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Abstract

Ageing is a great research challenge. Age is the primary risk factor for many
complex diseases, including cardiovascular disease, neurodegeneration and can-
cer. Anti-ageing interventions aim to delay the onset of these diseases and ex-
tend health span. Ageing remains enigmatic, however, and its proximal cause
and mechanisms are not understood. This partly reflects the laborious na-
ture of ageing experiments, typically requiring large timeframes and numerous

individuals, which creates a bottleneck for systematic ageing studies.

Yeast can be grown under highly parallelised experimental platforms and
are well suited to systematic studies. However, ageing research is a notable
exception, with the traditional colony-forming unit (CFU) assay for chrono-
logical lifespan being notoriously time- and resource-consuming. I present
two alternative assays which circumnavigate this bottleneck. One is a high-
throughput CFU assay that is automated by robotics and supported by an R
package to estimate culture viability by constructing a statistical model based
on colony patterns. The second assay employs barcode sequencing to monitor
strain viability in competitively ageing pools of deletion libraries, providing
genome-scale functional insights into the genetics of lifespan. I employ this
assay to dissect the genetic basis of rapamycin-mediated longevity, providing
insights into the condition-specific nature of lifespan-extending mutations and

the anti-ageing action of rapamycin.

Experimental reproducibility is essential for research. Ageing studies, in-
cluding those in yeast, are notably sensitive to batch effects: genetically iden-

tical cells grown under identical conditions can exhibit substantial phenotypic
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differences. I systematically test typically neglected factors, and demonstrate
that chronological lifespan is strongly affected by pre-culture protocol such as
the amount of colony picked for the pre-culture — suggesting a ‘memory” which
is passed across cell divisions from pre-culture to non-dividing, ageing cells.
Hence, this work addresses key issues in yeast ageing research, both technolog-
ical and biological, establishing a platform to robustly perform future studies

at large scales.



Impact Statement

Ageing presents great biomedical, economic, social and personal challenges.
Age is the number on risk factor for a variety of chronic diseases, includ-
ing cancer, neurodegeneration, diabetes and cardiovascular disease. However,
anti-ageing interventions offer great promise as they simultaneously delay the
onset of these diseases and increase healthspan. Despite many exciting devel-
opments in ageing research, we are still far from understanding this enigmatic

component of the human condition.

This is in part because ageing research is notoriously challenging. By its
nature, an ageing experiment lasts the entire lifespan of an organism, which
may be several years. Furthermore, lifespan is one of the most complex phe-
notypes in biology, meaning that lifespan experiments tend to get complicated
very quickly, and it is often difficult to disentangle cause, correlation and ef-
fect. To make matters worse, lifespan is one of the most sensitive and variable
phenotypes in biology, probably because of the complex interactions between
processes which determine lifespan. As a result, ageing experiments require
large number of individuals and also suffer from a lack of reproducibility. Col-
lectively, this makes for a rather challenging field of research: the complexity
of ageing necessitates large-scale, systematic studies; the resource-intensive,
labour-intensive and often wasteful nature of these experiments prohibits large-

scale studies.

Yeast, being well-suited to systematic studies, offer promise to solving
these issues. However, there are still major bottlenecks which must be over-

come. In this work, I present two methods which can accurately measure fission
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yeast lifespan in a high-throughput manner, expanding the toolkit available for
generating systematic ageing datasets. I also apply these methods to dissect
various aspects of fission yeast lifespan. In one case, I use a method called
barcode sequencing to map the genetics associated with the anti-ageing drug
rapamycin, which works by tricking cells into thinking they are starving and
mimicking the beneficial effects of dietary restriction. In doing so, I reveal
a huge number of genetic components which interact with rapamycin, from
the molecular machinery which is at the centre of rapamycin’s effects, to the
numerous processes which rapamycin targets as part of its anti-ageing effects.
Using another high-throughput lifespan method, I explore the reasons why
lifespan experiments are so irreproducible. The results revealed some unex-
pected findings about the factors which determine yeast lifespan — the yeast
“talk to each other” using a process called quorum sensing, and in doing so,
can establish “memories” which determine their lifespan. It turns out that
yeast have far more control over their lifespan than is generally appreciated,
and although this sounds rather quirky, it actually makes perfect sense when
you consider the ecological needs of yeast.

Hence, this research tackles multiple challenges in yeast ageing, and estab-
lishes a platform from which robust, large-scale ageing studies can be readily
conducted. By overcoming bottlenecks which hamper ageing research, we are
a step closer to generating datasets of sufficient complexity which may be used
as a basis to develop mechanistic, as opposed to descriptive, model of ageing.
Such models will have dramatic repercussions for our understanding of disease

and ageing.
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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started

And know the place for the first time
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Chapter 1

Introduction

1.1 An ageing population

The world is undergoing dramatic demographic shifts, with the proportion of
elderly increasing in nearly every country [1]. Age is the biggest risk factor in
a variety of chronic diseases, including cancer, autoimmune diseases, neurode-
generative disorders and cardiovascular diseases [2]. The increased incidence
of these diseases is becoming a hallmark of 21 century life, meaning that
ageing presents great biomedical, economic and social challenges. Whilst it is
critical to treat individual diseases as they arise, an anti-ageing intervention
promises to simultaneously delay the onset of all of these diseases and increase
healthspan. Hence, ageing research aims to fundamentally discern the nature
of ageing, and in doing so identify pharmacological and dietary interventions

which may increase healthspan.

1.2 A brief history of ageing research

Ageing, due to its intimate relationship with death, has always been one of the
most enigmatic aspects of the human condition. For much of history, ageing
was viewed as an inevitable consequence of entropy [3]. However, research in
the 1990s demonstrated that simple genetic perturbations could have produce
dramatic increases in the lifespan on nematode worms [4, 5]. Not only did
these results challenge the view that age-associated decline is inevitable, but

they legitimised ageing as a field of research. Studies utilising various model



1.3. Challenges in ageing research 18

systems continued to demonstrate that age-associated decline is plastic, and
ageing was consolidated as a field when it became apparent that ageing in
eukaryotes is regulated by a conserved regulatory system of nutrient sensing
pathways [6]. Ageing research has continued to dissect these pathways and it
has become clear that many chronic diseases associated with ageing share a

common regulation and are interwtined [2].

1.3 Challenges in ageing research

Ageing research is notoriously challenging. By its nature, an ageing experiment
lasts the entire lifespan of an organism, which is several years in most vertebrate
model systems. Furthermore, large cohorts of individuals are required because
there is substantial phenotypic variability in lifespan even between genetically
identical individuals maintained under identical environmental conditions [7].
There can also be great variability in lifespan between repeats of the same
experiment, and it requires a great deal of work to identify the sources of this
experimental irreproducibility [8]. Hence, ageing research is laborious, slow
and resource-intensive, and the identification of even a single factor which
robustly increases lifespan is a challenging endeavor [9].

Ageing is also a difficult process to study due to its multifactorial nature
[10, 11]. This is true for both the factors which regulate ageing and the physi-
ological consequences of ageing, which are often confounded due to regulatory
feedback mechanisms [12, 13]. This complexity means that it is extremely
difficult to develop mechanistic (as opposed to descriptive) models of ageing.
Consequently, there has been much debate, and little consensus, as to how to

define the proximal cause of ageing [10, 11, 12, 13, 14, 15, 16].

1.4 Fission yeast as an ageing model

The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic
model organism; it is simple, can be studied under tightly controlled environ-
mental conditions, and has a low complexity, well-annotated genome. Addi-

tionally, its short lifespan carries clear advantages in ageing research, making
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it possible to complete an ageing experiment over the course days or weeks.
Whilst most research in the field of yeast ageing has been carried out in the
budding yeast Saccharomyces cerevisiae [17], fission yeast has emerged as a
potent alternative model system [18]. Approximately 70% of its genes have
identifiable human orthologs [19], making S. pombe an excellent model to study
conserved biological processes which play fundamental roles in eukaryotic age-
ing. In addition, S. pombe is only distantly related to S. cerevisiae, having
diverged around 400 million years ago [20], and can thus provide complemen-
tary insights [18]. Indeed, the genetic, environmental and pharmacological
interventions which can extend lifespan are remarkably well conserved from
yeast to humans [17, 18], suggesting that ageing is conserved across eukary-

otes.

Two forms of ageing have been described in yeast: replicative and chrono-
logical ageing [17, 18, 21]. Replicative lifespan (RLS) is defined as the number
of times a mother cell can divide before senescence [22], and is used as a model
for ageing in mitotically active cells. In budding yeast, which divide asym-
metrically, mother and daughter cells can be easily distinguished under the
microscope and RLS can be measured [17]. In fission yeast, which divide sym-
metrically, there is no clear mother or daughter cell, and it is disputed whether

replicative ageing exists in fission yeast [23, 24].

Chronological lifespan (CLS) is defined as the amount of time a cell can
remain viable in a non-dividing state, and is used as a model for ageing in post-
mitotic cells. Chronological ageing is usually induced by allowing cultures to
reach stationary phase, where cells enter a non-dividing state following glucose
exhaustion [25]. However, chronological ageing can also be induced by restrict-
ing the cells of a key nutrient, such as the carbon [26] or nitrogen [27] source,
or even by physically restricting the cells such that they cannot divide [28].
Furthermore, CLS assays can vary in their definition of viability; tradition-
ally, viability is measured by determining the number of colony-forming units

(CFUs) in the ageing culture, defining cells as viable if they are able to re-enter
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the cell cycle upon return to growth-favourable conditions [25]. Alternative
measures of viability involve using fluorescent dyes such as propidium iodide
and MTT, which report cell membrane integrity [29] and metabolic activity
[30] respectively. These dyes are typically measured using a flow cytometer,

fluorescent microscope or fluorescent plate reader.

1.5 High-throughput ageing studies in yeast

Yeast can be cultured under tightly controlled conditions in parallelised exper-
imental platforms, making them well suited for high-throughput, systematic
studies [31]. However, both the traditional RLS [22] and CLS [25] assays are
laborious and do not scale well to high-throughput studies. Hence, the de-
velopment of novel assays which circumnavigate these bottlenecks is a critical
prerequisite to systematic ageing studies which have the potential to dissect
the complexity of ageing.

Determination of RLS requires prolonged observation of a mother cell
under the microscope. High-throughput approaches to determination of RLS
typically employ a microfluidic device which can trap mother cells whilst al-
lowing daughter cells to be removed via fluid flow [23, 32]. High-throughput
CLS assays are more varied, and can differ substantially in the platform used
to culture many samples in parallel and the way in which CLS is measured.
The first high-throughput CLS assay developed involved growing and ageing
cultures in a 96-well plate, and then using a small aliquot of the ageing culture
to inoculate a re-growth culture [33]. The optical density of the re-growth
culture after a defined period of time can be measured using a plate reader,
serving as an indication of the number of viable cells in the inoculum. A con-
ceptually similar approach is to competitively age two strains labelled with
different fluorophores (for example, a mutant and a wild-type control), and to
measure relative fluorescence of a re-growth culture to indicate relative survival
[34, 35]. Another approach involves growing and ageing cells in a 96-well plate
and then using high-throughput flow cytometry to measure the proportion of
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cells stained with a dye which indicates viability [30, 36].

Genome-wide collections of non-essential deletion mutants are powerful
tools for investigating gene function. In both the S. cerevisiae [37] and S. pombe
[38] deletion collections, each individual gene has been deleted and replaced
with an antibiotic resistance cassette flanked by specific DNA barcodes (UpTag
and DnTag). Hence, deletion mutants can be pooled and the abundance of
each mutant can be measured using DNA microarrays [39] or next-generation
sequencing, termed barcode sequecning, or Bar-seq [40, 41]. These approaches
have been adapted to monitor mutant survival in chronologically ageing pools
of deletion mutants [27, 42], providing quantitative, genome-scale insights into

the genetic basis of lifespan in a highly parallelised manner.

1.6 Towards an integrated view of yeast age-
ing

The vast majority of genetic factors which alter lifespan have been found in
yeast, worms and flies. Many of these factors are shared, suggesting that
a conserved system regulating ageing arose early in eukaryotic evolution [6],
perhaps even earlier [43, 44]. Of particular note are the stress response genes
and nutrient sensors [45]. These genes integrate numerous extracellular and
intracellular signals to determine whether an organism is experiencing stress,
and are responsible for inducing a physiological shift towards cell maintenance
and protection when conditions are not favourable to growth.

However, ageing is still a poorly understood process, and there remains
much work to uncover all genes which affect ageing and to understand the in-
teractions between them [46]. High-throughput lifespan screens in yeast have
uncovered hundreds of genetic factors which are involved in ageing, but the
overlap between these screens is surprisingly poor [35]. Indeed, the genetic
variants associated with longevity differ substantially based on environmen-
tal conditions [36], with even subtle changes in culture conditions leading to

marked changes in the genetic basis of lifespan [47]. This is concordant with
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the high degree of irreproducibility observed in ageing research [8], suggesting
that lifespan is a highly sensitive phenotype which is tightly regulated in a

context-dependent manner.

