is calculated for predic-
tions obtained using only the isotropic part of the model, as well as
for predictions incorporating v, anisotropy (and v, anisotropy for
SPani). For each model, we include corrections for crustal struc-
ture as described in Section 3.3. We evaluate the misfit both for
structural degree 2 individually or all degrees together (up to Spmax =
12 for spheroidal modes and sy,,x = 6 for toroidal modes). For the
models with anisotropy included, we calculate the misfit taking into
account all 149 normal modes in this study, or subsets of normal
modes with specific sensitivity to specific depths, that is fundamen-
tal modes (0S50 to ¢S30) for the upper mantle and Stoneley modes
(1S11 to |S14, 2S15, 2S16, 2S17, 2S25, 3S26) for the lower mantle. For a
few selected models, we also compute the misfit for different crustal
thickness models or v, scaling factors.

4 OBSERVABILITY OF MANTLE
ANISOTROPY

In this section, we present the results for observability, discussing
both v, and v, anisotropy as well as the observability of different
crustal thickness models. In all cases, structure is considered to be
observable in current normal mode data sets when the observability
is greater than 1.

4.1 Anisotropy in the whole mantle

First of all, we present results for degree 2 (s = 2) structure only.
Fig. 5 gives observability values as histograms for each tomographic
model, showing both v, and v, anisotropy for spheroidal modes,
while only v, anisotropy results are given for toroidal modes.

For spheroidal modes, the models with the highest number of
normal modes able to observe anisotropy are, in descending or-
der, SEMUCB-WM1, S362WMANI+M, SPani and savani. In par-
ticular, for these models 50-80% of the modes have O;‘“is“ > 1,
meaning that the signal due to anisotropy is generally larger than
the data uncertainties. In contrast, the percentage of modes with
degree-2 observability larger than 1 is less than 40% for models
SGLOBE-rani and SAW642AND. From both Figs 3 and 4(a), we
note that S362WMANI+M, savani and SPani are the models with
the largest amplitudes of v, anisotropy throughout the mantle, while
SGLOBE-rani and SAW642AND only contain large amplitudes in
anisotropy at shallow depth or in the D” region. As splitting function
coefficients are calculated as a depth integral of the sensitivity ker-
nel multiplied with the model values (see eq. 1), the larger model
amplitudes of S362WMANI+M, savani and SPani are likely the
reason why we find the highest number of modes with O > 1,
as well as the highest values of observability for these models.
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Figure 5. Histograms of vy and v, anisotropy observability (OS“iSO) for spheroidal modes (top and middle rows, respectively) as well as vy anisotropy
observability for toroidal modes (bottom row), calculated for degree 2 structure using models SAW642ANb, savani, SEMUCB-WMI, S362WMANI+M,
SGLOBE-rani and SPani (from left to right). The vertical red line indicates an observability value of 1. The number in the top-right corner of each panel

indicates the percentage of modes with 02aniso > 1.

Generally, results for v, anisotropy are similar to results for v,
anisotropy: high observability values and large numbers of modes
with O3"s° > | are found for the same tomographic input mod-
els, but the percentage of modes able to see anisotropy is gener-
ally higher. This is likely due to the theoretical sensitivity of the
data, as discussed further in Section 7. The percentage of toroidal
modes with O3"° > | across the different models is more consis-
tent than when using spheroidal modes. This probably reflects the
fact that toroidal modes are mainly sensitive to anomalies in the
upper mantle (see examples of their sensitivity kernels in Fig. 2),
where anisotropic tomography models show better agreement with
each other.

Observability results for different spherical harmonic degrees
(up to s = 6) are summarized in Fig. 6. 42-56% of the modes have
O;‘"'“ > 1 for at least 4 out of 6 models. However, these percent-
ages decrease for higher degrees, especially for spheroidal modes,
with only 10-20% of the modes able to see anisotropy at degree 4
or degree 6, respectively. Despite this decrease in sensitivity with
increasing spherical harmonic degree s, there remain modes that are
likely to observe both v, and v, anisotropy at least until degree 6.
The fact that spheroidal modes show as high (or even larger) ob-
servability values for v, anisotropy as for v, anisotropy is promising
for future work on v, anisotropy. These analyses furthermore aid
in identifying which normal modes to focus on in studies of man-
tle anisotropy, particularly when individual modes are studied in
detail.

4.2 Anisotropy in different depth layers

To identify which normal modes are particularly useful for con-
straining radial anisotropy at specific depths, we confine anisotropy
to certain depth ranges, leaving the rest of the mantle isotropic.

Tables 1 and 2 summarize the results obtained for spheroidal and
toroidal modes, respectively, listing the percentages of modes with
O™s° > 1 in each case (similar to the percentages indicated in
Fig. 5).

For spheroidal modes (Table 1), the observability of v, anisotropy
decreases substantially below 670 km depth, actually vanishing
in the lower mantle for models SAW642ANb and SGLOBE-rani.
This is readily explained by Fig. 4(a), which shows that overall
the anisotropy is maximum in the upper mantle and decreases in
the lower mantle. For models SAW642ANb and SGLOBE-rani,
there is negligible anisotropy in the lower mantle and thus we find
vs anisotropy observability values below the threshold of 1 from
670 km depth downwards. Although the observability also considers
the data uncertainties, we thus find that the percentages in Table 1
mostly reflect the strength of the anisotropy in the input models.

