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Abstract 

 
Despite the fact that the cause of Down Syndrome (DS) is well established, the underlying molecular mechanisms that contribute 
to the syndrome and the phenotype of accelerated aging remain largely unknown. DNA methylation profiles are largely altered in 
DS, but it remains unclear how different methylation regions and probes are structured into a network of interactions. We 
develop and generalize the Parenclitic Networks approach that enables finding correlations between distant CpG probes (which 
are not pronounced as stand-alone biomarkers) and quantifies hidden network changes in DNA methylation. DS and a family-
based cohort (including healthy siblings and mothers of persons with DS) are used as a case study. Following this approach, we 
constructed parenclitic networks and obtained different signatures that indicate (i) differences between individuals with DS and 
healthy individuals; (ii) differences between young and old healthy individuals; (iii) differences between DS individuals and their 
age-matched siblings, and (iv) difference between DS and the adult population (their mothers). The Gene Ontology analysis 
showed that the CpG network approach is more powerful than the single CpG approach in identifying biological processes 
related to DS phenotype. This includes the processes occurring in the central nervous system, skeletal muscles, disorders in 
carbohydrate metabolism, cardiopathology, and oncogenes. Our open-source software implementation is accessible to all 
researchers. The software includes a complete workflow, which can be used to construct Parenclitic Networks with any machine 
learning algorithm as a kernel to build edges. We anticipate a broad applicability of the approach to other diseases. 
 
 

Introduction 
Epigenetic modifications are chemical and/or physical changes in chromatin that can be preserved across cell divisions, and 
DNA methylation is the most studied among them [1]. This is in part due to the fact that this molecular layer tends to be 
relatively stable and can be assessed by cost-effective approaches, like the Infinium microarrays, that allow measuring DNA 
methylation of hundreds of thousands of CpG loci with single base resolution at the genome-wide level [2]. In addition, a 
bulk of literature demonstrated that DNA methylation changes occur both in physiological (development, sex 
differentiation, or aging) and pathological (cancer, age-related diseases, or genetic syndromes) conditions [1,3,4]. 
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So far, most of the studies that investigate DNA methylation changes associated with a certain condition focus on 
individual CpG sites (differentially methylated positions) or groups of chromosomally adjacent CpG sites (differential 
methylated regions) [5,6]. However, the epigenetic regulation of the genome is a complex and highly integrated system, in 
which DNA methylation modules are not isolated [7]. Analytical approaches that consider the cross-talk between DNA 
methylation alterations in different regions of the genome could therefore provide new insights into the epigenetic 
remodeling occurring in various physiological and pathological conditions, as it has been recently demonstrated [8-11]. 

In this light, the methods based on network analysis have the potential to provide deeper insights into the regulation of 
DNA methylation profiles. Among others, the parenclitic network approach [12] is of particular interest, as it enables 
researchers to represent methylation data in the form of a network, even if functional links between different methylation 
probes or regions are not established. 

Briefly, this approach implements networks, the nodes in which correspond to the relevant parameters, and assigns 
edges between nodes, if their values significantly deviate from the appropriately defined Control set (group). A measure of 
deviation is usually introduced on a plane of two coordinates that correspond to the pair of nodes, e.g. Zanin et al. used the 
distance between a data point to the linear regression line built on a Control group [12]. Since that pioneering work was 
published, parenclitic networks have been successfully been applied to detecting key genes and metabolites in the context of 
different diseases, see [13] for a review and [14] for a discussion of applications in brain research . In [15], we have applied 
this methodology for machine learning classification of human DNA methylation data carrying signatures of cancer 
development. Later [16], acknowledging that the interactions of two features (at least in biological systems of biomarkers) 
often cannot be described by a linear model, it was proposed to use 2-dimensional kernel density estimation (2DKDE) to 
model the Control distribution. 

The main difficulty in using such approaches is implementing an end-to-end analysis package (incorporating many 
technically-complex nested steps), in particular, avoiding ad hoc choices of deviation measures and subjective definition of 
"cut-off thresholds" to discriminate small and large deviations in edge assignment. Here, we present a solution to these 
issues that employs machine learning algorithms for parenclitic network construction. 

We demonstrate the validity of the method for analyzing DNA methylation changes in patients with Down Syndrome 
(DS). Despite the fact that the cause of DS is well established, the underlying molecular mechanisms of associated 
epigenetic modifications remain poorly understood. Previous studies have shown that Down Syndrome (DS), which is 
caused by a full or partial trisomy of chromosome 21, is characterized by a profound remodeling of DNA methylation 
patterns, which involves not only chromosome 21 but is widespread across the genome [17-20]. DS is a segmental progeroid 
syndrome, as it is characterized by a phenotype of premature/accelerated aging that occurs in a subset of organs and systems, 
which include the immune and the nervous systems [21-22]. Based on an epigenetic clock of 353 CpG sites [9], Horvath et 
al demonstrated accelerated epigenetic aging in DS against age-matched Controls manifested in blood and brain tissues [23]. 

