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Abstract 

 
Ageing is a great research challenge. Age is the primary risk factor for many 

complex diseases, including cardiovascular disease, neurodegeneration and can- 

cer. Anti-ageing interventions aim to delay the onset of these diseases and ex- 

tend health span. Ageing remains enigmatic, however, and its proximal cause 

and mechanisms are not understood. This partly reflects the laborious na- 

ture of ageing experiments, typically requiring large timeframes and numerous 

individuals, which creates a bottleneck for systematic ageing studies. 

Yeast can be grown under highly parallelised experimental platforms and 

are well suited to systematic studies. However, ageing research is a notable 

exception, with the traditional colony-forming unit (CFU) assay for chrono- 

logical lifespan being notoriously time- and resource-consuming. I present 

two alternative assays which circumnavigate this bottleneck. One is a high- 

throughput CFU assay that is automated by robotics and supported by an R 

package to estimate culture viability by constructing a statistical model based 

on colony patterns. The second assay employs barcode sequencing to monitor 

strain viability in competitively ageing pools of deletion libraries, providing 

genome-scale functional insights into the genetics of lifespan. I employ this 

assay to dissect the genetic basis of rapamycin-mediated longevity, providing 

insights into the condition-specific nature of lifespan-extending mutations and 

the anti-ageing action of rapamycin. 

Experimental reproducibility is essential for research. Ageing studies, in- 

cluding those in yeast, are notably sensitive to batch effects: genetically iden- 

tical cells grown under identical conditions can exhibit substantial phenotypic 
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differences. I systematically test typically neglected factors, and demonstrate 

that chronological lifespan is strongly affected by pre-culture protocol such as 

the amount of colony picked for the pre-culture – suggesting a ‘memory’ which 

is passed across cell divisions from pre-culture to non-dividing, ageing cells. 

Hence, this work addresses key issues in yeast ageing research, both technolog- 

ical and biological, establishing a platform to robustly perform future studies 

at large scales. 



 

Impact Statement 

 
Ageing presents great biomedical, economic, social and personal challenges. 

Age is the number on risk factor for a variety of chronic diseases, includ- 

ing cancer, neurodegeneration, diabetes and cardiovascular disease. However, 

anti-ageing interventions offer great promise as they simultaneously delay the 

onset of these diseases and increase healthspan. Despite many exciting devel- 

opments in ageing research, we are still far from understanding this enigmatic 

component of the human condition. 

This is in part because ageing research is notoriously challenging. By its 

nature, an ageing experiment lasts the entire lifespan of an organism, which 

may be several years. Furthermore, lifespan is one of the most complex phe- 

notypes in biology, meaning that lifespan experiments tend to get complicated 

very quickly, and it is often difficult to disentangle cause, correlation and ef- 

fect. To make matters worse, lifespan is one of the most sensitive and variable 

phenotypes in biology, probably because of the complex interactions between 

processes which determine lifespan. As a result, ageing experiments require 

large number of individuals and also suffer from a lack of reproducibility. Col- 

lectively, this makes for a rather challenging field of research: the complexity 

of ageing necessitates large-scale, systematic studies; the resource-intensive, 

labour-intensive and often wasteful nature of these experiments prohibits large- 

scale studies. 

Yeast, being well-suited to systematic studies, offer promise to solving 

these issues. However, there are still major bottlenecks which must be over- 

come. In this work, I present two methods which can accurately measure fission 
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yeast lifespan in a high-throughput manner, expanding the toolkit available for 

generating systematic ageing datasets. I also apply these methods to dissect 

various aspects of fission yeast lifespan. In one case, I use a method called 

barcode sequencing to map the genetics associated with the anti-ageing drug 

rapamycin, which works by tricking cells into thinking they are starving and 

mimicking the beneficial effects of dietary restriction. In doing so, I reveal 

a huge number of genetic components which interact with rapamycin, from 

the molecular machinery which is at the centre of rapamycin’s effects, to the 

numerous processes which rapamycin targets as part of its anti-ageing effects. 

Using another high-throughput lifespan method, I explore the reasons why 

lifespan experiments are so irreproducible. The results revealed some unex- 

pected findings about the factors which determine yeast lifespan – the yeast 

“talk to each other” using a process called quorum sensing, and in doing so, 

can establish “memories” which determine their lifespan. It turns out that 

yeast have far more control over their lifespan than is generally appreciated, 

and although this sounds rather quirky, it actually makes perfect sense when 

you consider the ecological needs of yeast. 

Hence, this research tackles multiple challenges in yeast ageing, and estab- 

lishes a platform from which robust, large-scale ageing studies can be readily 

conducted. By overcoming bottlenecks which hamper ageing research, we are 

a step closer to generating datasets of sufficient complexity which may be used 

as a basis to develop mechanistic, as opposed to descriptive, model of ageing. 

Such models will have dramatic repercussions for our understanding of disease 

and ageing. 
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Chapter 1 

 
Introduction 

 
1.1 An ageing population 
The world is undergoing dramatic demographic shifts, with the proportion of 

elderly increasing in nearly every country [1]. Age is the biggest risk factor in 

a variety of chronic diseases, including cancer, autoimmune diseases, neurode- 

generative disorders and cardiovascular diseases [2]. The increased incidence 

of these diseases is becoming a hallmark of 21st century life, meaning that 

ageing presents great biomedical, economic and social challenges. Whilst it is 

critical to treat individual diseases as they arise, an anti-ageing intervention 

promises to simultaneously delay the onset of all of these diseases and increase 

healthspan. Hence, ageing research aims to fundamentally discern the nature 

of ageing, and in doing so identify pharmacological and dietary interventions 

which may increase healthspan. 

1.2 A brief history of ageing research 
Ageing, due to its intimate relationship with death, has always been one of the 

most enigmatic aspects of the human condition. For much of history, ageing 

was viewed as an inevitable consequence of entropy [3]. However, research in 

the 1990s demonstrated that simple genetic perturbations could have produce 

dramatic increases in the lifespan on nematode worms [4, 5]. Not only did 

these results challenge the view that age-associated decline is inevitable, but 

they legitimised ageing as a field of research. Studies utilising various model 
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systems continued to demonstrate that age-associated decline is plastic, and 

ageing was consolidated as a field when it became apparent that ageing in 

eukaryotes is regulated by a conserved regulatory system of nutrient sensing 

pathways [6]. Ageing research has continued to dissect these pathways and it 

has become clear that many chronic diseases associated with ageing share a 

common regulation and are interwtined [2]. 

1.3 Challenges in ageing research 
Ageing research is notoriously challenging. By its nature, an ageing experiment 

lasts the entire lifespan of an organism, which is several years in most vertebrate 

model systems. Furthermore, large cohorts of individuals are required because 

there is substantial phenotypic variability in lifespan even between genetically 

identical individuals maintained under identical environmental conditions [7]. 

There can also be great variability in lifespan between repeats of the same 

experiment, and it requires a great deal of work to identify the sources of this 

experimental irreproducibility [8]. Hence, ageing research is laborious, slow 

and resource-intensive, and the identification of even a single factor which 

robustly increases lifespan is a challenging endeavor [9]. 

Ageing is also a difficult process to study due to its multifactorial nature 

[10, 11]. This is true for both the factors which regulate ageing and the physi- 

ological consequences of ageing, which are often confounded due to regulatory 

feedback mechanisms [12, 13]. This complexity means that it is extremely 

difficult to develop mechanistic (as opposed to descriptive) models of ageing. 

Consequently, there has been much debate, and little consensus, as to how to 

define the proximal cause of ageing [10, 11, 12, 13, 14, 15, 16]. 

1.4 Fission yeast as an ageing model 
The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic 

model organism; it is simple, can be studied under tightly controlled environ- 

mental conditions, and has a low complexity, well-annotated genome. Addi- 

tionally, its short lifespan carries clear advantages in ageing research, making 
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it possible to complete an ageing experiment over the course days or weeks. 

Whilst most research in the field of yeast ageing has been carried out in the 

budding yeast Saccharomyces cerevisiae [17], fission yeast has emerged as a 

potent alternative model system [18]. Approximately 70% of its genes have 

identifiable human orthologs [19], making S. pombe an excellent model to study 

conserved biological processes which play fundamental roles in eukaryotic age- 

ing. In addition, S. pombe is only distantly related to S. cerevisiae, having 

diverged around 400 million years ago [20], and can thus provide complemen- 

tary insights [18]. Indeed, the genetic, environmental and pharmacological 

interventions which can extend lifespan are remarkably well conserved from 

yeast to humans [17, 18], suggesting that ageing is conserved across eukary- 

otes. 

Two forms of ageing have been described in yeast: replicative and chrono- 

logical ageing [17, 18, 21]. Replicative lifespan (RLS) is defined as the number 

of times a mother cell can divide before senescence [22], and is used as a model 

for ageing in mitotically active cells. In budding yeast, which divide asym- 

metrically, mother and daughter cells can be easily distinguished under the 

microscope and RLS can be measured [17]. In fission yeast, which divide sym- 

metrically, there is no clear mother or daughter cell, and it is disputed whether 

replicative ageing exists in fission yeast [23, 24]. 

Chronological lifespan (CLS) is defined as the amount of time a cell can 

remain viable in a non-dividing state, and is used as a model for ageing in post- 

mitotic cells. Chronological ageing is usually induced by allowing cultures to 

reach stationary phase, where cells enter a non-dividing state following glucose 

exhaustion [25]. However, chronological ageing can also be induced by restrict- 

ing the cells of a key nutrient, such as the carbon [26] or nitrogen [27] source, 

or even by physically restricting the cells such that they cannot divide [28]. 

Furthermore, CLS assays can vary in their definition of viability; tradition- 

ally, viability is measured by determining the number of colony-forming units 

(CFUs) in the ageing culture, defining cells as viable if they are able to re-enter 
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the cell cycle upon return to growth-favourable conditions [25]. Alternative 

measures of viability involve using fluorescent dyes such as propidium iodide 

and MTT, which report cell membrane integrity [29] and metabolic activity 

[30] respectively. These dyes are typically measured using a flow cytometer, 

fluorescent microscope or fluorescent plate reader. 

 
1.5 High-throughput ageing studies in yeast 

Yeast can be cultured under tightly controlled conditions in parallelised exper- 

imental platforms, making them well suited for high-throughput, systematic 

studies [31]. However, both the traditional RLS [22] and CLS [25] assays are 

laborious and do not scale well to high-throughput studies. Hence, the de- 

velopment of novel assays which circumnavigate these bottlenecks is a critical 

prerequisite to systematic ageing studies which have the potential to dissect 

the complexity of ageing. 

Determination of RLS requires prolonged observation of a mother cell 

under the microscope. High-throughput approaches to determination of RLS 

typically employ a microfluidic device which can trap mother cells whilst al- 

lowing daughter cells to be removed via fluid flow [23, 32]. High-throughput 

CLS assays are more varied, and can differ substantially in the platform used 

to culture many samples in parallel and the way in which CLS is measured. 

The first high-throughput CLS assay developed involved growing and ageing 

cultures in a 96-well plate, and then using a small aliquot of the ageing culture 

to inoculate a re-growth culture [33]. The optical density of the re-growth 

culture after a defined period of time can be measured using a plate reader, 

serving as an indication of the number of viable cells in the inoculum. A con- 

ceptually similar approach is to competitively age two strains labelled with 

different fluorophores (for example, a mutant and a wild-type control), and to 

measure relative fluorescence of a re-growth culture to indicate relative survival 

[34, 35]. Another approach involves growing and ageing cells in a 96-well plate 

and then using high-throughput flow cytometry to measure the proportion of 
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cells stained with a dye which indicates viability [30, 36]. 

Genome-wide collections of non-essential deletion mutants are powerful 

tools for investigating gene function. In both the S. cerevisiae [37] and S. pombe 

[38] deletion collections, each individual gene has been deleted and replaced 

with an antibiotic resistance cassette flanked by specific DNA barcodes (UpTag 

and DnTag). Hence, deletion mutants can be pooled and the abundance of 

each mutant can be measured using DNA microarrays [39] or next-generation 

sequencing, termed barcode sequecning, or Bar-seq [40, 41]. These approaches 

have been adapted to monitor mutant survival in chronologically ageing pools 

of deletion mutants [27, 42], providing quantitative, genome-scale insights into 

the genetic basis of lifespan in a highly parallelised manner. 

1.6 Towards an integrated view of yeast age- 

ing 
The vast majority of genetic factors which alter lifespan have been found in 

yeast, worms and flies. Many of these factors are shared, suggesting that 

a conserved system regulating ageing arose early in eukaryotic evolution [6], 

perhaps even earlier [43, 44]. Of particular note are the stress response genes 

and nutrient sensors [45]. These genes integrate numerous extracellular and 

intracellular signals to determine whether an organism is experiencing stress, 

and are responsible for inducing a physiological shift towards cell maintenance 

and protection when conditions are not favourable to growth. 

However, ageing is still a poorly understood process, and there remains 

much work to uncover all genes which affect ageing and to understand the in- 

teractions between them [46]. High-throughput lifespan screens in yeast have 

uncovered hundreds of genetic factors which are involved in ageing, but the 

overlap between these screens is surprisingly poor [35]. Indeed, the genetic 

variants associated with longevity differ substantially based on environmen- 

tal conditions [36], with even subtle changes in culture conditions leading to 

marked changes in the genetic basis of lifespan [47]. This is concordant with 
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the high degree of irreproducibility observed in ageing research [8], suggesting 

that lifespan is a highly sensitive phenotype which is tightly regulated in a 

context-dependent manner. 

1.7 Contributions of this work 
In this work, I present a variety of experimental and analytical advancements 

which facilitate systematic ageing studies in yeast. The first of these is a 

high-throughput CFU assay which can be largely automated using robotics. 

