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Abstract

Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and
difficult to find. Current cosmic surveys likely contain 5–10 LSNe in total while next-generation experiments are
expected to contain several hundred to a few thousand of these systems. We search for these systems in observed
Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands
approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a
multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns
spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of
61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a
magnitude-limited (mi < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review
systems selected by the network and find three candidate LSNe in the DES SN fields.

Unified Astronomy Thesaurus concepts: Strong gravitational lensing (1643); Supernovae (1668)

1. Introduction

Galaxy-scale gravitational lensing occurs when the gravitational
potential of a foreground galaxy (positioned along an observer’s
line of sight to a background galaxy) is large enough to deflect the
photons of the background galaxy on their journey to an observer.
This process produces arcs and/or multiple images of the
background galaxy (Treu 2010). For the specific case in which
the background galaxy contains a supernova (SN), the photons
that contribute to each of the multiple images of the lensed
supernova (LSN) travel different paths and distances to the
observer and encounter different depths of gravitational potential
depending on the distribution of the foreground galaxy’s mass.
Because the speed of light is constant, the distinct paths
correspond to distinct arrival times of the photons from each
SN image. Combining this time delay with a model of the
foreground galaxy’s mass distribution enables the direct inference
of the rate of expansion of the universe today, H0, as well as other
cosmological parameters (Refsdal 1964).

Historically, LSNe are rare—only a few detections have been
made in total (Amanullah et al. 2011; Quimby et al. 2014; Kelly
et al. 2015; Rodney et al. 2015, 2021; Goobar et al. 2017).
However, modern optical time-domain survey data sets, such as
those collected in the southern hemisphere by the Dark Energy
Survey’s (DES; Abbott et al. 2016; Diehl 2020) SN fields, in the
northern hemisphere by the Zwicky Transient Facility (Graham
et al. 2019) and the Young Supernova Experiment (Jones et al.
2021), and over the next decade by the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time (LSST; Ivezić
et al. 2019), are promising places to search for LSNe. Based on
imaging depth, sky area, and duration of observations, the DES
SN fields are expected to contain ∼0.5–2 LSNe, and the LSST
wide field is expected to contain ∼2000 LSNe (Oguri 2019).
These data sets, which contain hundreds of millions to tens of
billions of objects that are not LSNe, pose a significant challenge
for searches (Marshall et al. 2017; Abbott et al. 2021). In
particular, it is vital to identify an LSN rapidly to enable follow-up
observations before the SN fades during the weeks to months after

the explosion (Mihalas 1963). To keep pace with the data streams
of large surveys and identify candidate LSNe promptly, we
require fast and robust algorithms.
In Morgan et al. (2022)—hereafter referred to as “DZ1”—we

designed a deep learning detection architecture (“ZipperNet”)
for LSNe and demonstrated its performance on four simulated
optical survey data sets that mimic DES and LSST. In this
work, we use a ZipperNet to search the DES SN fields (Abbott
et al. 2021) for LSNe. We also discuss the data collection and
data reduction steps necessary to carry out a comprehensive
LSN search in an optical survey data set. We have made all
code for data processing and deep learning available at DZ1.
We present this work as follows. In Section 2, we describe the

characteristics of the DES SN field data. In Section 3, we describe
the training and optimization of our deep learning approach. In
Section 4, we quantify the performance of this architecture on the
DES SN field data, as well as current candidate LSN systems. In
Section 5, we discuss the significance of the results and the
outlook for detecting LSNe in Rubin Observatory data. We
conclude in Section 6.

2. Data Collection

2.1. The DES SN Fields

DES SN field data were collected (a) to facilitate the Type Ia SN
(SN Ia) cosmology analyses in DES that use the single-epoch
images and (b) to enable galaxy population modeling (near the
detection limits of the DES wide-field survey) that uses coadded
images. All data were collected with DECam (Flaugher et al. 2015)
on the Victor M. Blanco telescope from the Cerro-Tololo Inter-
American Observatory in Chile between 2012 and 2018. There are
10 3 sq. deg. fields: eight shallow fields (X1, X2, E1, E2, C1, C2,
S1, and S2) observed to a single-visit depth of∼23.5mag, and two
deep fields (X3 and C3) observed to a single-visit depth of
∼24.5mag. Each field was imaged in the griz bands approximately
every six nights over five years, subject to Sun, Moon, and weather
conditions. The median full-width-at-half-maximum point-spread
functions (PSFs) (“seeing”) for the SN field images used in this
analysis (after the downsampling discussed in Section 2.2) were
1 37, 1 26, 1 15, and 1 08 for the griz.

2.2. Candidate System Selection and Data Reduction

We begin our search for candidate LSNe with all cataloged
objects of DES Data Release 1 (also referred to as the “Year 3

56 NHFP Einstein Fellow.
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Gold Catalog”; Abbott et al. 2018). We construct an initial
sample by requiring the object to be positioned within one of
the SN fields and requiring all griz MAG_AUTO measurements
to be brighter than 27.5 mag. Then, within that sample, we
require the i band MAG_AUTO only to be brighter than 22.5 mag
to restrict the total number of objects in this first search of the
DES SN fields. Also within the initial sample, we require a
catalog-level parameter size measurement (CM_T) to be greater
than 0.05, which excludes non-extended objects (e.g., stars)
with approximately 99% galaxy purity and 98% galaxy
completeness. To evaluate the purity and completeness, we
take a nearest-neighbor machine-learning classifier that com-
bines DES photometry with near-infrared photometry as truth,
which has shown near-perfect performance at magi< 22.5
(Hartley et al. 2021). These cuts produce a sample of 3,459,186
candidate systems for our analysis.