Among the different cohorts investigated so far, the GSE52588 dataset is of particular interest, as it is a family-based 
cohort that allows evaluating not only the epigenetic remodeling in DS, but also the potential contribution of genetic 
background and environment, which are at least in part shared by members of a family [17]. The analysis that focused on 
differential methylation probes and regions on this dataset highlighted epigenetic alterations in genes involved in the 
developmental functions (including hematological and neuronal development), metabolic functions, and regulation of 
chromatin structure, which are in line with the results of independent cohorts [17-20]. 

In this paper, we aim to go beyond individual or local region differential CpG methylation analysis for Down Syndrome 
patients and their family members and obtain further insights into the co-differential methylation of CpG pairs and 
parenclictic network analysis.  In particular, we address complex topological changes of the epigenome in disease. In other 
words, these are the changes, which can be very different for particular DNA methylation probes for individuals, but share a 
similar topological profile distinct from that of healthy subjects. We also identify genes and molecular pathways associated 
with the differential network DNA methylation in Down Syndrome not found during individual or local region CpG 
analysis.  

Secondly, (this information is mainly presented in Supporting Information) we present the implementation of an end-to-
end workflow to construct Parenclitic Networks, which is available for download; we demonstrate that machine learning 
algorithms can be chosen as a kernel to build edges in the network using geometric and probabilistic approaches as 
examples. We also present a new approach (PDF-adaptive) that allows for an automated choice of the “cut-off threshold” to 
remove insignificant edges. 

The paper is structured as follows. First, we apply our algorithm to investigate the age-dependent network signatures of 
Down Syndrome on methylation data. In particular, we report the signature of the pure DS disease (regardless of age); the 
signature of age-related changes in a healthy population (which indicates the proximity of DS patient cohort to an older 
healthy population); the signature, which changes with age in a healthy population slower than in DS patients; and a 
signature, which changes in a healthy population with age faster than in DS patients. We also conducted the Gene Ontology 
and KEGG analysis and found associations with the nervous system, cell fate and oncogenesis, cellular communication, 
development of metabolic syndrome, and female sex hormones. 
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Materials and Methods 

Down Syndrome methylation data 
We consider a publicly available dataset (GSE52588) as an application and validation of our approach, where the whole 
blood DNA methylation was assessed by the Infinium HumanMethylation450 BeadChip in a cohort including individuals 
affected by Down Syndrome (DS), their unaffected siblings (DSS), and their mothers (DSM) [20] (29 families in total). 

Age distribution of subjects from the 3 groups is shown in Fig.1(B). As depicted in Fig.1(A), this family-based model 
(which minimizes potential confounding effects, as members of the same family tend to share the same habits/environment 
and genetic background) allows for four (4) different comparisons, in which 2 phenotypes (DS and aging) are combined in 
different ways: 

1. comparing DS against both DSM and DSS yields a healthy phenotype; 

2. comparing DSS and DSM provides insights into the epigenetic remodeling occurring during aging in euploid subjects; 

3. comparing DS and DSS provides insights into the epigenetic remodeling associated with the syndrome in the age-
matched groups; 

4. comparing DS and DSM discriminates the effects of the syndrome and aging. 
 

Preprocessing 
Raw .idat files were extracted and pre-processed using minfi package [24]. Data were normalized using the 
preprocessFunnorm function, while the probes with p-value detection above 0.05 in more than 1% of samples were 
removed. Furthermore, cross-reactive and polymorphic probes, as reviewed by Zhou et al [25], and probes on the X and Y 
chromosomes were removed. Finally, the procedure left 412993 probes from the original array. As the entire list of probes 
was too large for our algorithms, we decided to focus on the subset of probes mapped in CpG Islands and Shores, as 
previous studies suggest that DNA methylation de-regulation is more likely to occur in these regions (CIT The human colon 
cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores [26]).  This 
subset includes 114674 probes. Additionally, we exclude sex-specific CpGs to decrease possible bias relying on the list of 
sex-specific CpGs [27] with 5665 items. Lastly, the list contains 113630 CpGs (full list of such CpGs can be found in SM-
files, in full_CpGs_list.xlsx file). 