1.7 Contributions of this work

In this work, I present a variety of experimental and analytical advancements
which facilitate systematic ageing studies in yeast. The first of these is a
high-throughput CFU assay which can be largely automated using robotics.
This provides a day-to-day alternative to the notoriously labour- and resource-
intensive traditional CFU assay which can be used for CLS determination of
batch cultures. The second is a refinement of Bar-seq in order to identify mu-
tants with alterned CLS. This involved decoding the barcodes for the majority
of mutants in the latest version of the Bioneer deletion library [38], allow-
ing parallel profiling of a substantially higher proportion of the fission yeast
non-essential genome than previously possible, in addition to addressing key
technical and statistical biases which arise when Bar-seq is used to study CLS.
I then apply Bar-seq to dissect the genetic basis of rapamycin-mediated lifes-
pan extension, providing insights into the genetic components which interact
with rapamycin in an ageing context. Collectively, this thesis tackles many
of the bottlenecks in yeast ageing, establishing a platform from which robust

ageing studies can be readily conducted in a high-throughput manner.



Chapter 2

Development of a
high-throughput colony-forming

unit assay

2.1 Introduction

Chronological lifespan (CLS) is defined as the amount of time a cell can re-
main viable in a non-dividing state, and is regarded as a model for ageing in
post-mitotic tissues [25]. More generally, CLS assays are one of the workhorses
of ageing research, allowing the effect of a genetic, environmental or pharma-
cological perturbation on lifespan to be assessed with relative ease compared
to other ageing models [48]. Hence, many genes associated with ageing have
been identified using the traditional CFU assay for CLS in both budding yeast
[17] and fission yeast [18, 49].

The traditional CFU assay involves diluting and spreading aliquots of age-
ing cultures on agar and counting the number of colony-forming units (CFUs),
which can be used to calculate the number of viable cells in the ageing culture
(Figure 2.1) [17, 18]. Whilst this is far more tractable than most ageing re-
search, it is still slow by yeast standards, and does not leverage the amenability
of yeast to high-throughput approaches. In particular, since the viability of

the culture is not known, the dilution factor which will result in a quantifiable
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number of CFUs is also not known, so multiple dilution factors must be plated
out in order to ensure that at least one dilution factor is quantifiable. This

underpins the laborious and resource-intensive nature of this assay.

Figure 2.1: Schematic depiction of traditional CFU assay.

An aliquot of an ageing culture is serially diluted (in this case 10-fold), and the
dilution factors are spread on solid agar. After 2-4 days growth, colonies can be
counted for one of the dilution factors, allowing the number of CFUs to be calculated
for the ageing culture.

As aresult, there has been much focus on developing CLS assays which
circumnavigate the bottlenecks imposed by the traditional CFU assay, as dis-
cussed in Chapter 1. However, these assays are highly specialised, and often
limited to a particular application. For example, some are only compatible
with specific mutant libraries [27, 34, 42]. And none directly measure the abil-
ity for a cell to re-enter the cell cycle - that is, measure the number of CFUs -
instead relying on re-growth kinetics [33, 34] or fluorescent dyes which measure

a feature associated associated with viability such as metabolic activity [30]
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or cell membrane integrity [36]. Hence, there is a need for an alternative CFU
assay which does not suffer from the drawbacks of the traditional assay and
can serve as a replacement for the traditional assay in day-to-day applications.
One such assay does already exist - the spot assay, where cultures are
serially diluted and spotted onto agar. This assay has already been adapted to
measure CLS [50], and carries several advantages compared to the traditional
CFU assay - all dilution factors for a culture are spotted on the same agar plate,
and multiple cultures can be spotted in parallel on the same plate, making this
assay far less resource-intensive than the traditional assay. However, a major
disadvantage of this assay is that it is qualitative, not quantitative, in nature.
Hence, differences in CLS must be assessed by eye, meaning that this assay is
not a suitable alternative for high-throughput, systematic ageing studies.

In this chapter, I present a novel high-throughput CFU assay which can
be largely automated by robotics. This assay is in essence a spot assay, but by
pinning each dilution factor multiple times, a digital pattern of colonies can be
extracted for each culture. By modelling the dilution and pinning process, it is
possible to analyse the digital pattern of colonies and quantitatively estimate
the number of CFUs for each culture. I validate this assay by measuring CFUs
for a variety of mutants with different lifespans using both the traditional
and novel high-throughput methods. CFU measurements from both methods
are highly correlated, but the high-throughput method can capture the same

amount of information using far less plates (Figure 2.2).

2.2 Methods & Results

2.2.1 Implementation of a high-throughput CFU assay
Ageing cultures are processed in batches of 8 (Figure 2.3). 150 pL aliquots
of cultures are loaded into the first column of a 96-well plate. Other wells
are filled with 100 L YES. By taking 50 pL of the ageing cultures, the ageing
cultures are serially diluted 3-fold across the plate using an ASSIST automated
multichannel pipette INTEGRA Biosciences Ltd, UK), ensuring that each
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Figure 2.2: Resource usage comparison for traditional vs high-throughput CFU
assays.

Left: 1944 agar plates are required in order to measure CFUs for 24 cultures at
9 different time points using the traditional assay. For this, 3 dilution factors are
plated in triplicate for each culture. Right: 108 agar plates can capture the same
information using the high-throughput CFU assay, pinning each dilution factor in
replicates of 16. Future refinements to the assay demonstrated that the same in-
formation can be acquired using only quadruplicate replicate pins, meaning that in
fact only 27 plates are required.

Step 2:
Pin diluted cultures

in quadruplicate
(384-well format)

Serially dilute ageing
cultures

Figure 2.3: Schematic depiction of high-throughput CFU assay.

Aliquots of ageing culture are serially diluted across a 96-well plate. Droplets of di-
luted culture are arrayed on agar in quadruplicate (384-well format) using a pinning
robot.

dilution factors is well mixed before proceeding to the next. Diluted cultures

are immediately pinned on YES agar in quadruplicate using a ROTOR HDA
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pinning robot (Singer Instruments, UK). For this, 96-well format long pins are
used to array droplets of diluted cultures in 384-well format, ensuring that the
source plate is revisited before each pin onto agar. Agar plates are incubated

at 32°C until patterns of colonies are clearly visible.

2.2.2 Image acquisition and analysis

Images of plates are acquired using an Epson V700 scanner in transmission
mode. The first step to quantifying CFUs for each measurement is to determine
whether or not there is a colony in each position on the agar plate using the
gitter package in R [51]. For this, it is essential to provide a reference image
of colonies in 384-well format which can be used to align colonies correctly
in sparsely population regions of the agar plate (Figure 2.4A). For each raw
image analysed (Figure 2.4B), gitter will then identify colonies and provide
colony size measurements for each position on the agar plate (Figure 2.4C). The
distribution of log-transformed colony sizes can be analysed and thresholded
using Otsu thresholding [52] in order to classify colonies are present or absent
for each position on the agar plate (Figure 2.4D). Using this, it is possible to
extract a digital vector for each measurement representing how many colonies

are present at each dilution factor (Figure 2.4E).

2.2.3 Modelling of colony patterns

In order to estimate CFUs for each measurement, the number of CFUs per
droplet of ageing culture is modelled, with a droplet being the amount dis-
pensed by a 96-well format long pin. As cultures are serially diluted, the mean
number of CFUs per droplet will exponentially decrease across the 96-well
plate. The number of CFUs in a single droplet can be modelled as Poisson
distributed according to the mean number of CFUs per droplet. In the case
that there are 1 or more CFUs in a droplet, a colony will grow, and if there
are 0 CFUs, there will be no colony. Hence, from the Poisson distribution it
is possible to calculate the probability of observing or not observing a colony

according to the mean number of CFUs per droplet. Given that each dilu-
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Figure 2.4: Image analysis pipeline for high-throughput CFU assay.

A: A reference image containing colonies arrayed in 384-well format must be provided for each batch of images analysed. This ensures
that colonies in sparsely populated regions of the plate can be aligned to the reference image in order to correctly determine their positions
in 384-well format. In order for the images to be aligned correctly, all images must be of the same dimensions and acquired in exactly the
same positioning. B: A raw image of colony patterns for 8 ageing cultures of different viabilities. C: A 384-well grid is aligned to the raw
image according to the reference image and colonies are identified. This image is produced by gitter [51]. D: The distribution of colony
sizes for a batch of plates is analysed and thresholded in order to classify colonies as present or absent in each position on the 384-well
plate. Red indicates present, blue indicates absent. E: The number of colonies present at each dilution factor for each culture is counted
and indicated at the centre of each quadruplicate. Colonies are coloured from red through amber to green according to the number of
colonies which grew in each quadruplicate. This creates a vector for each sample indicating how many colonies are present at each dilution
factor.
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tion factor is pinned in quadruplicate, the number of colonies present at each
dilution factor can be modelled as binomially distributed according to the

probability of observing a colony.
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Figure 2.5: Probability distributions for colony patterns in high-throughput CFU
assay.

A: In the case that there is a mean of 1000 CFUs per droplet in an ageing culture,
probability distributions for the number of CFUs per droplet according to the Pois-
son distribution is shown for all dilution factors in a 3-fold serial dilution. For this,
it is assumed that the mean number of CFUs per droplet exponentially decreases
with each dilution factor, which hence changes the shape of the distribution for
each dilution factor. Green bars indicate that there is at least 1 CFU in a droplet,
in which case a colony will grow. Red bars indicate there there are 0 CFUs in a
droplet, in which case no colony will grow. B: For the same case as in A, probability
distributions for the number of colonies colonies at each dilution factor is shown ac-
cording to the binomial distribution if serial dilutions are pinned in quadruplicate.
The shape of the distribution changes as a function of the probability of observing
a colony (i.e. the sum of all green bars for the equivalent dilution factor in A). Bars
are coloured from red through amber to green according to the number of colonies
grown. C: Same as A, for the case of a mean of 10 CFUs per droplet. D: Same as
B, for the case of a mean of 10 CFUs per droplet.
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Using this model, it is hence possible to calculate the probability of ob-
serving a particular colony pattern if the mean number of CFUs per droplet
is known. For example, in the hypothetical case that there is a mean of 1000
CFUs per droplet in an ageing culture, Figure 2.5A shows the probability dis-
tributions for the number of CFUs pinned at each dilution factor according
to the Poisson distribution, from which the probability of a colony growing
can be calculated. Likewise, Figure 2.5B shows the probability distributions
for the number of colonies which grow at each dilution factor according to
the binomial distribution. Conversely, Figures 2.5C & 2.5D respectively show
equivalent Poisson and binomial probability distributions in the hypothetical
case that there is a mean of 10 CFUs per droplet in an ageing culture. From
the distributions, it is clear in this case that a colony pattern generated from
10 CFUs per droplet will span less dilution factors than a pattern generated
from 1000 CFUs per droplet, consistent with what is expected in a spot assay.

2.2.4 Estimation of viability from colony patterns

The model described in the previous section allows colony patterns to be pre-
dicted if the mean number of CFUs per droplet is known. In order to quantify
CFUs from colony patterns, the model is used to perform a maximum likeli-
hood estimation - that is, to determine the mean number of CFUs per droplet
which is most likely to give rise to the observed colony pattern. For this,
Brent optimisation [53] is used to find the value of mean CFUs per droplet
which maximises the log-likelihood function. Maximum likelihood estimators
are known to be highly sensitive to anomalous data points [54]. In this con-
text, anomalous data points may arise due to a colony being misclassified
as present or absent in the image analysis pipeline, a contamination on the
plate, or pinning errors. To account for this, an error checking algorithm is
implemented, which identifies and removes data points which are extremely
unlikely to observe, greatly improving the stability of the maximum likelihood
estimator. Measurements for which several data points had to be removed in

order to achieve a stable maximum likelihood estimator can be excluded from
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downstream analyses. Confidence intervals for the estimate of mean CFUs per
droplet are calculated using likelihood ratio testing [55]. This represents the
statistical error associated with the maximum likelihood estimator, and does
not include other technical sources of error (such as errors in the serial dilu-
tions). Figure 2.6A shows a timelapse of colony patterns for chronologically
ageing wild-type cells (972 h-) in YES. Corresponding maximum likelihood
estimates, in addition to 95% confidence intervals, are plotted as a function of

time in Figure 2.6B.
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Figure 2.6: Analysis of colony patterns for wild-type cells grown in YES.

