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Abstract. We study a class of semistable ordinary hyperelliptic curves
over 2-adic fields and the special fibre of their minimal regular model.
We show that these curves can be controlled using ‘cluster pictures’,
similarly to the case of odd residue characteristic.

1. Introduction

Let K be a finite extension of Qp and C/K : y2 = f(x) be a hyperelliptic
curve of genus g ≥ 2. If p is odd then the reduction of C can often be
described explicitly in terms of the p-adic distances between the roots of
f(x) (see e.g. [6, 10, 4, 11, 20] and the references therein). By contrast,
when p = 2 these results, which all exploit the fact that the ‘x-coordinate’
morphism C → P1

K has degree coprime to p, no longer apply. More naively,
one can already see that extra difficulties must arise upon noting that no
short form Weierstrass equation ever defines a smooth curve over a field of
characteristic 2; at the very least one must instead work with Weierstrass
equations of the shape y2 +Q(x)y = P (x) to have a hope of giving explicit
equations for components of the reduction.

In spite of the above, for applications to global problems it is often desir-
able to represent a hyperelliptic curve over Q (or some other number field)
by a short form Weierstrass equation and say something about its reduction
at all primes p. This is the situation in [7], for example, in which the 2-
parity conjecture is proven for a broad class of Jacobians of genus 2 curves,
ultimately via a comparison of their local invariants. The principal aim of
the present article is to produce a reasonable stock of examples for which
such local comparisons may readily be carried out at p = 2. As we shall see,
this includes in particular all curves having good ordinary reduction.

1.1. Weierstrass equations of ordinary curves. In what follows, K
denotes a finite extension of Q2 with residue field k and ring of integers OK .
We denote by Knr the maximal unramified extension of K, and denote by K̄
the algebraic closure of K. Denote by v : K× � Z the normalised valuation
on K. We denote by v also the extension of this to K̄×.

Let C/K be a hyperelliptic curve of genus g ≥ 2 and consider the following
property:
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Notation 1.1 (Property (?)). We say a Weierstrass equation y2 = cf(x)
for C satisfies (?) if: c ≡ 1 (mod 4), f(x) ∈ OK [x] is monic of degree 2g+ 2
and squarefree, and the roots of f(x) can be put into pairs {α1, β1}, ...,
{αg+1, βg+1} satisfying

• (x− αi)(x− βi) ∈ Knr[x] for all i,
• v(αi−βi) = v(4) for all i,
• v(αi−αj) = v(βi−βj) = v(αi−βj) = 0 for all i 6= j.

Our first result is then as follows:

Theorem 1.2. If C can be represented by a Weierstrass equation satisfying
(?) then C has good ordinary reduction. Conversely, if |k| ≥ g + 1 and
C has good ordinary reduction, then it can be represented by a Weierstrass
equation satisfying (?).

We will prove Theorem 1.2 as part of a more general statement. To
describe this we introduce the following additional properties:

Notation 1.3 (Properties (??) and (†)). We say that a Weierstrass equation
y2 = cf(x) for C satisfies (??) if it satisfies the property (?) above but with
the second bullet point replaced by the weaker condition

• v(αi − βi) ≥ v(4) for all i.

We say that C has reduction type (†) if C/K has semistable reduction
and the geometric special fibre of its stable model is either:

• irreducible with normalisation an ordinary curve, or
• a union of 2 rational curves intersecting transverally at g+ 1 points.

We then have the following result relating properties (??) and (†):

Theorem 1.4. If C can be represented by a Weierstrass equation satisfy-
ing (??) then C has reduction type (†). Conversely, if |k| ≥ g + 1 and C
has reduction type (†), then it can be represented by a Weierstrass equation
satisfying (??).

1.2. Special fibre of the stable and minimal regular models. When
the conditions of Theorem 1.4 are satisfied, one can moreover read off the
precise structure of the stable and minimal regular models of C in a straight-
forward fashion.

Proposition 1.5. Suppose that C is given by a Weierstrass equation satis-
fying (??). Let C/OK denote the stable model of C, and let C′ = C×OK

OKnr .
Then the special fibre of C′ has one ordinary double point Pi for each pair
{αi, βi} with v(αi−βi) > v(4), and no others. Such a point Pi has thickness
2(v(αi − βi)− v(4)) in C′.

