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Abstract— Working memory is one of the most intriguing 

brain function phenomena that permits to store and recognize 
several information patterns simultaneously in the form of 
coherent activations of specific brain circuitries. These patterns 
can be recalled and, if physiologically (cognitively) significant, 
they can be further transferred to long term storages by cortical 
circuits. In the paper we show how the working memory can be 
effectively organized by multiscale network model composed of 
spiking neurons accompanied by astrocytic network. The latter 
serves as the temporal storage of information patterns that can be 
manipulated (relearned, retrieved, transferred) at the time scale 
of astrocytic calcium activation. In turn, the activation of the 
astrocyte network is possible, when coherent firing occurs in 
corresponding sites of the neuronal layer. We study the role of 
interplay the astrocyte-induced modulation of signal transmission 
in neural network and the Hebbian synaptic plasticity in the 
working memory organization. We show that modulation of 
synaptic communication caused by astrocytes does not exclude, 
but rather complements Hebbian synaptic plasticity, and they may 
well act in parallel. We believe this model to be a significant step 
in confirming the importance of non- neuron species (e.g. 
astrocytes) in the formation and sustainability of cognitive 
functions of the brain.  

Keywords— Astrocyte, Working Memory, Neural Network, 
Neuron-Astrocyte Interaction, Hebbian Synaptic Plasticity 

I. INTRODUCTION 
The effects of Hebbian learning in neural networks [1], 

consisting of various types of neurons [2] are studied in many 
works. Hebbian learning rule is the basis of many neural 
network training methods. According to this rule, learning 
occurs as a result of increase in the strength of 
connection(synaptic weight) between simultaneously active 
neurons. On this basis, connections often used in network are 
amplified, which explains the phenomenon of learning through 
repetition. Recent studies have revealed that an important role in 
the information processing play glial cells and the extracellular 
matrix [3,23]. A lot of research has been focused on the role of 
astrocytes in synaptic transmission between neurons 
[4,5].Experimental and theoretical studies [6–8] have shown that 
astrocyte can determine level of spatio-temporal coherence 
inactivity of accompanying neural network and be a spatio-
temporal integrator of this activity. This integration leads to 
long-term changes in synaptic functionality of neural network. 
We propose a new approach to the consideration of astrocytic 
modulation of synaptic transmission from the point of view of 
the mechanism of short-term memory in neural networks. Most 
of the existing work on short-term memory in neural networks 
uses formal neurons. Such models show excellent computational 
performance and large memory capacity, but are not biologically 
relevant. The second group of works includes models of spiking 
neural networks, in which learning is carried out using the 
mechanisms of synaptic and neural plasticity (Hebbian fast 
synaptic plasticity, short-term synaptic plasticity, facilitation, 



etc.). Such models reproduce network dynamics observed in 
experimental studies. Such systems can also be used in the 
context of working memory when using non- or slightly 
overlapping patterns. When using patterns with large overlaps, 
networks of this type are prone to the appearance of chimeras, 
and the mechanism of modulation of synaptic transmission by 
astrocytes, proposed in this paper, is one of the solutions to this 
problem.  

In this article, we continue to develop our previous short-
term memory model [9–11] and show that astrocyte-induced 
modulation of synaptic transmission complements Hebbian 
synaptic plasticity. In our model, working memory is associated 
with item-specific patterns of synaptic facilitation induced by 
astrocytes. We show that a neuron-astrocyte network is capable 
of loading, storing and retrieving several patterns with large 
overlaps.  

. 

II. MODEL AND ARCHITECTURE OF THE NEURON-ASTROCYTE 
NETWORK 

The neuron-astrocyte network consists of three layers: the 
first layer of excitatory neurons (dimension W×H (79×79)), the 
second layer of inhibitory neurons (dimension W1×H1 (40×40)), 
and the third layer of astrocytes (dimension M×N (26×26)). 
Each astrocyte (m, n) interacts with Na = 16 (4×4 ensemble) 
neurons of the first layer with an overlap in one row and one 
column (Fig. 1). 

  
Fig. 1. The structure of the neuron-astrocyte network model. 

A. Neural layers dynamics 
Out of many existing dynamical models of a single neuron, 

we chose the Izhikevich model [13] due to its biological 
relevance and high computational efficiency. The membrane 
potential of each neuron in our network is described by: 

!