A: Timelapse of colony patterns for chronologically ageing wild-type cells grown
in YES. Colonies are coloured from red through amber to green according to the
number of colonies grown at each dilution factor. The number of colonies grown at
each dilution factor is shown in the centre of each quadruplicate. B: The number of
CFUs per droplet is estimated via maximum likelihood based on the colony patterns
in A, and is used to generate a lifespan curve. Error bars represent 95% confidence
intervals based on likelihood ratio testing.

2.2.5 Validation of high-throughput CFU assay

To validate this assay, I measured lifespan curves for 6 strains with known
lifespan differences using both the traditional and high-throughput assays. For
wild-type, the 972 h- strain was used, gsk3::natMX6 h- was generated in a
previous study [56], whilst reb1::natMXé h-, atfl:matMXé6 h-, php2::natMXe6
h- and pkal::kanMX4 h- are unpublished strains from the Bdhler laboratory
strain collection and were generated as described previously [57]. For CLS
experiments, strains were streaked to single colonies on YES agar. After 2
days growth at 32°C, a single colony of each strain was picked and used to

inoculate YES pre-cultures. These were grown for 1 day at 32°C, shaking at
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Figure 2.7: Comparison of traditional and high-throughput CFU measurements.

A: Lifespan curves for 6 strains with different CLS measured used the traditional methods. B: For the same cultures as in A, lifespan
curves measured using the high-throughput method. C: Scatter plot comparing CFU measurements for all strains across all timepoints.
Green line shows a linear regression of log-transformed CFU values (traditional vs high-throughput). Pearson correlation coefficient is also
shown in green.
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170rpm, after which YES cultures were inoculated. Cultures were grown at
32°C, shaking at 170 rpm. After 2 days cultures had reached stationary phase,
which is taken to be day 0 of the lifespan curve. For each culture, CFUs
were measured using the high-throughput method, and using the traditional
method as described previously [58].

Figure 2.7A shows lifespan curves for these 6 strains measured using the
traditional method. Lifespan curves for the same cultures measured using
the high-throughput method show good agreement (Figure 2.7B) - pkalA and
reb1A are both long-lived relative to the wild-type according to both methods,
whilst gsk3A, atfIA and php2A are all short-lived relative to the wild-type
according to both methods. In order to quantify the extent of the agreement,
all traditional method CFU measurements (all strains across all timepoints)
are plotted against the corresponding high-throughput measurement in Figure

2.7C, with the two methods showing excellent agreement (r = 0.98).

2.2.6 Analysis of deletion mutant lifespan curves

In order to facilitate downstream analyses and integration with other datasets,
I have developed a proxy which summarises the lifespan of a culture as a single
number - in essence, a dimensionality reduction. To demonstrate this, [ use
CLS data for 47 deletion mutants with different lifespans, in addition to the
wild-type (the 972 h- strain) [59]. Colony patterns and maximum likelihood
estimates of CFUs per droplet for this wild-type sample were previously shown
in Figure 2.6. The deletion mutants originated from a prototroph deletion
library, constructed as described previously [27]. The 47 selected mutants
were picked manually, re-streaked to single colonies on YES, and incubated at
32°C for 2 days. The wild-type was also streaked to single colonies on YES
and incubated at 32°c for 2 days. YES pre-cultures were inoculated by picking
single colonies of each strain, and were grown for 1 day at 32°C, shaking at
170 rpm. YES cultures were inoculated from pre-cultures and grown at 32°C,
shaking at 170 rpm. After 2 days cultures had reached stationary phase, which

is taken to be day 0 of the lifespan curve. CFUs were measured for each strain
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using the high-throughput method.
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Figure 2.8: Proxy calculation for 48 strains.

A: Lifespan curves for 3 strains of different lifespan. For each strain, a constrained
smoothing spline is fitted to the CFU measurements, shown in blue. Horizontal
dashed lines in red indicate 100% viability and 5% viability according to the fitted
values. Red vertical dashed lines indicate the time at which 5% viability is reached
according to the fitted values. The square root of this value is used as the lifespan
proxy. B: CLS curves are plotted for 48 strains of different lifespans. Lifespan curves
are coloured according to the proxy calculated for each curve.
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For each strain, a smoothing spline was fitted to the lifespan curve using
the cobs package in R [60]. This spline was constrained such that the fitted
values must always decrease. For each strain, the time taken for viability to
decrease to 5% was calculated according to the fitted values. The square root
of the time taken for viability to decrease to 5% is used as the proxy. Figure
2.8A shows the smoothing spline fit and proxy calculation for 3 strains: the
alg14A (short-lived), wild-type and pac3A (long-lived). Lifespan curves for all
48 strains are shown in Figure 2.8B. Lifespan curves are coloured by proxy,
demonstrating that the proxy effectively discriminates long- and short-lived

mutants in a quantitative manner.

2.2.7 Development of an R package to analyse high-
throughput CFU assays

In order to facilitate usage of the high-throughput CFU method, I developed an
R package, DeadOrAlive, containing functions for image analysis, extraction
of colony patterns, maximum likelihood estimation and plotting/analysis of
lifespan curves. This can be used to construct an analysis pipeline for high-
throughput CFU data, as outlined in the DeadOrAlive tutorial (Appendix A).
In addition, the functions allow a great deal of flexibility; colonies can be
arrayed in different density formats, different dilution factors can be analysed,
and the proxy can be customised. Hence, the analysis pipeline can easily be
tailored for different experimental setups. The package can be downloaded and
installed from GitHub (www.github.com/JohnTownsend92/DeadOrAlive).

2.3 Discussion

2.3.1 Differences between the high-throughput and tra-
ditional CFU assays

I validate this assay by measuring CLS for strains with different lifespans using
both the traditional and high-throughput assays in parallel. Despite excellent

agreement between the CFU measurements for both assays (Figure 2.7C),
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there are some notable differences in the shapes of the CLS curves measured
using the traditional (Figure 2.7A) and high-throughput (Figure 2.7B) assays.
The reason for this is that the limit of detection for the high-throughput assay
is substantially higher than for the traditional assay. The limit of detection
for the high-throughput assay is slightly lower that 1 CFU per droplet, as a
droplet is the amount of culture which is pinned onto agar. However, the limit
of detection in the traditional assay is approximately 10 CFUs per mL. This
is because, at the lowest dilution factor, 100 pL of undiluted culture is spread
onto solid agar. Hence, the high-throughput assay is not suitable for recording
CFUs at very low concentrations. However, this is not a problem in the context
of chronological ageing studies, as this concentration of CFUs is only reached
after the vast majority of cells have died. At this point in stationary phase,
nutrients released from dead cells support survival and growth of the remaining
cells, a phenomenon described in bacteria [61] and recently in S. pombe [62].
Hence, CFU measurements at this concentration reflect factors unrelated to

chronological ageing.

2.3.2 Mutants with altered CLS

This assay has been used to record CLS curves for a variety of mutants. In
order to validate this assay, CLS curves were recorded for mutants which have
previously been described to differ in CLS (Figure 2.7B). The majority of
mutants show good agreement with published results. pkalA [63] and reb1A
[64] have been previously annotated as long-lived, whilst gsk3A [56] and atfIA
[63] have previously been annotated as short-lived.

A notable discrepancy was for php2A, which was short-lived according to
both the traditional (Figure 2.7A) and high-throughput (Figure 2.7B) assays,
yet has previously been described as long-lived [65]. Php2 is a subunit of the
evolutionary conserved CCAAT-binding complex, a transcription factor which
positively regulates respiratory genes [66, 67]. Upregulation of respiration (and
downregulation of fermentation) is required for stationary phase survival, as

cells must switch to a more efficient metabolism upon glucose exhaustion [68,
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69]. Hence, it is unsurprising that php2A cells display an altered CLS, although
it is unclear why opposite effects can be observed. One possibility is that
differences in media composition can alter the effect that Php2 has on CLS, as
experiments in this study were performed in rich medium whilst the previous
study used minimal medium [65]. This difference may be critical, as cells
grown in rich medium do not require respiration, whilst cells grown in minimal
medium must upregulate respiration in order to synthesise amino acids [70].
Hence, it is plausible that a respiratory-deficient mutant such as php2A would
behave differently when cultured in rich vs minimal media, which may explain
the opposite CLS effects observed. Another important consideration is the
presence of auxotrophies, with the php2A mutant from the previous study [65]
also containing leu1-32 ade6-M216 selectable markers. Leucine auxotrophies
and leucine supplementation have both been shown to affect CLS in budding
yeast in a respiration-dependent manner [71]. Hence, the presence of a leucine
auxotrophy, in addition to leucine supplementation in minimal medium [65],

may also affect the CLS of a respiratory-deficient mutant such as php2A.

2.4 Conclusion

In this chapter, I show that by adapting the spot assay to produce a digital pat-
tern of colonies which can be modelled using simple probability distributions,
a quantitative CFU assay can be established. This can be largely automated
via liquid handling and pinning robots, creating an assay which is vastly less
resource-intensive and laborious than the traditional CFU assay. Hence, this
assay can serve as an efficient alternative in day-to-day CFU measurements,
in addition to providing a platform from which high-throughput, systematic

CLS studies can be conducted.



Chapter 3

Establishing a platform for
genome-scale chronological
lifespan studies in fission yeast

via barcode sequencing

3.1 Introduction

Genome-scale deletion collections of non-essential mutants are powerful tools
for interrogating genome function. In a typical screen, each mutant is arrayed
on solid agar in a high-density format using a pinning robot, and the colony
size of each mutant is used as a fitness readout [51]. This technology has been
applied to uncover insights into how the genetic basis of fitness changes with
respect to genetic, environmental or pharmacological perturbations, which can
serve as a platform for systematically dissecting genetic pathway structure [72].
However, this approach is limited in that it can only be used to investigate
growth-related phenotypes. CLS is an example of a phenotype which cannot
be studied by using colony size as a readout, as lifespan describes the death,
not growth, of cells. Hence, an alternative approach is required to study CLS

using genome-scale deletion collections.

In both the budding yeast [37] and fission yeast [38] deletion collections,
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Figure 3.1: Systematic construction of barcoded deletion mutants in fission yeast.
Each open reading (ORF) is deleted and replaced with an antibiotic resistance cas-
sette which is used as a selectable marker (KanMX4). For each ORF, the targeting
cassette contains regions of homology (RH) to the DNA sequences flanking the ORF,
facilitating deletion of the ORF by homologous recombination. Each targeting cas-
sette also contains two DNA barcodes - the UpTag and DnTag. These are flanked
by universal priming sequences - Ul and U2 for the UpTag, and D1 and D2 for
the DnTag, which allow each barcode to be amplified via polymerase chain reaction
(PCR).

each mutant contains unique DNA barcodes which can be amplified and se-
quenced. In order to achieve this, each non-essential open reading frame was
deleted and replaced with an antibiotic resistance cassette flanked by two
unique DNA barcodes - the UpTag, upstream of the resistance cassette, and the
DnTag, downstream of the resistance cassette (Figure 3.1). Hence, all mutants
from the collection can be pooled and the relative abundance of each mutant
in the pool can be quantified by barcode sequencing (Bar-seq). This greatly in-
creases the versatility of the deletion collections, extending their functionality

beyond colony-based fitness screens.

In this chapter, I present key steps required in order to establish a plat-
form for genome-scale CLS studies using Bar-seq, building on previous work
[27]. The first step of this involved decoding the barcodes for the fission yeast
deletion collection, as the barocdes for mutants generated in the latest ver-
sion of the deletion collection were previously uncharacterised. I also address
key technical and biological biases which arise from the re-growth protocol

necessitated by the persistence of DNA from dead cells.
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3.2 Methods & Results

3.2.1 Decoding of deletion mutant barcodes

Barcodes were decoded for each mutant using a PCR-based genome walking
strategy, as described in Romila et al., 2021 [59]. Briefly, pools of mutants
from the Bioneer deletion library (version 5, Bioneer, South Korea) were gen-
erated. DNA was extracted from the pools and a primer extension procedure
was used to amplify the barcodes alongside the adjacent genomic region. PCR
products were sequenced and reads were analysed using an in-house Python
script, Barcount (www.github.com/Bahler-Lab/barcount), which extracted
barocdes and genomic sequences from the reads. Genomic sequences were
mapped to the genome using Bowtie2 [73], and the nearest upstream/down-
stream gene was identified using BEDTools [74], accounting for the directional-
ity of the gene and the type of barcode (UpTag or DnTag) as required. Reads
for which a barcode could not be extracted or the genomic sequence could not
be uniquely mapped were discarded.

In order to match barcodes to genes with high confidence, I identified
barcode-gene pairs which appeared with high frequency and were specific.
This was performed separately for UpTags and DnTags. To account for pos-
sible mutations which are known to appear in synthetic barcode sequences
[75], pairwise Levenshtein distance was calculated between all barcodes, and
barcodes were assembled into clusters where they differed by no more than 3
mutations. A consensus barcode was defined for each cluster as the average
sequence of the cluster. A consensus barcode was automatically assigned to a

gene if the following 3 criteria were met:
1. The barcode-gene pair was observed at least 10 times.