Remark 1.6. See e.g. [14, Definition 10.3.23] for the definition of the
thickness of an ordinary double point. The minimal proper regular model of
C over OKnr is obtained from the stable model by replacing each ordinary
double point of thickness n by a chain of n− 1 rational curves intersecting
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transversally. (To see this, arguing as in the final paragraph of the proof
of [14, Theorem 10.3.34], we see that the minimal proper regular model of
C over OKnr is the minimal desingularisation of the stable model. We may
then conclude by [14, Corollary 10.3.25].)

We remark also that in the context of the above proposition, the geometric
special fibre of the stable model is a union of 2 rational curves intersecting
transversally if and only if there are precisely g + 1 pairs or roots {αi, βi}
with v(αi − βi) > v(4).

Note that Theorem 1.2 follows immediately from Theorem 1.4 and Propo-
sition 1.5.

Remark 1.7. Property (??) can be rephrased in the language of cluster
pictures [6]. Specifically, let y2 = cf(x) be a Weierstrass equation for C
with c ≡ 1 (mod 4) and f(x) ∈ OK [x] monic. Then this equation satisfies
(??) if and only if f(x) has cluster picture

n1 n2 n3 ng+1
0

with each ni ≥ v(4) and with the inertia group of K acting trivially on
all proper clusters. Informally, Proposition 1.5 then says that a qualitative
description of the geometric special fibre of the minimal regular model can
be obtained from such a cluster picture by subtracting v(4) from each ni, and
then proceeding as one would in odd residue characteristic (i.e. as described
in [1, 6], say).

It seems plausible that a similarly straightforward ‘cluster picture’ de-
scription of the reduction of C holds (at least) whenever C is semistable
and the special fibre of its stable model has normalisation a disjoint union
of ordinary curves. Beyond that the situation is more delicate; see [16, 12]
for a discussion of the case where f(x) has 2-adically equidistant roots (i.e.
when there is a single proper cluster). For an explicit description of the po-
tential semistable reduction of an elliptic curve in terms of analagous data,
see work of Yelton [21].

Example 1.8. Consider the genus 2 hyperelliptic curve

(1.9) C/Q : y2 = (x− 2)(x+ 2)(x2 + 7x− 1)(x2 − 9x+ 7).

We will determine its reduction over Qp for all primes p. Denote by f(x) the
right hand side of (1.9). Computing the discriminant of f(x) we see that C
has good reduction away from {2, 7, 11, 17, 29, 53}. For odd primes in this
set f(x) has the following cluster picture (see [6, Definition 1.1]):

1 0 1 1 0
1
2

1
2 0

p ∈ {7, 17, 29} p = 11 p = 53

Here each represents a root of f(x). With p = 7, for example, the picture
indicates that there are two roots whose difference has 7-adic valuation 1
— these roots form a ‘cluster’ of size 2 — whilst for any other pair of roots
r, r′ of f(x) we have ord7(r − r′) = 0. To see this is the case note that
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f(x) (mod 7) splits completely and has a single double root at x = 2. This
double root accounts for the cluster of size 2, consisting of x = 2 and the
unique root of x2 − 9x + 7 congruent to 2 (mod 7). The valuation of the
difference of these roots is 1 since ord7(22 − 9 · 2 + 7) = 1.

It follows e.g. from [6, Theorem 1.11] that the geometric special fibres of
the corresponding minimal regular models take the following form:

p ∈ {7, 17, 29} p = 11 p = 53

That is, C has Namikawa–Ueno type (as set out in [17]): I2−0−0 when
p ∈ {7, 17, 29}, I2−2−0 when p = 11, and I1−1−0 when p = 53.

To determine the reduction at p = 2 where the results of [6] no longer
apply, note that we can rewrite f(x) as

f(x) =
(
x2 − 4

) (
(x− ϕ+)2 − 16

) (
(x− ϕ−)2 − 16

)
where ϕ± = 1

2(1±
√

53). With the roots paired as in the quadratic factors
above we see that the given Weierstrass equation for C satisfies (??) over Q2.
From Theorem 1.4 and Proposition 1.5 we see that C has reduction type (†)
over Q2, and that the geometric special fibre of the minimal regular model
has the same form as depicted for p = 11 above, thus C has Namikawa–Ueno
type I2−2−0 at p = 2. In fact, one sees similarly that f(x) has cluster picture

2 3 3 0

so the above is consistent with Remark 1.7: substracting ord2(4) = 2 from
the depths of the 3 clusters of size 2 yields the same cluster picture as for
p = 11.