Toroidal modes have the largest O™° values when anisotropy is
present in the depth range 25-220 km, with about 40% of modes
having observability values larger than 1. Again, the percentage
of toroidal modes able to observe v, anisotropy decreases with
depth (Table 2). Only models S362WMANI+M and SEMUCB-
WMI1 have a number of modes with O™ > 1 for anisotropy below
670 km. When v, anisotropy is restricted to a depth range in the mid
or lower mantle, current toroidal mode data are not able to observe
it. This is expected based on the toroidal modes considered here
and their sensitivity kernels, which are mainly sensitive to vy, in the
upper mantle. Specific toroidal modes that are able to see anisotropy
in the depth range 2500-2891 km are (7g and 3734, both from the
new toroidal mode data set of Schneider & Deuss (2021). In fact,
about half of the new modes measured by (Schneider & Deuss 2021)
show hlgh observability values (speciﬁcally 1T3-1Th4, 2T13—The,
37T¢) and are thus crucial to include in future studies of deep mantle
anisotropy.
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Figure 6. Plots summarizing Oj,‘"is“ observability of (a,b) spheroidal modes and (c) toroidal modes to & and ¢, respectively, for structure of degree 2 (top
row), 4 (middle row) and 6 (bottom row). Each square represents a normal mode of radial and angular order » and /. The colour of each square indicates the
number of models for which anisotropy observability is larger than 1. Thus, light colours indicate agreement between models on high anisotropy observability
for each normal mode, dark colours indicate agreement on low observability for different normal modes. The number in the bottom-right corner of each panel
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indicates the percentage of modes with O;““SO > 1 for at least 4 out of 6 models.

Table 1. Percentage of spheroidal modes (out of a total of 149 modes) with 0;““0 observability values for v; anisotropy larger than 1. For each
tomographic input model, we report the percentage of normal modes with

to different depth ranges as indicated in the top row.

aniso
02

02 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Mode angular order (1)

> 1 in case anisotropy is present in the whole mantle (all) or restricted

Model All  25-220 220-400 400-670 670-1000 1000-1700 1700-2200 2200-2500 2500-2891 2741-2891
SAW642ANb 39.5 1.3 4.7 2.0 0 0 0 0 0 0
savani 51.0 18.7 4.0 9.4 2.7 0.7 7.4 8.7 214 0.7
SEMUCB-WMI 77.8 10.7 20.8 9.4 15.4 17.4 2.0 0 22.1 3.4
S362WMANI+M 60.4 5.4 6.0 12.7 19.4 1.3 14.0 0 4.0 0
SGLOBE-rani 12.0 16.1 1.3 6.0 0 0 0 0 0 0
SPani 55.7 2.0 8.7 6.7 0 1.3 12.7 14.0 14.0 0

Table 2. Percentage of toroidal modes (out of a total of 52 modes) with

in the mantle. Similar to Table 1.

OalllSO

observability values for v, anisotropy larger than 1, for different depths

Model All  25-220 220-400 400-670 670-1000 1000-1700 1700-2200 2200-2500 2500-2891 2741-2891
SAW642ANb 38.4 32.6 25.0 0 0 0 0 0 0 0
savani 67.3 442 1.9 1.9 0 0 0 0 3.8 0
SEMUCB-WMI 65.3 38.4 40.3 5.8 3.8 3.8 0 0 3.8 0
S362WMANI+M 55.7 38.4 34.6 7.7 7.7 0 0 0 0 0
SGLOBE-rani 423 40.3 0 0 0 0 0 0 0 0
SPani 61.5 38.4 38.4 5.8 0 1.9 0 0 1.9 0
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Figure 7. Histograms showing degree 2 observability values for different vy anisotropy patterns (O; mem), computed using the normalized anisotropic models
indicated at the top with SGLOBE-rani as reference model. Similar to Fig. 5. Results for when anisotropy is only included in the top 220 km are given in

Fig. S2.

4.3 Effect of lateral variations in anisotropy

In the previous section, we found that the observability results reflect
to a large extent the strength of anisotropy in the input models. To
investigate whether normal modes can distinguish between differ-
ent patterns of anisotropy (lateral variations in anisotropy), we use
the normalized input models (see Section 3.4) with results shown
in Fig. 7. The percentage of spheroidal modes able to see lateral
variations in v, anisotropy varies substantially, from barely any-
thing (2%) for model SAW642ANDb to more than 65% for model
SEMUCB-WMI. The latter is the model with the highest anisotropy
amplitudes below 2000 km depth (Fig. 4), while reference model
SGLOBE-rani has low anisotropy amplitudes. The low percentage
for model SAW642AND is likely due to the fact that, even after
normalization, this model and SGLOBE-rani both effectively have
no anisotropy below 670 km, making them very similar to each
other (Fig. 4b). In Fig. S2 we also show results for normalized
models with anisotropy only present between 25 and 220 km depth,
where the radial average of & is similar across all the models. In
this case, we observe similar observability values, with only 2—7%
of spheroidal modes having OP*"*™ values larger than 1 (mostly the
fundamental modes, as expected).

Percentages are visibly more consistent for toroidal modes, with
on average 44% of normal modes able to distinguish between dif-
ferent anisotropy models. This is likely because most of the toroidal
modes considered in this study are sensitive to shallow portions
of the mantle, where all normalized models contain significant
anisotropy. Nevertheless, the fact that different anisotropy models
give rise to significant changes in the splitting functions for >40 %
of currently observed normal modes stems us hopeful for future
inversions of these normal mode data for mantle anisotropy.