 
Generalized Parenclitic Network Analysis 

The implementation of a complete workflow to construct Parenclitic Networks is available at https://github.com/mike- 
live/parenclitic (see Supporting information for a detailed description). The analysis is intended to grasp co-occurring 
differential changes in DNA methylation of the pairs of probes. We begin by opting out the probes that individually are good 
separators of the Control and Case groups. That is, for each CpG probe we build a split border classifier based on 
maximizing the information gain (for details see paragraph ‘Feature Selection Algorithm’ in Supporting Information), and 
move those that provide accuracy of more than 75% to separate lists (they can be found in SM-files on corresponding sheets 
(‘AGE-control-network’, ‘DS-control-network’, ‘S-control-network’, ‘M-control-network’) in 1d_cpgs.xlsx file). Such 
probes are further excluded from the set of nodes of parenclitic networks, and the results are further considered through the 
prism of single CpG and co-occurring differential CpG methylation. 

Overall, we consider four model types of Parenclitic networks processing DS, DSS and DSM groups in different 
Control, Case, and Test combinations (see illustration on Fig.6 in Supporting information for more details). Here, we 
employ the conventional machine learning approach, where the groups chosen as Control and Case are used for building 
classification/discrimination rules, which are subsequently applied to the independent Test group.  

1. DS-Control Network — the Parenclitic network model of healthy phenotypes, where DS group is the Control group, 
DSS and DSM groups are Case groups; 

2. AGE-Control Network — the Parenclitic network model of aging, where the DSS group is the Control group, the 
DSM group is the Case group, the DS group is the Test group; 

3. S-Control Network — the Parenclitic network model of the syndrome, where the DSS group is the Control group, the 
DS group is the Case group, the DSM group is the Test group; 

4. M-Control Network — the Parenclitic network model of aging and syndrome, where the DSM group is the Control 
group, the DS group is the Case group, the DSS group is the Test group. 

Parenclitic networks for individual subjects are constructed according to the following rules. For each pair of CpG sites 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2020.03.10.986505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986505


4  

(CpGi, CpGj), we place subjects on a corresponding two-dimensional plane according to beta-values and mark Control and 
Case groups. Fig.1(C,D) illustrates the parenclitic network construction: in (C), we considered example of M-control-
network, where DSM (green points) is the Control group and DS (red points) is the Case group and DSS (blue points) is the 
Test group. Using PDF-adaptive (the best threshold) method, we detect an area (green area Fig.1(D)), which best describes 
the area of Controls. If the separation accuracy between the Control and Case groups is less than 90%, the edge between the 
network nodes (CpGi, CpGj) is not assigned for all subjects. Otherwise, the edge (CpGi, CpGj) is assigned for a particular 
subject if it is classified as the Case group (if the point falls into the red area). Finally, having repeated the procedure for all 
pairs of CpG probes, we arrive at individual networks for each subject such that nodes corresponding to probes and edges 
between them designate that a subject falls out of the Control group with regard to methylation of a particular pair of CpGs. 

In addition to the obtained networks for each patient separately, we also build "general" networks for each 
DS/AGE/S/M- Control construction. In each model, we leave only those edges that correspond to separation between Cases 
and Controls with at least 90% accuracy. In the Fig.2(B), we present resized images of such general DS/AGE/S/M-networks 
(enlarged images can be accessed via the links given in the caption to the figure); constructions are provided in SM-files on 
corresponding sheets (‘AGE-control-network’, ‘DS-control-network’, ‘S-control-network’, ‘M-control-network’) in 
union_networks.xlsx, and lists of vertices of networks can be found in SM-files: in lists_of_networks_CpGs.xlsx). The size 
of each vertex in this representation is associated with the degree (presented in lists_of_networks_CpGs.xlsx as a second 
column) of the vertex in the network (that is, the sum of the edges it contains). Thus, the larger the vertex, the more often 
this CpG-site has participated in the "successful" separation of Cases and Controls in a pair with another CpG-site. For the 
top 10 CpGs for each network, we have placed links reporting whether these sites have been previously reported as being 
related to age [28-30] or related to DS in whole blood [17]. Fig.2(A) shows the Venn Diagram for the vertices (CpG sites) of 
networks. It demonstrates that each general network is predominantly unique. Further, for each of these generalizing 
networks (based on the vertices selected in them), we will carry out GO and KEGG analysis and identify biological 
processes that correspond to differential methylation in Cases and Controls.  