We next introduce a selection on the images that are used in
the LSNe search across all five years of DES SN field
exposures (Abbott et al. 2021). If a system has two images on
the same night in the same band, we choose the image for
which the object was observed with the better seeing. For each
image, we also require the cataloged object’s centroid to be
positioned more than 23 pixels from all CCD edges: this
permits constructing image cutouts (45 pixel by 45 pixel)
without producing partial images. Finally, to enforce cadence
uniformity and simplify data processing, we require the same
number of observations in each of the griz bands. We
determine the band with the fewest useful observations and
exclude images from the other bands to match it. In doing so,
we exclude images from regions of the time series in
descending order of the sampling rate. Thus, for each candidate
lens galaxy in the SN fields selected from the DES catalog, we
obtain a time series image set with the same number of images
in each band of griz. A typical length for a time series image set
is∼ 20–35 epochs. We process each year of DES data
independently.

3. Deep Learning Methods

3.1. Training Set Construction

Our approach for detecting LSNe in the DES deep fields
requires samples of LSNe (positives) and non-LSNe (nega-
tives) to train the ZipperNet in a binary classification scheme.
To construct the training set, we used ∼2% of the total data set
—76,203 time series image sets. Due to the lack of real LSN
examples, we create the positive class using gravitational
lensing simulation software (deeplenstronomy; Morgan
et al. 2021) to add LSNe to DES images in the training set. For
the negative class, we use time series image sets selected at
random from the data set. Even given the erroneous case where
a real LSN is randomly selected for the negative training class,
LSNe are expected to be sufficiently rare in the DES SN fields
such that this error would be infrequent and not affect the
training. Nevertheless, the two most likely types of false
positives will be non-lensed SNe and strongly lensed galaxies
without SNe; and unfortunately, both these types of systems are
also expected to be rare in our data set. Therefore, to prepare a
training set with boosted representation of systems that we
expect to be more challenging to classify, we also use
deeplenstronomy to inject lensed source galaxies and
non-LSNe into a fraction of the negative-class images.

The process of injecting simulated light sources into real
time series image sets has multiple benefits. The training data
set includes all types of astronomical systems that the
ZipperNet will classify because it is chosen from the total data
set. Also, the properties of the simulated source galaxies and
SNe are drawn from real data, maintaining all inherent physical
correlations. We join the DES Year 3 Gold catalog and DES
Year 1 morphological catalog (Tarsitano et al. 2018) to obtain a
sample of ∼100,000 galaxies from which we draw parameter
values for simulations. The simulated source galaxies are
modeled with Sérsic light profiles that have a color-indepen-
dent ellipticity, a Sérsic profile index, a band-wise half-light
radius, a band-wise magnitude, and a photometric redshift—all
measured within DES pipelines. As in DZ1, the injected SNe
were simulated using public rest-frame SN spectral energy
distributions (Kessler et al. 2010) available in deeplenstr-
onomy, which redshifts the distribution and calculates the
observed magnitude in each band. The injected SNe reach peak
brightness within the interval of 20 days before the first
observation and 20 days after the final observation: the data set
contains falling-only (∼15%), rising-only (∼15%), and
complete lightcurves (∼70%).
To calculate the lensing effects of the real galaxy on the

simulated source light, we use the measured photometric
redshift of the lens galaxy, select an Einstein radius at random
from the interval [0 4, 1 8], and model the mass distribution
of the lens as a singular isothermal ellipsoid following similar
approaches in the literature (Rojas et al. 2022). For simplicity,
the mass distribution shares the measured center position and
ellipticity values with the light from the real lens galaxy. This
simplification is not expected to greatly affect performance
because these parameters are expected to be positively
correlated. From the mass profile, we calculate the lensed
positions of the source galaxy and LSN, as well as account for
the time delays of the separate SN images. The output of the
deeplenstronomy simulation are time series image sets
with three kinds of objects added to real DES images—LSNe,
lensed source galaxies, and non-LSNe.
In total, 25% of the 76,203 time series image sets placed

aside for training are injected with an LSN Ia and 25% are
injected with a lensed core-collapse SN (LSN CC) to construct
the positive class. Also, 16.5% of the training time series image
sets are left untouched, 16.5% are injected with a galaxy–
galaxy strong lens, 8.25% are injected with an SN Ia, and
8.25% are injected with an SN CC. The positive and negative
training classes are equal in total number to maintain a
balanced data set throughout training. We describe the details
of the training in Section 3.4, but it is worth noting here that,
given our choice of loss function, balancing the classes is
essential to prevent class representation biasing the learned
feature representation. The remainder of this subsection
describes this simulation–injection process in detail. Examples
of objects in the training data set are collected in Figure 1.

3.2. Preprocessing

Before we train the ZipperNet and apply it to the observed
data set, we apply a series of standardization steps. We first
truncate the time series image sets to 10 “time steps” in each
band. A time step refers to a single exposure in the sequence
of observations; in the DES SN fields, a time step is
approximately 6–7 days. If an image set contains more time
steps, we separate it into multiple 10-time step sequences:
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time steps 1–10 are a single sequence; time steps 2–11 are a
second sequence, etc. Then, for each 10-step image sequence,
we extract the total brightness as a function of time using the
background-subtracted aperture technique presented in DZ1
with an aperture radius of 15 pixels. Importantly, when
extracting the total brightness, the zero-point of the image is
not used to maintain independence from all non-image data
products. This choice produces noise-dominated extracted
brightness lightcurves, such as those in Figure 1, though it is
shown in the remainder of the analysis that the ZipperNet
can still identify the temporal signatures of LSNe within
the noise.