2. The barcode was specific to the gene - at least 80% of the reads containing

the barcode mapped to the gene.

3. The gene was specific to the barcode - at least 80% of the reads which

mapped to the gene contained the barcode.
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Barcodes were decoded for the majority of mutants using this approach.

However, there were numerous reasons for which a barcode could not
be automatically decoded for a mutant. The first was that not every mu-
tant was revived from the cryostock and hence some were not sequenced,
which is a typical caveat when working with mutant libraries. The second
was that sometimes the same barcode was associated with two different mu-
tants. Hence, even though the barcodes are known for these mutants, they are
not suitable for use in Bar-seq experiments as the barcode cannot be uniquely
associated to a mutant, a phenomenon described previously when barcodes
for earlier versions of the Bioneer library were decoded [41]. The third rea-
son was that sometimes the genomic region could not be uniquely mapped
to the genome, or could not be mapped at all. In these cases, it was not
possible to associate the barcode with a mutant. The final reason was that
sometimes the correct gene was not automatically identified, which was often
the case in regions of the genome containing many genes in close proximity.
These cases required manual inspection of the mapped genomic reads in or-
der to correctly associate a barcode with a mutant. For this, I developed a
genome browser which shows the mapped reads with respect to the position of
mutants from the deletion library, allowing for manual curation of barcodes.
Figure 3.2A shows the mapped reads for a simple case where automatic assign-
ment of both UpTag and DnTag were possible for a mutant, whilst Figure 3.2B
shows a more complex case which required manual curation. This browser is
part of the BarSeqTools R package (www.github.com/Catalina37/Barcount_
BarSeqTools_Pipelines/tree/master/BarSeqTools).

Using a combination of automatic and manual barcode curation, it was
possible to decode both UpTag and DnTag for 3011 mutants. In addition, 96
mutants were decoded for UpTag only, and 99 for DnTag only. Hence, at least
one barcode was decoded for 3206 mutants, which represnts 94% of mutants
in the latest version of the Bioneer library. In comparison, previous attempts

to decode older versions of the Bioneer library managed to decode 2560 [41]
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Figure 3.2: Manual curation of barcodes by viewing aligned reads in a genome
browser.

Tracks from top to bottom are:
1. chromosomal position
non-Bioneer genes
Bioneer genes (with the selected Bioneer gene shown in black)

histogram of aligned genomic fragments associated with UpTags

AR I

histogram of aligned genomic fragments associated with dnTags

For the UpTag and DnTag tracks, the direction of the aligned genomic fragment is
represented by the direction of the peak. Below are two bipartite networks (one for
UpTag and one for DnTag) showing the relevant barcodes associated with the se-
lected mutant, and the mutants with which those barcodes are associated. For genes,
the size of the node represents the number of reads which contained a genomic frage-
ment which mapped to that gene. For barcodes, the size of the node represents the
number of reads which contained that barocde. The selected mutant is shown in
black, and other mutants in white. Barcodes are coloured based on the gene to which
the corresponding genomic fragment was mapped, with each unique gene-barcode
pair being coloured differently. A: Barcodes associated with SPCC663.10, a mutant
for which both UpTag and DnTag were automatically assigned. B: Barcodes associ-
ated with SPCC663.13¢, a mutant which required manual curation because another
Bioneer gene, SPCC663.14c, was located almost immediately adjacent to this gene.
In the case of the UpTag, many reads were correctly assocated with SPCC663.13¢
(blue). However, some of the genomic fragments were long enough to extend into
the neighbouring gene, and were hence incorrectly mapped to SPCC663.14c (red).
In the case of the DnTag, all reads were correctly associated with SPCC663.13¢
(purple). However, due to the close proximity of the neighbouring gene, many
reads which should have been associated with SPCC663.14c were incorrectly as-
sociated with SPCC663.13c (green). Thus, two different barcodes were associated
with SPCC663.13c. Some genomic fragments from the other barcode were correctly
associated with SPCC663.14c (gold).
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and 2473 [27] mutants. Consequently, a substantially greater proportion of
the fission yeast non-essential proteome can now be interrogated in Bar-seq

screens.

3.2.2 Persistence of DNA from dead cells necessitates
re-growth of stationary phase cultures prior to

barcode sequencing

In order to apply Bar-seq to detect mutants with altered CLS, the typical
Bar-seq approach used to profile mutant fitness [41] must be adapted to deal
with biological and technical biases introduced by the CLS protocol. For this, I
analysed a Bar-seq dataset of chronologically ageing mutant pools, as described
in Romila et al., 2021 [59]. This consisted of 3 independent prototroph pools
of Bioneer mutants grown to stationary phase in 3% glucose YES. At days 0,

2,3,5,7,9 and 11 of stationary phase, the following was performed:
= CFUs were measured using the traditional method.
= DNA was extracted from cells.

= Analiquot of ageing culture was used to inoculate a re-growth culture
in 3% glucose YES. These cultures were grown to stationary phase and

DNA was extracted from cells.

UpTags and DnTags were amplified from the extracted DNA using PCR. Fol-
lowing next generation sequencing, barcodes were extracted from reads and
assigned to a gene based on the look-up table compiled, using an in-house
Python script, Barcount (www.github.com/Bahler-Lab/barcount). For each
gene, counts for UpTag and DnTag were summed to create a total count for
each gene. Figure 3.3 shows the viability curves based on CFU measurements
for the 3 pool replicates.

It has been previously assumed that persistence of DNA from dead cells
can introduce a bias when barcode abundance is used to infer CLS. One ap-

proach to dealing with this was to re-grow cells on solid agar prior to sequencing
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Figure 3.3: Chronological lifespan curves of pooled mutants.

[42], whilst in another study which investigated CLS in quiescent cells follow-
ing nitrogen starvation, such an approach was not required as quiescent cells
survive for several weeks, far longer than DNA is expected to persist [27]. In
the current study, which investigates CLS in stationary phase cells grown in
rich medium, it was expected that persistence of DNA from dead cells would
be a severe bias, and this is confirmed by the pairwise correlations of barcode
frequencies in stationary phase cells (Figure 3.4A). Barcode frequencies for all
replicates across all timepoints were almost perfectly correlated, with very little
changes in barcode frequencies being observed throughout 11 days of station-
ary phase. This is corroborated by measurements of DNA levels throughout
stationary phase, which were reported to change very little throughout sta-

tionary phase in the Romila et al., 2021 study [59].

Conversely, pairwise correlations in barcode frequencies from re-growth
cultures were much more varied (Figure 3.4B), indicating that culture re-

growth captured differences in mutant survivial throughout stationary phase.
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Figure 3.5: Comparison of re-growth bottleneck size to library size for ageing
pools.

The number of CFUs used to inoculate the re-growth cultures is shown in blue,

which represents the size of the sampling bottleneck when re-growth cultures are

inoculated. Blue dashed line shows a constrained smoothing spline fitted to this

data. The size of each library is shown in red. The pool is indicated by the shape.

Specifically, correlations were high between days 0 and 2, suggesting that most
mutants remained viable at these timepoints. These correlations began to fall
apart at day 3, suggesting that short-lived mutants began to die and long-lived
mutants were starting to become enriched. This is consistent with the drop
in pool viability observed between days 2 and 3 (Figure 3.3). These analyses
show that chronologically ageing pools of mutants must be re-grown in order

to minimise the contribution of barcodes which persist from dead cells.

3.2.3 Culture re-growth introduces a sampling bottle-
neck which must be accounted for in order to
model mutant abundance correctly

The re-growth pools at day 5 were poorly correlated with those from the
beginning of the experiment, suggesting that the vast majority of mutants were
dead at this point, consistent with the viability curve for the pools. Beyond
day 5, pools showed poor correlations even between replicates at the same
time point, suggesting that re-growth pool composition at these timepoints is

driven by stochastic sampling of the few remaining mutants.
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Bar-seq datasets, being genome-scale count data, can be analysed using
statistical models developed for RNA-seq datasets. This assumes that read
counts follow a negative binomial distribution [76]. However, in the case of the
re-growth protocol, we are not interested in modelling the counts per se, but
instead modelling the number of surviving cells in the ageing stationary phase
culture. Hence, it is important to note that there is a sampling bottleneck when
an aliquot of ageing culture is used to inoculate a re-growth culture, and this
bottleneck becomes increasingly severe as culture viability decreases. Based on
the number of CFUs / mL and the volume of ageing culture used to inoculate
the re-growth culture, it is possible to estimate the size of this bottleneck
(Figure 3.5). For day 5 and beyond, I estimate the size of this bottleneck to
be 100 cells. This is many orders of magnitude lower than the corresponding
library sizes for the re-growth pools. Hence, it is clear from this that the
clonal descendants of the cells in the inoculum have been sequenced multiple
times. Given that statistical power increases with the number of counts under
the negative binomial distribution, the result of this clonal amplification is in
an overestimation of statistical power. Similar conclusions have arisen from a
recent study, where it has been demonstrated that barcode count data does
not follow a negative binomial distribution in cases where there is high degree
of clonal amplification as a result of a strong selection bottleneck [77]. This
problem is analagous to the the well known problem of PCR duplicates which
arise in RN A-seq experiments, where multiple reads can originate from the
same RNA molecule [78]. Given that the size of the bottleneck is known
based on the CFU data, I implement a simple normalisation strategy where
read counts are scaled such that the library size equals the bottleneck size
in cases where the library size is greater than the bottleneck size. In this
case, the normalisation applies to all re-growth libraries from day 3 to day 11
(Figure 3.5). This ensures that, on average, each normalised read represents

one stationary phase cell.
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3.2.4 Detecting mutants with altered chronological
lifespan

In order to detect mutants with altered CLS, barcode counts for the normalised
re-growth libraries at day 3 were comparied to those at day 0. This is because
barcode counts at day 3 should capture differences in lifespan for both long-
and short-lived mutants as the pool had substantially decreased in viability
but was not completely dead (Figure 3.3). Conversely, barcode counts at day
2 donot differentiate long-lived mutants from the population average as the
majority of mutants were still alive at this point, whilst barcode counts at
day 5 and beyond do not differentiate short-lived mutants from the population
average as the majority of mutants were dead at this point. In addition, library
sizes from day 5 onwards are too small to perform differential fitness analysis

following normalisaiton for the sampling bottleneck.

Differential fitness analysis based on normalised barcode counts in the re-
growth cultures was performed using edgeR (version 3.24.3) [76]. Only data
for day 0 and day 3 were used. In order to account for differences in mutant
frequency between replicate pools at day 0, pool was included as a term in
the model. Read counts were analysed using a negative binomial generalised
linear model, and likelihood ratio testing was used to determine p-values for
differences in barcode frequencies between days 0 and 3. Using a fold change
(FC) cut-off of | logz FC | > logz 1.5 and a false discovery rate (FDR) cut-off
of FDR < 0.05, 341 long-lived mutants and 1246 short-lived mutants were
identified (Figure 3.6).

3.2.5 Validaiton of Bar-seq screen against high-throughput
CFU assay

In order to validate the results from the Bar-seq screen, I use the data from the
47 mutants for which lifespan curves were recorded using the high-throughput
CFU method (Figure 2.8). logz FC (day 3 vs day 0) are well correlated with

proxy scores for the 47 mutants (v = 0.76, Figure 3.7). This is reassuring con-
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Figure 3.6: Volcano plot showing changes in pool composition through stationary
phase.

log, FC in barcode abundance for day 3 vs day 0 is plotted against -logio FDR. A

fold change (FC) cut-off of | loga FC | > logz 1.5 and a false discovery rate (FDR)

cut-off of FDR < 0.05 were used to define mutants as long- or short-lived. 341 long-

lived mutants are shown in red, and 1246 short-lived mutants are shown in blue. All

other mutants are shown in black.

sidering there are substantial differences in the biological contexts and analyti-
cal approaches employed by the two methods. For example, all mutants in the
pool share the same extracellular environment, and so differences in lifespan
must be caused by cell-intrinsic factors. However, lifespan differences between
mutants grown in batch cultures may reflect cell-intrinsic or cell-extrinsic fac-

tors.

3.2.6 Late stationary phase pools become dominated by
short-lived mutants

Each of the re-growth libraries for late stationary phase pools (days 9 and
11) was dominated by a small number of mutants, although this was highly

stochastic (Figure 3.4, Figure 3.8A. 29 mutants which contributed to at least
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Figure 3.7: Validaiton of Bar-seq screen against high-throughput CFU assay.