1.3. Frobenius action on the special fibre. Suppose C is given by a
Weierstrass equation y2 = cf(x) satisfying (??). One can then complement
Proposition 1.5 with an explicit description of the Gal(k̄/k)-action on the
dual graph of the geometric special fibres of the stable and minimal regular
models. This additional information is what is needed to determine local
invariants of the Jacobian of C such as its Tamagawa number and root
number (see e.g. [6, Theorem 2.20, Lemma 2.22] for a recipe for computing
these invariants from this data).

Recall from Proposition 1.5 that to each pair of roots {αi, βi} of f(x)
with v(αi − βi) > 4, there corresponds an ordinary double point Pi on
the geometric special fibre of the stable model of C. In Proposition 1.11
below we describe the Gal(k̄/k)-action on the points Pi, and give an explicit
characterisation of when such a point is a split ordinary double point in
the sense of [14, Definition 10.3.8]. This data is sufficient to determine the
Gal(k̄/k)-action on the dual graph of stable model, as explained in e.g. [6,
Section 2.1]. To obtain the corresponding action for the minimal regular
model, one can then use Remark 1.6.
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Notation 1.10. In what follows, for w ∈ OKnr we denote by w the reduction
of w to the residue field k̄. With the roots {α1, β1}, ..., {αg+1, βg+1} paired
as in Notation 1.3, define

γi =
αi + βi

2
and ηi =

(αi − βi
4

)2
(1 ≤ i ≤ g + 1).

By assumption we have ηi ∈ OKnr , and since αi + βi ≡ αi − βi ≡ 0 mod 2
we have γi ∈ OKnr also. Further, define

a =
1

4
(c− 1) ∈ OK and ri = γi ∈ k̄.

We then have the following:

Proposition 1.11. In the notation above, the correspondence {αi, βi} 7→ Pi
is equivariant for the action of Gal(Knr/K) = Gal(k̄/k). Further, Pi is a
split ordinary double point over k(Pi) = k(ri) if and only if

(1.12) Tracek(ri)/F2

(
a+

∑
j 6=i

ηj(ri − rj)−2
)

= 0.

Example 1.13. Consider the genus 2 hyperelliptic curve

C/Q2 : y2 = 5(x2 − 8)(x2 − 7x+ 13)(x2 + 9x+ 21).

This has roots {±2
√

2, ζ3 ± 4, ζ2
3 ± 4} where ζ3 is a primitive 3rd root of

unity, and cluster picture

5
2 3 3

0

We see from Proposition 1.5 (cf. also Remark 1.7) that C is semistable and
that the minimal proper regular model of C over Znr2 has special fibre

where each irreducible component is a rational curve.
We can use Proposition 1.11 to determine the Frobenius action on this

special fibre. With the roots ordered as written, in the terminology of No-
tation 1.10 we have a = 1,

γ1 = 0, γ2 = ζ3, γ3 = ζ2
3 , η1 = 2, η2 = η3 = 4.

Since γ2 and γ3 are swapped by Frobenius, so are the two components drawn
vertically. Further, since ηi = 0 for each i whilst a = 1, we see from (1.12)
that the pair of roots {±2

√
2} corresponds to a non-split ordinary double

point. Thus Frobenius swaps the two components drawn horizontally also.
We remark that in fact, as one can show using Remark 3.5, the special

fibre of the stable model of C over Z2 is given explicitly by the equation(
y + ζ3(x3 + x2 + x)

) (
y + ζ2

3 (x3 + x2 + x)
)

= 0,

whose two (geometric) components are visibly swapped by Frobenius.
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Remark 1.14. In the above example we conclude that C(Q2) = ∅, since
each irreducible component of the special fibre has an even-sized Gal(F̄2/F2)-
orbit. In fact, arguing similarly, we have C(K) = ∅ for every odd degree
extension K/Q2. Thus C is deficient in the sense of [18, Section 8].

1.4. Reduction map on 2-torsion. Suppose that C is given by a Weier-
strass equation satisfying (?), hence has good ordinary reduction by The-
orem 1.2. Then the Néron model J /OK of the Jacobian J/K of C is an
abelian scheme, and we have an associated reduction map J [2] → J(k̄)[2]
on 2-torsion points. Here J denotes the special fibre of J . Motivated by
applications to the parity conjecture (see [7, Theorem A.1], for example) we
record an explicit description of the kernel of this reduction map in terms
of the roots of f(x), the set of which we denote R.