Next, we average the images within each band to obtain a
single image in each band for the 10-step image sequence.
Finally, we scale the pixel values of the averaged images and
the extracted brightness values linearly to range 0 to 1 on a per-
example basis. The resulting input to the ZipperNet is two
different kinds of data: (1) a scaled image in each of the griz
bands as a 4× 45× 45-element array and (2) a scaled 10-step
lightcurve in each of the griz bands as a 4× 10-element array.
After processing the training data set into 10-step sequences
and downsampling to maintain equal representation of the
positive and negative classes, we have a total of 1,000,012
training examples. We split these examples into 90% training
and 10% validation data sets.

3.3. ZipperNet

The two-branch architecture of ZipperNet was first presented
and validated in DZ1, and we summarize here. One branch
receives scaled, time-averaged images in each band as inputs to
a block that extracts convolutional features. The other branch
receives scaled extracted brightness–time series as inputs to a
block that extracts sequence features. The outputs from the
feature-extraction blocks are flattened and concatenated. A
series of fully connected layers then weights and condenses the
concatenated feature representation to produce an output score
that the input system contains an LSN. The ZipperNet used in
this paper is similar to Figure 2 of DZ1, and the exact
hyperparameter settings for this analysis are presented in
Table 1.
We performed a full hyperparameter optimization of the

architecture and learning algorithm using the validation data
set. Small changes to hyperparameter settings from the
prototype ZipperNet in DZ1 reflect a specialization for the
real DES images used in the training data. We find that the
addition of another convolutional layer, the addition of
another long short-term memory (LSTM) layer, minor tweaks
to convolutional layer kernel and stride settings, and the
removal of dropout layers leads to boosted performance. The
selected settings for the learning algorithm are presented in
Section 3.4.

Figure 1. Examples of systems from our training data set. The composite image is an RGB visualization of the averaged gri images and the scaled brightnesses are the
values extracted from the g (blue “×”), r (green triangles), i (orange circles), z (red squares) images at each time step in the time series image set using the aperture
method presented in DZ1.
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3.4. Training

To train the ZipperNet, we implemented a distributed setup
on five computers (two machines with Intel 3.2 GHz processors
and 256 GB RAM, one machine with an AMD 2.2 GHz
processor and 512 GB RAM, and two machines with IntelX
2.6 GHz processors and 768 GB RAM) on the DES cluster at
Fermilab. The training data set was split into five equal chunks,
each placed on an independent computer. On each computer,
we instantiated a ZipperNet and initialized the weights at the
same randomly selected values. We then begin passing the
chunks of training data through the ZipperNet instances on
each of the five computers. At regular intervals (every 1/15 of
a chunk), we collect the parameters of each of the five
ZipperNet instances and average the values of the parameters.
Mathematically, the averaging operation is equivalent to the
weights being updated by normal training, provided the
learning rate is scaled by the number of network instances.
Within this setup, we use a batch size of five examples and use
stochastic gradient descent with a Nesterov momentum
coefficient of 0.9, a constant learning rate of 0.001, and
categorical cross-entropy loss to update the weights at each
training step. We refer to the exhaustion of all data in a chunk
as a “training iteration” and cycle back to the beginning of the
chunk once the data has all been passed through the network
instance. We allow training to continue for five training
iterations and reach a final validation set accuracy of 93.0%.
This raw accuracy is dependent on the representations of the
different types of negative examples in the validation data set.
In Section 4, we assess the performance using physically
meaningful metrics.

3.5. Candidate Selection Criteria

The output of the trained ZipperNet on an input (pair of an
averaged image and a lightcurve) is a score with a value

typically between −100.0 and 50.0. Based on the minimum
and maximum values of this range in our validation data set,
we linearly scale the ZipperNet output scores to the range [0.0,
1.0], such that they are similar to probabilities. Next, we select
a threshold ZipperNet score above which we include the
candidate system in our final sample and below which we
exclude the candidate system. We select this threshold by
iterating through possible threshold values and analyzing the
fraction of LSNe that scored higher than the threshold
compared to the fraction of galaxies that scored higher than
the threshold. The left panel of Figure 2 shows the attainable
values of these quantities for different thresholds. We expect
galaxies to be the largest background: the number of galaxies in
a given area of sky is orders of magnitude higher than the
number of strong lenses (SLs) or SNe. Therefore, we select the
threshold by reducing the fraction of galaxies scored higher
than the threshold to the lowest value before the fraction of
LSNe scored higher than the threshold starts to decline rapidly.
Based on this analysis, we select an operating threshold for the
scaled ZipperNet scores of 0.76. This threshold value is
contextualized with the ZipperNet scores for the systems in our
validation data set in the right panel of Figure 2.
We develop a final selection criterion to narrow the sample

of candidate systems selected by ZipperNet. We leverage the
aspect of our data processing from Section 3.2 in which time
series image sets with more than 10 epochs are split into 10
epoch subsequences, which are then classified independently
by ZipperNet. In analyzing the ZipperNet classifications made
on all subsequences of a time series image set, we find that
LSNe are more likely than galaxies to have multiple detections.
This relationship is illustrated in Figure 3 using our validation
data set, which we use as motivation to develop a criterion on
the aggregate detections in a time series image set. Importantly,
the total length of the time series image sets in our training and
validation data was not required to match the real data as a
result of our preprocessing methods, so it would be inaccurate
to set a strict requirement on the number of ZipperNet
detections (score above the threshold) based on the validation
data set. Rather, to put the validation data set and the real data
on the same footing, we set a requirement on the ratio of
number of detections to number of subsequences. Therefore,
we select the threshold for this ratio such that the false-positive
rates (FPRs) are minimized to the point where human
inspection of the final sample becomes feasible. We choose
to require at least 60% of the subsequences to have a ZipperNet
score above 0.76 for the candidate system to be included in our
final sample of candidate LSNe. The 60% threshold and the
0.76 ZipperNet score threshold were determined simulta-
neously by computing the LSN recall and galaxy FPR at all
possible values.