4.4 Effect of crustal thickness

Observability results for crustal thickness are presented as his-
tograms in Fig. 8, where we compare reference model CRUST2.0
to models CRUST1.0, CRUSTS5.1, CRUST-SG or CRUST-SEM (as
described in Section 4). We find that normal modes are not able to
distinguish model CRUST2.0 from either CRUST1.0 or CRUSTS.1.
This is due to the strong similarity of these models on the long wave-
lengths for which we have normal mode data (typically s < 12).

A higher percentage is obtained when comparing model
CRUST2.0 with CRUST-SG with now 22.1% of spheroidal modes
and 21.1% of toroidal modes having observability values above
1 for s = 2. As expected, most of these modes are fundamental
modes that are most similar to surface waves. Although we obtain
an even higher percentage of modes with O™ values above 1 for
CRUST-SEM, this is slightly misleading, as this model is built as
an ‘equivalent model’ and not necessarily realistic. We note that
the observability for CRUST-SEM is never greater than one for the
CMB Stoneley modes, which therefore are not substantially affected
by the use of very different crustal models.

5 TRADE-OFFS BETWEEN RADIAL
ANISOTROPY AND OTHER
STRUCTURES

So far we have considered how strong anisotropy in the mantle has
to be to be observable in current normal mode data. However, the
seismic detection of anisotropy in the mantle is also complicated
by possible trade-offs with other structures, which may mask the
presence of anisotropy or give rise to larger amplitudes in models.
Therefore, we investigate here whether significant trade-offs exist
between radial anisotropy and other structures, particularly crustal
thickness variations and the compressional wave velocity structure
of the mantle.

To investigate possible trade-offs, we compare synthetic splitting
functions to a set of reference predictions using the isotropic part
of model SEMUCB-WM1 combined with crustal model CRUST-
SEM and a constant v, scaling factor (§lnv, = 0.5 x lnv,). We
choose this model as it is the model with the largest overall ob-
servability to v, anisotropy, making it easier to identify possible
trade-offs between anisotropy and other features. We test the effect
of anisotropy, crustal thickness and v, scaling by calculating syn-
thetic splitting function coefficients for this reference case (i) with
the addition of the anisotropic part of SEMUCB-WMI, (ii) using
CRUST2.0 instead of CRUST-SEM to describe crustal thickness
variations and (iii) using a depth-dependent v, scaling instead of a
constant scaling, which decreases linearly from 0.5 at the surface to
0.33 at the core-mantle boundary (as used in Ritsema et al. 2011).

Fig. 9 shows examples of splitting function predictions for two
coefficients (cyo and 93(cy,), focusing on core—mantle boundary
Stoneley modes, where PR denotes the real part of the coefficient.
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Figure 8. Histograms of degree 2 observability values for different crustal thickness models ( 05"‘5‘), comparing predictions for reference model SGLOBE-rani
combined with CRUST2.0 to predictions for SGLOBE-rani with the crustal thickness model indicated at the top for (a) spheroidal and (b) toroidal modes.

Similar to Fig. 5.
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Figure 9. Predictions for Stoneley mode splitting functions for the ¢;9 and
real ¢y coefficient [denoted PR(coy)] relative to predictions for isotropic
SEMUCB-WM1 with CRUST-SEM on top. We compare predictions
for anisotropic SEMUCB-WM1 with CRUST-SEM (triangles), isotropic
SEMUCB-WMI1 with CRUST2.0 (circles) and isotropic SEMUCB-WM1
with CRUST-SEM and a depth-dependent v, scaling (stars), which are all
coloured by the deviation from the reference case predictions (in pHz).
When predictions fall on the same side of zero, there is no trade-off between
the respective structures, while there may be a trade-off if they fall on oppo-
site sides of zero. Grey bars indicate the amplitude of the data uncertainties
(centred around zero), to visualize how significant the effect of different
structures are compared to these. The degenerate frequency of the modes
increases along the x-axis and their sensitivity becomes progressively more
focused to the CMB.

Changing the crustal thickness model has little effect on these lower
mantle sensitive normal modes, with the change from the reference
predictions being smaller than the data uncertainties in most of
the cases. In contrast, the presence of anisotropy and the use of a
different v, scaling both introduce frequency variations significantly
larger than the data uncertainties, with the effect being stronger for
modes with increasing frequency and thus increasing sensitivity
to the CMB. Importantly, for these coefficients (which together
strongly contribute to the characteristic ‘Ring around the Pacific’
pattern observed in lower mantle tomography models), we do not
identify a large trade-off between anisotropy and crustal thickness or
compressional wave velocity structure (i.e. the deviations in mode
frequencies are either both negative or both positive).

Figs 10 and 11 generalize our results from Fig. 9 to all spheroidal
and toroidal modes, respectively, plotting the deviation in frequency
due to the effect of anisotropy, changing the crustal thickness model
or v, scaling for all degree 2 coefficients. Equivalent results for de-
gree 4 coefficients are shown in Fig. S3. For fundamental modes
that resemble surface waves (n = 0, high /), we identify a trade-off
between anisotropy and crustal thickness for most degree 2 coeffi-
cients, as expected. Other modes show mostly a trade-off between
anisotropy and crustal thickness for coefficient ¢y (though not be-
tween anisotropy and v, scaling), but importantly not for any of
the Stoneley modes as discussed before. If, instead of these two
quite different crustal thickness models, we compare CRUST-SG
and CRUST2.0 (see Fig. S4), the effect of crustal thickness is sig-
nificantly smaller and does not lead to trade-offs with anisotropy
for lower mantle sensitive modes.