This provides a day-to-day alternative to the notoriously labour- and resource- 

intensive traditional CFU assay which can be used for CLS determination of 

batch cultures. The second is a refinement of Bar-seq in order to identify mu- 

tants with alterned CLS. This involved decoding the barcodes for the majority 

of mutants in the latest version of the Bioneer deletion library [38], allow- 

ing parallel profiling of a substantially higher proportion of the fission yeast 

non-essential genome than previously possible, in addition to addressing key 

technical and statistical biases which arise when Bar-seq is used to study CLS. 

I then apply Bar-seq to dissect the genetic basis of rapamycin-mediated lifes- 

pan extension, providing insights into the genetic components which interact 

with rapamycin in an ageing context. Collectively, this thesis tackles many 

of the bottlenecks in yeast ageing, establishing a platform from which robust 

ageing studies can be readily conducted in a high-throughput manner. 



 

 
 
 
 

Chapter 2 

 
Development of a 

high-throughput colony-forming 

unit assay 

 
2.1 Introduction 

Chronological lifespan (CLS) is defined as the amount of time a cell can re- 

main viable in a non-dividing state, and is regarded as a model for ageing in 

post-mitotic tissues [25]. More generally, CLS assays are one of the workhorses 

of ageing research, allowing the effect of a genetic, environmental or pharma- 

cological perturbation on lifespan to be assessed with relative ease compared 

to other ageing models [48]. Hence, many genes associated with ageing have 

been identified using the traditional CFU assay for CLS in both budding yeast 

[17] and fission yeast [18, 49]. 

The traditional CFU assay involves diluting and spreading aliquots of age- 

ing cultures on agar and counting the number of colony-forming units (CFUs), 

which can be used to calculate the number of viable cells in the ageing culture 

(Figure 2.1) [17, 18]. Whilst this is far more tractable than most ageing re- 

search, it is still slow by yeast standards, and does not leverage the amenability 

of yeast to high-throughput approaches. In particular, since the viability of 

the culture is not known, the dilution factor which will result in a quantifiable 
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number of CFUs is also not known, so multiple dilution factors must be plated 

out in order to ensure that at least one dilution factor is quantifiable. This 

underpins the laborious and resource-intensive nature of this assay. 
 
 

 
Figure 2.1: Schematic depiction of traditional CFU assay. 
An aliquot of an ageing culture is serially diluted (in this case 10-fold), and the 
dilution factors are spread on solid agar. After 2-4 days growth, colonies can be 
counted for one of the dilution factors, allowing the number of CFUs to be calculated 
for the ageing culture. 

 
As a result, there has been much focus on developing CLS assays which 

circumnavigate the bottlenecks imposed by the traditional CFU assay, as dis- 

cussed in Chapter 1. However, these assays are highly specialised, and often 

limited to a particular application. For example, some are only compatible 

with specific mutant libraries [27, 34, 42]. And none directly measure the abil- 

ity for a cell to re-enter the cell cycle - that is, measure the number of CFUs - 

instead relying on re-growth kinetics [33, 34] or fluorescent dyes which measure 

a feature associated associated with viability such as metabolic activity [30] 
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or cell membrane integrity [36]. Hence, there is a need for an alternative CFU 

assay which does not suffer from the drawbacks of the traditional assay and 

can serve as a replacement for the traditional assay in day-to-day applications. 

One such assay does already exist - the spot assay, where cultures are 

serially diluted and spotted onto agar. This assay has already been adapted to 

measure CLS [50], and carries several advantages compared to the traditional 

CFU assay - all dilution factors for a culture are spotted on the same agar plate, 

and multiple cultures can be spotted in parallel on the same plate, making this 

assay far less resource-intensive than the traditional assay. However, a major 

disadvantage of this assay is that it is qualitative, not quantitative, in nature. 

Hence, differences in CLS must be assessed by eye, meaning that this assay is 

not a suitable alternative for high-throughput, systematic ageing studies. 

In this chapter, I present a novel high-throughput CFU assay which can 

be largely automated by robotics. This assay is in essence a spot assay, but by 

pinning each dilution factor multiple times, a digital pattern of colonies can be 

extracted for each culture. By modelling the dilution and pinning process, it is 

possible to analyse the digital pattern of colonies and quantitatively estimate 

the number of CFUs for each culture. I validate this assay by measuring CFUs 

for a variety of mutants with different lifespans using both the traditional 

and novel high-throughput methods. CFU measurements from both methods 

are highly correlated, but the high-throughput method can capture the same 

amount of information using far less plates (Figure 2.2). 

 

2.2 Methods & Results 

2.2.1 Implementation of a high-throughput CFU assay 

Ageing cultures are processed in batches of 8 (Figure 2.3). 150 µL aliquots 

of cultures are loaded into the first column of a 96-well plate. Other wells 

are filled with 100 µL YES. By taking 50 µL of the ageing cultures, the ageing 

cultures are serially diluted 3-fold across the plate using an ASSIST automated 

multichannel pipette (INTEGRA Biosciences Ltd, UK), ensuring that each 
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Figure 2.2: Resource usage comparison for traditional vs high-throughput CFU 
assays. 

Left: 1944 agar plates are required in order to measure CFUs for 24 cultures at 
9 different time points using the traditional assay. For this, 3 dilution factors are 
plated in triplicate for each culture. Right: 108 agar plates can capture the same 
information using the high-throughput CFU assay, pinning each dilution factor in 
replicates of 16. Future refinements to the assay demonstrated that the same in- 
formation can be acquired using only quadruplicate replicate pins, meaning that in 
fact only 27 plates are required. 

 
 

 

Figure 2.3: Schematic depiction of high-throughput CFU assay. 
Aliquots of ageing culture are serially diluted across a 96-well plate. Droplets of di- 
luted culture are arrayed on agar in quadruplicate (384-well format) using a pinning 
robot. 

 
dilution factors is well mixed before proceeding to the next. Diluted cultures 

are immediately pinned on YES agar in quadruplicate using a ROTOR HDA 
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pinning robot (Singer Instruments, UK). For this, 96-well format long pins are 

used to array droplets of diluted cultures in 384-well format, ensuring that the 

source plate is revisited before each pin onto agar. Agar plates are incubated 

at 32°C until patterns of colonies are clearly visible. 

2.2.2 Image acquisition and analysis 

Images of plates are acquired using an Epson V700 scanner in transmission 

mode. The first step to quantifying CFUs for each measurement is to determine 

whether or not there is a colony in each position on the agar plate using the 

gitter package in R [51]. For this, it is essential to provide a reference image 

of colonies in 384-well format which can be used to align colonies correctly 

in sparsely population regions of the agar plate (Figure 2.4A). For each raw 

image analysed (Figure 2.4B), gitter will then identify colonies and provide 

colony size measurements for each position on the agar plate (Figure 2.4C). The 

distribution of log-transformed colony sizes can be analysed and thresholded 

using Otsu thresholding [52] in order to classify colonies are present or absent 

for each position on the agar plate (Figure 2.4D). Using this, it is possible to 

extract a digital vector for each measurement representing how many colonies 

are present at each dilution factor (Figure 2.4E). 

2.2.3 Modelling of colony patterns 

In order to estimate CFUs for each measurement, the number of CFUs per 

droplet of ageing culture is modelled, with a droplet being the amount dis- 

pensed by a 96-well format long pin. As cultures are serially diluted, the mean 

number of CFUs per droplet will exponentially decrease across the 96-well 

plate. The number of CFUs in a single droplet can be modelled as Poisson 

distributed according to the mean number of CFUs per droplet. In the case 

that there are 1 or more CFUs in a droplet, a colony will grow, and if there 

are 0 CFUs, there will be no colony. Hence, from the Poisson distribution it 

is possible to calculate the probability of observing or not observing a colony 

according to the mean number of CFUs per droplet. Given that each dilu- 



 

 
 

 

Figure 2.4: Image analysis pipeline for high-throughput CFU assay. 
A: A reference image containing colonies arrayed in 384-well format must be provided for each batch of images analysed. This ensures 
that colonies in sparsely populated regions of the plate can be aligned to the reference image in order to correctly determine their positions 
in 384-well format. In order for the images to be aligned correctly, all images must be of the same dimensions and acquired in exactly the 
same positioning. B: A raw image of colony patterns for 8 ageing cultures of different viabilities. C: A 384-well grid is aligned to the raw 
image according to the reference image and colonies are identified. This image is produced by gitter [51]. D: The distribution of colony 
sizes for a batch of plates is analysed and thresholded in order to classify colonies as present or absent in each position on the 384-well 
plate. Red indicates present, blue indicates absent. E: The number of colonies present at each dilution factor for each culture is counted 
and indicated at the centre of each quadruplicate. Colonies are coloured from red through amber to green according to the number of 
colonies which grew in each quadruplicate. This creates a vector for each sample indicating how many colonies are present at each dilution 
factor. 
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tion factor is pinned in quadruplicate, the number of colonies present at each 

dilution factor can be modelled as binomially distributed according to the 

probability of observing a colony. 
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Figure 2.5: Probability distributions for colony patterns in high-throughput CFU 

assay. 
A: In the case that there is a mean of 1000 CFUs per droplet in an ageing culture, 
probability distributions for the number of CFUs per droplet according to the Pois- 
son distribution is shown for all dilution factors in a 3-fold serial dilution. For this, 
it is assumed that the mean number of CFUs per droplet exponentially decreases 
with each dilution factor, which hence changes the shape of the distribution for 
each dilution factor. Green bars indicate that there is at least 1 CFU in a droplet, 
in which case a colony will grow. Red bars indicate there there are 0 CFUs in a 
droplet, in which case no colony will grow. B: For the same case as in A, probability 
distributions for the number of colonies colonies at each dilution factor is shown ac- 
cording to the binomial distribution if serial dilutions are pinned in quadruplicate. 
The shape of the distribution changes as a function of the probability of observing 
a colony (i.e. the sum of all green bars for the equivalent dilution factor in A). Bars 
are coloured from red through amber to green according to the number of colonies 
grown. C: Same as A, for the case of a mean of 10 CFUs per droplet. D: Same as 
B, for the case of a mean of 10 CFUs per droplet. 
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Using this model, it is hence possible to calculate the probability of ob- 

serving a particular colony pattern if the mean number of CFUs per droplet 

is known. For example, in the hypothetical case that there is a mean of 1000 

CFUs per droplet in an ageing culture, Figure 2.5A shows the probability dis- 

tributions for the number of CFUs pinned at each dilution factor according 

to the Poisson distribution, from which the probability of a colony growing 

can be calculated. Likewise, Figure 2.5B shows the probability distributions 

for the number of colonies which grow at each dilution factor according to 

the binomial distribution. Conversely, Figures 2.5C & 2.5D respectively show 

equivalent Poisson and binomial probability distributions in the hypothetical 

case that there is a mean of 10 CFUs per droplet in an ageing culture. From 

the distributions, it is clear in this case that a colony pattern generated from 

10 CFUs per droplet will span less dilution factors than a pattern generated 

from 1000 CFUs per droplet, consistent with what is expected in a spot assay. 

2.2.4 Estimation of viability from colony patterns 

The model described in the previous section allows colony patterns to be pre- 

dicted if the mean number of CFUs per droplet is known. In order to quantify 

CFUs from colony patterns, the model is used to perform a maximum likeli- 

hood estimation - that is, to determine the mean number of CFUs per droplet 

which is most likely to give rise to the observed colony pattern. For this, 

Brent optimisation [53] is used to find the value of mean CFUs per droplet 

which maximises the log-likelihood function. Maximum likelihood estimators 

are known to be highly sensitive to anomalous data points [54]. In this con- 

text, anomalous data points may arise due to a colony being misclassified 

as present or absent in the image analysis pipeline, a contamination on the 

plate, or pinning errors. To account for this, an error checking algorithm is 

implemented, which identifies and removes data points which are extremely 

unlikely to observe, greatly improving the stability of the maximum likelihood 

estimator. Measurements for which several data points had to be removed in 

order to achieve a stable maximum likelihood estimator can be excluded from 
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downstream analyses. Confidence intervals for the estimate of mean CFUs per 

droplet are calculated using likelihood ratio testing [55]. This represents the 

statistical error associated with the maximum likelihood estimator, and does 

not include other technical sources of error (such as errors in the serial dilu- 

tions). Figure 2.6A shows a timelapse of colony patterns for chronologically 

ageing wild-type cells (972 h-) in YES. Corresponding maximum likelihood 

estimates, in addition to 95% confidence intervals, are plotted as a function of 

time in Figure 2.6B. 
 

Figure 2.6: Analysis of colony patterns for wild-type cells grown in YES. 
A: Timelapse of colony patterns for chronologically ageing wild-type cells grown 
in YES. Colonies are coloured from red through amber to green according to the 
number of colonies grown at each dilution factor. The number of colonies grown at 
each dilution factor is shown in the centre of each quadruplicate. B: The number of 
CFUs per droplet is estimated via maximum likelihood based on the colony patterns 
in A, and is used to generate a lifespan curve. Error bars represent 95% confidence 
intervals based on likelihood ratio testing. 

 
2.2.5 Validation of high-throughput CFU assay 

To validate this assay, I measured lifespan curves for 6 strains with known 

lifespan differences using both the traditional and high-throughput assays. For 

wild-type, the 972 h- strain was used, gsk3::natMX6 h- was generated in a 

previous study [56], whilst reb1::natMX6 h-, atf1::natMX6 h-, php2::natMX6 

h- and pka1::kanMX4 h- are unpublished strains from the B ähler laboratory 

strain collection and were generated as described previously [57]. For CLS 

experiments, strains were streaked to single colonies on YES agar. After 2 

days growth at 32°C, a single colony of each strain was picked and used to 

inoculate YES pre-cultures. These were grown for 1 day at 32°C, shaking at 



 

 
 
 
 
 
 
 
 
 

 

Figure 2.7: Comparison of traditional and high-throughput CFU measurements. 
A: Lifespan curves for 6 strains with different CLS measured used the traditional methods. B: For the same cultures as in A, lifespan 
curves measured using the high-throughput method. C: Scatter plot comparing CFU measurements for all strains across all timepoints. 
Green line shows a linear regression of log-transformed CFU values (traditional vs high-throughput). Pearson correlation coefficient is also 
shown in green. 
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170rpm, after which YES cultures were inoculated. Cultures were grown at 

32°C, shaking at 170 rpm. After 2 days cultures had reached stationary phase, 

which is taken to be day 0 of the lifespan curve. For each culture, CFUs 

were measured using the high-throughput method, and using the traditional 

method as described previously [58]. 