Recall that J [2] can be identified with the collection of even-sized subsets
S ⊆ R, with addition corresponding to symmetric difference, and along with
the relations identifying S with R S for each such S. This correspondence
is realised explicitly by sending S ⊆ R to the class of the divisor

(1.15) DS =
∑
r∈S

Pr −
|S|
2

(∞+ +∞−),

where Pr = (r, 0). For a proof see e.g. [8, Section 5.2.2]. The result is now
the following:

Proposition 1.16. With the notation above, and with the roots of f(x)
paired as in Notation 1.1, the kernel of the reduction map J [2]→ J(k̄)[2] is
generated by the subsets {αi, βi} for 1 ≤ i ≤ g + 1.

Remark 1.17. For an elliptic curve E/K presented in short Weierstrass
form (and with arbitrary reduction type), a similarly explicit description of
the reduction map on 2-torsion points is given in the work of Yelton [21,
Corollary 6, Remark 7].

1.5. Layout. In Section 2 we review some properties of Weierstrass equa-
tions over fields of characteristic 2 which will be used later. Section 3 then
proves all results mentioned above, beginning with Theorem 1.4 and Propo-
sition 1.5. For explicit equations defining the special fibre of the stable model
when C is given by a Weierstrass equation satisfying (??), see Remark 3.5.

1.6. Notation and conventions. The following notation and conventions
will be used throughout the the paper.

By a hyperelliptic curve over a field F we mean a smooth proper geomet-
rically connected curve C/F equipped with a finite separable k-morphism
C → P1

F of degree 2. We say that C is ordinary if its Jacobian is (however
‘good’ in Theorem 1.2 refers to good reduction of the curve rather than the
weaker property of good reduction of its Jacobian).

Let R be a commutative ring. By a Weierstrass equation over R we mean
an equation

(1.18) y2 +Q(x)y = P (x)
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where P (x), Q(x) ∈ R[x] are polynomials with max{2 degQ,degP} ∈ {2g+
1, 2g + 2} for some g ≥ 2. By the scheme X defined by this Weierstrass
equation we mean the R-scheme given by gluing the affine charts (1.18) and

(1.19) z2 + tg+1Q(1/t)z = t2g+2P (1/t)

via the change of variables x = 1/t and tg+1y = z.
For a nonarchimedean local field K, ring of integers OK and residue field

k, given w ∈ OK we denote by w the reduction of w to k. For a polynomial
Q(x) ∈ OK [x] we denote by Q(x) ∈ k[x] the reduced polynomial.

2. Weierstrass equations in characteristic 2

Let F be an algebraically closed field of characteristic 2. Let g ≥ 2 and
let C be the curve defined by a Weierstrass equation (1.18) over F with
degQ = g + 1. Denote by R the set of roots of Q(x) in F . The map
(x, y) 7→ x defines a finite separable morphism C → P1

F of degree 2 which

ramifies precisely at the points Pr = (r,
√
P (r)) for r ∈ R. There are 2

points lying over the point at infinity on P1
F ; we denote these ∞±.

2.1. Smooth Weierstrass equations. Suppose the curve C is smooth
(this can, for example, be detected by the discriminant of the Weierstrass
equation; see e.g. [15] or [13, Section 2]). Then C is a genus g hyperelliptic
curve over F . Conversely, any hyperelliptic curve X/F of genus g ≥ 2 can
be given by a Weierstrass equation of the form (1.18) with degQ = g + 1
(cf. [14, Proposition 7.4.24]). Denote by J the Jacobian of C.

Lemma 2.1. The group J(F )[2] can be identified with the collection of even-
sized subsets S ⊆ R, with addition corresponding to symmetric difference.
Explicitly, S ⊆ R corresponds to the class of the divisor

DS =
∑
r∈S

Pr −
|S|
2

(∞+ +∞−).

Proof. This is well known; see, for example, the proof of [5, Theorem 23]
(cf. also work of Elkin–Pries [9]). �

Remark 2.2. By Lemma 2.1 we have dim J(F )[2] = |R|− 1. In particular,
C is ordinary if and only if Q(x) is separable. Whilst we have a running
assumption that g ≥ 2, we note that this equivalence also holds when g = 1,
i.e. for Weierstrass equations y2 + Q(x)y = P (x) where degQ = 2 and
degP ≤ 4.