𝑑𝑉!,#
𝑑𝑡 = 0.04𝑉!,#$ + 5𝑉!,# + 140 − 𝑈!,# + 𝐼%&&!,# + 𝐼'()!,#

𝑑𝑈!,#
𝑑𝑡 = 𝑎0𝑏𝑉!,# −𝑈!,#2

 

𝐼𝑓	𝑉!,# 	≥ 	30	𝑚𝑉, 𝑡ℎ𝑒𝑛	𝑉!,# → 	𝑐, 	𝑈!,# →	𝑈!,# 	+ 	𝑑 
 

where a = 0.1; b = 0.2; c = – 65 mV; d = 2. Iapp – input signal, 
Isyn – total synaptic current. 

The neurons of the first layer are connected with each other 
by random excitatory synaptic connections (designation of the 
connection: E → E, the number of output connections for each 
neuron: Nc E→E = 200). In addition, excitatory synaptic 
connections emanate from the neurons of the excitatory layer 
activating the neurons of the inhibitory layer (connection type: 
E → I, the number of output connections for each neuron: Nc E→I 
= 5). Output inhibitory synapses couple neurons of the inhibitory 
layer with neurons from the excitatory one (connection type: I 
→ E, the number of output connections for each neuron: Nc I→E 
= 2000). The inhibitory neurons of the second layer are not 
connected. 

The postsynaptic neuron is sampled from a radial 
exponential distribution centred in a presynaptic neuron: 

	𝑓*(𝑅) = 	 A1/𝜆	(𝑒
+*/-), 		𝑅 ≥ 0
0, 		𝑅 < 0

 

where λ = 15 for connection E → E, λ = 2 for connection E 
→ I, λ = 80 for connection I → E. R – distance between pre- 
and postsynaptic neurons. The angle of the vector of connection 
R is chosen randomly. 

The synaptic current for each neuron (i, j) of the excitatory 
layer is calculated as the sum of the total excitatory synaptic 
current from all its presynaptic neurons of the excitatory layer 
and the total inhibitory synaptic current from all its presynaptic 
neurons from the inhibitory layer. Thus, the synaptic current is 
determined by the expression [14]: 

𝐼'()(𝑖, 𝑗) = 𝐼'()	/→/ +	𝐼'()	1→/ 

where: 

𝐼'()	/→/= ∑ 𝑊2'()	/→/(𝑘) ∙ 𝑆(𝑘) ∙ 0𝐸'()	/ − 𝑉(!,#)2
5$	&→&
!,#

678  

𝐼'()	1→/= ∑ 𝑊2'()	1→/(𝑘) ∙ 𝑆(𝑘) ∙ 0𝐸'()	1 − 𝑉(!,#)2
5$	(→&
!,#

678  

𝑆(𝑘) = 	1	/	(1 + 	𝑒
+
9)*+(6)
6,-. ) 

 
Esyn E = 0 mV for excitatory connections, Esyn I = –90 mV for 

inhibitory connections, ksyn = 0.2 mV, Vpre is the membrane 
potential of the presynaptic neuron,  and  – 
synaptic weights. 

The synaptic current for each neuron (i*, j*) of the inhibitory 
layer is equal to the total excitatory synaptic current from all its 
presynaptic neurons of the excitatory layer. Thus, the synaptic 
current is determined by the expression: 

𝐼'()(𝑖∗, 𝑗∗) = 𝐼'()	/→1 
where: 

𝐼'()	/→1 = ∑ 𝑊2'()	/→1(k) ∙ S(k) ∙ 0E;<=	> − V(!∗,#∗)2
?0	1→2
3,4

@78  



𝑆(𝑘) = 	1	/	(1 + 	𝑒
+
9)*+(6)
6,-. ) 

 
Esyn E = 0 mV for excitatory connections, ksyn = 0.2 mV, 

Vpre(k) is the membrane potential of the presynaptic neuron, 
𝑊2'()	/→1 – synaptic weight. 

At the beginning of each session, the weights of synaptic 
connections between neurons of the excitatory layer 
( 𝑊2'()	/→/ ) and the weights of inhibitory connections 
(𝑊2'()	1→/ ) have zero values. The weights of connections 
between excitatory and inhibitory neurons (𝑊2'()	/→1 ) are 
constant throughout the session and equal to 0.1. 