  

Cross-Validation 
Despite the fact that all further analysis will be carried out on training networks using all the samples in Сase and Сontrol 
groups (to find the signature itself and to further study the behavior of the Test group on it), we carried out an additional 
cross-validation procedure to show the adequacy of the method as a simple classifier. We did not find other datasets of a 
similar structure (for example, the well-known GSE107211 dataset studies infants (healthy and DS), and the GSE63347 
dataset examines brain tissues). Moreover, the sample size within our dataset is quite small to conduct any standard method 
of cross-validation (with the division of a group of samples into several folds). However, we resorted to a modification of 
the Leave-One-Out Cross-Validation (LOOCV) procedure, which, in our case, was called the Leave-(Family)-Out Cross-
Validation procedure. Its essence lies in the fact that we repeatedly (29 times, according to the number of families in our set) 
excluded members of one family from the dataset (one mother and two of her children: a healthy child and a child with 
DM); trained the networks on the remaining samples and then obtained a prediction (networks) for the members of the 
discarded family. After such a procedure was carried out for each family, we collected the resulting networks into one set (in 
each network design), counted the characteristics and calculated the area under the ROC curve (AUC) to see how well the 
Controls and Cases were divided by such characteristics. We note that in the vector of such predictions (characteristics of 
networks), the prediction for each sample was obtained on those models, in which the sample itself did not participate in the 
training process. Fig. 4 (A) shows AUCs for each characteristic for each network design. We note here that a lot of 
characteristics of DS-Control generalizing Network, S-Control generalizing Network, and M-Control generalizing Network 
showed excellent performance. The performance of the characteristics of the AGE-Control generalizing Network was 
noticeably lower, but from our point of view, it was due to the fact that in this model two classes (Control and Cases) were 
DSS group and DSM group, and their samples slightly overlapped by age (see green and blue distributions in Fig. 1 (B)). 
From our point of view, this result only additionally confirms the adequacy of the applied approach. Some characteristics 
show a high quality of class separation, and some - very low. For example, low performance for the characteristic number of 
vertices is easily explained: since in each network design all samples always have the same number of nodes (some of which 
are connected by edges, and some are not), this characteristic is always equal to the same number and cannot have some 
class separability property. To highlight the best characteristics across all networks (in terms of their performance), we 
visualize the left panel with boxplots (where each boxplot stands for AUCs values of networks) and separate those of them, 
the median value of which exceeds 0.9. Finally, we sort the characteristics by the median of their AUC and highlight those 
that we will use in further analysis (Fig. 4 (B)). 
 
We note that the main goal of this work was not to build a classifier but to find the CpGs signature in each network design 
and further study it using network characteristics of the Test group. However, we consider it important to provide the results 
of this cross-validation to prove the adequacy of the application of our method and demonstrate that it is not prone to 
overfitting. 
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DNAmAGE and epigenetic age acceleration 
DNAmAGE (DNA methylation age) was calculated using the online tool available at https://dnamage.genetics.ucla.edu/. 
Epigenetic age acceleration values (residuals) were calculated as the difference between the Horvath’s epigenetic age and 
chronological age. 

Functional enrichment analysis 
Gene Ontology enrichment was performed using the methylgometh function implemented in the methylGSA Bioconductor 
package [31]. Two kinds of input data were used: the lists of single CpGs differentially methylated between the groups of 
Cases and Controls (one-dimensional separators) and the lists of CpGs that constitute parenclitic networks (parenclictic 
network separators). The results are presented in Table 2 (for Parenclitic) and Table 3 (for 1D), Supporting Information. As 
the parenclitic approach does not return an explicit p-value, the input file for methylgometh function was created by 
assigning value less than its cut-off to all the CpG sites selected by the parenclitic analysis, and value greater than cut-off to 
the other CpG sites. REVIGO (http://revigo.irb.hr/ ) was used to remove redundant GO terms. Functional annotation 
analysis was performed using the ‘Functional Annotation Charts’ tools of the Database for Annotation, Visualization and 
Integrated Discovery (DAVID Bioinformatics Resources 6.8, NIAID/NIH) [d_7].  The enrichment analysis involved the 
lists of genes that contain differentially methylated CpGs revealed by the parenclitic approach. The identifier "official gene 
symbol" (Homo sapiens) was used as an annotation category, and KEGG_PATHWAYS was used for the pathway analysis. 
Significantly enriched pathways (from the KEGG_PATHWAYS database) with Benjamini < 0.05 and P < 0.05 were 
selected. Results of KEGG_PATHWAYS analysis are presented in Table 1, Supporting Information. 

 
Results 

Network analysis and identification of network-age-dependent effects 
We previously demonstrated [20,26] that individuals with DS tend to have a higher epigenetic age compared to age-matched 
Controls by Horvath’s clocks, and found some signatures of DS based on the local differential DNA methylation analysis. In 
this work, for the first time ever, we conduct a network analysis of differential methylation in DS taking into account 
genome-wide associations and provide network DNA methylation signatures of DS based on co-occurrence of probe 
methylation modifications. 