2.2. Semistable Weierstrass equations. We continue to suppose that
C is given by a Weierstrass equation (1.18), but do not assume that C is
smooth.

Lemma 2.3. The curve C is semistable with normalisation a disjoint union
of ordinary curves if and only if Q(x) is separable.
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Proof. From the Jacobian criterion one sees that C is smooth away from
the points Pr for r ∈ R, and that such a point is smooth if and only if
P ′(r)2 +P (r)Q′(r)2 6= 0. Moreover, when P ′(r)2 +P (r)Q′(r)2 = 0 the point
Pr is an ordinary double point if and only if r is a simple root of Q(x). For
such a point Pr, consider the curve C1 with Weierstrass equation

w2 +
Q(x)

x− r
w =

P (x) + P (r) +Q(x)
√
P (r)

(x− r)2

(our assumptions force each side of this equation to lie in F [x,w]). The
morphism C ′ → C defined by

(2.4) (x,w) 7−→
(
x, (x− r)w +

√
P (r)

)
realises C ′ as the partial normalisation of C at the point Pr.

Suppose that C has t ordinary double points in total, corresponding to
distinct roots r1, ..., rt of Q(x), say. We conclude from the above that the
normalisation of C is given by a Weierstrass equation of the form

y2 + Q̃(x)y = P̃ (x)

where Q̃(x) = Q(x)
∏t
i=1(x − ri)−1 and P̃ (x) is a polynomial of degree at

most 2(g − t) + 2. By Remark 2.2 such a curve is ordinary if and only if

Q̃(x) is separable, from which the result follows. �

3. Proofs of the main results

Let K be a finite extension of Q2, OK and k its ring of integers and
residue field respectively, and v its normalised valuation.

3.1. Proofs of Theorem 1.4 and Proposition 1.5.

Lemma 3.1. Suppose |k| ≥ g + 1 and that C has reduction type (†). Then
C can be represented by a Weierstrass equation satisfying (??).

Proof. Let C/OK denote the stable model of C and let ι denote the extension
of the hyperelliptic involution to C. By [19, Appendice], the quotient C/ι
is a semistable model of P1

K whose special fibre, by assumption, consists of
a single geometrically irreducible component (if the geometric special fibre
of C is a union of 2 rational curves intersecting transversally then these are
necessarily be swapped by ι). We conclude that the special fibre of C/ι
is isomorphic to P1

k. Thus C is a Weierstrass model for C in the sense of
[13, Definition 6], so can be represented by a Weierstrass equation (1.18)
over OK (cf. [13, Section 4.3]). Since |k| ≥ g + 1 we can moreover assume
that the reduction Q(x) has degree g + 1, and then that Q(x) is monic.
Applying Lemma 2.3 to the reduced Weierstrass equation we see that Q(x)
is separable.

Completing the square in (1.18) and scaling y by 2 shows that C can
be represented by the Weierstrass equation y2 = Q(x)2 + 4P (x). Write
Q(x)2 + 4P (x) = cf(x) for f(x) monic of degree 2g + 2, noting that c ≡
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1 mod 4 and that f(x) is in OK [x]. Write γ1, . . . , γg+1 for the roots of Q(x),

all of which lie in in Knr since Q(x) is separable. Since f(x) ≡ Q(x)2 mod 4,
by Hensel’s lemma for lifting coprime factorisations (see [3, III.4.3 Theorem
1]) we can factor f(x) over Knr as

f(x) =

g+1∏
i=1

fi(x)

with each fi(x) ∈ OKnr [x] monic quadratic satisfying fi(x) ≡ (x− γi)2 mod
4. Since fi(x + γi) ≡ x2 mod 4 the discriminant of fi(x) is congruent to 0
modulo 16, so factoring fi(x) = (x−αi)(x−βi) over K̄ we find v(αi−βi) ≥
v(4). Finally, since fi(x) = (x− γi)2 we have αi = γi = βi for each i, hence
separability of Q(x) gives v(αi−αj) = v(βi−βj) = v(αi−βj) = 0 for i 6= j.
Thus y2 = cf(x) is a Weierstrass equation for C of the desired form. �

To complete the proof of Theorem 1.4 it remains to study hyperelliptic
curves C given by a Weierstrass equation satisfying (??). It will be conve-
nient to introduce the following notation.