The training of connections between excitatory neurons is 
described as follows: 

𝑑(	𝑊2'()	/→/)
𝑑𝑡 = 	𝛿 ∙ 𝛥gsynEE	, 

𝛿 = A
1, 𝑖𝑓	𝑉&AB > 25	𝑚𝑉	𝑎𝑛𝑑	𝑉&C'D > 25	𝑚𝑉

0, 𝑒𝑙𝑠𝑒  , 

	𝑊2'()	/→/ = [0,gsynEE] 

If pre- and postsynaptic neurons are simultaneously active 
when stimulated with a training pattern (Vpre > 25 mV and Vpost 
> 25 mV), then the weight increases by ΔgsynEE = 0.007. The 
maximum weight of a synaptic coupling is limited by the gsynEE 
= 0.5. Thus, the weight of the exciting connection (WgsynE→E) 
can range from 0 to gsynEE. That is, if two neurons belong to 
the same learning pattern, then the weight of the connection 
between them increases by ΔgsynEE. If two neurons belong to 
different learning patterns, then the weight of the connection 
between them does not change. 

The training of inhibitory connections is carried out as 
follows: the weights of the inhibitory connections (Wgsyn I→E) 
spanning from active neurons of the inhibitory type to those 
neurons of the excitatory layer that were not active during the 
presentation of the training pattern are increased by ΔgsynIE = 
0.007. To do this, we introduce the function of the 
instantaneous frequency of the neuron of the excitatory layer: 

𝑑𝑓
𝑑𝑡 = 	𝛿𝐴 −	𝛽$𝑓 

where: 

𝛿 = A
1, 𝑖𝑓	𝑉&C'D ≥ 25	𝑚𝑉

0, 	𝑒𝑙𝑠𝑒  

 𝛽$ = 200, 	𝐴 = 0.5, 𝑉&C'D −  membrane potential of the 
postsynaptic excitatory neuron. The instantaneous spiking rate 
is limited by an upper threshold of 1. 

The dynamics of the inhibitory synaptic weight is described 
by the differential equation: 

𝑑(	𝑊2'()	1→/)
𝑑𝑡 = 	𝛿	 ∙ 𝛥gsynIE	 

𝛿 = A
1, 𝑖𝑓	𝑓 < 0.3 and 𝑉&AB ≥ 25	𝑚𝑉

0, 	𝑒𝑙𝑠𝑒  , 

	𝑊2'()	1→/ = [0,	gsynIE] 

Thus, the weight of the inhibitory synaptic coupling can 
range from 0 to gsynIE = 0.05. 

B. Dynamics of astrocytic layer 
The astrocytic network has a dimension of 26×26. Each 

astrocyte is associated with the four nearest astrocytes in the 
network by diffusion through calcium ions (Ca2+) and molecules 
of inositol 1,4,5-trisphosphate (IP3). 

To model the dynamics of each astrocyte, we used the Li-
Rinzel model [15]. As a reduction of the biophysical De Young-
Keizer model [16], this two-variable system provides low 
computational costs to reproduce astrocytic calcium 
signalization observed in experiments. The model also retains 
the most important dynamic features of the original system. 

The dynamics of the intracellular calcium concentration in 
the astrocyte (m, n) is described by equations: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑑𝐼𝑃!
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(#,%)

𝜏()!
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(#,%)
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(#,%) + 𝑑:
𝐼𝑃!
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where: 

𝐽!" = 𝑐#𝑣#𝐶𝑎$𝐼𝑃$$ℎ$
𝑐%/𝑐# − ,1 +

1
𝑐#
/ 𝐶𝑎

((𝐼𝑃$ + 𝑑#)(𝐼𝑃$ + 𝑑&))$
 

𝐽'()* = 𝑐#𝑣+(𝑐%/𝑐# − (1 + 1/𝑐#)𝐶𝑎) 

𝐽,-., =
𝑣$𝐶𝑎+

𝑘$+ + 𝐶𝑎+
 

𝐽/012 = 𝑣3
𝐶𝑎 + (1 − 𝛼)𝑘3

𝐶𝑎 + 𝑘3
 

𝐽45 =
𝑣6𝐼𝑃$+

𝑘++ + 𝐼𝑃$+
 

𝐽7-8 = 	𝑘#𝐶𝑎 

𝑑𝑖𝑓𝑓9/$
(.,5) = 	𝑑9/$(Δ𝐼𝑃$)(.,5) 

𝑑𝑖𝑓𝑓1)
(.,5) = 	𝑑1)(Δ𝐶𝑎)(.,5) 

(Δ𝐶𝑎)(.,5) = (𝐶𝑎(.=#,5) + 𝐶𝑎(.>#,5) + 𝐶𝑎(.,5=#) + 𝐶𝑎(.,5>#) − 4𝐶𝑎(.,5) 