The proposed method allows obtaining individual parenclitic networks for each subject. This way, we analyzed the 
statistical properties of such networks (betweenness, pagerank, closeness, eigenvector centrality, nodes degrees, number of 
edges and nodes, maximum connected component, efficiency, robustness) and demonstrated that they differ between the 
classes (see, for example, Figures 7, 9 ,11 and 13 in Supporting Information). 

This method also determines signatures (specific CpG sites) associated with each of DS/AGE/S/M-Control models (see 
Fig.2(B)). These signatures are essentially unique (see Fig.2(A)) for each model. At the same time, the specificity is also 
observed in different aging trends (for example, in the characteristics of the M-control network, the DS group is closer to 
young representatives of healthy population, and in the characteristics of the S-network - on the contrary, closer to the 
elderly) (see Fig.3). 

We illustrate findings focusing on the number of non-zero-degree edges in the parenclitic network. This quantity 
characterizes the degree of difference of DNA methylation patterns in the individual from the Control group in terms of 
differential network CpG methylation. The observed trends in each model case (especially, in the behavior of the Test 
group), allows the following generalizations (Fig.3) are as follows: 

• Healthy phenotype model network (DS-control): here, DSM and DSS show similar networking properties and are very 
different from DS (see, for example, number of non-zero-degree nodes in Fig.3(A) and other characteristics in Fig.7 in 
Supporting Information). We assume that the signature of this network (the involved nodes) is responsible for the pure 
(regardless of age) difference between the healthy population and patients with DS; 

• Parenclitic model of aging (Age-control): DS network signatures are closer to DSM than to DSS and get closer with 
age (see. Fig.3(B) and Fig.9 in Supporting Information). This fact corroborates with the established concept of 
accelerated aging in DS. Examining the behavior of network characteristics against age acceleration (see, for example 
number of non-zero-degree nodes in Fig.5 and other characteristics in Fig.9 in Supporting Information), we observe 
that the greater the absolute age acceleration, the closer patients with DS are to their mothers. Notably, this trend is 
seen for both the positive and negative age accelerations. The latter could indicate the limitations of Horvath’s 
epigenetic clocks for some special phenotypes of DS patients, where formally negative age acceleration does not 
reflect actual accelerated biological aging. In this way, the parenclitic network signatures behave more robustly, 
consistently indicating the difference between the healthy elderly and the healthy young populations, and the proximity 
of DS patients to the mothers, especially in the elderly group (indicating a strong effect of age-accelerating for DS 
patients); 
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• Parenclitic model of DS (S-control): DSM network signatures are different from DSS, and get closer to DS with age 
(see, Fig.3(C), and other characteristics in Fig.11 in Supporting Information), which is also in line with the concept of 
age-acceleration in DS. We infer that the signature of this network (the involved nodes) captures the difference 
between the DS patients and their siblings. Moreover, the trend in the group of mothers suggests that in a healthy 
population this signature changes with age slower (and only with increasing age does it approach the state of the DS 
group); 

• Parenclitic model of both aging and syndrome (M-control): DSM network signatures are different from DS and DSS 
groups. This trend shows that this group moves away from DS peers and gets closer to mothers with age (see, for 
example the number of non-zero-degree nodes, Fig.3(D), and other characteristics, Fig.13 in Supporting 
Information). We assume that the signature of this network (the nodes selected into it) changes with age faster in the 
healthy population than in DS patients. 

 
Gene Ontology and KEGG Results 

In this section, we identify genes responsible for age related trajectories of methylation network signatures and make an 
enrichment analysis in Gene Ontology (GO) terms. Note that we conduct a separate analysis of the lists of CpGs selected by 
the parenclitical approach and the lists of CpGs identified as good individual (1D) classifiers. The results are summarized in 
Table 2 (for parenclitic approach) and Table 3 (for 1D approach) in Supporting Information. While the DS-Nodes 
comparison did not return any significantly enriched GO, 23, 37, and 77 GO terms were enriched in the lists of CpG probes 
resulting from the S-Nodes comparison, M-Nodes comparison, and AGE-Nodes comparison, respectively. A substantial 
overlap was observed between these 3 cases with 19 terms in common. To gain more insights into the shared and specific 
gene ontology, we applied REVIGO to the lists of GO terms to remove redundant terms and focus on the “Biological 
Processes” description (Table 2, Supporting Information). We found 5 GO terms (pattern specification process, 
regionalization, cell fate commitment, skeletal system development, appendage development) common to all the 
comparisons, and another 5 GO terms (embryonic organ morphogenesis, epithelial cell differentiation, forebrain 
development, camera-type eye development, neuron migration) shared between the S-Nodes comparison and the M-Nodes 
comparison. Notably, the same GO analysis on the results of 1D comparison (Table 3, Supporting Information) returned a 
substantially lower number of enriched GOs in the S-Nodes comparison and in the M-Nodes comparison, and no overlap 
between these two comparisons and the AGE-Nodes comparison. 