4. Results

4.1. Performance Metrics

To evaluate the performance of the fully trained ZipperNet,
we define quantities and metrics of interest and compute them
on the validation data set. We introduce two terms that describe
classification score thresholds: “classified as an LSN” means
the candidate system had a ZipperNet score greater than the
threshold in at least 60% of subsequences; and “classified as
background” means the candidate system had a ZipperNet
score greater than the threshold in fewer than 60% of

Table 1
ZipperNet Layer Specifications

Layer Specifications

conv1a Conv2D—(k: 10, p: 2, s: 1)—(4→ 16)
maxpool MaxPool2D (k: 2)
conv2a Conv2D—(k: 5, p: 2, s: 1)—(16→ 32)
maxpool MaxPool2D (k: 2)
conv3a Conv2D—(k: 3, p: 2, s: 1)—(32→ 64)
maxpool MaxPool2D (k: 2)
flatten Reshape (12 × 12 × 64 → 9216 × 1)
fc1a Fully connected (9216 → 408)
fc2a Fully connected (408→ 25)

lstm1 LSTM (h: 128)
lstm2 LSTM (h: 128)
lstm3 LSTM (h: 128)
fc3a Fully connected (128→ 50)

concat Concatenate fc2 and fc3 Outputs

fc4a Fully connected (75 → 6)
fc5b Fully connected (6 → 2)

Notes. We adopt the following shorthand: kernel size (k), padding (p), stride
(s), and hidden units (h). Arrows indicate the change in the size of the data
representation as it is passed through the layer.
a Indicates a Rectified Linear Unit (ReLU) activation function.
b Indicates a LogSoftmax activation function. In total, our model contains
4,148,225 trainable parameters.
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subsequences. We define the following terms regarding metrics
based on the threshold score:

1. a true positive (TP) is an LSN, and it is classified as
an LSN;

2. a false positive (FP) is a galaxy, galaxy–galaxy lens, or
unlensed SN, and it is classified as an LSN;

3. a true negative (TN) is a galaxy, galaxy–galaxy lens, or
unlensed SN, and it is classified as background; and

4. a false negative (FN) is an LSN, and it is classified as
background.

Using these quantities, common metrics like accuracy are
straightforward to compute; however, those metrics are
misleading due to the boosted representation of rare physical
systems in our training and validation data sets. We instead
focus on class-specific metrics that carry physical meaning and
are robust against the class representation in the validation data
set: the LSN recall is

( ) ( )/= +LSN Recall TP TP FN ; 1

the LSN-type-specific recall is

( ) ( )/= +LSN Recall TP TP FN , 2type type type type

where type is “Ia” or “CC”; and the FPR for each type of
negative class is

( ) ( )/= +FPR FP TN FN , 3type type type type

where type is “Galaxy,” “SL,” “SN-Ia,” “SN-CC.” The values
of these metrics are collected in Table 2 for ZipperNet alone
and for the combination of ZipperNet with our final sample-
selection criterion.
There are a few key results from these metrics worth

highlighting. The ZipperNet LSN recall indicates that approxi-
mately 84% of all LSNe in the validation data set are scored
above the operating threshold. The ZipperNet galaxy FPR
indicates that roughly 1.5% of galaxies will be scored above
our operating threshold and erroneously populate our candidate
sample. By itself, the ZipperNet is a powerful classifier, but the
minimized galaxy FPR is still large enough where the resulting
candidate sample would be too large for visual inspection. With
the addition of the selection criterion on the number of
ZipperNet detections for each constituent subsequence, the
performance is boosted. Critically, the final galaxy FPR is
reduced, facilitating visual inspection of the full final candidate

Figure 2. Left: receiver operating characteristic curve showing the lensed supernova (LSN) true-positive rate and LSN false-positive rate for all possible values of the
ZipperNet operating threshold. The operating threshold of 0.760 is chosen to minimize the false positive rate to the point immediately prior to the true positive rate
declining rapidly. Right: histograms of the scaled ZipperNet scores for each class in the validation data set. The selected operating threshold limits false positives from
all systems in the negative class while keeping the majority of the positive class.

Figure 3. Number of time series image set subsequences scored above the
ZipperNet threshold for each type of object in our validation data set. On
average, LSNe time series image sets are scored above the ZipperNet threshold
in a higher fraction of their subsequences than all types of negative examples.

Table 2
Metrics for Evaluating the Performance of ZipperNet and Our Final Sample
Selection That are Robust against the Class Representations of the Validation

Dataset

Metric ZipperNet + Final Equation

LSN Recall 0.8447 0.6113 Equation (1)
LSNIa Recall 0.8426 0.5949 Equation (2)
LSNCC Recall 0.8468 0.6273 Equation (2)
FPRGalaxy 0.0157 0.0002 Equation (3)
FPRSL 0.2448 0.0046 Equation (3)
FPR -SN Ia 0.0049 0.0001a Equation (3)
FPR -SN CC 0.0046 0.0001a Equation (3)

Note. All metrics are defined in Section 4.1.
a Indicates the use of an upper limit on the metric value resulting from limited
statistical precision.
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sample. This stricter selection has the consequence of reducing
the final LSN recall. However, most of the removed LSNe are
those that peak before or after the window of observations.