(Δ𝐼𝑃$)(.,5) = (𝐼𝑃$
(.=#,5) + 𝐼𝑃$

(.>#,5) + 𝐼𝑃$
(.,5=#) + 𝐼𝑃$

(.,5>#) − 4𝐼𝑃$(.,5) 

𝐼𝑃E
(F,)) – inositol 1,4,5-trisphosphate concentration,  

𝐶𝑎(#,%)– intracellular concentration of calcium ions Ca2+, ℎ(#,%) 
– the proportion of non-inactivated calcium channels on the 
intracellular calcium storage. 

The values of biophysical parameters used: 

𝑐G = 2.0; 𝑐8 = 0.185; 𝑣8 = 6.0; 𝑣$ = 0.11, 𝑣E = 2.2; 𝑣H =
0.3; 𝑣I = 0.2; 𝑘8 = 0.5; 𝑘$ = 1.0; 𝑘E = 0.1; 𝑘H = 1.1; 𝑑8 =
0.13; 𝑑$ = 1.049; 𝑑E = 0.9434; 𝑑J = 0.082; 𝐼𝑃E∗ =
0.16; 8

K*
= 0.14; 𝛼 = 0.8;	𝑑L% = 0.05;	𝑑1ME = 0.1.  

III. BIDIRECTIONAL NEURON-ASTROCYTE INTERACTION 
In our model, we also try to implement a biologically 

inspired approach to reproduce bidirectional neuron-astrocyte 
interaction. Spiking neuronal activity induces the release of 
glutamate from the presynaptic terminal into the synaptic gap. 
The released glutamate binds to the metabotropic glutamate 



receptors (mGluRs) on the astrocyte membrane and triggers the 
production of IP3 in astrocytes. The amount of glutamate that 
diffuses from the synaptic gap and reaches the astrocyte is 
described by the following equation [17–18]:  

𝑑𝐺(!,#)

𝑑𝑡 = −𝛼2NO𝐺(!,#) + 𝑘2NO𝛩0𝑉(!,#) − 30𝑚𝑉2 

if:	
1
𝑁%

h i𝐺(!,#) > 𝐺DPAj > 𝐹%QD
(!,#)∈55

 

then: 𝐽2NO = A
𝐴2NO, 𝑖𝑓	𝑡G < 𝑡 ≤ 𝑡G + 𝑡2NO

0, 𝑒𝑙𝑠𝑒  

where: αglu = 50 s−1; kglu = 600 µM s−1; Θ – the Heaviside 
function, Na = 16; Gthr = 0.7; Fact = 0.5. 

When a neuron spikes, the concentration of the 
neurotransmitter glutamate G increases by a constant amount 
and then decreases exponentially over time. More than half of 
the neurons associated with this astrocyte with a high glutamate 
concentration (exceeding the threshold value Gthr) produce 
current Jglu in the astrocyte. This, in turn, initiates the calcium 
activity of the astrocyte through the IP3 molecules. Jglu is a 
rectangular pulse with amplitude Aglu = 5 µM s−1 and duration 
tglu = 60 ms. 

Astrocytic synaptic potentiation consists of NMDA- 
dependent generation of postsynaptic slow incoming currents 
(SICs) [19] and mGluR- dependent heterosynaptic facilitation 
of presynaptic glutamate release [20]. Thus, the feedback of 
astrocytes in our neuron-astrocyte network model simulates the 
neural activity of the postsynaptic neurons of the excitatory 
layer increasing the weights of the input connections. This 
occurs when two factors coincide: a calcium event in the 
astrocyte and the presence of spikes in at least half of the 
neurons associated with this astrocyte in the last 10 ms [20]. 
That is, taking into account astrocytic modulation, the weights 
of excitatory couplings between neurons in the excitatory layer 
can be calculated as follows: 

𝑊2'()	/→/ = 𝜂(1 +	𝜈L%), 

where: 𝜂 = [0 − 𝑔𝑠𝑦𝑛//], 𝜈L% = 𝜈L%∗ 𝛩(𝐶𝑎(F,)) − 𝐶𝑎DPA) 

𝜈L%∗  = 2 is the strength of modulation of synaptic weight 
modulated by astrocytes, Θ – the Heaviside function, Cathr = 
0.15 µM –  the threshold concentration of calcium in an 
astrocyte. The feedback duration is fixed and equal to τastro = 20 
ms. 