The earlier study, which was based on the local probe differential DNA methylation analysis and employed the same 
data set [17], identified some specific methylation changes in individuals with Down syndrome, as compared to their 
healthy siblings and mothers. These differences mainly concerned the genes responsible for morphogenesis and intracellular 
processes. Notably, the use of parenclitic analysis made it possible to identify more complex patterns of epigenetic changes 
occurring in Down syndrome. Analysis in GO revealed significant differences in the methylation of loci associated with the 
functioning of the nervous system, as well as a large number of processes (8 out of 36) related to the development of the 
genitourinary system and the musculoskeletal system. Biological processes common to all groups are associated with cell 
differentiation (GO:0007389 pattern specification process, GO:0003002 regionalization, GO:0045165 cell fate 
commitment) and morphogenesis (GO:0001501 skeletal system development, GO:0048736 appendage development). 

Identified signatures highlight the molecular mechanisms of changes associated with the age development of Down 
Syndrome. Analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) (see (Table 1, Supporting Information)) 
shows a large number of signaling pathways associated with i) the nervous system (Neuroactive ligand-receptor interaction, 
Circadian entrainment, Axon guidance, Glutamatergic synapse, Calcium signaling pathway, GABAergic synapse, Morphine 
addiction, Nicotine addiction, Retrograde endocannabinoid signaling, Oxytocin signaling pathway, Cocaine addiction, 
Dopaminergic synapse, Glycosaminoglycan biosynthesis - heparan sulfate / heparin, Cholinergic synapse); ii) Cell fate and 
oncogenesis (Wnt signaling pathway, Signaling pathways regulating pluripotency of stem cells, Pathways in cancer, cAMP 
signaling pathway, Basal cell carcinoma, Proteoglycans in cancer); iii) Cellular communication (Rap1 signaling pathway, 
Calcium signaling pathway, Gap junction, PI3K-Akt signaling pathway, Glycosaminoglycan biosynthesis - heparan sulfate / 
heparin); iv) Development of metabolic syndrome (Adrenergic signaling in cardiomyocytes, Type II diabetes mellitus, 
Dilated cardiomyopathy, Insulin secretion, Maturity onset diabetes of the young, Arrhythmogenic right ventricular 
cardiomyopathy (ARVC)); and v) Female sex hormones (Oxytocin signaling pathway, Estrogen signaling pathway). These 
groups of genes were not identified via local differential DNA methylation analysis [20]. 

 

Discussion 

While plenty of results demonstrate and build upon single CpG sites or local regions of differential DNA methylation in the 
context of pathology or aging or age-related diseases, little is known about the non-local group CpG differential methylation 
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and the corresponding functional pathway enrichment. This study aims to fill this gap by advancing and employing the co-
differential methylation analysis for genome-wide pairs of CpGs for Down Syndrome patients and their family members, 
and, subsequently, to advance and analyze the so-called parenclictic networks of such pairs as nodes connected by edges.     

We demonstrate how parenclitic networks can be used to find aging trajectories of methylation network markers in Down 
Syndrome. Three cohorts of the analyzed data set - Down Syndrome individuals, their Mothers, and Siblings - allowed us to 
construct different Parenclitic Networks depending on the choice of Control, Case, and Test groups. The pipeline starts with 
identifying CpG sites, which are good individual classifiers, and pairs of CpGs sites, which are good two-dimensional 
classifiers, but fail when studied separately. The latter set is used to build a parenclitic network with edges corresponding to 
significant differential paired CpG methylation. In terms of the structure, the Case networks are much richer in non-zero-
degree nodes and edges than Control networks. Test networks do not follow such preset, and their closeness to other groups 
needs to be determined by network properties and age-related changes. On top of that, we build "general" networks that 
include only nodes and edges common to all individuals from a group, thus defining an epigenetic network signature and an 
entry set for further GO analysis. 