Figure 2.7A shows lifespan curves for these 6 strains measured using the 

traditional method. Lifespan curves for the same cultures measured using 

the high-throughput method show good agreement (Figure 2.7B) - pka1∆ and 

reb1∆ are both long-lived relative to the wild-type according to both methods, 

whilst gsk3∆, atf1∆ and php2∆ are all short-lived relative to the wild-type 

according to both methods. In order to quantify the extent of the agreement, 

all traditional method CFU measurements (all strains across all timepoints) 

are plotted against the corresponding high-throughput measurement in Figure 

2.7C, with the two methods showing excellent agreement (r = 0.98). 

2.2.6 Analysis of deletion mutant lifespan curves 

In order to facilitate downstream analyses and integration with other datasets, 

I have developed a proxy which summarises the lifespan of a culture as a single 

number - in essence, a dimensionality reduction. To demonstrate this, I use 

CLS data for 47 deletion mutants with different lifespans, in addition to the 

wild-type (the 972 h- strain) [59]. Colony patterns and maximum likelihood 

estimates of CFUs per droplet for this wild-type sample were previously shown 

in Figure 2.6. The deletion mutants originated from a prototroph deletion 

library, constructed as described previously [27]. The 47 selected mutants 

were picked manually, re-streaked to single colonies on YES, and incubated at 

32°C for 2 days. The wild-type was also streaked to single colonies on YES 

and incubated at 32°c for 2 days. YES pre-cultures were inoculated by picking 

single colonies of each strain, and were grown for 1 day at 32°C, shaking at 

170 rpm. YES cultures were inoculated from pre-cultures and grown at 32°C, 

shaking at 170 rpm. After 2 days cultures had reached stationary phase, which 

is taken to be day 0 of the lifespan curve. CFUs were measured for each strain 
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using the high-throughput method. 
 

Figure 2.8: Proxy calculation for 48 strains. 
A: Lifespan curves for 3 strains of different lifespan. For each strain, a constrained 
smoothing spline is fitted to the CFU measurements, shown in blue. Horizontal 
dashed lines in red indicate 100% viability and 5% viability according to the fitted 
values. Red vertical dashed lines indicate the time at which 5% viability is reached 
according to the fitted values. The square root of this value is used as the lifespan 
proxy. B: CLS curves are plotted for 48 strains of different lifespans. Lifespan curves 
are coloured according to the proxy calculated for each curve. 
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For each strain, a smoothing spline was fitted to the lifespan curve using 

the cobs package in R [60]. This spline was constrained such that the fitted 

values must always decrease. For each strain, the time taken for viability to 

decrease to 5% was calculated according to the fitted values. The square root 

of the time taken for viability to decrease to 5% is used as the proxy. Figure 

2.8A shows the smoothing spline fit and proxy calculation for 3 strains: the 

alg14∆ (short-lived), wild-type and pac3∆ (long-lived). Lifespan curves for all 

48 strains are shown in Figure 2.8B. Lifespan curves are coloured by proxy, 

demonstrating that the proxy effectively discriminates long- and short-lived 

mutants in a quantitative manner. 

2.2.7 Development of an R package to analyse high- 

throughput CFU assays 

In order to facilitate usage of the high-throughput CFU method, I developed an 

R package, DeadOrAlive, containing functions for image analysis, extraction 

of colony patterns, maximum likelihood estimation and plotting/analysis of 

lifespan curves. This can be used to construct an analysis pipeline for high- 

throughput CFU data, as outlined in the DeadOrAlive tutorial (Appendix A). 

In addition, the functions allow a great deal of flexibility; colonies can be 

arrayed in different density formats, different dilution factors can be analysed, 

and the proxy can be customised. Hence, the analysis pipeline can easily be 

tailored for different experimental setups. The package can be downloaded and 

installed from GitHub (www.github.com/JohnTownsend92/DeadOrAlive). 

2.3 Discussion 

2.3.1 Differences between the high-throughput and tra- 

ditional CFU assays 

I validate this assay by measuring CLS for strains with different lifespans using 

both the traditional and high-throughput assays in parallel. Despite excellent 

agreement between the CFU measurements for both assays (Figure 2.7C), 
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there are some notable differences in the shapes of the CLS curves measured 

using the traditional (Figure 2.7A) and high-throughput (Figure 2.7B) assays. 

The reason for this is that the limit of detection for the high-throughput assay 

is substantially higher than for the traditional assay. The limit of detection 

for the high-throughput assay is slightly lower that 1 CFU per droplet, as a 

droplet is the amount of culture which is pinned onto agar. However, the limit 

of detection in the traditional assay is approximately 10 CFUs per mL. This 

is because, at the lowest dilution factor, 100 µL of undiluted culture is spread 

onto solid agar. Hence, the high-throughput assay is not suitable for recording 

CFUs at very low concentrations. However, this is not a problem in the context 

of chronological ageing studies, as this concentration of CFUs is only reached 

after the vast majority of cells have died. At this point in stationary phase, 

nutrients released from dead cells support survival and growth of the remaining 

cells, a phenomenon described in bacteria [61] and recently in S. pombe [62]. 

Hence, CFU measurements at this concentration reflect factors unrelated to 

chronological ageing. 

2.3.2 Mutants with altered CLS 

This assay has been used to record CLS curves for a variety of mutants. In 

order to validate this assay, CLS curves were recorded for mutants which have 

previously been described to differ in CLS (Figure 2.7B). The majority of 

mutants show good agreement with published results. pka1∆ [63] and reb1∆ 

[64] have been previously annotated as long-lived, whilst gsk3∆ [56] and atf1∆ 

[63] have previously been annotated as short-lived. 

A notable discrepancy was for php2∆, which was short-lived according to 

both the traditional (Figure 2.7A) and high-throughput (Figure 2.7B) assays, 

yet has previously been described as long-lived [65]. Php2 is a subunit of the 

evolutionary conserved CCAAT-binding complex, a transcription factor which 

positively regulates respiratory genes [66, 67]. Upregulation of respiration (and 

downregulation of fermentation) is required for stationary phase survival, as 

cells must switch to a more efficient metabolism upon glucose exhaustion [68, 
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69]. Hence, it is unsurprising that php2∆ cells display an altered CLS, although 

it is unclear why opposite effects can be observed. One possibility is that 

differences in media composition can alter the effect that Php2 has on CLS, as 

experiments in this study were performed in rich medium whilst the previous 

study used minimal medium [65]. This difference may be critical, as cells 

grown in rich medium do not require respiration, whilst cells grown in minimal 

medium must upregulate respiration in order to synthesise amino acids [70]. 

Hence, it is plausible that a respiratory-deficient mutant such as php2∆ would 

behave differently when cultured in rich vs minimal media, which may explain 

the opposite CLS effects observed. Another important consideration is the 

presence of auxotrophies, with the php2∆ mutant from the previous study [65] 

also containing leu1-32 ade6-M216 selectable markers. Leucine auxotrophies 

and leucine supplementation have both been shown to affect CLS in budding 

yeast in a respiration-dependent manner [71]. Hence, the presence of a leucine 

auxotrophy, in addition to leucine supplementation in minimal medium [65], 

may also affect the CLS of a respiratory-deficient mutant such as php2∆. 

2.4 Conclusion 
In this chapter, I show that by adapting the spot assay to produce a digital pat- 

tern of colonies which can be modelled using simple probability distributions, 

a quantitative CFU assay can be established. This can be largely automated 

via liquid handling and pinning robots, creating an assay which is vastly less 

resource-intensive and laborious than the traditional CFU assay. Hence, this 

assay can serve as an efficient alternative in day-to-day CFU measurements, 

in addition to providing a platform from which high-throughput, systematic 

CLS studies can be conducted. 



 

 
 
 
 

Chapter 3 

 
Establishing a platform for 

genome-scale chronological 

lifespan studies in fission yeast 

via barcode sequencing 

 
3.1 Introduction 

Genome-scale deletion collections of non-essential mutants are powerful tools 

for interrogating genome function. In a typical screen, each mutant is arrayed 

on solid agar in a high-density format using a pinning robot, and the colony 

size of each mutant is used as a fitness readout [51]. This technology has been 

applied to uncover insights into how the genetic basis of fitness changes with 

respect to genetic, environmental or pharmacological perturbations, which can 

serve as a platform for systematically dissecting genetic pathway structure [72]. 

However, this approach is limited in that it can only be used to investigate 

growth-related phenotypes. CLS is an example of a phenotype which cannot 

be studied by using colony size as a readout, as lifespan describes the death, 

not growth, of cells. Hence, an alternative approach is required to study CLS 

using genome-scale deletion collections. 

In both the budding yeast [37] and fission yeast [38] deletion collections, 
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Figure 3.1: Systematic construction of barcoded deletion mutants in fission yeast. 
Each open reading (ORF) is deleted and replaced with an antibiotic resistance cas- 
sette which is used as a selectable marker (KanMX4). For each ORF, the targeting 
cassette contains regions of homology (RH) to the DNA sequences flanking the ORF, 
facilitating deletion of the ORF by homologous recombination. Each targeting cas- 
sette also contains two DNA barcodes - the UpTag and DnTag. These are flanked 
by universal priming sequences - U1 and U2 for the UpTag, and D1 and D2 for 
the DnTag, which allow each barcode to be amplified via polymerase chain reaction 
(PCR). 

 
 
 

each mutant contains unique DNA barcodes which can be amplified and se- 

quenced. In order to achieve this, each non-essential open reading frame was 

deleted and replaced with an antibiotic resistance cassette flanked by two 

unique DNA barcodes - the UpTag, upstream of the resistance cassette, and the 

DnTag, downstream of the resistance cassette (Figure 3.1). Hence, all mutants 

from the collection can be pooled and the relative abundance of each mutant 

in the pool can be quantified by barcode sequencing (Bar-seq). This greatly in- 

creases the versatility of the deletion collections, extending their functionality 

beyond colony-based fitness screens. 

 
In this chapter, I present key steps required in order to establish a plat- 

form for genome-scale CLS studies using Bar-seq, building on previous work 

[27]. The first step of this involved decoding the barcodes for the fission yeast 

deletion collection, as the barocdes for mutants generated in the latest ver- 

sion of the deletion collection were previously uncharacterised. I also address 

key technical and biological biases which arise from the re-growth protocol 

necessitated by the persistence of DNA from dead cells. 
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3.2 Methods & Results 

3.2.1 Decoding of deletion mutant barcodes 

Barcodes were decoded for each mutant using a PCR-based genome walking 

strategy, as described in Romila et al., 2021 [59]. Briefly, pools of mutants 

from the Bioneer deletion library (version 5, Bioneer, South Korea) were gen- 

erated. DNA was extracted from the pools and a primer extension procedure 

was used to amplify the barcodes alongside the adjacent genomic region. PCR 

products were sequenced and reads were analysed using an in-house Python 

script, Barcount (www.github.com/Bahler-Lab/barcount), which extracted 

barocdes and genomic sequences from the reads. Genomic sequences were 

mapped to the genome using Bowtie2 [73], and the nearest upstream/down- 

stream gene was identified using BEDTools [74], accounting for the directional- 

ity of the gene and the type of barcode (UpTag or DnTag) as required. Reads 

for which a barcode could not be extracted or the genomic sequence could not 

be uniquely mapped were discarded. 

In order to match barcodes to genes with high confidence, I identified 

barcode-gene pairs which appeared with high frequency and were specific. 

This was performed separately for UpTags and DnTags. To account for pos- 

sible mutations which are known to appear in synthetic barcode sequences 

[75], pairwise Levenshtein distance was calculated between all barcodes, and 

barcodes were assembled into clusters where they differed by no more than 3 

mutations. A consensus barcode was defined for each cluster as the average 

sequence of the cluster. A consensus barcode was automatically assigned to a 

gene if the following 3 criteria were met: 

1. The barcode-gene pair was observed at least 10 times. 

2. The barcode was specific to the gene - at least 80% of the reads containing 

the barcode mapped to the gene. 

3. The gene was specific to the barcode - at least 80% of the reads which 

mapped to the gene contained the barcode. 
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Barcodes were decoded for the majority of mutants using this approach. 

However, there were numerous reasons for which a barcode could not 

be automatically decoded for a mutant. The first was that not every mu- 

tant was revived from the cryostock and hence some were not sequenced, 

which is a typical caveat when working with mutant libraries. The second 

was that sometimes the same barcode was associated with two different mu- 

tants. Hence, even though the barcodes are known for these mutants, they are 

not suitable for use in Bar-seq experiments as the barcode cannot be uniquely 

associated to a mutant, a phenomenon described previously when barcodes 

for earlier versions of the Bioneer library were decoded [41]. The third rea- 

son was that sometimes the genomic region could not be uniquely mapped 

to the genome, or could not be mapped at all. In these cases, it was not 

possible to associate the barcode with a mutant. The final reason was that 

sometimes the correct gene was not automatically identified, which was often 

the case in regions of the genome containing many genes in close proximity. 

These cases required manual inspection of the mapped genomic reads in or- 

der to correctly associate a barcode with a mutant. For this, I developed a 

genome browser which shows the mapped reads with respect to the position of 

mutants from the deletion library, allowing for manual curation of barcodes. 

Figure 3.2A shows the mapped reads for a simple case where automatic assign- 

ment of both UpTag and DnTag were possible for a mutant, whilst Figure 3.2B 

shows a more complex case which required manual curation. This browser is 

part of the BarSeqTools R package (www.github.com/Catalina37/Barcount_ 

BarSeqTools_Pipelines/tree/master/BarSeqTools). 