In order to validate the Bar-seq CLS screen, lifespan proxies calculated for 47 mu-
tants using the high-throughput CFU method (Figure 2.8) are compared to their
respective log, FC (day 3 vs day 0) calculated from the Bar-seq screen. A linear
regression between log; FC (day 3 vs day 0) and the lifespan proxy alongside Pear-
son correlation coefficient, , is shown in blue. Red horizontal dashed line shows the
lifespan proxy for the wild-type, whilst red vertical dashed line shows logz FC (day
3 vs day 0) = 0, which represents the average lifespan of the pool.

1% of the reads in at least 1 of the replicate pools at days 9 or 11 were defined as
highly abundant in late stationary phase. In order to investigate this further,
normalised read counts for re-growth pools across all timepoints were analysed
using edgeR (version 3.24.3) [76], treating time as a categorical variable and
including pool as a variable in the model. As before, read counts were anal-
ysed using a negative binomial generalised linear model, and likelihood ratio
testing was used to determine p-values for differences in barcode frequencies.
These 29 mutants typically decreased in abundance in early stationary phase
and increased in abundance in late stationary phase (Figure 3.8B). The early
decrease in abundance between days 0 and 3 was statistically significant for

21 of these mutants (Figure 3.8C). Furthermore, the logz FC (day 3 vs day 0)
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Figure 3.8: Late stationary phase pools become dominated by short-lived mutants.

A: Pie charts showing mutant abundances in re-growth pools in late stationary
phase (days 9 and 11). There were 29 mutants which contributed to at least 1% of
the reads in at least 1 of the replicate pools at either of these timepoints, which I
define as highly abundant in late stationary phase. These mutants are shown in red,
all other mutants in dark grey. B: Line plot where logz FC of barcode abundace for
each timepoint (vs day 0) is shown for each mutant. Mutants which dominate late
stationary phase pools typically decrease in abundance in early stationary phase
and increase in abundance in late stationary phase. C: Volcano plot where log:
FC in barcode abundance for day 3 vs day 0 is plotted against -logio FDR. 21
of the 29 mutants which are defined as highly abundant in late stationary phase
significantly decrease in abundance between days 0 and 3, using an FC cut-off of
log, FC < log; 1.5 and an FDR cut-off of FDR < 0.05. D: Cumulative frequency
plot showing the distributions of log, FC (day 3 vs day 0) for mutants defined as
highly abundant in late stationary phase and for all other mutants. Mutants which
dominate late stationary phase pools have a significantly lower log, FC than all
other mutants (Kolmogorov-Smirnov test, D = 0.44, p = 0.00004). This indicates
that late stationary phase pools become dominated by mutants which are classified
as short-lived according to the analysis of earlier timepoints.

for these 29 mutants was significantly lower than for all other mutants (Fig-
ure 3.8D), indicating that late stationary phase pools become dominated by
mutants which were classified as short-lived according to an analysis of ear-
lier timepoints. This indicates that pool composition is dynamic throughout
stationary phase, and that late stationary phase pool composition may reflect
factors unrelated to longevity. Indeed, it is known in bacteria that nutrients
released by dead cells may support the survival of other cells in late stationary
phase [61], and a similar phenomenon has recently been described in fission

yeast during quiescence [62].

3.3 Discussion & Conclusion

In this chapter, I present an analysis of a Bar-seq dataset which I use to estab-
lish a pipeline for the identification of long- and short-lived mutants in CLS
screens of pooled deletion mutants, which addresses key technical, statistical
and biological biases. In particular, persistence of barcodes from dead cells
necessitates re-growth of ageing cultures prior to sequencing. This introduces

a sampling bottleneck that becomes increasingly more severe as viability de-
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creases, which must be accounted for in order to ensure that read counts reflect
stationary phase pool composition and that statistical analyses are valid. An
effective and simple approach for the detection of long- and short-lived mutants
is to compare normalised read counts at the beginning of stationary phase to
those at a timepoint where viability has substantially decreased, but not all
cells are dead. At this timepoint, pool composition reflects both long- and
short-lived mutants, there are a sufficient number of reads following normali-
sation to perform differential fitness analysis, and results are not confounded
by other biological phenomena which can cause changes in pool composition
in late stationary phase. Enrichment analyses of long- and short-lived mutants
identified and subsequent discussions are not presented, as mutants with al-
tered chronological lifespan are discussed in the context of rapamycin-mediated

lifespan extension in Chapter 4.



Chapter 4

Dissecting the genetic basis of
rapamycin-mediated lifespan
extension recapitulates the
spatial organisation of TOR

signalling

4.1 Introduction

Rapamycin is a macrolide isolated from Streptomyces hygroscopicus and was
first characterised as an antifungal agent [79]. Its growth-inhibitory properties
were later found to extend to eukaryotic cells in general, leading to its use as
an anticancer drug and as an immunosuppressant to prevent tissue rejection
in organ transplants [80]. Investigations into the molecular mechanisms un-
derlying rapamycin’s anti-proliferative properties led to the identification of
the protein target of rapamycin (TOR) in budding yeast [81], with subsequent
studies identifying the mammalian ortholog [82, 83, 84]. Interest continued
to grow following reports that rapamycin treatment or genetic interventions
which suppress TOR signalling could extend lifespan in a variety of inverte-

brate model systems, including budding yeast (both RLS [85] and CLS [33]),
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nematode worms [86] and fruit flies [87]. These studies helped consolidate the
view that the genetics of ageing is conserved across eukaryotes [45]. It was
subsequently shown that rapamycin treatment could extend also lifespan in
mice [88]. This study was a significant milestone in the search of treatments
for age-related diseases in humans, as it was the first reported case of a phar-
macological agent which could significantly increase the lifespan of a mammal
in both sexes, even when applied later in life. Following this, clinical trials
are now beginning to show that the anti-ageing TOR inhibition also apply to
humans [89].

TOR proteins are serine/threonine kinases which act as master reg-
ulators of cellular growth and metabolism in response to nutrient signals
[90, 91, 92, 93, 94]. In animals, TOR signalling has also evolved to integrate
hormonal cues [90, 91, 92]. Misregulation of TOR signalling is associated with
a variety of chronic diseases including as cancer, obesity, autoimmune diseases,
cardiovasular diseases and metabolic disorders [80, 90, 91]. TOR proteins exist
as part of two structurally and functionally distinct complexes - TORC1 and
TORC2. In mammals, a single TOR kinase associates with different regulatory
subunits in order to form either complex [92]. Many unicellular eukaryotes,
including budding yeast and fission yeast, contain two TOR kinases, and the
affinities of each kinase to the two TOR complexes can differ [93, 94, 90].
TORC1 is acutely sensitive to rapamycin [95] and is the far better studied
of the two complexes. In response to amino acid availability, TORC1 posi-
tively regulates growth-promoting processes such as ribosome biogenesis and
translation, and negatively regulates starvation responses such as autophagy
[90]. TORC2 is not sensitive to acute rapamycin treatment [95, 96], but does
display some sensitivity in response to chronic rapamycin treatment [92]. Its
functions are less well characterised but are clearly diverse, and include reg-
ulating aspects of plasma membrane homeostasis, cytoskeleton organisation

and genome stability [97, 98, 99, 100].

Furthermore, the spatial organisation of the TOR complexes is related
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to their distinct roles of TOR signalling. Whilst TORC2 is located at the
plasma membrane [97, 98], two spatially and functionally distinct pools of
TORC1 exist - one at the vacuole membrane (lysosome membrane in mam-
mals) which positively regulates protein synthesis, and another at endosome
membranes which negatively regulates autophagy [101]. This likely reflects
the different information which is conveyed by amino acid concentrations at
the vacuole and in the cytoplasm. The vacuole serves as an amino acid reser-
voir [102, 103], and hence amino acid concentrations at the vacuole reflect
the potential for the cell to synthesise new proteins. Upon activation, vacuo-
lar TORC1 phosphorylates the S6 kinase(s), resulting a global induction of
ribosome biogenesis and protein translation [101, 104]. On the other hand, cy-
toplasmic amino acid concentrations are much more tightly regulated in order
to maintain cytoplasmic homeostasis, and only begin to drop during times of
nutrient depletion [105]. Concordantly, endosomal TORC1 is responsible for
initiating autophagy in response to a drop in cytoplasmic amino acid concen-
trations, allowing the cell to replenish its amino acid pool by degrading proteins
[106, 107]. Hence, TORC1 achieves protein homeostasis by balancing protein
synthesis and protein degradation in response to amino acid availability from

two distinct subcellular locations.

Whilst a great deal of studies have dissected the TOR signalling pathway,
this is the first genome-scale study to systematically dissect TOR signalling
specifically in an ageing context. Consistent with several studies which have
investigated rapamycin-mediated lifespan extension, I find a clear requirement
for autophagy to mediate the beneficial effects of rapamycin, consistent with
the notion that rapamycin mimics the effect of dietary restriciton [108, 109].
Furthermore, rapamycin-mediated lifespan extension was also dependent on
diverse aspects of endosome function, highlighting the intimate relationships
between TORC1 signalling, endosomes and autophagy [101, 110, 111]. This
included phosphatidylinositol 3-kinase (PI3K) signalling, which has a crucial

role in coordinating multiple aspects of autophagy initiation and progression
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in response to rapamycin treatment. This study demonstrates that TORC1
inhibition activates multiple downstream effectors, and the coordinated action
of these effectors is required for rapamcyin-mediated lifespan extension via

initiation of autophagy.

4.2 Methods & Results

4.2.1 Pooling and ageing of deletion mutants

3 independently generated prototrophic pools of Bioneer mutants were pre-
pared as described previously [27]. 250 mL pre-cultures of pools in 3% glucose
YES were grown for 15 hours at 25°C without shaking. Cells were centriguged
for 3 minutes at 420 rcf and washed once in the same volume of 3% glucose
YES. The optical density at 600 nm (ODesoo) was measured for each pool.
From each pre-culture, a pair 50 mL cultures were inoculated in 3% glucose
YES at ODesoo = 0.1. To one of the cultures within each pair, 50 yL of 100
pg/mL rapamycin () in DMSO was added to give a final concentration of 100
ng/mL, whilst 50 yL of DMSO was added to the other. These were grown at
32°C, shaking at 170 rpm, and cultures had reached stationary phase after 1
day, which was taken to be day 0 of CLS.

CFUs were measured for cultures at day 0 using the traditional method,
as described previously [58]. CFUs were measured for cultures at days 0, 1, 2,
3,4,5,6,7,9, 11, 13, 15, 17, 20 and 22 using the high-throughput method,
as described in Chapter 2. At the same timepoints, 1 mL aliquots of ageing
cultures were used to inoculate 50 mL re-growth cultures in 3% glucose YES,
which were grown at 32°C, shaking at 170 rpm. When re-growth cultures
reached stationary phase, 1.5 mL aliquots were centrifuged for 3 minutes at
1000 rcf, the supernatant was removed, pellets were snap frozen and stored at
-80°C.

Colony patterns from the high-throughput CFU assay were analysed using
the DeadOrAlive R package, as described in Chapter 2. For each culture, a

smoothing spline which was constrained such that it must always decrease was
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Figure 4.1: CLS of rapamycin-treated and -untreated pools.

CFU measurements are plotted against time for cultures as indicated. A constrained
smoothing spline is fitted to the CFU data for each culture. Samples selected for
sequencing are circled.

titted using the cobs package in R [60]. For all 3 replicate pools, rapamycin
treatment substantially increased CLS (Figure 4.1).

4.2.2 Library preparation and sequencing

Culture Time / days Viability -logio Viability
DMSO 1 0 1.0 0.0
DMSO 2 0 1.0 0.0
DMSO 3 0 1.0 0.0
Rapamycin 1 0 1.0 0.0
Rapamycin 2 0 1.0 0.0
Rapamycin 3 0 1.0 0.0
DMSO 1 4 0.029 1.5
DMSO 2 4 0.10 1.0
DMSO 3 5 0.035 1.5
Rapamycin 1 11 0.019 1.7
Rapamycin 2 13 0.089 1.0
Rapamycin 3 13 0.10 1.0

Table 4.1: Timepoints selected for barcode sequencing.
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Based on the CLS curves for the 6 cultures (Figure 4.1), 12 aliquots of
re-growth cultures were selected for sequencing (Table 4.1). For this, each
culture was sequenced at day 0, where every mutant is assumed to be 100%
viable. In addition, a later timepoint for each culture was selected at a point
where the viability was between 1% and 10%, allowing for the detection of
long- and short-lived mutants.

DNA was extracted from the 12 re-growth samples using a phe-
nol:chloroform protocol. Separate PCRs were performed to amplify UpTags
and DnTags as described previously [59], resulting in 24 barcode libraries.
These were pooled at a total concentration of 4 nM, and PhiX sequencing
control v3 (Illumina, US) to increase the library complexity was added at a
concentration of 5%. Libraries were sequenced on an Illumina MiSeq Instru-
ment with 168 cycles using paired-end reads of 75 bp each and generating

approximately 23 million reads.