4.2. Searching the DES SN Fields

Applying our trained ZipperNet and additional selection
criterion to the DES SN field data produces 2245 candidate
LSNe, approximately half of which had ZipperNet detections
in multiple years of DES data. We expect the majority of these
systems to have resolvable features based on two aspects of the
analysis. First, these 2245 candidate LSNe were identified in
the magnitude-limited sample of the DES galaxies, leading to a
tendency for low-redshift, nearby galaxies to be more highly
represented than high-redshift, distant galaxies. Second, based
on the physical selection function of the ZipperNet on this data
set (shown in Appendix A), LSNe in systems with large
Einstein radii and better seeing are more likely to be recalled.
Therefore, because the majority of the systems in this candidate
sample should have resolvable features, human visual inspec-
tion becomes a viable approach for identifying the most
interesting candidate LSNe.

A team of strong lensing experts within DES inspected six
year coadded, color-composite images of the 2245 candidate
LSNe systems to search for lensing, similar to how precursor
strong lensing searches have been carried out. The team
assigned all objects a score using the following system:

1. the detection is an image artifact, such as a diffraction
spike or contamination from a bright foreground star;

2. there is a single object, such as a galaxy or star;
3. there are multiple objects with no evidence of lensing,

such as SNe or clusters of galaxies;
4. there are multiple objects with evidence of lensing.

Using this system and the median score for each object, the
team of inspectors identified 522, 802, 871, and 50 objects with
scores “1,” “2,” “3,” and “4,” respectively. For the 50 systems
with evidence of lensing, we extracted aperture lightcurves for
each object in each system from the DES single-epoch images.
Three systems from the 50 systems with evidence of lensing
were identified to have SN-like time variability, and we
upgraded their overall score to a “5.” Candidate systems scored
as a “4” or “5” are presented in Figures 4 and 5, respectively,
and have their properties collected in Table B1.

The 50 candidate systems scored at or above a “4” found in
this analysis show evidence of lensing in their images. There
are still non-lenses in this sample: for example, DES-
700492744 is a high-proper-motion white dwarf appearing as
a red object between two blue point sources; nevertheless, we
include all systems labeled as interesting by the labeling team
for completeness. Some of these systems also show evidence of
point sources within the lensing configurations: there are nearly
circular objects positioned within the lensing configuration.
Going further, we analyze the time variability of the candidate
systems by extracting five year background-subtracted light-
curves for each source in the images. The objects scored as a
“5” show evidence of SN-like time variability: a short rise
followed by a steady decay in brightness over the course of
approximately one month as shown by Figure 5. The objects
scored as a “4” do not show this temporal behavior; however,
the possibility remains that some of the objects scored as a “4”
are strongly lensed systems and potentially house a lensed

quasar. Section 4.3 contains a detailed presentation of the three
objects scored as a “5”.
Lastly, we cross-match the 2245 ZipperNet-identified

systems with the systems identified during the DES five-year
photometric SN Ia cosmology analysis (Möller et al. 2022). In
Möller et al., difference imaging (Kessler et al. 2015) identified
31,636 transients and SALT-II SN Ia lightcurve fitting (Guy
et al. 2010) identified 2381 single-season SNe from that sample
of transients. The SNe selected by lightcurve fitting are more
likely to be SNe Ia than SNe CC, and most SNe CC in the total
sample are also excluded by the fitting. Furthermore, this
selection procedure searches for normal SNe Ia and is not
adapted for possible changes in the lightcurves from the
lensing. In total, there is an overlap (using a 5″ radius) of 104
systems among the ZipperNet sample and the DES SN analysis
transient sample. All but four overlapping systems—DES-
691702170, DES-699127397, DES-699340227, and DES-
700977591—were scored as either a “2” or a “3” by the
labeling team, indicating no convincing evidence for lensing.
The locations of the detected transients are marked in Figure 4.
Only the transient in DES-699127397 passed the SALT-II SN
Ia lightcurve fitting. The difference-imaging detections in DES-
699340227 and DES-700977591 appear to be spurious
detections due to image subtraction errors. Lastly, while the
transients detected in DES-691702170 and DES-699127397
are likely SNe, these systems do not appear to be lenses and
likely should have received lower grades from the labeling
team; DES-691702170 lacks an obvious lensing galaxy and the
positions of the galaxies in DES-699127397 are more likely a
cluster of galaxies than multiple images of the same back-
ground galaxies due to their asymmetric alignment.
Based on the SN FPRs in Table 2, this overlap is consistent

with the expected ZipperNet SN background. The three
systems scored as a “5” by the visual inspection team,
indicating the presence of both lensing and SN-like temporal
behavior, were not included in the overlapping sample. We
believe the faintness of the SNe or foreground contamination
for the lensing galaxy may have contributed to the non-
detection from difference imaging, though a full understanding
of this discrepancy is beyond the focus of our analysis.

4.3. Final LSN Candidates

The three most interesting systems identified by the
ZipperNet and subsequent human visual inspection are
DES-691022126, DES-701263907, and DES-699919273.
We present five-year color-composite coadded images of
these systems and extract lightcurves for each object of
interest within them in Figure 5. From the lightcurves, the five
observing seasons of the DES SN program are easily
distinguishable, and we refer to each observing season as
“Y1” through “Y5.” We extract the lightcurves from the
single-epoch images by summing the pixels in the aperture
displayed in the coadded image, subtracting the sky back-
ground measured by DES, and converting to a magnitude
using the zero-point measured by DES. Importantly, the
magnitudes are the combination of all objects within the
aperture, so for example an SN lightcurve will contain
contamination from its host galaxy. All estimated Einstein
radii have been obtained by measuring the angular separa-
tions between objects, as opposed to a full modeling of the
lensing system. We choose to present only the z-band
lightcurves for these visualizations for simplicity, though all
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four bands were assessed to identify SN-like temporal
behavior. The bluer bands such as g and r have larger PSFs
in this data set compared to the redder i and z bands, leading
to noisier aperture photometry measurements. Furthermore,
LSNe are likely to be at high redshifts, leading to a tendency

for LSN temporal signatures to be most visible in the redder
bands.
DES-691022126 is a system of four objects labeled in the

top panel of Figure 5 as A, B, C, and D. We interpret objects C
and D to be galaxies based on their constant brightness over