Using a combination of automatic and manual barcode curation, it was 

possible to decode both UpTag and DnTag for 3011 mutants. In addition, 96 

mutants were decoded for UpTag only, and 99 for DnTag only. Hence, at least 

one barcode was decoded for 3206 mutants, which represnts 94% of mutants 

in the latest version of the Bioneer library. In comparison, previous attempts 

to decode older versions of the Bioneer library managed to decode 2560 [41] 



 

 
 

 

Figure 3.2: Manual curation of barcodes by viewing aligned reads in a genome browser. 

3.2.  
M

ethods &
 Results 

43  



 

 
 

 

Figure 3.2: Manual curation of barcodes by viewing aligned reads in a genome browser. 
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Figure 3.2: Manual curation of barcodes by viewing aligned reads in a genome 
browser. 

Tracks from top to bottom are: 

1. chromosomal position 

2. non-Bioneer genes 

3. Bioneer genes (with the selected Bioneer gene shown in black) 

4. histogram of aligned genomic fragments associated with UpTags 

5. histogram of aligned genomic fragments associated with dnTags 

For the UpTag and DnTag tracks, the direction of the aligned genomic fragment is 
represented by the direction of the peak. Below are two bipartite networks (one for 
UpTag and one for DnTag) showing the relevant barcodes associated with the se- 
lected mutant, and the mutants with which those barcodes are associated. For genes, 
the size of the node represents the number of reads which contained a genomic frage- 
ment which mapped to that gene. For barcodes, the size of the node represents the 
number of reads which contained that barocde. The selected mutant is shown in 
black, and other mutants in white. Barcodes are coloured based on the gene to which 
the corresponding genomic fragment was mapped, with each unique gene-barcode 
pair being coloured differently. A: Barcodes associated with SPCC663.10, a mutant 
for which both UpTag and DnTag were automatically assigned. B: Barcodes associ- 
ated with SPCC663.13c, a mutant which required manual curation because another 
Bioneer gene, SPCC663.14c, was located almost immediately adjacent to this gene. 
In the case of the UpTag, many reads were correctly assocated with SPCC663.13c 
(blue). However, some of the genomic fragments were long enough to extend into 
the neighbouring gene, and were hence incorrectly mapped to SPCC663.14c (red). 
In the case of the DnTag, all reads were correctly associated with SPCC663.13c 
(purple). However, due to the close proximity of the neighbouring gene, many 
reads which should have been associated with SPCC663.14c were incorrectly as- 
sociated with SPCC663.13c (green). Thus, two different barcodes were associated 
with SPCC663.13c. Some genomic fragments from the other barcode were correctly 
associated with SPCC663.14c (gold). 
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and 2473 [27] mutants. Consequently, a substantially greater proportion of 

the fission yeast non-essential proteome can now be interrogated in Bar-seq 

screens. 

3.2.2 Persistence of DNA from dead cells necessitates 

re-growth of stationary phase cultures prior to 

barcode sequencing 

In order to apply Bar-seq to detect mutants with altered CLS, the typical 

Bar-seq approach used to profile mutant fitness [41] must be adapted to deal 

with biological and technical biases introduced by the CLS protocol. For this, I 

analysed a Bar-seq dataset of chronologically ageing mutant pools, as described 

in Romila et al., 2021 [59]. This consisted of 3 independent prototroph pools 

of Bioneer mutants grown to stationary phase in 3% glucose YES. At days 0, 

2, 3, 5, 7, 9 and 11 of stationary phase, the following was performed: 

• CFUs were measured using the traditional method. 
 

• DNA was extracted from cells. 
 

• An aliquot of ageing culture was used to inoculate a re-growth culture 

in 3% glucose YES. These cultures were grown to stationary phase and 

DNA was extracted from cells. 

UpTags and DnTags were amplified from the extracted DNA using PCR. Fol- 

lowing next generation sequencing, barcodes were extracted from reads and 

assigned to a gene based on the look-up table compiled, using an in-house 

Python script, Barcount (www.github.com/Bahler-Lab/barcount). For each 

gene, counts for UpTag and DnTag were summed to create a total count for 

each gene. Figure 3.3 shows the viability curves based on CFU measurements 

for the 3 pool replicates. 

It has been previously assumed that persistence of DNA from dead cells 

can introduce a bias when barcode abundance is used to infer CLS. One ap- 

proach to dealing with this was to re-grow cells on solid agar prior to sequencing 
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Figure 3.3: Chronological lifespan curves of pooled mutants. 

 
 

[42], whilst in another study which investigated CLS in quiescent cells follow- 

ing nitrogen starvation, such an approach was not required as quiescent cells 

survive for several weeks, far longer than DNA is expected to persist [27]. In 

the current study, which investigates CLS in stationary phase cells grown in 

rich medium, it was expected that persistence of DNA from dead cells would 

be a severe bias, and this is confirmed by the pairwise correlations of barcode 

frequencies in stationary phase cells (Figure 3.4A). Barcode frequencies for all 

replicates across all timepoints were almost perfectly correlated, with very little 

changes in barcode frequencies being observed throughout 11 days of station- 

ary phase. This is corroborated by measurements of DNA levels throughout 

stationary phase, which were reported to change very little throughout sta- 

tionary phase in the Romila et al., 2021 study [59]. 

Conversely, pairwise correlations in barcode frequencies from re-growth 

cultures were much more varied (Figure 3.4B), indicating that culture re- 

growth captured differences in mutant survivial throughout stationary phase. 



 

 
 
 
 
 
 

 
 
 

Figure 3.4: Correlation of barcode frequencies from chronologically ageing mutant pools. 
Pairwise correlations of barcode frequencies are displayed as a heatmap. Data is shown for 3 independently generated mutant pools, as 
indicated by the upper side bar. The age of the pool is indicated in the lower side bar. A: Pairwise correlations of reads sequenced from 
stationary phase cultures. B: Pairwise correlations of reads sequenced from re-growth cultures. 
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Figure 3.5: Comparison of re-growth bottleneck size to library size for ageing 
pools. 

The number of CFUs used to inoculate the re-growth cultures is shown in blue, 
which represents the size of the sampling bottleneck when re-growth cultures are 
inoculated. Blue dashed line shows a constrained smoothing spline fitted to this 
data. The size of each library is shown in red. The pool is indicated by the shape. 

 
Specifically, correlations were high between days 0 and 2, suggesting that most 

mutants remained viable at these timepoints. These correlations began to fall 

apart at day 3, suggesting that short-lived mutants began to die and long-lived 

mutants were starting to become enriched. This is consistent with the drop 

in pool viability observed between days 2 and 3 (Figure 3.3). These analyses 

show that chronologically ageing pools of mutants must be re-grown in order 

to minimise the contribution of barcodes which persist from dead cells. 

3.2.3 Culture re-growth introduces a sampling bottle- 

neck which must be accounted for in order to 

model mutant abundance correctly 

The re-growth pools at day 5 were poorly correlated with those from the 

beginning of the experiment, suggesting that the vast majority of mutants were 

dead at this point, consistent with the viability curve for the pools. Beyond 

day 5, pools showed poor correlations even between replicates at the same 

time point, suggesting that re-growth pool composition at these timepoints is 

driven by stochastic sampling of the few remaining mutants. 
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Bar-seq datasets, being genome-scale count data, can be analysed using 

statistical models developed for RNA-seq datasets. This assumes that read 

counts follow a negative binomial distribution [76]. However, in the case of the 

re-growth protocol, we are not interested in modelling the counts per se, but 

instead modelling the number of surviving cells in the ageing stationary phase 

culture. Hence, it is important to note that there is a sampling bottleneck when 

an aliquot of ageing culture is used to inoculate a re-growth culture, and this 

bottleneck becomes increasingly severe as culture viability decreases. Based on 

the number of CFUs / mL and the volume of ageing culture used to inoculate 

the re-growth culture, it is possible to estimate the size of this bottleneck 

(Figure 3.5). For day 5 and beyond, I estimate the size of this bottleneck to 

be 100 cells. This is many orders of magnitude lower than the corresponding 

library sizes for the re-growth pools. Hence, it is clear from this that the 

clonal descendants of the cells in the inoculum have been sequenced multiple 

times. Given that statistical power increases with the number of counts under 

the negative binomial distribution, the result of this clonal amplification is in 

an overestimation of statistical power. Similar conclusions have arisen from a 

recent study, where it has been demonstrated that barcode count data does 

not follow a negative binomial distribution in cases where there is high degree 

of clonal amplification as a result of a strong selection bottleneck [77]. This 

problem is analagous to the the well known problem of PCR duplicates which 

arise in RNA-seq experiments, where multiple reads can originate from the 

same RNA molecule [78]. Given that the size of the bottleneck is known 

based on the CFU data, I implement a simple normalisation strategy where 

read counts are scaled such that the library size equals the bottleneck size 

in cases where the library size is greater than the bottleneck size. In this 

case, the normalisation applies to all re-growth libraries from day 3 to day 11 

(Figure 3.5). This ensures that, on average, each normalised read represents 

one stationary phase cell. 
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3.2.4 Detecting mutants with altered chronological 

lifespan 

In order to detect mutants with altered CLS, barcode counts for the normalised 

re-growth libraries at day 3 were comparied to those at day 0. This is because 

barcode counts at day 3 should capture differences in lifespan for both long- 

and short-lived mutants as the pool had substantially decreased in viability 

but was not completely dead (Figure 3.3). Conversely, barcode counts at day 

2 do not differentiate long-lived mutants from the population average as the 

majority of mutants were still alive at this point, whilst barcode counts at 

day 5 and beyond do not differentiate short-lived mutants from the population 

average as the majority of mutants were dead at this point. In addition, library 

sizes from day 5 onwards are too small to perform differential fitness analysis 

following normalisaiton for the sampling bottleneck. 

Differential fitness analysis based on normalised barcode counts in the re- 

growth cultures was performed using edgeR (version 3.24.3) [76]. Only data 

for day 0 and day 3 were used. In order to account for differences in mutant 

frequency between replicate pools at day 0, pool was included as a term in 

the model. Read counts were analysed using a negative binomial generalised 

linear model, and likelihood ratio testing was used to determine p-values for 

differences in barcode frequencies between days 0 and 3. Using a fold change 

(FC) cut-off of | log2 FC | > log2 1.5 and a false discovery rate (FDR) cut-off 

of FDR < 0.05, 341 long-lived mutants and 1246 short-lived mutants were 

identified (Figure 3.6). 

3.2.5 Validaiton of Bar-seq screen against high-throughput 

CFU assay 

In order to validate the results from the Bar-seq screen, I use the data from the 

47 mutants for which lifespan curves were recorded using the high-throughput 

CFU method (Figure 2.8). log2 FC (day 3 vs day 0) are well correlated with 

proxy scores for the 47 mutants (r = 0.76, Figure 3.7). This is reassuring con- 
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Figure 3.6: Volcano plot showing changes in pool composition through stationary 
phase. 

log2 FC in barcode abundance for day 3 vs day 0 is plotted against -log10 FDR. A 
fold change (FC) cut-off of | log2 FC | > log2 1.5 and a false discovery rate (FDR) 
cut-off of FDR < 0.05 were used to define mutants as long- or short-lived. 341 long- 
lived mutants are shown in red, and 1246 short-lived mutants are shown in blue. All 
other mutants are shown in black. 

 
sidering there are substantial differences in the biological contexts and analyti- 

cal approaches employed by the two methods. For example, all mutants in the 

pool share the same extracellular environment, and so differences in lifespan 

must be caused by cell-intrinsic factors. However, lifespan differences between 

mutants grown in batch cultures may reflect cell-intrinsic or cell-extrinsic fac- 

tors. 

3.2.6 Late stationary phase pools become dominated by 

short-lived mutants 

Each of the re-growth libraries for late stationary phase pools (days 9 and 

11) was dominated by a small number of mutants, although this was highly 

stochastic (Figure 3.4, Figure 3.8A. 29 mutants which contributed to at least 
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Figure 3.7: Validaiton of Bar-seq screen against high-throughput CFU assay. 
In order to validate the Bar-seq CLS screen, lifespan proxies calculated for 47 mu- 
tants using the high-throughput CFU method (Figure 2.8) are compared to their 
respective log2 FC (day 3 vs day 0) calculated from the Bar-seq screen. A linear 
regression between log2 FC (day 3 vs day 0) and the lifespan proxy alongside Pear- 
son correlation coefficient, r, is shown in blue. Red horizontal dashed line shows the 
lifespan proxy for the wild-type, whilst red vertical dashed line shows log2 FC (day 
3 vs day 0) = 0, which represents the average lifespan of the pool. 

 

1% of the reads in at least 1 of the replicate pools at days 9 or 11 were defined as 

highly abundant in late stationary phase. In order to investigate this further, 

normalised read counts for re-growth pools across all timepoints were analysed 

using edgeR (version 3.24.3) [76], treating time as a categorical variable and 

including pool as a variable in the model. As before, read counts were anal- 

ysed using a negative binomial generalised linear model, and likelihood ratio 

testing was used to determine p-values for differences in barcode frequencies. 

These 29 mutants typically decreased in abundance in early stationary phase 

and increased in abundance in late stationary phase (Figure 3.8B). The early 

decrease in abundance between days 0 and 3 was statistically significant for 

21 of these mutants (Figure 3.8C). Furthermore, the log2 FC (day 3 vs day 0) 



 

 
 
 

 

Figure 3.8: Late stationary phase pools become dominated by short-lived mutants. 

3.2.  
M

ethods &
 Results 

54  



3.3. Discussion & Conclusion 55 
 

Figure 3.8: Late stationary phase pools become dominated by short-lived mutants. 