IV. EXPERIMENT SCHEME 
At the beginning of the session, we pre-trained the network 

as follows: 40 patterns (black-and-white binary images with a 
dimension of 79×79 pixels) were fed to the layer of excitatory 
neurons as an input signal. Each black pixel was fed to the 
corresponding neuron as a rectangular pulse with an amplitude 
of 80 µA and a duration of 0.5 ms. In the case of a white pixel, 
the input signal was not fed to the neuron. The interval between 
the presentation of the training patterns was 10 ms. The network 
was stimulated 10 times by each pattern with the addition of a 
random 5% noise ("salt and pepper" type). During the training 
of the network, the training patterns have been changing the 
weights of synaptic connections according to the Hebbian 
learning rule. After pre-training, the resulting synaptic weights 

were recorded and stored until the end of the experiment. At this 
stage, astrocytes did not monitor the activity of neurons. 

Next, we trained the neuron-astrocyte network with 7 
patterns, which were randomly selected from 40 patterns 
memorized by the neural network. Starting from this stage, 
astrocytes began monitoring the activity of neurons. The 
network was stimulated 10 times by each pattern with the 
addition of a random 5% "salt and pepper" noise. Then, after 700 
ms, we trained the network for a new pattern, which was 
randomly selected from the remaining 33 patterns. To train the 
neuron-astrocyte network for a new pattern, we fed the network 
a 5%-noisy image 10 times as an input signal. Then the network 
was stimulated by the above set of 7 test patterns with 20% noise 
in random order. Each test pattern was applied to the input by a 
single rectangular pulse with an amplitude of 8 µA and a 
duration of 20 ms. The time interval between test patterns was 
50 ms. Next, the network was stimulated by training series of 10 
pulses of one more pattern from the remaining 32. The test was 
conducted with 7 images (6 were randomly selected from the 7 
images tested during the previous step + one testing pattern that 
the network learned just before the last test). The procedure was 
repeated iteratively. Thus, there were always 7 images in the so-
called "testing room", and during each test consisting of 7 
patterns one random pattern would "leave the room" and one 
random new pattern would "enter" it. Each test sequence 
consisting of 7 patterns and separated from the others by a 
learning pattern is referred to as the "test cycle". The second part 
of the experiment is shown schematically in Fig. 2. 

  
Fig. 2. Scheme of the experiment. The solid line denotes the presentation 

of a training packet consisting of 10 presentations of the training pattern with a 
random 5% noise (different every time). Different colours denote 
corresponding patterns. Test patterns with 20% noise are indicated by the dotted 
lines. 

V. RESULTS 
Fig. 3 shows the images after they were processed by the 
neuron-astrocyte network and the corresponding correlation 
values of each pattern with its target pattern during 5 test cycles 
(the noise level in the test images was 20%). 



 
Fig. 3. The resulting images, upon presentation of test patterns with 20% 

noise. Neurons with a spiking rate exceeding 66 Hz during the test are shown 
in yellow, the rest – in blue. 

To assess the contribution of astrocytes to the mechanism of 
working memory in the network and Hebbian pre-training of 
synaptic connections, we conducted this experiment with pre-
training on 40 images and 20 images, with and without 
astrocytic modulation of synaptic signalling. The mean 
correlation of the resulting images with their target patterns at 
different noise levels in the test patterns is shown in Fig. 4. 

  

  
Fig. 4. Average correlation value relative to different noise levels of test 

patterns. The red graph corresponds to the correlation of the obtained images 
with the target patterns in the network with astrocytic modulation of synaptic 
transmission. Blue graph – without modulation of synaptic transmission by 
astrocytes (𝜈1)∗  = 0). 

An increase in the correlation level of patterns with their 
target images is caused by the Hebbian pre-training of synaptic 
connections and astrocytic modulation of synaptic weights. 

VI. CONCLUSION 
In this paper, we continue to study the mechanism of 

theworking memory phenomenon in the neuron-astrocyte 
network.We have shown that two mechanisms of synaptic 
plasticity:astrocytic modulation of synaptic transmission 
between neuronsand Hebbian learning of synaptic connections 
work perfectlytogether, complementing each other. Using 
mathematicalmodeling methods we here confirmed the 
hypothesis thatastrocytes can be involved in the organization of 
workingmemory. This hypothesis emerges from numerous 
recentexperimental evidences about the astrocytic contributions 
to thecognitive functions and impairments [3, 19–22].  
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