Figure 4. Candidate systems detected by ZipperNet that showed evidence of lensing but do not show SNe-like variability in their lightcurves. The properties of these
candidates are collected in Table B1. Difference imaging detections from the DES SN group are shown with white star markers.
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time. Objects A and B are much redder, and display a greater
degree of brightness variability when looking at the typical size
of the magnitude error bars compared to the five-year median z-
band magnitude for each object. Furthermore, the lightcurves
for objects A and B both contain a period of linear decline in
magnitude on month timescales: object A in Y5 and object B in
Y3. ZipperNet detected the system in Y2 and Y3, but not in
Y5. We believe it detected the linear decline of object B in Y3
and that perhaps object C contained light from a SN between
Y2 and Y3 of which ZipperNet detected the beginning. The
fact that the linear decline of object A’s brightness in Y5 was
not detected by ZipperNet is likely due to object A being the
faintest source in the system and the selection function of
ZipperNet (see the bottom right panel of Figure A). The SN-

like lightcurve features that are shared between objects A and
B, when combined with the evidence for lensing with an
Einstein radius of approximately 1 7, support the claim of the
system as a LSN.
By comparison, DES-701263907 is a much more compli-

cated system, shown in the middle panel of Figure 5. A large
foreground galaxy (SIMBAD source LEDA 135660) at redshift
0.03 dominates the image. Object B (SIMBAD source SDSS
J024352.54-003708.4) is cataloged as a galaxy also at redshift
0.03, but may also be a dense, star-forming region based on its
blue color. This dense area, combined with the gravitational
potential of LEDA 135660 itself would have a large lensing
cross-section, increasing the likelihood that background objects
would be lensed. Because the lightcurve extraction method

Figure 5. Candidate LSNe identified by ZipperNet and human visual inspection. The aperture used to extract the magnitude measurement from each source is show
and annotated on the coadded image. The properties of the candidates are collected in Table B1.
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used in the lightcurves of Figure 5 does not subtract the effect
of the host galaxy, the variability of these objects cannot be
assessed without difference imaging techniques outside the
scope of this paper. Nonetheless, we identify object A as the
most variable source in the system given the foreground
contamination. In the image cutout for DES-701263907, we
also note the location of an SN detected in 2020 September
(AT2020scq). It is possible that object B acts as a primary
lensing galaxy, object A is an LSN identified by ZipperNet in
2018, and AT2020scq is a second appearance of object A
delayed by approximately two years. Given the large fore-
ground galaxies at redshift 0.03 and a potential Einstein radius
of≈ 3 0, this time delay would be consistent with an LSN.

Lastly, DES-699919273 is another four-object system that
we enumerate as A, B, C, and D in the bottom panel of
Figure 5. We interpret object C as the lensing galaxy, object D
as an image of the source galaxy without an SN, and objects A
and B as images of the source galaxy, where an SN was present
at some point during DES observations. The Einstein radius for
this system is≈ 2 1. Particularly, we note a linear decline in z-
band magnitude for object A in Y3 and a nearly identical linear
decline in z-band magnitude for object B in Y5. ZipperNet
detected the linear decline in Y5, but had no such detection in
Y3. We interpret this event as another manifestation of the less-
than-perfect recall of the classifier. Nonetheless, the SN-like
temporal signal appearing in two of the images within a lensing
geometry is evidence for the presence of an LSN.

5. Discussion

The method presented in this analysis contains a few areas
where improvements could increase the LSN recall while
decreasing the FPR. One such change is to add centroiding to
account for sub-pixel-level shifts in position prior to stacking
and averaging the images. While the offsets are small,
misalignment at the ≈0 25 scale can cause image-based
features to become less sharp and harder for a convolutional
layer to identify. When stacking the images, it may also boost
performance to only include the images with high image
quality (e.g., seeing above some quality threshold and/or
cloudiness below some quality threshold): this would ensure
that the ability to resolve features in the resulting composite
image is only limited by the instrumentation. These possibi-
lities focus on improving the appearance of spatial features in
the data to boost the ZipperNet’s ability to learn relationships
and are motivated by the analysis of the physical selection
function of our approach, which is described in Appendix A.

The lightcurve extraction step of the data preprocessing also
could be improved by discarding common artifacts such as
diffraction spikes and saturated pixels to avoid contaminating
the extracted brightness. Similarly, an analysis of the clarity of
features in the lightcurves as a function of the aperture radius
used in the lightcurve extraction may find that a different
aperture radius leads to higher performance. It is possible that
scaling the time series image sets to have a standardized mean
and a standardized variance of pixel value prior to preproces-
sing would lead to smoother lightcurves. Finally, the
preprocessing steps used in this analysis down-selected images
to standardize the cadence, though other approaches have
demonstrated success with arbitrary numbers of images in the
time series (Kodi Ramanah et al. 2022). Removing the need for
a standardized cadence would greatly improve the applicability

of this approach to real-time LSNe identification and remove
the need for images to be discarded.
It is possible that the machine-learning aspect of the analysis

could be improved with subtle changes to the training set. For
example, when simulating lensed systems, we made the
simplifying approximation that the mass profile ellipticity
was equivalent in angle and strength to the light profile. While
there is likely to be a strong correlation between the mass and
light profiles, the exclusion of training set examples with
different relationships between mass profile ellipticity and light
profile ellipticity may bias LSN selection to systems in which
these quantities are highly correlated. We also employed a
uniform distribution of Einstein radii, and it is possible that an
approach such as that of Kodi Ramanah et al. (2022) with a
physically motivated distribution could lead to improved
performance.
In consideration of a real-time LSN detection pipeline, a