A: Pie charts showing mutant abundances in re-growth pools in late stationary 
phase (days 9 and 11). There were 29 mutants which contributed to at least 1% of 
the reads in at least 1 of the replicate pools at either of these timepoints, which I 
define as highly abundant in late stationary phase. These mutants are shown in red, 
all other mutants in dark grey. B: Line plot where log2 FC of barcode abundace for 
each timepoint (vs day 0) is shown for each mutant. Mutants which dominate late 
stationary phase pools typically decrease in abundance in early stationary phase 
and increase in abundance in late stationary phase. C: Volcano plot where log2 
FC in barcode abundance for day 3 vs day 0 is plotted against -log10 FDR. 21 
of the 29 mutants which are defined as highly abundant in late stationary phase 
significantly decrease in abundance between days 0 and 3, using an FC cut-off of 
log2 FC < log2 1.5 and an FDR cut-off of FDR < 0.05. D: Cumulative frequency 
plot showing the distributions of log2 FC (day 3 vs day 0) for mutants defined as 
highly abundant in late stationary phase and for all other mutants. Mutants which 
dominate late stationary phase pools have a significantly lower log2 FC than all 
other mutants (Kolmogorov-Smirnov test, D = 0.44, p = 0.00004). This indicates 
that late stationary phase pools become dominated by mutants which are classified 
as short-lived according to the analysis of earlier timepoints. 

 
for these 29 mutants was significantly lower than for all other mutants (Fig- 

ure 3.8D), indicating that late stationary phase pools become dominated by 

mutants which were classified as short-lived according to an analysis of ear- 

lier timepoints. This indicates that pool composition is dynamic throughout 

stationary phase, and that late stationary phase pool composition may reflect 

factors unrelated to longevity. Indeed, it is known in bacteria that nutrients 

released by dead cells may support the survival of other cells in late stationary 

phase [61], and a similar phenomenon has recently been described in fission 

yeast during quiescence [62]. 

 
3.3 Discussion & Conclusion 

In this chapter, I present an analysis of a Bar-seq dataset which I use to estab- 

lish a pipeline for the identification of long- and short-lived mutants in CLS 

screens of pooled deletion mutants, which addresses key technical, statistical 

and biological biases. In particular, persistence of barcodes from dead cells 

necessitates re-growth of ageing cultures prior to sequencing. This introduces 

a sampling bottleneck that becomes increasingly more severe as viability de- 
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creases, which must be accounted for in order to ensure that read counts reflect 

stationary phase pool composition and that statistical analyses are valid. An 

effective and simple approach for the detection of long- and short-lived mutants 

is to compare normalised read counts at the beginning of stationary phase to 

those at a timepoint where viability has substantially decreased, but not all 

cells are dead. At this timepoint, pool composition reflects both long- and 

short-lived mutants, there are a sufficient number of reads following normali- 

sation to perform differential fitness analysis, and results are not confounded 

by other biological phenomena which can cause changes in pool composition 

in late stationary phase. Enrichment analyses of long- and short-lived mutants 

identified and subsequent discussions are not presented, as mutants with al- 

tered chronological lifespan are discussed in the context of rapamycin-mediated 

lifespan extension in Chapter 4. 



 

 
 
 
 

Chapter 4 

 
Dissecting the genetic basis of 

rapamycin-mediated lifespan 

extension recapitulates the 

spatial organisation of TOR 

signalling 

 
4.1 Introduction 

Rapamycin is a macrolide isolated from Streptomyces hygroscopicus and was 

first characterised as an antifungal agent [79]. Its growth-inhibitory properties 

were later found to extend to eukaryotic cells in general, leading to its use as 

an anticancer drug and as an immunosuppressant to prevent tissue rejection 

in organ transplants [80]. Investigations into the molecular mechanisms un- 

derlying rapamycin’s anti-proliferative properties led to the identification of 

the protein target of rapamycin (TOR) in budding yeast [81], with subsequent 

studies identifying the mammalian ortholog [82, 83, 84]. Interest continued 

to grow following reports that rapamycin treatment or genetic interventions 

which suppress TOR signalling could extend lifespan in a variety of inverte- 

brate model systems, including budding yeast (both RLS [85] and CLS [33]), 
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nematode worms [86] and fruit flies [87]. These studies helped consolidate the 

view that the genetics of ageing is conserved across eukaryotes [45]. It was 

subsequently shown that rapamycin treatment could extend also lifespan in 

mice [88]. This study was a significant milestone in the search of treatments 

for age-related diseases in humans, as it was the first reported case of a phar- 

macological agent which could significantly increase the lifespan of a mammal 

in both sexes, even when applied later in life. Following this, clinical trials 

are now beginning to show that the anti-ageing TOR inhibition also apply to 

humans [89]. 

TOR proteins are serine/threonine kinases which act as master reg- 

ulators of cellular growth and metabolism in response to nutrient signals 

[90, 91, 92, 93, 94]. In animals, TOR signalling has also evolved to integrate 

hormonal cues [90, 91, 92]. Misregulation of TOR signalling is associated with 

a variety of chronic diseases including as cancer, obesity, autoimmune diseases, 

cardiovasular diseases and metabolic disorders [80, 90, 91]. TOR proteins exist 

as part of two structurally and functionally distinct complexes - TORC1 and 

TORC2. In mammals, a single TOR kinase associates with different regulatory 

subunits in order to form either complex [92]. Many unicellular eukaryotes, 

including budding yeast and fission yeast, contain two TOR kinases, and the 

affinities of each kinase to the two TOR complexes can differ [93, 94, 90]. 

TORC1 is acutely sensitive to rapamycin [95] and is the far better studied 

of the two complexes. In response to amino acid availability, TORC1 posi- 

tively regulates growth-promoting processes such as ribosome biogenesis and 

translation, and negatively regulates starvation responses such as autophagy 

[90]. TORC2 is not sensitive to acute rapamycin treatment [95, 96], but does 

display some sensitivity in response to chronic rapamycin treatment [92]. Its 

functions are less well characterised but are clearly diverse, and include reg- 

ulating aspects of plasma membrane homeostasis, cytoskeleton organisation 

and genome stability [97, 98, 99, 100]. 

Furthermore, the spatial organisation of the TOR complexes is related 
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to their distinct roles of TOR signalling. Whilst TORC2 is located at the 

plasma membrane [97, 98], two spatially and functionally distinct pools of 

TORC1 exist - one at the vacuole membrane (lysosome membrane in mam- 

mals) which positively regulates protein synthesis, and another at endosome 

membranes which negatively regulates autophagy [101]. This likely reflects 

the different information which is conveyed by amino acid concentrations at 

the vacuole and in the cytoplasm. The vacuole serves as an amino acid reser- 

voir [102, 103], and hence amino acid concentrations at the vacuole reflect 

the potential for the cell to synthesise new proteins. Upon activation, vacuo- 

lar TORC1 phosphorylates the S6 kinase(s), resulting a global induction of 

ribosome biogenesis and protein translation [101, 104]. On the other hand, cy- 

toplasmic amino acid concentrations are much more tightly regulated in order 

to maintain cytoplasmic homeostasis, and only begin to drop during times of 

nutrient depletion [105]. Concordantly, endosomal TORC1 is responsible for 

initiating autophagy in response to a drop in cytoplasmic amino acid concen- 

trations, allowing the cell to replenish its amino acid pool by degrading proteins 

[106, 107]. Hence, TORC1 achieves protein homeostasis by balancing protein 

synthesis and protein degradation in response to amino acid availability from 

two distinct subcellular locations. 

 
Whilst a great deal of studies have dissected the TOR signalling pathway, 

this is the first genome-scale study to systematically dissect TOR signalling 

specifically in an ageing context. Consistent with several studies which have 

investigated rapamycin-mediated lifespan extension, I find a clear requirement 

for autophagy to mediate the beneficial effects of rapamycin, consistent with 

the notion that rapamycin mimics the effect of dietary restriciton [108, 109]. 

Furthermore, rapamycin-mediated lifespan extension was also dependent on 

diverse aspects of endosome function, highlighting the intimate relationships 

between TORC1 signalling, endosomes and autophagy [101, 110, 111]. This 

included phosphatidylinositol 3-kinase (PI3K) signalling, which has a crucial 

role in coordinating multiple aspects of autophagy initiation and progression 



4.2.  Methods & Results 60 
 

 

in response to rapamycin treatment. This study demonstrates that TORC1 

inhibition activates multiple downstream effectors, and the coordinated action 

of these effectors is required for rapamcyin-mediated lifespan extension via 

initiation of autophagy. 

 

4.2 Methods & Results 

4.2.1 Pooling and ageing of deletion mutants 

3 independently generated prototrophic pools of Bioneer mutants were pre- 

pared as described previously [27]. 250 mL pre-cultures of pools in 3% glucose 

YES were grown for 15 hours at 25°C without shaking. Cells were centriguged 

for 3 minutes at 420 rcf and washed once in the same volume of 3% glucose 

YES. The optical density at 600 nm (OD600) was measured for each pool. 

From each pre-culture, a pair 50 mL cultures were inoculated in 3% glucose 

YES at OD600 = 0.1. To one of the cultures within each pair, 50 µL of 100 

µg/mL rapamycin () in DMSO was added to give a final concentration of 100 

ng/mL, whilst 50 µL of DMSO was added to the other. These were grown at 

32°C, shaking at 170 rpm, and cultures had reached stationary phase after 1 

day, which was taken to be day 0 of CLS. 

CFUs were measured for cultures at day 0 using the traditional method, 

as described previously [58]. CFUs were measured for cultures at days 0, 1, 2, 

3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 20 and 22 using the high-throughput method, 

as described in Chapter 2. At the same timepoints, 1 mL aliquots of ageing 

cultures were used to inoculate 50 mL re-growth cultures in 3% glucose YES, 

which were grown at 32°C, shaking at 170 rpm. When re-growth cultures 

reached stationary phase, 1.5 mL aliquots were centrifuged for 3 minutes at 

1000 rcf, the supernatant was removed, pellets were snap frozen and stored at 

-80°C. 

Colony patterns from the high-throughput CFU assay were analysed using 

the DeadOrAlive R package, as described in Chapter 2. For each culture, a 

smoothing spline which was constrained such that it must always decrease was 
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Figure 4.1: CLS of rapamycin-treated and -untreated pools. 
CFU measurements are plotted against time for cultures as indicated. A constrained 
smoothing spline is fitted to the CFU data for each culture. Samples selected for 
sequencing are circled. 

 
fitted using the cobs package in R [60]. For all 3 replicate pools, rapamycin 

treatment substantially increased CLS (Figure 4.1). 

4.2.2 Library preparation and sequencing 
 

Culture  Time / days Viability -log10 Viability 
DMSO 1  0 1.0 0.0 
DMSO 2  0 1.0 0.0 
DMSO 3  0 1.0 0.0 

Rapamycin 1 0 1.0 0.0 
Rapamycin 2 0 1.0 0.0 
Rapamycin 3 0 1.0 0.0 

DMSO 1  4 0.029 1.5 
DMSO 2  4 0.10 1.0 
DMSO 3  5 0.035 1.5 

Rapamycin 1 11 0.019 1.7 
Rapamycin 2 13 0.089 1.0 
Rapamycin 3 13 0.10 1.0 

Table 4.1: Timepoints selected for barcode sequencing. 
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Based on the CLS curves for the 6 cultures (Figure 4.1), 12 aliquots of 

re-growth cultures were selected for sequencing (Table 4.1). For this, each 

culture was sequenced at day 0, where every mutant is assumed to be 100% 

viable. In addition, a later timepoint for each culture was selected at a point 

where the viability was between 1% and 10%, allowing for the detection of 

long- and short-lived mutants. 

DNA was extracted from the 12 re-growth samples using a phe- 

nol:chloroform protocol. Separate PCRs were performed to amplify UpTags 

and DnTags as described previously [59], resulting in 24 barcode libraries. 

These were pooled at a total concentration of 4 nM, and PhiX sequencing 

control v3 (Illumina, US) to increase the library complexity was added at a 

concentration of 5%. Libraries were sequenced on an Illumina MiSeq Instru- 

ment with 168 cycles using paired-end reads of 75 bp each and generating 

approximately 23 million reads. 

4.2.3 Analysis of sequencing data 

Pair-end reads were assembled using PEAR [112], and PCR duplicates re- 

moved using BBTools [113]. Barcount [59] was used to extract barcodes from 

reads and match them to genes according to the look-up tables assembled in 

Chapter 3. In order to ensure library size was never greater than the size of the 

selection bottleneck necessitated by culture re-growth as discussed in Chapter 

3, traditional and high-throughput CFUs recorded on day 0 were analysed us- 

ing an interceptless linear model in order to generate a calibration which could 

convert CFUs / droplet into CFU / mL, allowing the size of the selection bot- 

tlneck to be calculated. For all libraries, library size was greater than the size 

of the selection bottleneck, and so no normalisation was required. 

An analysis of pairwise correlations of barcount counts revealed good clus- 

tering between libraries 3.4. Libraries clustered primarily based on culture 

viability, indicating that both rapamycin-treated and -untreated pools become 

enriched for long-lived mutants. However, within the older libraries, there was 

a clear separation of rapamycin-treated and -untreated pools, indicating that 
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Figure 4.2: Pairwise correlations of read counts in rapamycin-treated and - 
untreated pools. 

Sidebars indicate culture treatment, replicate, barcode type and culture age (with 
young representing 100% viability and old representing between 1% and 10% viabil- 
ity (Table 4.1). 

 
 
 
 
 

rapamycin treatment causes different mutants become enriched during ageing. 