Notation 3.2 (cf. Notation 1.10). Suppose that C is given by a Weierstrass
equation satisfying (??). Define

fi(x) = (x− αi)(x− βi), γi =
αi + βi

2
, ηi =

(αi − βi
4

)2
.

As explained in Notation 1.10 we have ηi, γi ∈ OKnr . Further, we have

(3.3) f(x) =

g+1∏
i=1

fi(x) and fi(x) = (x− γi)2 − 4ηi.

Next, set

Q(x) =

g+1∏
i=1

(x− γi) and P (x) =
1

4
(cf(x)−Q(x)2).

By (3.3) we have f(x) ≡ Q(x)2 (mod 4) so, since c ≡ 1 (mod 4), we have
P (x) ∈ OK [x]. Finally, write

a =
1

4
(c− 1) ∈ OK and ri = γi ∈ k̄.

Note that αi − γi = βi−αi

2 ≡ 0 mod 2 so that γi ≡ αi mod 2. In particular,

the ri are all distinct, and Q(x) is separable.

Lemma 3.4. Suppose that C is given by a Weierstrass equation satisfying
(??). Then C has semistable reduction and, with P (x) and Q(x) as defined
in Notation 3.2, the stable model of C is the OK-scheme defined by the
Weierstrass equation y2 +Q(x)y = P (x). Moreover, C satisfies (†).
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Proof. Reversing the change of variables described in the proof of Lemma
3.1 we see that C/K is represented by the integral Weierstrass equation
y2+Q(x)y = P (x). As explained in Notation 3.2 above, Q(x) has degree g+1
and is separable. Denote by C/OK the scheme defined by the Weierstrass
equation y2 + Q(x)y = P (x). By Lemma 2.3 this is a semistable model of
C.

Suppose first that the geometric special fibre of C is irreducible. Then C
is necessarily the stable model of C. Further, since the normalisation of the
special fibre of C is ordinary by Lemma 2.3, we conclude that C satisfies (†).

It remains to consider the case where the geometric special fibre of C is
reducible. Under this assumption, we can find polynomials λ(x), µ(x) in
F̄2[x] so that

y2 +Q(x)y + P (x) = (y + λ(x)) (y + µ(x)) .

We thus see that the geometric special fibre of C consists of two rational
curves intersecting at the g + 1 roots of λ(x) + µ(x) = Q(x). Since C is
semistable, each of these intersections is necessarily transversal. Thus again
we conclude that C is the stable model of C, and that C satisfies (†). �

Theorem 1.4 now follows from combining Lemma 3.1 and Lemma 3.4.

Proof of Proposition 1.5. Let C be given by a Weierstrass equation satis-
fying (??). See Notation 3.2 for the quantities appearing below. As in
Lemma 3.4, the stable model C/OK of C is given by the Weierstrass equa-
tion y2 +Q(x)y = P (x). Denote by C′ = C ×OK

OKnr the base-change of C
to OKnr . Then (as in the proof of Lemma 2.3) C′ is smooth away from the

points Pi = (ri,
√
P (ri)) (1 ≤ i ≤ g + 1) on its the special fibre.

For each i we now compute the completed local ring ÔC′,Pi
of C′ at Pi.

Reordering the roots and translating x we suppose i = 1 and γi = 0. Write

Q(x) = xQ̃(x). Further, write f(x) = f1(x)f̃(x) where f̃(x) =
∏g+1
j=2 fj(x).

As in (3.3) we have f1(x) = x2 − 4η1, whilst f̃(x) ≡ Q̃(x)2 (mod 4).

Claim. There is G(x) ∈ OKnr [[x]]× with

G(x) ≡ Q̃(x) (mod 2) and G(x)2 = cf̃(x).

Proof of claim. Let R = OKnr [[x]], write cf̃(x) = Q̃(x)2 + 4P̃ (x) for some

P̃ (x) ∈ OKnr [x], and define h(t) = t2 − tQ̃− P̃ ∈ R[t]. Since R is Henselian

and Q̃(0) is a unit in OKnr , there is G0 ∈ R with h(G0) = 0. Then G =

2G0 − Q̃ has the required properties. �

With G(x) as in the claim, set u = G(x)−1
(
y+x · Q̃(x)−G(x)

2

)
. A straight-

forward computation gives

y2 +Q(x)y − P (x) = G(x)2(u2 + ux+ η1).