For modes with n > 0, the trade-offs between anisotropy and v,
structure are more significant, particularly for coefficients 9i(cy2)
and J(cy), e.g. see modes g5, 10521 and 12.516. This implies that dur-
ing inversions for mantle anisotropy it will be important to consider
the influence of the v, structure and carefully consider what scaling
to use between v, and v,. For toroidal modes (Fig. 11), we do not
observe any trade-offs between anisotropy and crustal thickness or
v, scaling.

The results shown so far are computed using model SEMUCB-
WMI. As different models have different amplitudes and patterns of
anisotropy, the use of a different model may give rise to a stronger
or weaker effect of anisotropy on normal modes, thus leading to
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Figure 10. Effect of different structures in the mantle on the frequencies of spheroidal modes for degree 2 including results for real (9R) and imaginary (J)
coefficients. Results for degree 4 are shown in Fig. S3. We plot splitting function coefficients relative to predictions for isotropic SEMUCB-WM1 with crustal
thickness variations according to CRUST-SEM and a constant v, scaling factor (8lnv, = 0.5 x dlnvy). In the different columns, we show the effect of (a)
including vy anisotropy, (b) changing the crustal thickness model to CRUST2.0 and (c) changing the v, scaling to be depth-dependent (as described in the text).
Each square represents a particular normal mode, with the colour indicating the deviation in frequency (as in Fig. 9). Trade-offs exist when opposite colours
(red or blue) are observed between columns as these frequency shifts may cancel each other out. Squares are coloured white when the frequency shift from the
reference case is smaller than the data uncertainty and thus not significant for that particular normal mode.

different results. Fig. S4 shows equivalent results to Fig. 10, now
using model SGLOBE-rani with CRUST-SG as reference case. In
this case, it is noticeable that anisotropy has a smaller effect on
normal modes due to the smaller model amplitudes, with the effect

of crustal thickness also smaller, as explained above. We observe
roughly the same effect due to a different v, scaling when using
models SEMUCB-WM1 and SGLOBE-rani. Despite these slight
differences between Fig. 10 and Fig. S4, it is important to note
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Figure 11. Effect of different structures in the mantle on the frequencies of toroidal modes, showing all coefficients for degree 2, including results for real (9R)
and imaginary (J) coefficients. We compare the effect of (a) anisotropy, (b) crustal thickness and (c) v, scaling on individual normal modes. Trade-offs may
exist when colours are opposite between different columns. See the caption of Fig. 10 for more details.

that we never identify a trade-off between anisotropy and crustal
thickness for the Stoneley modes.

6 MISFIT RESULTS

Although it is not the intention of this work to inform about the
present-day radial anisotropy structure of the mantle, it is interesting
to look at the fit of existing tomographic models to current normal-
mode data. We discuss these misfit results in Tables 3 and 4 for
spheroidal modes and in Table S2 for toroidal modes. Although
there are exceptions, we can identify some trends in the results as
detailed below.

When the mantle is considered to be isotropic, SGLOBE-rani
is the model with the lowest overall misfit for spheroidal modes,
irrespective of whether we consider structure at s = 2 or all
degrees (Table 3). With the addition of anisotropy, the predictions
obtained using SGLOBE-rani still fit the observations better than
those of any other model, when all spheroidal modes are consid-
ered. If we consider only fundamental or Stoneley modes separately,
model S362WMANI+M, which was developed using normal mode
data, performs best. SGLOBE-rani still shows low misfit values for
fundamental modes (which are similar in sensitivity to the surface
waves used to construct the model), but the fit gets significantly
worse when we consider Stoneley modes. Overall, we note that
for anisotropic models, the misfit of fundamental mode observa-
tions is lower than that to Stoneley mode observations, fitting with
our expectation that anisotropic structure in the lowermost man-
tle is not well constrained. The addition of anisotropy does not
always improve the overall data fit though, in particular for mod-
els SAW642AND, S362WMANI+M and SGLOBE-rani. This does
not necessarily mean that mode data prefer the isotropic model, but
more likely indicates that the patterns and amplitude of anisotropy
in these tomography models still have to be improved in order to fit
normal mode data, particularly in the lower mantle. Misfit results for
toroidal modes (Table S2) are consistent with these findings, show-
ing that predictions for SGLOBE-rani fit the observations best, both
with and without anisotropy.

As discussed in Sections 3.3 and 4.4, the Moho depths of CRUST-
SEM are not realistic in the oceans, where they are set to 30 km.
This could have an effect on the misfit for SEMUCB-WMI1 pre-
dictions reported above. We test this by calculating the data misfit
using predictions for SEMUCB-WM1 combined with CRUST2.0.
As comparison we also show results for when we change the crustal
model for the two best performing models S362WMANI+M and
SGLOBE-rani, by using CRUSTS.1 and CRUST2.0, respectively.
Given the strong effect of the v, scaling on normal mode frequen-
cies (see Section 5), we also compare the effect of changing the
v, scaling on these misfit results (using a depth-dependent scaling
factor again). Table 4 shows that the misfit for SEMUCB-WMI1 in-
deed improves when we use CRUST2.0, though not by very much.
Changing the crustal thickness model for S362WMANI+M does
not change the misfit, while it has a small effect on the misfit for
SGLOBE-rani. The use of a depth-dependent v, scaling further im-
proves the fit for SEMUCB-WMI and S362WMANI+M, but not
for SGLOBE-rani.