4.2.3 Analysis of sequencing data

Pair-end reads were assembled using PEAR [112], and PCR duplicates re-
moved using BBTools [113]. Barcount [59] was used to extract barcodes from
reads and match them to genes according to the look-up tables assembled in
Chapter 3. In order to ensure library size was never greater than the size of the
selection bottleneck necessitated by culture re-growth as discussed in Chapter
3, traditional and high-throughput CFUs recorded on day 0 were analysed us-
ing an interceptless linear model in order to generate a calibration which could
convert CFUs / droplet into CFU / mL, allowing the size of the selection bot-
tlneck to be calculated. For all libraries, library size was greater than the size
of the selection bottleneck, and so no normalisation was required.

An analysis of pairwise correlations of barcount counts revealed good clus-
tering between libraries 3.4. Libraries clustered primarily based on culture
viability, indicating that both rapamycin-treated and -untreated pools become
enriched for long-lived mutants. However, within the older libraries, there was

a clear separation of rapamycin-treated and -untreated pools, indicating that
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Figure 4.2: Pairwise correlations of read counts in rapamycin-treated and -
untreated pools.

Sidebars indicate culture treatment, replicate, barcode type and culture age (with

young representing 100% viability and old representing between 1% and 10% viabil-

ity (Table 4.1).

rapamycin treatment causes different mutants become enriched during ageing.
Subclustering in the young libraries was driven by barcode type, suggesting
the presence of PCR bias. There was also some clustering based on replicate,
suggesting the mutant composition differs between pools. There was no evi-
dence of clustering based on rapamycin treatment in the young libraries. It is
likely that pool composition at the beginning of stationary phase was affected
by rapamycin treatment, but these effects are likely to be subtle and blurred

by the re-growth protocol, and hence not detected in this analysis.
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4.2.4 Identification of mutants with altered response to
rapamycin

Reads were modelled in edgeR (version 3.30.3) [76] using a negative binomial
generalised linear model. Rapamycin treatment was included as a term in the
model in order to account for differences in initial mutant abundance between
DMSO and rapamycin pools. In order to quantify changes in barcode abun-
dance during chronological ageing, -log1o viability was included as a term in
the model (Table 4.1). This also allows viability to be modelled in a more
nuanced way, accounting for the fact that cultures were sequenced at different
days and viabilities. In order to detect mutants which respond differently in
ageing due to rapamycin treatment, an interaction term between rapamycin
treatment and -log1o viability is included. In order to account for technical
biases such as PCR bias and differences in initial mutant composition between
replicate pools, barcode type and replciate were also included as terms in the
model. p-values for differential barcode representation were calculated using
likelihood ratio testing and corrected for multiple testing according to FDR.

Hence, the design matrix is constructed using the following code:

design <- model.matrix( ~ Treatment + MinusLogl10Viability +

Treatment : MinusLogl0OViability + Barcode + Replicate)

In the case of the data presented, this results in a model with the follow-

ing coefficients (coefficients which represent lifespan effects are highlighted in

bold):
1. Intercept
2. logz FC between DMSO and rapamycin at day 0
3. Lifespan score in DMSO
4. logz FC between UpTag and DnTag

5. logz FC between replicate 2 and replicate 1
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6. logz FC between replicate 3 and replicate 1
7. Difference in lifespan score between DMSO and rapamycin

Hence, this model allows the identification of mutants which are long- and
short-lived in DMSQO, in addition to mutants which have a different lifespan
effect in rapamycin, whilst controlling for techincal effects. However, there is
an important contrast which is missing - the lifespan score in rapamcyin. In

order to calculate this score, the following design matrix can be used:

design <- model.matrix( ~ Treatment + Treatment :

MinusLogl0Viability + Barcode + Replicate)

This is known as a nested interaction formula, and fits exactly the same model
as before. However, because the design matrix has been parameterised in a

different way, different coefficients are extracted:
1. Intercept
2. logz FC between DMSO and rapamycin at day 0
3. logz FC between UpTag and DnTag
4. logz FC between replicate 2 and replicate 1
5. logz FC between replicate 3 and replicate 1
6. Lifespan score in DMSO
7. Lifespan score in rapamycin

The units of the lifespan score are logz FC / -log1o Viability, which rep-
resents the logz FC in barcode abundance per order of magnitude of viability
lost - reflecting the fact that barcode abundances change more dramatically
as viability decreases. For instance, a lifespan score of 0 means than barcode
abundance did not change throughout CLS (no lifespan effect), a lifespan score
of 1 means than barcode abundance doubled between 100% and 10% viability
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(long-lived mutant), and a lifespan score of -1 means that barcode abundance
halved between 100% and 10% viability (short-lived mutant). It is also im-
portant to note that lifespan scores are condition-specific, and reflect lifespan
relative to the average lifespan of the pool in that condition. To illustrate,
if a mutant has a lifespan score of 0 in DMSO and a lifespan score of 0 in

rapamycin, it would mean that it essentially behaves like the wild-type.
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Figure 4.3: Identification of mutants with altered CLS.

Lifespan score in DMSO is plotted against lifespan score in rapamycin. In each of
the 3 panels, points are coloured based on FDR to identify mutants with altered
lifespan in DMSO, mutants with altered lifespan in rapamycin, and mutants which
behave differently in rapamycin vs DMSO.

Lifespan scores for DMSO and rapamycin are shown in Figure 4.3. To

identify mutants with altered lifespan in DMSO, altered lifespan in rapamycin,
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Figure 4.4: Functional enrichments involved in rapamycin-mediated lifespan ex-
tension.

Lifespan score in DMSO is plotted against lifespan score in rapamycin. Selected GO

terms and selected mutants are highlighted.
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Figure 4.4: Functional enrichments involved in rapamycin-mediated lifespan ex-
tension.

Lifespan score in DMSO is plotted against lifespan score in rapamycin. Selected GO

terms and selected mutants are highlighted.

and mutants which behave differently in rapamycin vs DMSO, the following
cut-offs were applied: a fold change (FC) cut-off of | logz FC | > logz 1.5
and a false discovery rate (FDR) cut-off of FDR < 0.05. Lists of mutants
were analysed using gProfiler [114]. Figure 4.4 highlights selected terms and

mutants which are subsequently discussed.
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4.3 Discussion

4.3.1 The lifespan extension conferred by rapamcyin is

mediated by autophagy

Mutants which respond differently in the rapamycin-treated pools compared to
the DMSO-treated pools provide insights into the genetic components which
interact with TORC1 in an ageing context. Some of the strongest negative
interactions were observed in mutants annotated to the phagophore assembly
site (Figure 4.4A). This included atg13, a conserved phosphorylation target of
TORC1 [100, 104]. Atg13 becomes dephosphorylated upon TORC1 inactiva-
tion, leading to the assembly of the Atgl complex and initiation of macroau-
tophagy [115]. Indeed, all members of the fission yeast Atgl complex (atg1,
atg13, atgl7 and atg101 [116]) were similarly rapamycin-insensitive. These
results indicate that rapamycin extends fission yeast chronological lifespan by
via autophagy. This is consistent with a numerous reports in other model
systems, and highlights the benefits of degrading damaged proteins and or-
ganelles which accumulate during ageing [108, 109]. It is unclear why these
mutants also show a slightly extended lifespan in the DMSO-treated pools, as
this contradicts the notion that autophagy increases lifespan. However, au-
tophagy can be detrimental to lifespan under certain contexts. For example,
in both mice and nematode worms, mutations which cause the mitochondrial
permeability transition pore to open result in decreased lifespan as a result of
excessive clearance of dysnfunctional mitochondria [117]. Hence, it is possible
that the increased lifespan of autophagy mutants in the absence of rapamycin
could reflect a similar phenomenon. Indeed, it is notable that this study was
performed in rich media, a condition where fission yeast has little require-
ment for mitochondrial function during exponential growth [70]. Irrespective
of the mechanism, this result highlights that the genetic basis of lifespan is
highly context-dependent, and that a process can be beneficial or detrimental
to lifespan depending on physiological conditions.

In addition, ravl and rav2 mutants were short-lived, and displayed a
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strong insensitivity to rapamycin (Figure 4.4B). They encode subunits the
RAVE complex, which is involved in the assembly of the vacuolar and endo-
somal ATPase [118, 119, 120]. The ATPase performs a variety of functions,
most notably vacuolar and endosomal acidification [102]. Low pH in the vac-
uole is required to activate hydrolases which degrade cargos delivered to the
vacuole and is hence an essential component of autopagy [121], which may
underlie the reason why rav1 and rav2 are rapamycin-insensitive. If this were
the case, then rapamycin-insensitivity can arise by disrupting autophagy at
various stages, from autophagophore formation to hydrolysis of cargoes at the
vacuole. However, it is important to note that vacuolar pH can also regulate

a wide variety of other processes involved in ageing [118, 122].

4.3.2 Diverse aspects of endosome function are required
for rapamycin-mediated lifespan extension

Negative interactions were also enriched for mutants annotated to endosomes,
indicating that endosomes are mediators of rapamycin-mediated longevity.
However, endosome mutants displayed a range of effects, with some endosome
mutants displaying positive interactions and many others being short-lived but
not displaying an interaction with rapamycin (Figure 4.4C). The interactions
at endosomes are difficult to dissect as they reflect the complex regulatory
functions which endosomes play in TORC1 signalling in addition to their roles
as mediators of processes downstream of TORC1 [101, 110, 111]. The strongest
negative interactors covered a range of conserved endosome functions. They

included:

= vpsll, encoding an E3 ubiquitin ligase which is a member of the HOPS
and CORVET tethering complexes which coordinate membrane fusion
events [123]. However, other members of the HOPS and CORVET com-
plexes did not show a strong negative interaction with rapamycin, with
many being short-lived (Figure 4.4D). Interestingly, a recent report using

human cell lines indicates that VPS11 regulates other aspects of cellu-
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lar signalling via ubiquitination independently of its role in membrane
fusion events [124]. Furthermore, genetic leukoencephalopathies, a rare
group of inherited disorders affecting the central nervous system, have
been linked to defects in autophagy as a result of a mutation in VPS11

[125].

vps25, encoding a subunit of the ESCRT-II complex which is involved
in sorting ubiquitinated cargo in endosome membranes into intraluminal
vesicles, resulting in the formation of a multivesicular body which will
deliver the ubiquitinated cargo to the vacuole for degradation [126, 127].
Deletion of vps25 in fruit flies leads to autophagosome accumulation and
impaired autophagy [128], although this appears to be a general feautre
of ESCRT mutants in higher eukaryotes [129]. Notably, other ESCRT
mutants in this screen do not show strong negative interactions with

rapamycin, and many are short-lived (Figure 4.4E-G).

vps26, encoding a subunit of the retromer complex which is required
for endosome-to-Golgi transport [130, 131]. An important function of
the retromer complex is to retrieve and recycle hydrolase receptors such
as Vps10 [132], which are essential for delivering hydrolytic enzymes to
vacuoles [133, 134]. Hence, deletion of retromer complex components
leads to dysfunctional autophagy in fruit flies [135] and pathogenic yeast
[136]. Furthermore, a decrease in the expression of retromer complex
components, including VPS26, is associated with Alzheimer’s disease
[137]. Notably, other components of the retromer complex do not show
strong negative interactions with rapamycin, and many are short-lived

(Figure 4.4H).

ypt7, endocding a Rab GTPase which is a master regulator of membrane
trafficking and organelle fusion [138]. Several studies have demonstrated
that Ypt7 is required for proper autophagy progression in budding yeast.

For example, deletion of ypt7 results in autophagosome accumulation and
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vacuolar fragmentation [139], whilst ypt7 was also identified in a screen
for genes required for mitohpagy [140]. In addition, Ypt7 is invovled
in the fusion of the autophagosome with the vacuole [141] and is linked
to to retromer-mediated receptor recycling [142], suggesting that Ypt7

coordinates multiple aspects of autophagy.

There is an undoubtedly complex relationship between endosome traffick-
ing and autophagy. Notably, TORC1 localises to endosomes where it regulates
autophagy by inhibiting autophagosome formation in the presence of nutrients
[101]. However, strong negative interactions between rapamycin and genes
which cover diverse aspects of endosome function suggests that the relation-
ship between autophagy and endosomes is far more intertwined. Defining the
nature of these interactions requires differentiating between general aspects
of endosome function which are required for autophagy and specific regula-
tors of autophagy which reside on endosomes, which is not clear from the
interaction profiles of these mutants alone. That only specific components of
the HOPS/CORVRET, ESCRT and retromer complexes show strong nega-
tive interactions with rapamycin suggests that these may represent specialised
regulatory functions which are carried out by these components. However,
it is also notable that other components of these complexes are short-lived,
indicating that HOPS/CORVET, ESCRT and retromer complexes in general
are required for stationary phase survival under standard conditions. In the
case of the retromer complex, a mechanism has already been established which
may explain why this aspect of endosomal trafficking is required for lifespan
[135, 136], but in the cases of other aspects of endosome function, it is less
clear, at least in yeast.