couple of changes to the methodology may improve perfor-
mance. We envision the 10-epoch time series image sets being
constructed as observations are ongoing: after a new image of a
system is collected, the first image in the time series is
discarded and a new 10-epoch sequence is created. There are
two downsides to that approach: (1) there is an implicit
requirement of 10 epochs before the trained ZipperNet can be
utilized, and (2) our final selection criterion on the fraction of
subsequences scored above the ZipperNet threshold requires
additional epochs to create and track multiple subsequences.
With the improvements to the preprocessing discussed above, it
may be possible to sufficiently boost the ZipperNet perfor-
mance to the point where the additional selection criterion can
be removed. Furthermore, we did not experiment with time
series image sets with fewer than 10 epochs, and it is possible
that the analysis can be performed with a less strict requirement
on the total number of epochs.
With the current configuration, we have successfully reduced

a catalog of 3,459,186 objects to 2245 with our deep learning
approach, and proceeded to identify 50 systems of interest
through human visual inspection, three of which show some
evidence of an LSN. While we do not confirm or further
characterize these three systems of interest, they all contain
lensing features and the presence of point sources as found
during the human visual inspection. Full characterization
would entail Scene Modeling Photometry (Brout et al. 2019)
to obtain lightcurves without host galaxy contamination,
photometric classification of that time-series photometry,
redshift measurements for all objects in the system, and lens
modeling, which are beyond the scope of this search. Because
any detected LSNe would have faded by now, follow-up
observations to confirm them are unlikely to provide any
additional information apart from redshifts. However, several
of the systems of interest were detected by ZipperNet in
multiple years throughout DES operations. Therefore, these
persistent lensed systems with point sources offer interesting
candidates for lensed quasar searches. The three most
interesting candidates (DES-691022126, DES-701263907,
and DES-699919273) are the most likely LSNe found by our
ZipperNet in the magnitude-limited five-year DES data set
utilized in this analysis. Given the approximate time delays and
Einstein radii of the systems, spectroscopic redshifts and lens
modeling could produce three independent measurements of
H0.
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The ZipperNet architecture itself provides a new and
powerful LSN identification tool going forward. The accom-
panying code for this analysis (DZ1) also makes the data
collection, processing, simulation, training, classification, and
candidate selection routines available for future analyses. With
first light from the Vera C. Rubin Observatory quickly
approaching, setting up a pipeline to detect LSNe is vital for
time-delay cosmography measurements. The analysis presented
here and suggested improvements provide a template for one
such pipeline that would facilitate real-time detection of LSNe
in short time series sequences of images without a dependence
on traditional and computationally expensive image processing
algorithms.

6. Conclusion

This analysis presents the application of a deep learning LSN
detection algorithm to an observed optical survey data set. The
algorithm utilizes a novel neural network architecture called a
ZipperNet that simultaneously learns characteristic features
from image and temporal data to identify LSNe in DES data.
Using a ZipperNet trained on simulated LSNe that are injected
into the DES SN field data—along with a selection criterion on
the number of detections for each system—our approach
performs with an LSN recall of 61.13% and an FPR of 0.02%.
This technique identified 2245 candidate LSN systems in the
DES SN fields, and a human visual inspection found 50
systems of interest, three of which contained evidence of a
time-variable lensed source. Confirmation of these candidates
of interest is left for future work, and these systems may
facilitate direct measurements of H0 when fully characterized.
Looking to the Rubin Observatory era, the approach developed
in DZ1 and implemented on the DES SN fields here has the
potential to aid in the identification of several hundred LSNe.
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Software: astropy (Astropy Collaboration et al. 2013),
deeplenstronomy (Morgan et al. 2021), lenstronomy
(Birrer & Amara 2018; Birrer et al. 2021), matplotlib
(Hunter 2007), numpy (Harris et al. 2020), pandas
(McKinney 2010), PlotNeuralNet (Iqbal 2018), PyTorch
(Paszke et al. 2019), Scikit-Learn (Pedregosa et al. 2011),
scipy (Virtanen et al. 2020).

Appendix A
Lensed SN Physical Selection Function

We present the selection function for our ZipperNet and our
selection criterion for the number of detections. In this section,
we analyze four central properties to understand the selection
function of our approach: the Einstein radius, the seeing, the
brightness of the source galaxy, and the brightness of the LSN.
The LSN recall is calculated as a function of these four
properties in Figure A1.

We find that our approach has an easier time identifying
larger Einstein radii than smaller Einstein radii. Similarly, we

find that our approach has an easier time identifying LSNe in
good seeing conditions than in average or poor seeing
conditions. Both of these properties shed light on the
importance of the clarity of spatial features in the images.
Poor seeing or small Einstein radii are both situations in
which image resolution is compromised and consequently
spatial features become difficult or impossible to realize. This
trend in algorithm performance points to data quality
characteristics as opposed to a selection bias introduced by
our approach. Lastly, we find that source galaxy brightness
has little impact on the performance for the range applicable
to this magnitude-limited analysis. We observe a similar
trend for LSNe brighter than 22 mag, but notice a reduction in
performance for fainter LSNe. This magnitude threshold is
near the single-epoch limiting magnitude for the DES SN
fields and is likely due to Malmquist bias, but there could be
second-order selection effects in the detectability of the LSN
images.

Figure A1. Physical selection function for simulated LSNe in our validation data set. We measure the LSN recall (defined in Section 4.1) as a function of Einstein
radius, seeing, source galaxy unlensed magnitude, and LSN simulated unlensed magnitude. Error bars show a statistical uncertainty of one standard deviation.
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Appendix B
Candidate Metadata

This appendix lists properties of systems detected by ZipperNet
and scored as a “4” or a “5” by human visual inspection
(Table B1).