Subclustering in the young libraries was driven by barcode type, suggesting 

the presence of PCR bias. There was also some clustering based on replicate, 

suggesting the mutant composition differs between pools. There was no evi- 

dence of clustering based on rapamycin treatment in the young libraries. It is 

likely that pool composition at the beginning of stationary phase was affected 

by rapamycin treatment, but these effects are likely to be subtle and blurred 

by the re-growth protocol, and hence not detected in this analysis. 
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design <- model.matrix( ˜ Treatment + MinusLog10Viability + 

Treatment : MinusLog10Viability + Barcode + Replicate) 

4.2.4 Identification of mutants with altered response to 

rapamycin 

Reads were modelled in edgeR (version 3.30.3) [76] using a negative binomial 

generalised linear model. Rapamycin treatment was included as a term in the 

model in order to account for differences in initial mutant abundance between 

DMSO and rapamycin pools. In order to quantify changes in barcode abun- 

dance during chronological ageing, -log10 viability was included as a term in 

the model (Table 4.1). This also allows viability to be modelled in a more 

nuanced way, accounting for the fact that cultures were sequenced at different 

days and viabilities. In order to detect mutants which respond differently in 

ageing due to rapamycin treatment, an interaction term between rapamycin 

treatment and -log10 viability is included. In order to account for technical 

biases such as PCR bias and differences in initial mutant composition between 

replicate pools, barcode type and replciate were also included as terms in the 

model. p-values for differential barcode representation were calculated using 

likelihood ratio testing and corrected for multiple testing according to FDR. 

Hence, the design matrix is constructed using the following code: 
 

 

In the case of the data presented, this results in a model with the follow- 

ing coefficients (coefficients which represent lifespan effects are highlighted in 

bold): 

1. Intercept 
 

2. log2 FC between DMSO and rapamycin at day 0 
 

3. Lifespan score in DMSO 
 

4. log2 FC between UpTag and DnTag 
 

5. log2 FC between replicate 2 and replicate 1 
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6. log2 FC between replicate 3 and replicate 1 
 

7. Difference in lifespan score between DMSO and rapamycin 
 

Hence, this model allows the identification of mutants which are long- and 

short-lived in DMSO, in addition to mutants which have a different lifespan 

effect in rapamycin, whilst controlling for techincal effects. However, there is 

an important contrast which is missing - the lifespan score in rapamcyin. In 

order to calculate this score, the following design matrix can be used: 
 
 
 
 

This is known as a nested interaction formula, and fits exactly the same model 

as before. However, because the design matrix has been parameterised in a 

different way, different coefficients are extracted: 

1. Intercept 
 

2. log2 FC between DMSO and rapamycin at day 0 
 

3. log2 FC between UpTag and DnTag 
 

4. log2 FC between replicate 2 and replicate 1 
 

5. log2 FC between replicate 3 and replicate 1 
 

6. Lifespan score in DMSO 
 

7. Lifespan score in rapamycin 
 

The units of the lifespan score are log2 FC / -log10 Viability, which rep- 

resents the log2 FC in barcode abundance per order of magnitude of viability 

lost - reflecting the fact that barcode abundances change more dramatically 

as viability decreases. For instance, a lifespan score of 0 means than barcode 

abundance did not change throughout CLS (no lifespan effect), a lifespan score 

of 1 means than barcode abundance doubled between 100% and 10% viability 

design <- model.matrix( ˜ Treatment + Treatment : 

MinusLog10Viability + Barcode + Replicate) 
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(long-lived mutant), and a lifespan score of -1 means that barcode abundance 

halved between 100% and 10% viability (short-lived mutant). It is also im- 

portant to note that lifespan scores are condition-specific, and reflect lifespan 

relative to the average lifespan of the pool in that condition. To illustrate, 

if a mutant has a lifespan score of 0 in DMSO and a lifespan score of 0 in 

rapamycin, it would mean that it essentially behaves like the wild-type. 
 

 
Figure 4.3: Identification of mutants with altered CLS. 
Lifespan score in DMSO is plotted against lifespan score in rapamycin. In each of 
the 3 panels, points are coloured based on FDR to identify mutants with altered 
lifespan in DMSO, mutants with altered lifespan in rapamycin, and mutants which 
behave differently in rapamycin vs DMSO. 

 
Lifespan scores for DMSO and rapamycin are shown in Figure 4.3. To 

identify mutants with altered lifespan in DMSO, altered lifespan in rapamycin, 
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Figure 4.4: Functional enrichments involved in rapamycin-mediated lifespan ex- 
tension. 

Lifespan score in DMSO is plotted against lifespan score in rapamycin. Selected GO 
terms and selected mutants are highlighted. 
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Figure 4.4: Functional enrichments involved in rapamycin-mediated lifespan ex- 
tension. 

Lifespan score in DMSO is plotted against lifespan score in rapamycin. Selected GO 
terms and selected mutants are highlighted. 
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Figure 4.4: Functional enrichments involved in rapamycin-mediated lifespan ex- 
tension. 

Lifespan score in DMSO is plotted against lifespan score in rapamycin. Selected GO 
terms and selected mutants are highlighted. 
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Figure 4.4: Functional enrichments involved in rapamycin-mediated lifespan ex- 
tension. 

Lifespan score in DMSO is plotted against lifespan score in rapamycin. Selected GO 
terms and selected mutants are highlighted. 

 
 
 
 
 
 

and mutants which behave differently in rapamycin vs DMSO, the following 

cut-offs were applied: a fold change (FC) cut-off of | log2 FC | > log2 1.5 

and a false discovery rate (FDR) cut-off of FDR < 0.05. Lists of mutants 

were analysed using gProfiler [114]. Figure 4.4 highlights selected terms and 

mutants which are subsequently discussed. 
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4.3 Discussion 

4.3.1 The lifespan extension conferred by rapamcyin is 

mediated by autophagy 

Mutants which respond differently in the rapamycin-treated pools compared to 

the DMSO-treated pools provide insights into the genetic components which 

interact with TORC1 in an ageing context. Some of the strongest negative 

interactions were observed in mutants annotated to the phagophore assembly 

site (Figure 4.4A). This included atg13, a conserved phosphorylation target of 

TORC1 [100, 104]. Atg13 becomes dephosphorylated upon TORC1 inactiva- 

tion, leading to the assembly of the Atg1 complex and initiation of macroau- 

tophagy [115]. Indeed, all members of the fission yeast Atg1 complex (atg1, 

atg13, atg17 and atg101 [116]) were similarly rapamycin-insensitive. These 

results indicate that rapamycin extends fission yeast chronological lifespan by 

via autophagy. This is consistent with a numerous reports in other model 

systems, and highlights the benefits of degrading damaged proteins and or- 

ganelles which accumulate during ageing [108, 109]. It is unclear why these 

mutants also show a slightly extended lifespan in the DMSO-treated pools, as 

this contradicts the notion that autophagy increases lifespan. However, au- 

tophagy can be detrimental to lifespan under certain contexts. For example, 

in both mice and nematode worms, mutations which cause the mitochondrial 

permeability transition pore to open result in decreased lifespan as a result of 

excessive clearance of dysnfunctional mitochondria [117]. Hence, it is possible 

that the increased lifespan of autophagy mutants in the absence of rapamycin 

could reflect a similar phenomenon. Indeed, it is notable that this study was 

performed in rich media, a condition where fission yeast has little require- 

ment for mitochondrial function during exponential growth [70]. Irrespective 

of the mechanism, this result highlights that the genetic basis of lifespan is 

highly context-dependent, and that a process can be beneficial or detrimental 

to lifespan depending on physiological conditions. 

In addition, rav1 and rav2 mutants were short-lived, and displayed a 
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strong insensitivity to rapamycin (Figure 4.4B). They encode subunits the 

RAVE complex, which is involved in the assembly of the vacuolar and endo- 

somal ATPase [118, 119, 120]. The ATPase performs a variety of functions, 

most notably vacuolar and endosomal acidification [102]. Low pH in the vac- 

uole is required to activate hydrolases which degrade cargos delivered to the 

vacuole and is hence an essential component of autopagy [121], which may 

underlie the reason why rav1 and rav2 are rapamycin-insensitive. If this were 

the case, then rapamycin-insensitivity can arise by disrupting autophagy at 

various stages, from autophagophore formation to hydrolysis of cargoes at the 

vacuole. However, it is important to note that vacuolar pH can also regulate 

a wide variety of other processes involved in ageing [118, 122]. 

4.3.2 Diverse aspects of endosome function are required 

for rapamycin-mediated lifespan extension 

Negative interactions were also enriched for mutants annotated to endosomes, 

indicating that endosomes are mediators of rapamycin-mediated longevity. 

However, endosome mutants displayed a range of effects, with some endosome 

mutants displaying positive interactions and many others being short-lived but 

not displaying an interaction with rapamycin (Figure 4.4C). The interactions 

at endosomes are difficult to dissect as they reflect the complex regulatory 

functions which endosomes play in TORC1 signalling in addition to their roles 

as mediators of processes downstream of TORC1 [101, 110, 111]. The strongest 

negative interactors covered a range of conserved endosome functions. They 

included: 

 
• vps11, encoding an E3 ubiquitin ligase which is a member of the HOPS 

and CORVET tethering complexes which coordinate membrane fusion 

events [123]. However, other members of the HOPS and CORVET com- 

plexes did not show a strong negative interaction with rapamycin, with 

many being short-lived (Figure 4.4D). Interestingly, a recent report using 

human cell lines indicates that VPS11 regulates other aspects of cellu- 
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lar signalling via ubiquitination independently of its role in membrane 

fusion events [124]. Furthermore, genetic leukoencephalopathies, a rare 

group of inherited disorders affecting the central nervous system, have 

been linked to defects in autophagy as a result of a mutation in VPS11 

[125]. 

• vps25, encoding a subunit of the ESCRT-II complex which is involved 

in sorting ubiquitinated cargo in endosome membranes into intraluminal 

vesicles, resulting in the formation of a multivesicular body which will 

deliver the ubiquitinated cargo to the vacuole for degradation [126, 127]. 

Deletion of vps25 in fruit flies leads to autophagosome accumulation and 

impaired autophagy [128], although this appears to be a general feautre 

of ESCRT mutants in higher eukaryotes [129]. Notably, other ESCRT 

mutants in this screen do not show strong negative interactions with 

rapamycin, and many are short-lived (Figure 4.4E-G). 

• vps26, encoding a subunit of the retromer complex which is required 

for endosome-to-Golgi transport [130, 131]. An important function of 

the retromer complex is to retrieve and recycle hydrolase receptors such 

as Vps10 [132], which are essential for delivering hydrolytic enzymes to 

vacuoles [133, 134]. Hence, deletion of retromer complex components 

leads to dysfunctional autophagy in fruit flies [135] and pathogenic yeast 

[136]. Furthermore, a decrease in the expression of retromer complex 

components, including VPS26, is associated with Alzheimer’s disease 

[137]. Notably, other components of the retromer complex do not show 

strong negative interactions with rapamycin, and many are short-lived 

(Figure 4.4H). 

• ypt7, endocding a Rab GTPase which is a master regulator of membrane 

trafficking and organelle fusion [138]. Several studies have demonstrated 

that Ypt7 is required for proper autophagy progression in budding yeast. 

For example, deletion of ypt7 results in autophagosome accumulation and 
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vacuolar fragmentation [139], whilst ypt7 was also identified in a screen 

for genes required for mitohpagy [140]. In addition, Ypt7 is invovled 

in the fusion of the autophagosome with the vacuole [141] and is linked 

to to retromer-mediated receptor recycling [142], suggesting that Ypt7 

coordinates multiple aspects of autophagy. 

 
There is an undoubtedly complex relationship between endosome traffick- 

ing and autophagy. Notably, TORC1 localises to endosomes where it regulates 

autophagy by inhibiting autophagosome formation in the presence of nutrients 

[101]. However, strong negative interactions between rapamycin and genes 

which cover diverse aspects of endosome function suggests that the relation- 

ship between autophagy and endosomes is far more intertwined. Defining the 

nature of these interactions requires differentiating between general aspects 

of endosome function which are required for autophagy and specific regula- 

tors of autophagy which reside on endosomes, which is not clear from the 

interaction profiles of these mutants alone. That only specific components of 

the HOPS/CORVRET, ESCRT and retromer complexes show strong nega- 

tive interactions with rapamycin suggests that these may represent specialised 

regulatory functions which are carried out by these components. However, 

it is also notable that other components of these complexes are short-lived, 

indicating that HOPS/CORVET, ESCRT and retromer complexes in general 

are required for stationary phase survival under standard conditions. In the 

case of the retromer complex, a mechanism has already been established which 

may explain why this aspect of endosomal trafficking is required for lifespan 

[135, 136], but in the cases of other aspects of endosome function, it is less 

clear, at least in yeast. 

Several lines of evidence suggest that endosome functions in general are 

required to mediate the downstream effects of TORC1 inhibition. For example, 

genome-scale metabolic profiling of deletion mutants in budding yeast clearly 

demonstrates that the metabolic signatures of many endosomal mutants, in- 

cluding vacuolar and endosomal ATPase, RAVE, HOPS/CORVRET, ESCRT 
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and retromer complex mutants mimic the metabolic signature of rapamycin- 

treated cells [143]. Furthermore, autophagy and endosomal trafficking are 

closely linked in mammals. For instance, fusion of endosomes and autophago- 

somes to form an amphisome is a critical part of autophagosome maturation 

and is required for autophagy in mammals [144, 145, 146, 110, 147, 148]. In 

yeast, interactions between endosomes and autophagosomes are less well de- 

fined as it is difficult to distinguish between these structures owing to a lack 

of morpholological differences and a lack of well-defined marker proteins [110]. 

However, it seems that even in yeast, much of the molecular machinery involved 

in autophagy and endosomal function is shared [141]. Hence, it is plausible 

that the strong negative interactions observed between endosome mutants and 

rapamycin may reflect an interdependence between diverse endosome functions 

and autophagy, as is the case in mammals [144, 145, 146, 110, 147, 148]. 

 
 

What is puzzling is that many of HOPS/CORVET, ESCRT and retromer 

complex mutants, especially the short-lived ones, do not show a strong negative 

interaction with rapamycin, indicating that rapamycin treatment is capable of 

extending lifespan in these mutants. Indeed, it actually implies that rapamycin 

treatment may partially rescuse defects resulting from endosomal disruption. 