Several lines of evidence suggest that endosome functions in general are
required to mediate the downstream effects of TORC1 inhibition. For example,
genome-scale metabolic profiling of deletion mutants in budding yeast clearly
demonstrates that the metabolic signatures of many endosomal mutants, in-

cluding vacuolar and endosomal ATPase, RAVE, HOPS/CORVRET, ESCRT
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and retromer complex mutants mimic the metabolic signature of rapamycin-
treated cells [143]. Furthermore, autophagy and endosomal trafficking are
closely linked in mammals. For instance, fusion of endosomes and autophago-
somes to form an amphisome is a critical part of autophagosome maturation
and is required for autophagy in mammals [144, 145, 146, 110, 147, 148]. In
yeast, interactions between endosomes and autophagosomes are less well de-
fined as it is difficult to distinguish between these structures owing to a lack
of morpholological differences and a lack of well-defined marker proteins [110].
However, it seems that even in yeast, much of the molecular machinery involved
in autophagy and endosomal function is shared [141]. Hence, it is plausible
that the strong negative interactions observed between endosome mutants and
rapamycin may reflect an interdependence between diverse endosome functions

and autophagy, as is the case in mammals [144, 145, 146, 110, 147, 148].

What is puzzling is that many of HOPS/CORVET, ESCRT and retromer
complex mutants, especially the short-lived ones, do not show a strong negative
interaction with rapamycin, indicating that rapamycin treatment is capable of
extending lifespan in these mutants. Indeed, it actually implies that rapamycin
treatment may partially rescuse defects resulting from endosomal disruption.
A possible explanation is that in the context of severe endosome disruption,
alternative mechanisms of autophagy induction may be upregulated, which in
turn leads to rapamycin-sensitivity. Indeed, such behaviour has often been de-
scribed in many aspects of biology, especially ageing, where the effect of a mild
perturbation can have the opposite effect of a severe perturbation [149, 150]
and may reflect negative feedback loops which are involved in maintaining
homeostasis in response to stress [151, 152]. Dissecting these interactions is
beyond the scope of this study, although such contradicting interaction pro-
files are important to recognise and highlight that seemingly subtle changes
in endosome function can have completely different effects on lifespan and

rapamycin-sensitivity.
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4.3.3 Rapamycin-mediated lifespan extension is depen-

dent on Class III PI3K signalling to initiate au-
tophagy

Lipid kinases such as PI3Ks play important roles in the regulation of many
cellular functions, including autophagy [148, 153, 154]. They do so via the
phosphorylation of lipids which act as second messengers, leading to the bind-
ing and recruitment of specific effectors to cell membranes [155, 156]. Class I
PI3K signalling to TORC1 via AKT is a well characterised regulator in mam-
mals [157], although this signalling pathway is not present in yeast [158, 159].
The Class III PI3K Vps34 is the only PI3K which shows a strong conserva-
tion across eukaryotes [153, 154]. In yeast, association of Vps34 with different
subunits creates two spatially and functionally distinct PI3K complexes with
diverse roles in both autophagy and endosome trafficking. Complex I contains
Atgl4 and is recruited to the phagophore assembly site via Atg8, an inter-
action which is essential for autophagy initiation [160, 161]. In mammalian
cells it has been shown that TORC1 directly suppresses Complex I activity by
phosphorylating Atg14 [162]. In addition, Complex I is involved in delivery
of cargo to the vacuole for degradation, being required to recruit Ypt7 and
subsequently the HOPS complex to the autophagosome, which mediates fu-
sion of the autophagosome with the vacuole [141]. Complex II contains Vps38
and is a regulator of endosomal trafficking [155, 156]. The role of Complex II
in autophagy is unclear, although a study in Arabadopsis has indicated that
Vps38 is also required for autophagy [163]. Consistently, atg14, atg8, vps38
and atg6 (a subunit of both Complex I and Complex II) all showed strong
negative interactions with rapamycin (Figure 4.4I), indicating that PI3K sig-
nalling at both the phagophore assembly site and endosomes is required for
rapamycin-mediated lifespan extension. The requirement of Complex I for au-
tophagy is well established [141, 160, 161], although the reason why Complex
Il is required for rapamycin-mediated lifespan extension is less clear. How-

ever, it is known that production of phosphatidylinositol 3-phosphate (PI3P)
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via Complex Il is required to recruit the retromer complex to endosomes and
initiate endosome-to-Golgi retrograde transport [164, 165]. Hence, it is possi-
ble that the rapamycin-insensitive phenotype of vps38 may be as a result of
an inability to recycle hydrolases receptors via endosome-to-Golgi transport,
leading to autophagy defects [135, 136]. It is notable that vps38 mutants in

Arabadopsis are phenotypically similar to retromer complex mutants [166].

4.3.4 Class III PI3K signalling is also mediates nutrient
sensing upstream of TORC1

The interaction profile of pik3, the fission yeast ortholog of vps34, was markedly
different to the interaction profiles of the subunits with which Pik3 physically
interacts. Deletion of pik3 causes a serious reduction in lifespan (Figure 4.4I).
This is consistent with the sickness observed in budding yeast vps34 mutants,
which may be linked to their inability to accumulate any PI3P [167]. However,
the pik3 mutant was hypersensitive to rapamycin, suggesting that rapamycin
treatment can partially rescue the short lifespan associated with loss of Pik3.
Consistently, rapamycin hypersensitivity has been observed in budding yeast
vps34 mutants, with atg14 mutants showing the opposite phenotype of ra-
pamycin resistance [168]. This may reflect the fact that Vps34 is also an
upstream activator of TORC1, where Vps34 is activated by amino acids lead-
ing to recruitment of the PI3P-binding protein Pib2 which activates TORC1
[169, 170]. Indeed, pib2 showed a positive interaction with rapamycin, con-
sistent with Pib2 being an upstream activator of TORC1 (Figure ??). The
distinct interaction profile of the pik3 mutant is consistent with suggestions
that Pik3 forms a third complex which is distinct from Complex I and II in
order to relay amino acid signals to TORC1 [170]. Assuming that rapamycin
increases lifespan of pik3 cells via the same mechanism as wild-type cells, this
result suggests that rapamycin is able to initiate authophagy via alternative
mechanisms in the absence of any Pik3 activity. This is in contrast to cells
with Pik3 activity, in which case Pik3 activity must be correctly localised to

the phagophore assembly site via Atg14 and to endosomes via Vps38 in order
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to initiate autophagy in response to rapamycin treatment.

4.3.5 Distinct interaction profiles of PI3K mutants may
reflect interconnected positive and negative feed-

back loops involved in TORC1 control of au-
tophagy

PI3P is an upstream activator of TORC1 which is invovled in amino acid
sensing [168, 169, 170]. PI3P also acts downstream to initiate autophagy in
response to TORC1 inactivation [153, 154]. In essence, inhibition of TORC1
produces an activator of TORC1, which implies the presence of a negative feed-
back loop where TORCT activity and PI3P abundance mutually regulate each
other to coordinate autophagy initiation. Downstream of this, PI3P is also
involved in a positive feedback loop to initiate autophagy at the phagophore
assembly site via interactions with Atg8 [161]. This may reflect the distinct
roles which positive and negative feedback loops play in biological systems.
Negative feedback loops are important for maintaining homeostasis and have
been extensively studied in the context of control theory [171]. In this case,
negative feedback loops allow TORCT1 activity to be tuned to reflect nutrient
availability and other signals. Positive feedback loops on the other hand lead to
bistability [172], and are important for establishing two distinct on/off states
for autophagy in response to TORC1 activity [161]. This control architecture
may facilitate precise regulation of autophagy and other TORC1-regulated

processes in response to changes in nutrient availability.

4.3.6 Inhibition of clathrin-mediated endocytosis can
further extend lifespan following rapamycin treat-
ment

Mutants which were long-lived specifically in rapamycin were enriched for
clathrin-dependent endocytosis (Figure 4.4]). In addition, two endosomal mu-
tants which are involved in endocytosis, ent3 [173] and shd1 [174] also showed
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a strong rapamycin-specific increase in lifespan 4.4C). As many positive regula-
tors of TORC1 are hypersensitive to rapamycin [168], one possible explanation
is that clathrin-mediated endocytosis is a positive regulator of TORC1. Given
that endocytosis is a source of endosomes, to which TORC1 localises, and that
TORC1 regulates endocytosis, it is plausible that endocytic flux may recipro-
cally regulate TORC1. However, an alternative possibility is that endocytosis
itself may cause ageing via a mechanism distinct to autophagy. Indeed, it has
been suggested that age-related increases in the abundance of endocytic pro-
teins could be a factor Alzheimer’s disease progression by facilitating the con-
version of amyloid precursor protein into the disease-causing S-amyloid [175].
Furthermore, endocytosis is suppressed when nematode worms enter the long-
lived dauer diapause, particularly in neuronal cell types [176]. This suggests
that reduced endocytosis is a general mechanism which promotes long-term
survival of non-dividing cells. Indeed, it is sensible to presume that limiting
a cell’s interactions with the extracellular environment would benefit its long-
term survival, especially if that environment becomes progressively more toxic

with age.

4.3.7 TORC1 and PKA coordinate different temporal

aspects of starvation response

The protein kinase A (PKA) signalling pathway is another important aspect of
nutritional sensing which is highly conserved across eukaryotes [177, 178, 179].
The G protein coupled receptor (GPCR) Git3 is activated by extracellular
glucose, which initiates a signalling cascade resulting in the production of
cyclic adenosine monophosphate (cAMP), a cytosolic second messenger, via
adenylate cyclase activity. cAMP activates Pkal, which in turn regulates a
wide array of cellular processes. Indeed, TORC1 and PKA regulate many of
the same targets, although appear to regulate different temporal aspects [180]:
TORCT allows cells to tune growth rate to internal metabolite concentrations,
whilst PKA allows cells to rapidly respond to changes in glucose availability.
Hence, it is unsurprising that deletion of git3 or other components of the GPCR
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(git5 and git11) increase lifespan, as previously described [179]. Furthermore,
these mutants showed a reduced sensitivity to rapamycin (Figure 4.4K), which
suggests that these mutants have an extended lifespan because they mimic the
effect of rapamycin, which is consistent with the overlapping functionalities
of TORC1 and PKA [180]. Indeed, budding yeast PKA has been shown to
directly inhibit autophagy in parallel to TORC1 via Atg13 phosphorylation to
prevent Atgl complex formation at the phagophore assembly site [181].

However, pkal showed a reduced lifespan (Figure 4.4K), which is not
consistent with previous reports [63]. This result may serve to highlight critical
differences in pool versus batch culture ageing experiments. pkal mutants in
batch culture experiments continue to grow at a low rate in early stationary
phase (Figure 2.7, unpublished data), which is consistent with the idea that
pkal mutants prematurely enter into stationary phase due to an inability to
properly detect low levels of glucose. This would mean that there are still low
levels of glucose in batch cultures, which would support growth and survival.
However, in pooled experiments, other mutants would still properly sense and
consume glucose at low levels, meaning that this advantage to the pka mutant
in batch cultures is gone in the pool. Furthermore, the short lifespan of pkal
mutants in the pool is consistent with the idea that PKA signalling is important
for responding to sudden changes in glucose availability [180]. This implies
that the short lifespan of pkal in the pool is due to an inability to adapt
to stationary phase, and hence does not reflect the role of PKA in ageing.
Consistent with this, pkal cells show a negative interaction with rapamycin,
which would be expected as rapamycin treatment would not compensate for

the inability to adapt to stationary phase.

It must also be addressed why Git3 signalling mutants do not behave
like pkal in the pool. In budding yeast and mammals, Ras signalling is able
to sense intracellular energy levels via cytosolic pH and is the other major
source of cCAMP in cells, meaning PKA detects changes in glucose levels via

two upstream regulators [118, 182, 183, 184]. However, it appears that Ras
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signalling does not modulate adenylate cyclase activity in fission yeast, and
hence does not signal to PKA [185]. However, it is still likely that PKA is
able to respond to changes in glucose availability via other mechanisms in the
absence of Git3 signalling. Indeed, fission yeast Pkal phosphorylation status
changes in response to glucose availability even in the absence of adenylate
cyclase, demonstrating the existence of a cAMP-independent mechanism of
PKA regulation [186]. That there are additional regulators of PKA activity in
fission yeast offers a plausible explaination as to why Git3 signalling mutants

behave differently to pkal.