DS has many well-described clinical manifestations including mental retardation, congenital heart defects, 
gastrointestinal and hematological abnormalities, and other specific signs that ultimately form complex unique phenotypes. 
Here, we decomposed the epigenetic signature of DS patients into categories based on the hidden links between the 
covariates: the signature of the pure DS disease (regardless of age); the signature of age-related changes in a healthy 
population (which defines a plurality of DS patients as being close to an older population); the signature, which changes 
with age in a healthy population slower than in DS patients; and the signature, which changes in a healthy population with 
age faster than in DS patients. This could help, in the future, to identify molecular targets for medical treatment of diseases 
accompanying DS.  

Our study identified network molecular changes associated with the DS development. The molecular changes emerging 
in the DS support the fact that genes do not act as autonomous units of the genome, but operates as parts of spatially 
coordinated regulatory networks. Accordingly, epigenetic remodeling does not affect only chromosome 21, but the entire 
genome. We showed that patients with DS have different epigenetic changes in CpG sites of genes related to the clinical 
manifestations of DS. These are primarily biological processes responsible for the functioning of the central nervous system, 
skeletal muscles, disorders in carbohydrate metabolism, cardiopathology, and oncogenes. Instructively, most of the 
identified epigenetic changes in DS are involved in the same processes as biological pathways undergoing normal age-
dependent epigenetic changes. Unique biological processes not associated with age are related to the brain development and 
organogenesis. DS is characterized by marked changes in brain formation during embryogenesis and in the early postnatal 
period (reduced cell proliferation, disorganized patterns of cortical stratification, pronounced neurodegeneration after birth, 
and reduced number of dendritic spines). Most likely, the same molecular mechanisms continue to play a key role in the 
formation of the phenotype of the central nervous system in adulthood (ex. diminished brain size, smoothed gyrus). 

We believe that the networks constructed in this work are not the end of the study, but only the beginning, as the new 
information obtained in the course of network analysis can be now widely analyzed by biologists and clinicians in order to 
identify molecular mechanisms resulting in and accompanying DS. As noted in the Сross-Validation section, we could not 
identify other datasets that could directly validate our results (for example, the well-known GSE107211 dataset studies 
infants (healthy and with Down syndrome), and the GSE63347 dataset examines brain tissue). Nevertheless, we believe that 
a separate study of such datasets (finding methylation signatures based on the groups represented in it by a parenclitic 
approach) and then the correlation of the obtained results with the current ones can be an extremely interesting continuation 
of our work.  

Additionally, this network analysis may help to identify new molecular targets for treatment of patients with DS to 
prevent their accelerated aging. The networks built in this study require a further detailed analysis and can help researchers 
involved in DS research to discover new interpretations based on the interactions detected. We particularly highlight the fact 
that the main idea of the Parenclitic Network approach, the separation of Case-Control group states, can be also applied for 
analyzing the transition in time, by age or other continuous scale, from one state to another. Introducing the Test set, which 
is located between the Case and Control states, can become an additional methodological improvement in the parenclitic 
study of complex systems. 

We presented our algorithm as an open-source implementation of Generalized Parenclitic Network analysis to make it 
more accessible to all researchers. One of the main methodological advances is introducing new machine learning methods 
and kernels and discussing the possibility of their selection based on the particular features of the problem. We believe that 
a simple integration into the overall implementation will allow researchers to use not only the proposed methods but also 
join forces and test their own ideas. We note that we settled on the use of PDF-adaptive, since our data (see the third column 
in Fig. 6 in the Supporting Information) has a non-linear structure and is better described by the 'clouds' of the PDF-adaptive 
approach (as compared, for example, to the linear SVM method, which divides the plane into two halves with a straight 
line). We also believe that since the parenclitic kernel uses a classifier that is always based only on a pair of features, the use 
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of more complicated methods may seem redundant and the best methods are those that more accurately capture the control 
area (any form of it). Together with the PDF-adaptive approach, one could also use the SVM-radial algorithm, which would 
capture such clouds in a similar way. 

The main limitation of the proposed approach is the significant computational time required to build and assess the 
quality of classifiers based on methylation of each CpG pair due to the huge number of possible pairs. This can be overcome 
by exploiting parallel calculations on high-performance computers. The current study was also limited by a relatively small 
number of participants. However, this was mitigated by the structure of the dataset that included close relatives (mothers 
and siblings) of Down Syndrome patients that ensured the genetic proximity of the participants, as well as the similarity of 
living and environmental conditions within each family, decreasing the contribution of population heterogeneity.    