A possible explanation is that in the context of severe endosome disruption, 

alternative mechanisms of autophagy induction may be upregulated, which in 

turn leads to rapamycin-sensitivity. Indeed, such behaviour has often been de- 

scribed in many aspects of biology, especially ageing, where the effect of a mild 

perturbation can have the opposite effect of a severe perturbation [149, 150] 

and may reflect negative feedback loops which are involved in maintaining 

homeostasis in response to stress [151, 152]. Dissecting these interactions is 

beyond the scope of this study, although such contradicting interaction pro- 

files are important to recognise and highlight that seemingly subtle changes 

in endosome function can have completely different effects on lifespan and 

rapamycin-sensitivity. 
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4.3.3 Rapamycin-mediated lifespan extension is depen- 

dent on Class III PI3K signalling to initiate au- 

tophagy 

Lipid kinases such as PI3Ks play important roles in the regulation of many 

cellular functions, including autophagy [148, 153, 154]. They do so via the 

phosphorylation of lipids which act as second messengers, leading to the bind- 

ing and recruitment of specific effectors to cell membranes [155, 156]. Class I 

PI3K signalling to TORC1 via AKT is a well characterised regulator in mam- 

mals [157], although this signalling pathway is not present in yeast [158, 159]. 

The Class III PI3K Vps34 is the only PI3K which shows a strong conserva- 

tion across eukaryotes [153, 154]. In yeast, association of Vps34 with different 

subunits creates two spatially and functionally distinct PI3K complexes with 

diverse roles in both autophagy and endosome trafficking. Complex I contains 

Atg14 and is recruited to the phagophore assembly site via Atg8, an inter- 

action which is essential for autophagy initiation [160, 161]. In mammalian 

cells it has been shown that TORC1 directly suppresses Complex I activity by 

phosphorylating Atg14 [162]. In addition, Complex I is involved in delivery 

of cargo to the vacuole for degradation, being required to recruit Ypt7 and 

subsequently the HOPS complex to the autophagosome, which mediates fu- 

sion of the autophagosome with the vacuole [141]. Complex II contains Vps38 

and is a regulator of endosomal trafficking [155, 156]. The role of Complex II 

in autophagy is unclear, although a study in Arabadopsis has indicated that 

Vps38 is also required for autophagy [163]. Consistently, atg14, atg8, vps38 

and atg6 (a subunit of both Complex I and Complex II) all showed strong 

negative interactions with rapamycin (Figure 4.4I), indicating that PI3K sig- 

nalling at both the phagophore assembly site and endosomes is required for 

rapamycin-mediated lifespan extension. The requirement of Complex I for au- 

tophagy is well established [141, 160, 161], although the reason why Complex 

II is required for rapamycin-mediated lifespan extension is less clear. How- 

ever, it is known that production of phosphatidylinositol 3-phosphate (PI3P) 
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via Complex II is required to recruit the retromer complex to endosomes and 

initiate endosome-to-Golgi retrograde transport [164, 165]. Hence, it is possi- 

ble that the rapamycin-insensitive phenotype of vps38 may be as a result of 

an inability to recycle hydrolases receptors via endosome-to-Golgi transport, 

leading to autophagy defects [135, 136]. It is notable that vps38 mutants in 

Arabadopsis are phenotypically similar to retromer complex mutants [166]. 

4.3.4 Class III PI3K signalling is also mediates nutrient 

sensing upstream of TORC1 

The interaction profile of pik3, the fission yeast ortholog of vps34, was markedly 

different to the interaction profiles of the subunits with which Pik3 physically 

interacts. Deletion of pik3 causes a serious reduction in lifespan (Figure 4.4I). 

This is consistent with the sickness observed in budding yeast vps34 mutants, 

which may be linked to their inability to accumulate any PI3P [167]. However, 

the pik3 mutant was hypersensitive to rapamycin, suggesting that rapamycin 

treatment can partially rescue the short lifespan associated with loss of Pik3. 

Consistently, rapamycin hypersensitivity has been observed in budding yeast 

vps34 mutants, with atg14 mutants showing the opposite phenotype of ra- 

pamycin resistance [168]. This may reflect the fact that Vps34 is also an 

upstream activator of TORC1, where Vps34 is activated by amino acids lead- 

ing to recruitment of the PI3P-binding protein Pib2 which activates TORC1 

[169, 170]. Indeed, pib2 showed a positive interaction with rapamycin, con- 

sistent with Pib2 being an upstream activator of TORC1 (Figure ??). The 

distinct interaction profile of the pik3 mutant is consistent with suggestions 

that Pik3 forms a third complex which is distinct from Complex I and II in 

order to relay amino acid signals to TORC1 [170]. Assuming that rapamycin 

increases lifespan of pik3 cells via the same mechanism as wild-type cells, this 

result suggests that rapamycin is able to initiate authophagy via alternative 

mechanisms in the absence of any Pik3 activity. This is in contrast to cells 

with Pik3 activity, in which case Pik3 activity must be correctly localised to 

the phagophore assembly site via Atg14 and to endosomes via Vps38 in order 
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to initiate autophagy in response to rapamycin treatment. 
 

4.3.5 Distinct interaction profiles of PI3K mutants may 

reflect interconnected positive and negative feed- 

back loops involved in TORC1 control of au- 

tophagy 

PI3P is an upstream activator of TORC1 which is invovled in amino acid 

sensing [168, 169, 170]. PI3P also acts downstream to initiate autophagy in 

response to TORC1 inactivation [153, 154]. In essence, inhibition of TORC1 

produces an activator of TORC1, which implies the presence of a negative feed- 

back loop where TORC1 activity and PI3P abundance mutually regulate each 

other to coordinate autophagy initiation. Downstream of this, PI3P is also 

involved in a positive feedback loop to initiate autophagy at the phagophore 

assembly site via interactions with Atg8 [161]. This may reflect the distinct 

roles which positive and negative feedback loops play in biological systems. 

Negative feedback loops are important for maintaining homeostasis and have 

been extensively studied in the context of control theory [171]. In this case, 

negative feedback loops allow TORC1 activity to be tuned to reflect nutrient 

availability and other signals. Positive feedback loops on the other hand lead to 

bistability [172], and are important for establishing two distinct on/off states 

for autophagy in response to TORC1 activity [161]. This control architecture 

may facilitate precise regulation of autophagy and other TORC1-regulated 

processes in response to changes in nutrient availability. 

4.3.6 Inhibition of clathrin-mediated endocytosis can 

further extend lifespan following rapamycin treat- 

ment 

Mutants which were long-lived specifically in rapamycin were enriched for 

clathrin-dependent endocytosis (Figure 4.4J). In addition, two endosomal mu- 

tants which are involved in endocytosis, ent3 [173] and shd1 [174] also showed 
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a strong rapamycin-specific increase in lifespan 4.4C). As many positive regula- 

tors of TORC1 are hypersensitive to rapamycin [168], one possible explanation 

is that clathrin-mediated endocytosis is a positive regulator of TORC1. Given 

that endocytosis is a source of endosomes, to which TORC1 localises, and that 

TORC1 regulates endocytosis, it is plausible that endocytic flux may recipro- 

cally regulate TORC1. However, an alternative possibility is that endocytosis 

itself may cause ageing via a mechanism distinct to autophagy. Indeed, it has 

been suggested that age-related increases in the abundance of endocytic pro- 

teins could be a factor Alzheimer’s disease progression by facilitating the con- 

version of amyloid precursor protein into the disease-causing β-amyloid [175]. 

Furthermore, endocytosis is suppressed when nematode worms enter the long- 

lived dauer diapause, particularly in neuronal cell types [176]. This suggests 

that reduced endocytosis is a general mechanism which promotes long-term 

survival of non-dividing cells. Indeed, it is sensible to presume that limiting 

a cell’s interactions with the extracellular environment would benefit its long- 

term survival, especially if that environment becomes progressively more toxic 

with age. 

4.3.7 TORC1 and PKA coordinate different temporal 

aspects of starvation response 

The protein kinase A (PKA) signalling pathway is another important aspect of 

nutritional sensing which is highly conserved across eukaryotes [177, 178, 179]. 

The G protein coupled receptor (GPCR) Git3 is activated by extracellular 

glucose, which initiates a signalling cascade resulting in the production of 

cyclic adenosine monophosphate (cAMP), a cytosolic second messenger, via 

adenylate cyclase activity. cAMP activates Pka1, which in turn regulates a 

wide array of cellular processes. Indeed, TORC1 and PKA regulate many of 

the same targets, although appear to regulate different temporal aspects [180]: 

TORC1 allows cells to tune growth rate to internal metabolite concentrations, 

whilst PKA allows cells to rapidly respond to changes in glucose availability. 

Hence, it is unsurprising that deletion of git3 or other components of the GPCR 
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(git5 and git11 ) increase lifespan, as previously described [179]. Furthermore, 

these mutants showed a reduced sensitivity to rapamycin (Figure 4.4K), which 

suggests that these mutants have an extended lifespan because they mimic the 

effect of rapamycin, which is consistent with the overlapping functionalities 

of TORC1 and PKA [180]. Indeed, budding yeast PKA has been shown to 

directly inhibit autophagy in parallel to TORC1 via Atg13 phosphorylation to 

prevent Atg1 complex formation at the phagophore assembly site [181]. 

However, pka1 showed a reduced lifespan (Figure 4.4K), which is not 

consistent with previous reports [63]. This result may serve to highlight critical 

differences in pool versus batch culture ageing experiments. pka1 mutants in 

batch culture experiments continue to grow at a low rate in early stationary 

phase (Figure 2.7, unpublished data), which is consistent with the idea that 

pka1 mutants prematurely enter into stationary phase due to an inability to 

properly detect low levels of glucose. This would mean that there are still low 

levels of glucose in batch cultures, which would support growth and survival. 

However, in pooled experiments, other mutants would still properly sense and 

consume glucose at low levels, meaning that this advantage to the pka mutant 

in batch cultures is gone in the pool. Furthermore, the short lifespan of pka1 

mutants in the pool is consistent with the idea that PKA signalling is important 

for responding to sudden changes in glucose availability [180]. This implies 

that the short lifespan of pka1 in the pool is due to an inability to adapt 

to stationary phase, and hence does not reflect the role of PKA in ageing. 

Consistent with this, pka1 cells show a negative interaction with rapamycin, 

which would be expected as rapamycin treatment would not compensate for 

the inability to adapt to stationary phase. 

It must also be addressed why Git3 signalling mutants do not behave 

like pka1 in the pool. In budding yeast and mammals, Ras signalling is able 

to sense intracellular energy levels via cytosolic pH and is the other major 

source of cAMP in cells, meaning PKA detects changes in glucose levels via 

two upstream regulators [118, 182, 183, 184]. However, it appears that Ras 
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signalling does not modulate adenylate cyclase activity in fission yeast, and 

hence does not signal to PKA [185]. However, it is still likely that PKA is 

able to respond to changes in glucose availability via other mechanisms in the 

absence of Git3 signalling. Indeed, fission yeast Pka1 phosphorylation status 

changes in response to glucose availability even in the absence of adenylate 

cyclase, demonstrating the existence of a cAMP-independent mechanism of 

PKA regulation [186]. That there are additional regulators of PKA activity in 

fission yeast offers a plausible explaination as to why Git3 signalling mutants 

behave differently to pka1. 

4.4 Conclusion 
This study systematically dissects the genetic basis of rapamycin-mediated 

lifespan extension, revealing a critical requirement of autophagy. Furthermore, 

the coordinated action of multiple effectors downstream of TORC1 is required 

to initiate autophagy. This included diverse aspects of endosome function, 

including PI3K signalling, membrane fusion complexes and retromer traffick- 

ing. In addition, an enormous number of mutants showed altered responses in 

rapamycin compared to DMSO, demonstrating that the genetic basis of lifes- 

pan is highly context-dependent, as previously suggested [36, 47]. However, 

it is often difficult to interpret these differences, as a genetic interaction may 

be interpreted differently depending on context [187]. The ability for a sin- 

gle screen to capture decades worth of regulatory connections highlights the 

potential value of Bar-seq. Indeed, Bar-seq captures information which other 

genome-scale technologies, such as RNA-seq or proteomics, cannot, revealing 

functional connections which may dissect complex phenotypes such as lifespan. 
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Chapter 6 

 
Conclusions & Future Directions 

 
One of the most remarkable discoveries in ageing research was that there are 

simple genetic, environmental and pharmacological perturbations which con- 

sistently increase lifespan across eukaryotes [6, 45]. This is somewhat surpris- 

ing given the intricate complexity of lifespan as a phenotype, which is only 

beginning to be truly appreciated and dissected. Yeast remain a vital model 

system to tackle complex questions of fundamental biological important owing 

to their amenability to high-throughput methods [31], and hence may represent 

our best opportunity at modelling complex cellular processes [72]. However, 

there are still substantial obstacles which must be overcome before we can 

develop a mechanistic, as opposed to descriptive, model of ageing. This the- 

sis addresses a number of these obstacles, establishing a platform from which 

high-throughput CLS assays can be readily in a reproducible manner. 

This has involved the development of two high-throughput methods for 

determination of CLS at various experimental scales. The first is a high- 

throughput CFU assay which can be largely automated by robotics. This pro- 

vides an attractive alternative to the labour- and resource-intensive traditional 

CFU assay for day-to-day lifespan experiments. The second establishes Bar- 

seq as a technology which can provide genome-scale insights into the genetic 

basis of lifespan in a specific context. This involved in the characterisation of 

barcodes associated with mutants from the Bioneer deletion library and the 

identification of key technical and biological biases which must be addressed 
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when Bar-seq is applied to CLS. For both methods, care has been taken to 

establish well-documented experimental and analytical pipelines which will fa- 

cilitate use and deployment of these methods by the wider community, hence 

facilitating high-throughput ageing studies. 