7 DISCUSSION

We have used the concept of observability and misfit calculations
to investigate the sensitivity of normal modes to global anisotropic
mantle structure. By using a number of global tomography mod-
els, by considering several scenarios of anisotropy and by analysing
all lower mantle normal modes for which measurements are avail-
able since 1995, this study goes beyond the work of Koelemeijer
et al. (2012) who introduced the concept of normal mode observ-
ability. Using predictions for existing anisotropic tomography mod-
els, we have shown that normal modes are able to provide valu-
able constraints on both v, and v, anisotropy in the mantle and
can distinguish between existing anisotropic tomography models
based on our misfit results. Here, we will discuss some of our key
findings as well as some limitations of our approach, before we
finish by discussing implications for future inversions of mantle
structure.
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Table 3. Misfit to spheroidal mode observations for splitting function predictions calculated using models
SAW642AND, savani, SEMUCB-WMI, S362WMANI+M, SGLOBE-rani and SPani. In the different columns
we compare the misfit for isotropic predictions for all modes (Iso - All), anisotropic predictions for all modes (Aniso
- All), as well as anisotropic predictions for fundamental modes only (Aniso - Fundamental) or Stoneley modes only
(Aniso - Stoneley). In each case, we show the misfit for degree 2 only (s = 2) or all degrees together (s =all, up to s
= 12). Values in bold indicate the lowest misfit in each column.

Model Iso - All Aniso - All Aniso - Fundamental ~ Aniso - Stoneley

s=2 s =all s=2 s =all s=2 s =all s=2 s =all
SAW642ANb 7.72 2.55 6.91 2.42 8.86 4.13 11.98 297
savani 17.21 4.45 14.60 3.88 24.00 5.77 46.68 11.52
SEMUCB-WMI 6.96 2.36 6.08 2.25 7.91 2.45 7.56 2.85
S362WMANI+M 5.00 1.87 5.77 2.01 4.77 1.79 7.32 1.96
SGLOBE-rani 4.06 1.75 4.23 1.79 4.79 2.40 12.45 3.19
SPani 6.67 2.27 6.49 2.12 12.96 3.41 28.45 6.39

Table 4. Misfit to spheroidal mode observations for splitting function predictions calculated using
models SEMUCB-WM1, S362WMANI+M and SGLOBE-rani. In the different columns we compare
misfit values for predictions using the original models, that is SEMUCB-WM1, S362WMANI+M and
SGLOBE-rani with, respectively, CRUST-SEM, CRUST2.0 and CRUST-SG on top and a constant v,
scaling factor (Case = ‘Original’), the original models with a different crustal thickness model, that
is CRUST2.0 for SEMUCB-WMI1 and SGLOBE-rani and CRUSTS5.1 for S36WMANI+M (Case =
‘Crustal thickness’), and the original models with a depth dependent v, scaling factor (Case = ‘v,
scaling’). In each case, we show the misfit for degree 2 (s = 2) and all degrees together (s =all, up to
s = 12), and for the isotropic parts of the models as well as the full anisotropic model using all modes.
Values in bold indicate the lowest misfit for each model and column.

Model Case Iso - All Aniso - All
s=2 s =xall s=2 s =all
SEMUCB-WMI Original model 6.96 2.36 6.08 2.25
Crustal thickness 6.75 2.36 5.51 2.19
vp scaling 6.46 2.23 5.86 2.17
S362WMANI+M Original model 5.00 1.87 5.77 2.01
Crustal thickness 5.00 1.87 5.77 2.02
vp scaling 4.18 1.67 4.76 1.77
SGLOBE-rani Original model 4.06 1.75 4.23 1.79
Crustal thickness 4.04 1.67 4.35 1.77
vp scaling 4.35 1.72 4.59 1.81

7.1 Limitations

Rather than considering the theoretical sensitivity of normal modes,
our approach utilizes the uncertainties of current normal mode data.
We believe this provides more useful insights than a study of mode
sensitivity kernels, which we have also included for completeness
in the Supporting Information (Fig. S5).

A limitation of this approach is that results depend on currently
available normal mode data and their associated uncertainties. Con-
sequently, results may change when normal mode splitting coeffi-
cients and their uncertainties are re-evaluated (though generally only
for the better). For example, the new measurements from Schnei-
der & Deuss (2021) significantly improved the observability of
toroidal mode data sets, not only by expanding the data sets with
new overtone measurements, but also by improving older measure-
ments based on new seismic spectra, most of which now have lower
uncertainties.

Another limitation is given by the fact that we base our observ-
ability calculations on existing tomographic models. We prefer this
approach nevertheless, as such tomographic models are at least con-
strained by observations. However, this does limit us, as the results
depend on the characteristics of the models themselves, which for
example never have large anisotropy variations in the mid or lower
mantle. Since we do not know for certain whether any of these mod-
els inform us about the actual anisotropic structure of the Earth, we

base our study on six tomography models that contain a differ-
ent distribution and strength of anisotropy. An alternative would
be to base our analysis on synthetic tomography models derived
from geodynamic mantle circulation models that are constrained
by physical processes. While these may be unaffected by regular-
ization choices and thus have stronger amplitudes, they would still
come with a range of issues, such as the choice of mineralogy and
deformation mechanism and the need for plate reconstructions to
obtain a realistic distribution of mantle heterogeneity.