4.4 Conclusion

This study systematically dissects the genetic basis of rapamycin-mediated
lifespan extension, revealing a critical requirement of autophagy. Furthermore,
the coordinated action of multiple effectors downstream of TORC1 is required
to initiate autophagy. This included diverse aspects of endosome function,
including PI3K signalling, membrane fusion complexes and retromer traffick-
ing. In addition, an enormous number of mutants showed altered responses in
rapamycin compared to DMSO, demonstrating that the genetic basis of lifes-
pan is highly context-dependent, as previously suggested [36, 47]. However,
it is often difficult to interpret these differences, as a genetic interaction may
be interpreted differently depending on context [187]. The ability for a sin-
gle screen to capture decades worth of regulatory connections highlights the
potential value of Bar-seq. Indeed, Bar-seq captures information which other
genome-scale technologies, such as RNA-seq or proteomics, cannot, revealing

functional connections which may dissect complex phenotypes such as lifespan.
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Chapter 6

Conclusions & Future Directions

One of the most remarkable discoveries in ageing research was that there are
simple genetic, environmental and pharmacological perturbations which con-
sistently increase lifespan across eukaryotes [6, 45]. This is somewhat surpris-
ing given the intricate complexity of lifespan as a phenotype, which is only
beginning to be truly appreciated and dissected. Yeast remain a vital model
system to tackle complex questions of fundamental biological important owing
to their amenability to high-throughput methods [31], and hence may represent
our best opportunity at modelling complex cellular processes [72]. However,
there are still substantial obstacles which must be overcome before we can
develop a mechanistic, as opposed to descriptive, model of ageing. This the-
sis addresses a number of these obstacles, establishing a platform from which

high-throughput CLS assays can be readily in a reproducible manner.

This has involved the development of two high-throughput methods for
determination of CLS at various experimental scales. The first is a high-
throughput CFU assay which can be largely automated by robotics. This pro-
vides an attractive alternative to the labour- and resource-intensive traditional
CFU assay for day-to-day lifespan experiments. The second establishes Bar-
seq as a technology which can provide genome-scale insights into the genetic
basis of lifespan in a specific context. This involved in the characterisation of
barcodes associated with mutants from the Bioneer deletion library and the

identification of key technical and biological biases which must be addressed
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when Bar-seq is applied to CLS. For both methods, care has been taken to
establish well-documented experimental and analytical pipelines which will fa-
cilitate use and deployment of these methods by the wider community, hence

facilitating high-throughput ageing studies.

I have applied Bar-seq to dissect the genetic basis of rapamycin-mediated
lifespan extension. The gene-drug interactions uncovered provide insights into
the genetic components with which rapamycin interacts, specifically in an age-
ing context. Some of these interactions reflect the components which are func-
tional partners of TORC], and reveal that the coordinated actions of multiple
aspects of endosome function are required to initiate autophagy in response to
rapamycin treatment. Indeed, some of these interactions captured remarkably
specific functional connections and summarise decades worth of research into
TOR signalling, highlighting the insights which can be afforded by functional
profiling which are not possible from other genome-scale technologies such as
RNA-seq and proteomics. Other interactions may reflect interactions between
different processes which are involved in determining fission yeast lifespan.
Hence, the interactions uncovered may serve as a basis to constructing a mech-
anistic model of ageing, wherein the regulatory functions of nutrient sensing
pathways such as TOR signalling are linked to processes which determine the
lifespan of the organism. Indeed, developing a comprehensive model of fission
yeast ageing will require dissecting the genetic basis of lifespan in far more
contexts. However, given the relative ease with which Bar-seq CLS screens
can now be conducted, generating such datasets is a realistic prospect. Such
investigations may include ageing mutant pools under different environmen-
tal conditions, ageing mutant pools in the presence of other pharmacological
agents, or using synthetic genetic array technology to create and age double
mutant pools [27]. Indeed, such an approach can even be extended to create
different mutants of the same gene, facilitating functional profiling at the level
of individual amino acid residues. Furthermore, should enough Bar-seq CLS

datasets be generated (or indeed any genome-scale lifespan datasets), machine
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learning approaches may be able to construct representations which reflect the
regulatory interactions encoded within interaction profiles, such as Bayesian
networks [188]. Such a network would be a mechanistic model of ageing in
a eukaryote, a milestone which would have significant repercussions in the
biomedical sciences.

However, for all of this to be possible, it is essential that research is robust,
reliable and reproducible. The irreproducible nature of ageing research likely
reflects the complexity of ageing as a process and the number of factors which
interact to determine an organism’s lifespan. When working with simple model
systems such as fission yeast, it is essential to consider all aspects of the organ-
ism’s ecology and life history traits as important determinants of lifespan, not
just those which may have transferable value to understanding human ageing.
Indeed, investigations into the sources of experimental irreproducibility in fis-
sion yeast CLS revealed that yeast have a remarkable ability to regulate their
own lifespan in response to population density, and will “remember” this for
many rounds of division. In the lab, this manifests as irreproducibility owing
to an inability to consistently pick exactly the same amount of colony from
an agar plate. The amount of colony picked to inoculate a pre-culture seems
like a trivial factor to the naive PhD student, but may be one of the most
important sensory cues to the yeast. Indeed, after considering the ecology of
a microbe, this kind of behavior is a rather sensible strategy to maximising
fitness. However, the ecological context of an a model system is often ne-
glected in research, and in some cases not even known [189]. Hence, in order
to truly harness yeast as a model system, an integrated view of ageing must
be established which appreciates the full range of factors involved in lifespan
determination. It is only then that we will be able to pick apart how these

factors interact, and in turn slowly build an understanding of what ageing is.



Appendix



Analysis of High-throughput Colony Forming Units Assays

Installation

install.packages("adimpro")

package <- "https://cran.r-project.org/src/contrib/Archive/PET/PET_0.5.1.tar.gz"

fileLocation <- tempfile()

download.file(package, fileLocation)

install.packages(fileLocation, "source", NULL)

install.packages('BiocManager")

BiocManager: :install("EBImage")

install.packages(c("jpeg", "tiff", "logging", "ggplot2"))

package <- "https://cran.r-project.org/src/contrib/Archive/gitter/gitter_1.1.1.tar.gz"

fileLocation <- tempfile()

download.file(package, fileLocation)

install.packages(fileLocation, "source", NULL)

install.packages(c("zoo", "magick", "gplots", "RColorBrewer", "rmarkdown",
"toOrdinal", "cobs", "rootSolve"))

install.packages('devtools")

devtools: :install_github("JohnTownsend92/DeadOrAlive", TRUE)

Tutorial

library(DeadOrAlive)
library(ggplot2)

This tutorial will teach you how to analyse high-throughput colony forming unit (CFU) assay data as
described in Romila et al., 2021. This assay facilitates high-throughput chronological lifespan (CLS) studies
in microorganisms such as Saccharomyces cerevisine or Schizosaccharomyces pombe by using robotics to
automate CFU plating in a highly parallelisable manner (Figure 1).



Step 2:
Pin diluted cultures

in quadruplicate
(384-well format)
Step 1:
Serially dilute ageing
cultures

Figure 1: Schematic depiction of experimental protocol.

Image Analysis

In order to estimate the number of colony forming units for a particular sample, the pattern of colonies
must first be analysed. colonyThreshold() will take a batch of images of agar plates and identify whether
or not there is a colony in each position. For this, it is critical to provide a reference image to aid colony
identification in sparsely populated regions of the plate (Figure 2A).

(o]
]
) |
b |

Figure 2: Outline of image analysis pipeline.



colonyThreshold() wraps the gitter() function in the gitter package in order to perform the image
analysis. As such, all of the arguments used by gitter() are available in the colonyThreshold() function.
Of particular importance are:

= plate.format — the format of the agar plate

= well.plate.format — the format of the plate used for serial dilutions

= inverse — have colours in the image been inverted? For example, when a scanner is used to take images
of the plate, the colonies will appear darker than the background

colonyThreshold() does not return any objects, but instead creates up to 4 files for each raw image processed
(Figure 2B). These are:

= DAT file A tab delimited file containing quantified colony sizes, as described in gitter. A sixth column
marking whether a colony has been classified as present (1) or absent (0) is added

= Gridded image Image showing colony identification by aligning colonies to the grid identified in the
reference image, as described in gitter (Figure 2C)

= Threshold image Image showing whether a colony has been classified as present or absent for each
position on the plate (Figure 2D)

= Count image Image showing how many colonies have been classified as present for each sample at
each dilution factor (Figure 2E)

It is particularly important to manually check the threshold image in order to confirm that colonies have
been correctly marked as present or absent. The software used to estimate the number of colony forming
units from the pattern of colonies observed is robust to the occasional misclassification, so it does not matter
if there are a few mistakes. However, any plates for which there are a substantial number of errors will need
to be re-scanned and re-analysed.

There are some demo images stored within the package. The images can be accessed and image analysis
performed using the following code:

#Get the directory of files to be analysed
dir <- system.file("extdata"”, "images", "DeadOrAlive")

#View the files
list.files(dir)

#Get the reference image
reference <- system.file("extdata", "reference.jpg”, "DeadOrAlive")

#Analyse the files to identify whether there is a colony or not in each position
#Note: This will create a new directory called 'Image_Analysis '
colonyThreshold( dir, reference)

Extraction of Colony Patterns

The next objective is to collect the present/absent colony information and assemble it correctly based on
the identity of the plates, time points and samples. This is achieved by supplying two supporting files — the
plate reference file and the sample reference file — to the extractColonyVectors() function. This
function will take a directory of processed DAT files generated by the colonyThreshold() function and
extract a vector containing the number of colonies present at each dilution factor for each sample at each
time point. For this to work, it is also necessary to provide the plate.format for the agar plate and the
well.plate.format.

Demo files can be accessed from within the package. In this case, we are analysing an experiment where the
lifespan of 48 different strains were measured at 7 different time points. Given that 8 strains can be measured
in parallel on a single agar plate, this means that 6 agar plates are required per day. The sample reference
file shows which strains are plated on each of the 6 plates. The plate reference file provides the identity of
each image - i.e. which groups of strains at which time points are plated on each image. These two files, in



addition to the directory containing the processed DAT files, are passed to the extractColonyVectors()
function as follows:
# Get a csv file showing the identity of each sample on each plate
sampleReferenceFile <- system.file("extdata", "sampleReferenceFile.csv",
"DeadOrAlive")
View(read.csv(sampleReferenceFile))

# Get a csv file showing the identity of each plate to be analysed

plateReferenceFile <- system.file("extdata", "plateReferenceFile.csv",
"DeadOrAlive")

View(read.csv(plateReferenceFile))

# Get the patterns of colonies from the files (from left to right

# across the plate)

myColonyVectors <- extractColonyVectors('Image_Analysis", plateReferenceFile,
sampleReferenceFile)

myColonyVectors

Estimation of Colony Forming Units

The next challenge is to estimate the number of colony forming units present for each sample at each time
point. This is achieved via maximum likelihood estimation using the analyseColonyVectors() function —
that is to say, the function determines what number of colony forming units in the culture is most likely to
give rise to the pattern of colonies observed. This achieved as follows:

#Perform a maximum likelihood estimation of the number of viable cells
#Note: This will save a csv and markdown file in the current working directory
CFUSMLE < analyseColonyVectors(myColonyVectors)

Analysis of Lifespan Curves

As a first step, it is advisable to perform some quality control steps. The maximum likelihood estimator is
highly sensitive to outliers, and as such the analyseColonyVectors() function implements some quality
control steps to remove outliers from the patterns of colonies. It is sensible to remove data points for which
a lot of the colony pattern had to be excluded in order for a robust maximum likelihood estimation to be
achieved:

#Remove low quality data points
CFUSMLE <~ CFUsMLE[CFUsMLE$TotalExclusions<=1, ]

We can also calculate a proxy for each lifespan curve in order to summarise the lifespan of a culture with a
single number. The plotProxy() function can be used to display how the proxy is calculated for a particular
sample. For this, a spline is fitted to the data, and the default proxy is calculated as the square root of the
amount of time taken for culture viability to decrease to 5%.

#Plot proxy calculation for the wt (972 h-)
gl <- plotProxy(CFUsMLE, "972 h-")
print(gl)
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Proxies for all samples can be calculated using the calculateProxy() function. We can then add an extra
column in CFUsMLE and plot the lifespan curves according to proxy. This is always a recommended step in
order to check that the proxy looks sensible.

# Calculate a proxy for all samples
proxy <- calculateProxy(CFUsMLE)

# Add proxies to CFUsMLE
CFUsMLE$Proxy <- proxy$Proxy[match(CFUsMLE$Sample, proxy$Sample)]

# Plot all lifespan curves and color by proxy
g2 <- g2 <- ggplot(CFUsSMLE, aes(Time, ColonyFormingUnitsPerDroplet + 1,
Sample, Proxy))
g2 <- g2 + geom_point() + geom_line()
g2 <- g2 + scale_y_logl10() + xlab("Time (days)") + ylab("CFUs / droplet + 1") +
scale_color_viridis_c()
print(g2)
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