 
I have applied Bar-seq to dissect the genetic basis of rapamycin-mediated 

lifespan extension. The gene-drug interactions uncovered provide insights into 

the genetic components with which rapamycin interacts, specifically in an age- 

ing context. Some of these interactions reflect the components which are func- 

tional partners of TORC1, and reveal that the coordinated actions of multiple 

aspects of endosome function are required to initiate autophagy in response to 

rapamycin treatment. Indeed, some of these interactions captured remarkably 

specific functional connections and summarise decades worth of research into 

TOR signalling, highlighting the insights which can be afforded by functional 

profiling which are not possible from other genome-scale technologies such as 

RNA-seq and proteomics. Other interactions may reflect interactions between 

different processes which are involved in determining fission yeast lifespan. 

Hence, the interactions uncovered may serve as a basis to constructing a mech- 

anistic model of ageing, wherein the regulatory functions of nutrient sensing 

pathways such as TOR signalling are linked to processes which determine the 

lifespan of the organism. Indeed, developing a comprehensive model of fission 

yeast ageing will require dissecting the genetic basis of lifespan in far more 

contexts. However, given the relative ease with which Bar-seq CLS screens 

can now be conducted, generating such datasets is a realistic prospect. Such 

investigations may include ageing mutant pools under different environmen- 

tal conditions, ageing mutant pools in the presence of other pharmacological 

agents, or using synthetic genetic array technology to create and age double 

mutant pools [27]. Indeed, such an approach can even be extended to create 

different mutants of the same gene, facilitating functional profiling at the level 

of individual amino acid residues. Furthermore, should enough Bar-seq CLS 

datasets be generated (or indeed any genome-scale lifespan datasets), machine 
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learning approaches may be able to construct representations which reflect the 

regulatory interactions encoded within interaction profiles, such as Bayesian 

networks [188]. Such a network would be a mechanistic model of ageing in 

a eukaryote, a milestone which would have significant repercussions in the 

biomedical sciences. 

However, for all of this to be possible, it is essential that research is robust, 

reliable and reproducible. The irreproducible nature of ageing research likely 

reflects the complexity of ageing as a process and the number of factors which 

interact to determine an organism’s lifespan. When working with simple model 

systems such as fission yeast, it is essential to consider all aspects of the organ- 

ism’s ecology and life history traits as important determinants of lifespan, not 

just those which may have transferable value to understanding human ageing. 

Indeed, investigations into the sources of experimental irreproducibility in fis- 

sion yeast CLS revealed that yeast have a remarkable ability to regulate their 

own lifespan in response to population density, and will ”remember” this for 

many rounds of division. In the lab, this manifests as irreproducibility owing 

to an inability to consistently pick exactly the same amount of colony from 

an agar plate. The amount of colony picked to inoculate a pre-culture seems 

like a trivial factor to the naive PhD student, but may be one of the most 

important sensory cues to the yeast. Indeed, after considering the ecology of 

a microbe, this kind of behavior is a rather sensible strategy to maximising 

fitness. However, the ecological context of an a model system is often ne- 

glected in research, and in some cases not even known [189]. Hence, in order 

to truly harness yeast as a model system, an integrated view of ageing must 

be established which appreciates the full range of factors involved in lifespan 

determination. It is only then that we will be able to pick apart how these 

factors interact, and in turn slowly build an understanding of what ageing is. 



 

 
 
 

Appendix 



 

install.packages("adimpro") 
package <- "https://cran.r-project.org/src/contrib/Archive/PET/PET_0.5.1.tar.gz" 
fileLocation <- tempfile() 
download.file(package, fileLocation) 
install.packages(fileLocation, type = "source", repos = NULL) 
install.packages("BiocManager")  
BiocManager::install("EBImage") 
install.packages(c("jpeg", "tiff", "logging", "ggplot2")) 
package <- "https://cran.r-project.org/src/contrib/Archive/gitter/gitter_1.1.1.tar.gz" 
fileLocation <- tempfile() 
download.file(package, fileLocation) 
install.packages(fileLocation, type = "source", repos = NULL) 
install.packages(c("zoo", "magick", "gplots", "RColorBrewer", "rmarkdown", 

"toOrdinal", "cobs", "rootSolve")) 
install.packages("devtools")   
devtools::install_github("JohnTownsend92/DeadOrAlive", build_vignettes = TRUE) 

library(DeadOrAlive) 
library(ggplot2) 

 
 

Analysis of High-throughput Colony Forming Units Assays 

 
Installation 

 

Tutorial 

This tutorial will teach you how to analyse high-throughput colony forming unit (CFU) assay data as 
described in Romila et al., 2021. This assay facilitates high-throughput chronological lifespan (CLS) studies 
in microorganisms such as Saccharomyces cerevisiae or Schizosaccharomyces pombe by using robotics to 
automate CFU plating in a highly parallelisable manner (Figure 1). 
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Figure 1: Schematic depiction of experimental protocol. 

Image Analysis 

In order to estimate the number of colony forming units for a particular sample, the pattern of colonies 
must first be analysed. colonyThreshold() will take a batch of images of agar plates and identify whether 
or not there is a colony in each position. For this, it is critical to provide a reference image to aid colony 
identification in sparsely populated regions of the plate (Figure 2A). 

 

Figure 2: Outline of image analysis pipeline. 
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#Get the directory of files to be analysed 
dir <- system.file("extdata", "images", package="DeadOrAlive") 

#View the files 
list.files(dir) 

#Get the reference image 
reference <- system.file("extdata", "reference.jpg", package="DeadOrAlive") 

#Analyse the files to identify whether there is a colony or not in each position 
#Note: This will create a new directory called 'Image_Analysis' 
colonyThreshold(dir=dir, reference=reference) 

colonyThreshold() wraps the gitter() function in the gitter package in order to perform the image 
analysis. As such, all of the arguments used by gitter() are available in the colonyThreshold() function. 
Of particular importance are: 

• plate.format – the format of the agar plate 
• well.plate.format – the format of the plate used for serial dilutions 
• inverse – have colours in the image been inverted? For example, when a scanner is used to take images 

of the plate, the colonies will appear darker than the background 

colonyThreshold() does not return any objects, but instead creates up to 4 files for each raw image processed 
(Figure 2B). These are: 

• DAT file A tab delimited file containing quantified colony sizes, as described in gitter. A sixth column 
marking whether a colony has been classified as present (1) or absent (0) is added 

• Gridded image Image showing colony identification by aligning colonies to the grid identified in the 
reference image, as described in gitter (Figure 2C) 

• Threshold image Image showing whether a colony has been classified as present or absent for each 
position on the plate (Figure 2D) 

• Count image Image showing how many colonies have been classified as present for each sample at 
each dilution factor (Figure 2E) 

It is particularly important to manually check the threshold image in order to confirm that colonies have 
been correctly marked as present or absent. The software used to estimate the number of colony forming 
units from the pattern of colonies observed is robust to the occasional misclassification, so it does not matter 
if there are a few mistakes. However, any plates for which there are a substantial number of errors will need 
to be re-scanned and re-analysed. 

There are some demo images stored within the package. The images can be accessed and image analysis 
performed using the following code: 

 

 

Extraction of Colony Patterns 

The next objective is to collect the present/absent colony information and assemble it correctly based on 
the identity of the plates, time points and samples. This is achieved by supplying two supporting files – the 
plate reference file and the sample reference file – to the extractColonyVectors() function. This 
function will take a directory of processed DAT files generated by the colonyThreshold() function and 
extract a vector containing the number of colonies present at each dilution factor for each sample at each 
time point. For this to work, it is also necessary to provide the plate.format for the agar plate and the 
well.plate.format. 

Demo files can be accessed from within the package. In this case, we are analysing an experiment where the 
lifespan of 48 different strains were measured at 7 different time points. Given that 8 strains can be measured 
in parallel on a single agar plate, this means that 6 agar plates are required per day. The sample reference 
file shows which strains are plated on each of the 6 plates. The plate reference file provides the identity of 
each image - i.e. which groups of strains at which time points are plated on each image. These two files, in 
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# Get a csv file showing the identity of each sample on each plate 
sampleReferenceFile <- system.file("extdata", "sampleReferenceFile.csv", 

package = "DeadOrAlive") 
View(read.csv(sampleReferenceFile)) 

# Get a csv file showing the identity of each plate to be analysed 
plateReferenceFile <- system.file("extdata", "plateReferenceFile.csv", 

package = "DeadOrAlive") 
View(read.csv(plateReferenceFile)) 

# Get the patterns of colonies from the files (from left to right 
# across the plate) 
myColonyVectors <- extractColonyVectors("Image_Analysis", plateReferenceFile, 

sampleReferenceFile) 
myColonyVectors 

#Perform a maximum likelihood estimation of the number of viable cells 
#Note: This will save a csv and markdown file in the current working directory 
CFUsMLE   <-   analyseColonyVectors(myColonyVectors) 

#Remove low quality data points 
CFUsMLE   <-   CFUsMLE[CFUsMLE$TotalExclusions<=1,] 

addition to the directory containing the processed DAT files, are passed to the extractColonyVectors() 
function as follows: 

 

Estimation of Colony Forming Units 

The next challenge is to estimate the number of colony forming units present for each sample at each time 
point. This is achieved via maximum likelihood estimation using the analyseColonyVectors() function – 
that is to say, the function determines what number of colony forming units in the culture is most likely to 
give rise to the pattern of colonies observed. This achieved as follows: 

 

Analysis of Lifespan Curves 

As a first step, it is advisable to perform some quality control steps. The maximum likelihood estimator is 
highly sensitive to outliers, and as such the analyseColonyVectors() function implements some quality 
control steps to remove outliers from the patterns of colonies. It is sensible to remove data points for which 
a lot of the colony pattern had to be excluded in order for a robust maximum likelihood estimation to be 
achieved: 

We can also calculate a proxy for each lifespan curve in order to summarise the lifespan of a culture with a 
single number. The plotProxy() function can be used to display how the proxy is calculated for a particular 
sample. For this, a spline is fitted to the data, and the default proxy is calculated as the square root of the 
amount of time taken for culture viability to decrease to 5%. 
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#Plot proxy calculation for the wt (972 h-) 
g1 <- plotProxy(CFUsMLE, "972 h-") 
print(g1) 



 

# Calculate a proxy for all samples 
proxy <- calculateProxy(CFUsMLE) 

# Add proxies to CFUsMLE 
CFUsMLE$Proxy <- proxy$Proxy[match(CFUsMLE$Sample, proxy$Sample)] 

# Plot all lifespan curves and color by proxy 
g2 <- g2 <- ggplot(CFUsMLE, aes(Time, ColonyFormingUnitsPerDroplet + 1, 

group = Sample, color = Proxy)) 
g2 <- g2 + geom_point() + geom_line() 
g2 <- g2 + scale_y_log10() + xlab("Time (days)") + ylab("CFUs / droplet + 1") + 

scale_color_viridis_c() 
print(g2) 
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Proxies for all samples can be calculated using the calculateProxy() function. We can then add an extra 
column in CFUsMLE and plot the lifespan curves according to proxy. This is always a recommended step in 
order to check that the proxy looks sensible. 
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[36] Benjamin P Barr é , Johan Hallin, Jia-Xing Yue, Karl Persson, Ekaterina 

Mikhalev, Agurtzane Irizar, Sylvester Holt, Dawn Thompson, Mikael 

Molin, Jonas Warringer, et al. Intragenic repeat expansion in the cell wall 

protein gene hpf1 controls yeast chronological aging. Genome research, 

30(5):697–710, 2020. 

 
[37] Elizabeth A Winzeler, Daniel D Shoemaker, Anna Astromoff, Hong 

Liang, Keith Anderson, Bruno Andre, Rhonda Bangham, Rocio Ben- 

ito, Jef D Boeke, Howard Bussey, et al. Functional characterization of 

the s. cerevisiae genome by gene deletion and parallel analysis. science, 

285(5429):901–906, 1999. 

 
[38] Dong-Uk Kim, Jacqueline Hayles, Dongsup Kim, Valerie Wood, Han- 

Oh Park, Misun Won, Hyang-Sook Yoo, Trevor Duhig, Miyoung Nam, 

Georgia Palmer, et al. Analysis of a genome-wide set of gene deletions 

in the fission yeast schizosaccharomyces pombe. Nature biotechnology, 

28(6):617–623, 2010. 



References 117 
 

 

[39] Sarah E Pierce, Ron W Davis, Corey Nislow, and Guri Giaever. Genome- 

wide analysis of barcoded saccharomyces cerevisiae gene-deletion mu- 

tants in pooled cultures. Nature protocols, 2(11):2958–2974, 2007. 

[40] Andrew M Smith, Lawrence E Heisler, Joseph Mellor, Fiona Kaper, 

Michael J Thompson, Mark Chee, Frederick P Roth, Guri Giaever, and 

Corey Nislow. Quantitative phenotyping via deep barcode sequencing. 

Genome research, 19(10):1836–1842, 2009. 

[41] Tian Xu Han, Xing-Ya Xu, Mei-Jun Zhang, Xu Peng, and Li-Lin Du. 

Global fitness profiling of fission yeast deletion strains by barcode se- 

quencing. Genome biology, 11(6):1–13, 2010. 

[42] Mirela Matecic, Daniel L Smith Jr, Xuewen Pan, Nazif Maqani, Stefan 

Bekiranov, Jef D Boeke, and Jeffrey S Smith. A microarray-based genetic 

screen for yeast chronological aging factors. PLoS Genet, 6(4):e1000921, 

2010. 

[43] Roy Z Moger-Reischer and Jay T Lennon. Microbial ageing and 

longevity. Nature Reviews Microbiology, 17(11):679–690, 2019. 

[44] Audrey Menegaz Proenca, Camilla Ulla Rang, Andrew Qiu, Chao Shi, 

and Lin Chao. Cell aging preserves cellular immortality in the presence 

of lethal levels of damage. PLoS biology, 17(5):e3000266, 2019. 

[45] Cynthia J Kenyon. The genetics of ageing. Nature, 464(7288):504–512, 

2010. 
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