Finally, we have used first-order perturbation theory throughout
this work, including for our calculations of crustal thickness correc-
tions. This seems justified given the wavelengths of normal modes
relative to the thickness of the crust. However, we have not explicitly
investigated this assumption. With the advance of spectral element
methods that include self-gravitation (e.g. Kemper et al. 2022), it
may be possible to test these assumptions in future studies.

7.2 Observability of radial anisotropy amplitudes and
patterns

We have attempted to investigate the observability of both the
strength of anisotropy as well as its pattern (or the lateral vari-
ations in anisotropy). Due to the presence of strong anisotropy
at shallow depth in all the models (radial average always larger
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than 1.06, Fig. 4a), normal modes are able to observe anisotropy
when anisotropy is present in the entire mantle. When investigating
anisotropy only in the lower mantle, it appears that the radial av-
erage of & needs to be larger than around 1.005 (radially averaged
amplitude of anomalies is roughly 0.5%) to have a significant effect
on normal modes. We base this on the fact that in SGLOBE-rani,
one of the models with the weakest anisotropy, v, anisotropy has a
negligible effect on most of the modes (Fig. S4a), while anisotropy
in SEMUCB-WMI is strong enough to cause significant changes
in the splitting function coefficients (Fig. 10a).

We have used input models with normalized amplitudes to in-
vestigate the impact of different patterns of anisotropy, finding
that on average ~31% of spheroidal modes and ~44% of toroidal
modes can distinguish between different global anisotropy models
(Fig. 7). When restricting the anisotropy to specific depths only,
specifically between 25 and 220 km depth, where & > 1 is simi-
lar across all normalized models (Fig. 4b), we find that only ~5%
of spheroidal modes have observability values larger than 1 (com-
pared to 36% for toroidal modes, Fig. S2). As the percentage for
spheroidal modes is consistently small, the large range of percent-
ages found for anisotropy in the whole mantle (Fig. 7) is likely due to
differences in anisotropy amplitude deeper in the mantle, which are
still present after normalization. In contrast, for the toroidal modes
we always observe observability values larger than 1 for more than
30% of modes, as these modes are mostly sensitive to the shallow
mantle where anisotropy models are consistent. It is not possible to
repeat this exercise for anisotropy just in the lowermost mantle, as
the sign of the radially averaged anisotropy varies between models
(see Fig. 4b). This prevents us from normalizing anisotropy model
amplitudes just in the deep mantle and we are thus not able to as-
sess whether the pattern of anisotropy in the lowermost mantle is
observable based on these tomographic models.

An important finding of our study is that the observability to v,
anisotropy is generally higher than the v, anisotropy observability.
If the normal modes we considered had equal sensitivity to v, and
v, anisotropy, the observability should only depend on the relative
amplitudes of v; and v,. This should result in a higher observability
for v, anisotropy since dlnv, ~ 0.5 x §lnv,, which is not what we
observe. Given that the data uncertainties are the same, we can
thus conclude that our normal mode data set has an overall larger
sensitivity to v, anisotropy than to v, anisotropy. This can be verified
by considering the theoretical sensitivity kernels of the modes we
have analysed here. Fig. S5 summarizes the overall sensitivity of
each mode to overall mantle anisotropy. We find that our data set
of spheroidal modes is sensitive to vy,, while it shows significant
sensitivity to both v,;, and v,,. This sensitivity mostly arises from
measurements of P-wave sensitive modes by Deuss et al. (2013) and
Koelemeijer et al. (2013), which have already enabled independent
inversions for both shear wave and compressional wave structure
(Koelemeijer et al. 2016) and now also pave the way for inversions
for compressional wave anisotropy.

Throughout this study, we have separately considered results for
different spherical harmonic degrees. To discuss the overall effect
of anisotropy and crustal thickness on normal modes, it is useful
to combine all degrees in splitting function maps, which ultimately
serve as data for tomographic inversions. As example, Fig. 12 shows
the observed and predicted splitting function maps for lower man-
tle mode |Sy4, for which sensitivity kernels are given in Fig. 2(c).
We observe negligible differences between the splitting functions
predictions of this lower mantle mode for different crustal thick-
ness models, consistent with our conclusions in Section 5 based
on Fig. 10. On the contrary, different anisotropic models lead to

(a) Observation - ;S;,

(b) Crust
CRUST-SEM

(c) Anisotropy
SEMUCB-WM1

-18 -12

f;reequer?cy [qu] 12 18

Figure 12. Observed and predicted splitting function maps for mode 1S4
plotted up to spherical harmonic degree 6. (a) Observed splitting function
from Koelemeijer e al. (2013). (b) Predicted splitting functions for isotropic
SEMUCB-WMI with different crustal thickness models, showing CRUST-
SEM (top), CRUST-SG (middle) and CRUST2.0 (bottom). (c) Predicted
splitting functions for anisotropic models SEMUCB-WM1 (top), SGLOBE-
rani (middle) and S362WMANI+M (bottom), respectively, with CRUST-
SEM, CRUST-SG and CRUST2.0 on top.

visually different predictions, particularly changing the amplitude
of the predicted splitting function. Consistent with our misfit results
(see Table 3), model S362WMANI+M visually resembles the ob-
servation best, while SEMUCB-WM1 and SGLOBE-rani over- and
underestimate the amplitude, respectively. Equivalent examples are
given in Figs S6 and S7 for modes (S5 and ,77. The predictions
of fundamental mode (S, are visually different when changing ei-
ther the crustal thickness model or the anisotropy structure of the
mantle. This is consistent with previous studies (e.g. Marone & Ro-
manowicz 2007; Bozdag & Trampert 2008; Ferreira ef al. 2010) as
these high frequency fundamental normal modes are equivalent to
surface waves.