Table B1
Properties of the Systems Detected by ZipperNet That Received a Score of “4” or “5” by Human Visual Inspection

No. Coadd Id. R.A. (deg.) Decl. (deg.) Magi Redshift Field Years Detected Inspection

1 DES-691022126 53.898910 −28.912293 21.73 L C2 Y2 Y3 5
2 DES-701263907 40.969218 −0.619054 17.31 0.030024 S2 Y5 5
3 DES-699919273 10.155917 −44.437515 18.95 0.556 E2 Y5 5

4 DES-690157493 53.394495 −26.716658 21.82 L C1 Y1 4
5 DES-690456076 55.010602 −26.549543 20.79 L C1 Y1 Y2 Y3 Y4 4
6 DES-690583502 55.066197 −27.347839 21.44 L C1 Y1 Y2 Y3 Y4 Y5 4
7 DES-690642061 54.464014 −27.418446 21.62 L C1 Y2 4
8 DES-690918939 54.410941 −28.417641 20.65 L C2 Y2 4
9 DES-691032289 54.420139 −29.048729 21.80 L C2 Y2 4
10 DES-691068769 53.476146 −29.331470 20.89 L C2 Y1 Y2 Y4 Y5 4
11 DES-691440047 55.134258 −29.302642 20.72 L C2 Y2 4
12 DES-691442767 55.214489 −29.331276 21.79 0.139740 C2 Y4 4
13 DES-691524775 54.476519 −29.498563 21.37 L C2 Y2 4
14 DES-691664180 53.787326 −29.869823 21.05 L C2 Y5 4
15 DES-691702170 54.607503 −29.829073 19.42 L C2 Y4 4
16 DES-691896609 53.148074 −27.405501 22.04 0.725 C3 Y1 Y2 Y4 4
17 DES-691902610 52.888864 −27.157390 22.37 L C3 Y2 4
18 DES-691947063 52.597080 −27.675669 22.22 L C3 Y1 4
19 DES-691968734 52.958718 −27.916592 21.93 0.610106 C3 Y2 4
20 DES-692023723 52.061383 −28.071403 22.20 0.949 C3 Y1 Y2 Y3 Y4 Y5 4
21 DES-692243027 53.581253 −27.886280 21.18 0.739 C3 Y4 4
22 DES-692639734 53.269373 −28.909563 21.01 0.471666 C3 Y2 Y4 4
23 DES-693331974 52.064812 −28.509826 22.47 L C3 Y2 Y5 4
24 DES-693351134 53.144038 −28.581257 20.66 0.815070 C3 Y1 Y2 Y4 Y5 4
25 DES-695852037 34.616442 −4.670152 21.25 L X1 Y1 Y2 Y4 Y5 4
26 DES-696865317 35.170551 −6.631484 20.56 L X2 Y1 Y2 Y4 Y5 4
27 DES-697161182 35.442353 −6.948239 22.25 L X2 Y1 4
28 DES-697274399 36.589451 −3.896260 20.39 0.435 X3 Y2 Y3 Y4 Y5 4
29 DES-697446876 36.990923 −4.185003 22.47 0.463 X3 Y2 Y4 Y5 4
30 DES-697521552 36.249985 −4.382867 22.23 0.798 X3 Y2 Y3 Y4 Y5 4
31 DES-698587357 7.138332 −42.415813 21.02 L E1 Y1 4
32 DES-698925976 9.245344 −43.112557 20.18 0.318563 E1 Y2 Y4 4
33 DES-699088459 7.447012 −43.647847 18.95 L E1 Y2 4
34 DES-699127397 7.528665 −43.465050 21.21 0.657900 E1 Y1 Y2 Y3 Y4 Y5 4
35 DES-699219206 9.869087 −43.142798 20.47 L E2 Y2 4
36 DES-699235372 9.611497 −43.351731 20.46 L E2 Y2 4
37 DES-699340227 10.241319 −43.413401 20.32 L E2 Y1 Y2 Y3 Y4 Y5 4
38 DES-699466457 9.455661 −43.915105 22.19 0.469 E2 Y1 4
39 DES-699478563 8.862263 −44.227511 20.67 0.751 E2 Y2 4
40 DES-699621639 8.923322 −44.133374 19.12 0.235 E2 Y1 Y2 4
41 DES-699723043 10.869276 −44.022876 21.71 L E2 Y1 Y2 Y3 Y5 4
42 DES-699926736 8.351206 −43.536464 21.14 L E1 Y1 Y2 Y4 Y5 4
43 DES-700364825 42.449669 0.176652 20.46 L S1 Y4 4
44 DES-700492744 42.157070 −0.524332 19.30 L S1 Y5 4
45 DES-700541568 41.136120 −0.444152 21.63 L S2 Y4 4
46 DES-700548040 41.369059 −0.530169 21.29 L S2 Y1 Y2 Y4 4
47 DES-700863020 41.521851 −0.190829 20.52 L S2 Y2 4
48 DES-700977591 41.022356 −0.785606 18.75 0.287564 S2 Y1 Y2 Y5 4
49 DES-701328706 42.256074 −1.098086 20.76 L S2 Y1 4
50 DES-701662201 41.406713 −1.916363 21.23 L S2 Y3 4

Note. The “Coadd Id.” is from the DES Y3 GOLD Catalog. The “Years Detected” indicate the years of DES data collection during which the candidate was selected
by ZipperNet. The “Redshift” values are either photometric estimates from DES (shown to three significant digits) or spectroscopic measurements from OzDES (Yuan
et al. 2015) and refer to the candidate lensing galaxy.
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