This design can be applied to any disease, including, e.g., cancer, in which, in addition to critical states, such as a 
healthy or diagnosed patient, there is data on intermediate conditions. These conditions can be, for example, the diagnosed 
patients analyzed at an earlier time, when they could be considered healthy. We believe that the results of such an analysis 
based on Generalized Parenclitic Networks will not only help in the early diagnosis of the disease, e.g., by identifying 
critical transition marks and risk assessment, but also would shed light on the process itself, through attributes involved in it. 
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Figure Legends 

Figure 1. Features of the initial data and the scheme of networks construction (A) Schematic representation of 
the three groups in the GSE52588 dataset and their phenotypic difference; (B) Age-distribution for DSM/DSS/DS groups; (C) 
Example of the three groups representation on the plane of a pair of CpGs loci; (D) Illustration of the parenclitic network 
construction: for instance, on (C) we considered an example of M-control-network, where DSM (green points) is the Control 
group and DS (red points) is the Case group and DSS (blue points) is the Test group. Using PDF-adaptive (the best threshold) 
method we detect an area (green Fig. on D), which best describes the area of Controls. If the separation accuracy between the 
Control and Case groups is less than 90%, the edge between the network nodes (CpG1, CpG2) is not assigned for all subjects. 
Otherwise, the edge (CpG1, CpG2) is assigned for a particular subject if it is classified as the Case group (if the point falls 
into the red area). Finally, having repeated the procedure for all pairs of CpG probes, we arrive at individual networks for 
each subject such that nodes correspond to probes and edges between them designate that a subject falls out of the Control 
group with regard to methylation of a particular pair of CpGs. 

 

Figure 2. Commonality and individuality of the networks of the four considered models (A) Venn Diagram for 
the vertices (CpG sites) of generalizing networks; size of nodes in each image (B) 
DS-Control generalizing Network, AGE-Control generalizing Network, S-Control generalizing Network and M-Control 
generalizing Network are associated with their degree (the greater the degree of the vertex, the more connections it has). The 
most powerful node (with maximum degree in the network was highlighted by label). Enlarged presentations of networks 
can be found at  https://tatiananazarenko.github.io/PN–DS/. (C) The prevalence of CpGs from each chromosome in the 
network set. We demonstrate here that CpGs from chromosome 21 are not dominant in such networks (most of these 
chromosome 21 CpGs were selected for 1D analysis and were not included in the parenclitic). It seems important for us to 
note this fact, since parenclitic analysis was able to capture deeper and more complex relationships between the data. 
 
Figure 3. Age dependence of network characteristics Top panel: Assigning the cohorts for network construction. 
Bottom panel: Considering the Test group against the Controls and Cases reveals age-related trajectories quantified by 
network signatures (B-D). Here, we exemplify it in the number of non-zero-degree nodes (the number of CpG probes, that 
show differential network methylation) in individual networks for DS/AGE/S/M-network design versus AGE (A–D labels 
respectively). Commonly, the Case group networks are characterized by a considerable number of co-occurring differential 
CpG methylation changes, as compared to the Control group (as follows from the network construction algorithm). 
Specifically, for different Control, Case and Test groups: B) Parenclitic network model of aging (AGE-Control): DS 
samples are closer to DSM than to their DSS and get even closer with age; C) Parenclitic network model of the syndrome: 
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DSM samples get closer with age to DS; D) Parenclitic network model of aging and syndrome: DSS samples get closer with 
age to DSM. Cf. Supporting Information for the plots for the other network indexes that confirm the described effects. 
 
Figure 4. Results of L-(Family)-OUT procedure (A) Left panel: AUCs on each characteristic for each Network 
design are demonstrated. We note here that a lot of characteristics of DS-Control generalizing Network, S-Control 
generalizing Network, and M-Control generalizing Network showed excellent performance. The performance of the 
characteristics of the AGE-Control generalizing Network is noticeably lower, but from our point of view, it is due to the fact 
that in this model two classes were DSS group and DSM group, and their samples slightly overlapped by age (see green and 
blue distributions in Fig. 1 (B)). We believe that this result only additionally shows the adequacy of the applied approach. 
Some characteristics show a high quality of class separation, and some – very low. For example, low performance for the 
characteristic number of vertices is easily explained: since in each network design all samples always have the same number 
of nodes (some of which are connected by edges, and some are not), this characteristic is always equal to the same number 
and cannot have some class separability property. (A) Right panel: To highlight the best characteristics across all networks 
(in terms of their performance), we visualize the left panel with boxplots (where each boxplot is for AUCs values on for 
networks) and separate those of them whose median value exceeds 0.9. (B) Finally, we sort the characteristics by the median 
of their AUC and highlight those that we will use in further analysis. 

 
Figure 5. Age-acceleration dependence of network characteristics. The number of nonzero degree network nodes (the 
number of CpG probes that show differential network methylation) vs age acceleration (horizontal axis). In all cases, the DS 
methylation network signature is closer to mothers. For the other network characteristics see Supporting Information. 
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