7.3 Data misfit

Although not the primary aim of this study, the misfit results provide
some interesting insights. Tomography model S362WMANI+M is
the only model considered here that included normal-mode data in
its construction and it is thus not surprising it fits real data well.
For the other five models considered, normal modes represent a
way to independently assess the fit of the model to new data. From
these five, SGLOBE-rani fits the normal mode data best (except
when we consider Stoneley modes only). This is likely due to two
reasons: (1) SGLOBE-rani has been built using ~43 million surface
wave measurements, which are similar to normal modes at higher
frequencies and (2) SGLOBE-rani is also parametrized in spherical
harmonics, which are natural basis functions for the normal modes.
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Model SEMUCB-WM1 also performs relatively well, particularly
when we consider Stoneley modes, while models savani and SPani
typically have a poor data fit, likely due to the fact that these were
constructed using higher-frequency body waves only. The fact that
we consistently find lower misfit values for fundamental modes than
Stoneley modes indicates that anisotropic models in the lowermost
mantle still need to be improved, while anisotropy in the upper
mantle is better constrained in current tomographic models.

7.4 Implications for tomographic inversions

Normal mode data are not as routinely included in tomographic
inversions as body waves and surface waves. Up to date, only the
studies by Moulik & Ekstrom (2014) and Moulik & Ekstrom (2016)
have included normal mode splitting functions in inversions for 3-
D radial anisotropy in the mantle. These studies found that the
inclusion of splitting function data in their data set helped to reduce
(but not remove) the trade-off between isotopic and anisotropic
structures in the lower mantle (Moulik & Ekstrom 2014). It will be
interesting to see whether these trade-offs can be entirely removed
when only normal mode data are used in inversions.

There appears to be a link between between our observability
results and the normal mode data fit of Moulik & Ekstrom (2014,
2016). Typically, for modes for which we find a high observability,
such as ¢Ss, 159, 2810 and 1¢S5 (Fig. 6), they also found a good
model fit, while modes with low observability values (e.g. 052, 1.5,
1287 and , T ) showed poor data fits. Naturally, not all modes follow
this first order trend (e.g. 453, 0 T10), likely due to the fact that Moulik
& Ekstrom (2014) also included other types of data.

Our splitting function predictions for different mantle structures
indicate a trade-off between anisotropy and compressional wave ve-
locity structure (Fig. 10). As both affect the splitting functions to a
similar extent, and will change the fit to the data (Table 4) we cannot
neglect the compressional wave velocity structure of the mantle in
inversions for anisotropy. Future studies should thus carefully con-
sider the choice of scaling between shear and compressional wave
structure. Ideally, such studies should use inverse methods that are
able to incorporate uncertainties from unmodelled structures in the
mantle, such as the SOLA method (Subtractive Optimally Localized
Averages, Zaroli 2016), which is based on Backus—Gilbert theory
(e.g. Backus & Gilbert 1967, 1968). In this type of inverse method,
the sensitivity of normal modes to v, could be treated as additional
‘3-D’ noise, when inverting for v, anisotropy.

Our forward modelling results also provide insights into the depth
resolution we may expect to obtain in global inversions. Normal
modes are generally not able to observe anisotropy if it is present
only in the bottom 150 km of the mantle (last columns of Tables 1
and 2). A larger number of modes have observability values larger
than 1 when we increase the thickness of this anisotropic layer to
roughly 400 km (second last columns in the same tables). It is thus
unlikely that normal mode data are able to constrain anisotropy
variations in just the bottom 150 km of the mantle.

The fact that existing tomographic models lead to substantially
different predictions (Section 4) and misfit values (Section 6) sug-
gests that there is sufficient sensitivity in existing normal mode data
to mantle anisotropy on long wavelengths, where models continue
to disagree. Although the resolving power of normal modes may be
lower than that of other data types, this indicates they are important
complementary data to include in studies of mantle anisotropy. We
particularly encourage the community to utilize the recent measure-
ments of toroidal mode overtones by Schneider & Deuss (2021) in
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tomography inversions, as these show significant sensitivity to vy
anisotropy in the deep mantle (Fig. 5) and are fit reasonably well by
existing tomographic models (Fig. S7).

8 CONCLUSIONS

Anisotropy is an important seismic quantity that, if constrained
accurately, provides important information on mantle flow. In this
study, we have investigated the sensitivity of current normal mode
data to radial anisotropy in the mantle using existing global to-
mographic models. On the one hand, we have used the concept
of observability to determine to which extent normal modes are
able to resolve the Earth’s anisotropic structure at different depths
and with different patterns. On the other hand, we have investi-
gated how well existing tomographic models fit current normal
mode data. We believe these forward modelling results provide use-
ful insights for future inversions of normal mode data for mantle
anisotropy.

Specifically, we find that on average about 50% of spheroidal
modes and 55% of toroidal modes investigated here show significant
sensitivity to vy anisotropy in the mantle. Importantly, roughly 57%
of spheroidal modes are also sufficiently sensitive to v, anisotropy,
which remains completely unconstrained in the mantle. While re-
sults depend on the characteristics of the tomographic input models,
different anisotropy models lead to visually different splitting func-
tions and misfit values. While all models considered here produce a
reasonable fit to fundamental normal mode measurements, the fit to
Stoneley modes varies significantly, indicating that there is scope to
improve anisotropic tomographic models in the lower mantle using
normal mode data.

We find that, in contrast to findings for body waves and surface
waves, crustal thickness corrections have no strong impact on lower-
most mantle sensitive normal modes, except when we use a crustal
thickness model with unrealistic crustal thicknesses in the oceans.
However, splitting function predictions are changed to a similar ex-
tent by v, anisotropy and isotropic v, structure, affecting the fit to
the data. Given these trade-offs, inversions for v, anisotropy should
not neglect the compressional wave velocity structure of the mantle,
and the choice of scaling value between shear- and compressional
wave velocity structure would require careful consideration. Nev-
ertheless, our finding that current normal mode data sets provide
significant sensitivity to both v, and v, anisotropy makes future
studies of v, anisotropy of the mantle feasible.
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DATA AVAILABILITY

The computed splitting function predictions as well as a plotting
script to visualize these are made available online: https://doi.org/
10.5281/zenodo.7101457 (Restelli et al. 2022).
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SUPPORTING INFORMATION
Supplementary data are available at GJI online.

Figure S1. Example sensitivity kernels of spheroidal and toroidal
modes for structure at s = 0 (red), s = 2 (blue) and s = 4 (black).
Similar to Fig. 2 in the main text.

Figure S2. Histograms of degree 2 observability values for differ-
ent v, anisotropy patterns (O™ ), computed using the normalized
anisotropic models indicated at the top, with SGLOBE-rani as ref-
erence model. Similar to Fig. 7 in the main text, but now anisotropy
is only included in the depth range 25-220 km.

Figure S3. Effect of different structures in the mantle on the fre-
quencies of spheroidal modes. Similar to Fig. 10 in the main text, but
now showing coefficients for degree 4, including results for real (3)
and imaginary (J) coefficients. Deviations in frequency are shown
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relative to predictions for isotropic SEMUCB-WM1 with CRUST-
SEM and a constant v, scaling factor (dlnv, = 0.5 x dlnv,). We
compare the effect of (a) including anisotropy, (b) changing the
crustal thickness model to CRUST2.0 and (c) changing the v, scal-
ing to be depth dependent (as described in the main text). See the
caption of Fig. 10 for more details.

Figure S4. Effect of different structures in the mantle on the fre-
quencies of spheroidal modes. Similar to Fig. 10 in the main text
and Fig. S3, but now showing deviations from isotropic model
SGLOBE-rani with CRUST-SG and a constant v, scaling factor
(dlnv, = 0.5 x dlnv,). We compare the effect of (a) including vs
anisotropy, (b) changing the crustal thickness model to CRUST2.0
and (c) changing the v, scaling to be depth-dependent (as described
in the main text). See the caption of Fig. 10 for more details.
Figure S5. Plot representing the degree 2 integrated sensitivity of
(a—d) spheroidal modes and (e—f) toroidal modes to (a,e) v, (b,f) vy,
(c) vpi and (d) v,,. Each square represents a normal mode of radial
and angular order n and /, and the colour of each square indicates the
depth-integrated sensitivity of each mode to the indicated parameter.
Hence, light colours indicate low overall sensitivity, dark colours
high sensitivity.

Figure S6. Observed and predicted splitting function maps for
mode ¢Sy plotted up to spherical harmonic degree 10. (a) Ob-
served splitting function from Koelemeijer et al. (2013). Panels (b)
and (c) show predicted splitting functions for different crustal mod-
els and different anisotropy models respectively. Specifically, we
show in (a) predictions for isotropic SEMUCB-WMI1 with differ-
ent crustal thickness models; CRUST-SEM (top), CRUSTSG (mid-
dle) and CRUST2.0 (bottom). In (b) we compare predictions for
anisotropic models SEMUCB-WMI1 (top), SGLOBE-rani (middle)
and S362WMANI+M (bottom), respectively with CRUST-SEM,
CRUST-SG and CRUST?2.0 on top.

Figure S7. Observed and predicted splitting function maps for
mode ,7% plotted up to degree 6. (a) Observed splitting function
from Schneider and Deuss (2021). Panels (b) and (c) show pre-
dicted splitting functions for different crustal models and different
anisotropy models, respectively. See the caption of Fig. S6 for more
details.

Table S1. List of spheroidal and toroidal modes used in this study,
including the references from which splitting function coefficients
are taken [MLGOO0 = Masters et al. (2000), DRvH13 = Deuss et al.
(2013), KDR13 = Koelemeijer et al. (2013), K14 = Koelemei-
jer (2014), RR98 = Resovsky & Ritzwoller (1998) and SD21 =
Schneider & Deuss (2021)].

Table S2. Misfit to toroidal mode observations for prediction using
models SAW642AND, savani, SEMUCBWM1, S362WMANI+M,
SGLOBE-rani and SPani. In the different columns, we compare the
misfit results for all modes for isotropic predictions (Iso - All) and
anisotropic predictions (Aniso - All). In each case, we show the
misfit for degree 2 (s = 2) only or all degrees together (s = all, up
to s = 6). Bold values indicate the lowest misfit in each column.
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