It follows that ÔC′,Pr1
is isomorphic to the completed local ring of the scheme

u2 + ux+ η1 = 0 ⊆ A2
OKnr
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at the closed point x = 0, u =
√
η1 on its special fibre. If v(α1 − β1) = v(4)

then η1 6= 0 and this scheme is smooth. On the other hand, if v(α1 − β1) >
v(4) then η1 = 0 and, setting v = u + x, we see that the sought completed
local ring is isomorphic to

ÔKnr [[u, v]]/
(
uv+η1

)
.

We thus see that P1 has thickness v(η1) = 2(v(α1 − β1)− v(4)) in C′. �

Remark 3.5. Suppose that C is given by a Weierstrass equation satisfying
(??). By Lemma 3.4 the special fibre of the stable model of C is given by the
Weierstrass equation y2 +Q(x)y = P (x). With the quantities as in Notation

3.2 we have Q(x) =
∏g+1
i=1 (x − ri). The polynomial P (x) is given explicitly

by the formula

(3.6) P (x) = aQ(x)2 +

g+1∑
i=1

ηi
∏
j 6=i

(x− rj)2.

To see this note that from (3.3) we have

cf(x) = (1 + 4a)

g+1∏
i=1

(
(x− γi)2 − 4ηi

)
.

Expanding out the righthand side, using the definition of P (x), and reducing
to the residue field recovers (3.6).

In particular we see from (3.6) that if i ∈ {1, ..., g + 1} is such that
v(αi − βi) > v(4), hence ηi = 0, then we have

(3.7) P (ri) = 0.

3.2. Frobenius action on the special fibre. It follows readily from the
explicit equations for the special fibre of the stable model given in Remark
3.5 that the Frobenius action takes the form asserted in Proposition 1.11.

Proof of Proposition 1.11. As in the statement of the proposition we assume
that C is given by a Weierstrass equation of the shape (??). Let C/OK denote
its stable model, as described explicitly in Remark 3.5. From the proof of
Proposition 1.5 we see that the bijection between ordinary double points on
Ck̄ and pairs {αi, βi} of roots of f(x) with v(αi − βi) > v(4) sends a pair
{αi, βi} to the point Pi = (ri, 0) on the special fibre y2 +Q(x)y = P (x) of C.
The Gal(k̄/k)-equivariance of the map {αi, βi} 7→ Pi is clear, and we note
also that k(Pi) = k(ri). From the explicit normalisation map (2.4) we see
that Pi is a split ordinary double point over k(Pi) if and only if the quadratic
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equation

w2 +Q
′
(ri)w =

P (x) + P (ri) +Q(x)
√
P (ri)

(x− ri)2

∣∣∣∣∣
x=ri

(3.7)
=

P (x)

(x− ri)2

∣∣∣∣∣
x=ri

(3.6)
= aQ

′
(ri)

2 +
∑
j 6=i

ηj
∏
s 6=i,j

(ri − rs)2

is soluble over k(ri). This latter condition is equivalent to (1.12), as can

be seen by replacing w by Q
′
(ri)w and considering the trace to F2 of the

resulting equation. �

3.3. Reduction map on 2-torsion. Now suppose that C is given by a
Weierstrass equation y2 = cf(x) satisfying (?). As in Section 1.4 we denote
by R the set of roots of f(x) in K̄. For each even sized subset S ⊆ R we
let DS denote the divisor defined in (1.15), whose class defines a 2-torsion
point on the Jacobian J of C.

Proof of Proposition 1.16. Let P (x) and Q(x) be as in Notation 3.2. By
Lemma 3.4 the OK-scheme C defined by the integral Weierstrass equation
y2 + Q(x)y = P (x) realises the good reduction of C. In particular, by [2,
Theorem 9.5.1] the Néron model of J agrees with the identity component
of the relative Picard functor Pic0

C/OK
. For S ⊆ R with |S| even it follows

that the reduction map J(K̄) → J(k̄) sends (the class of) the divisor DS

to the (class of the) divisor
∑

r∈S Pr̄ −
|S|
2 (∞+ +∞−) on Ck̄, where here

Pr̄ = (r̄,
√
P (r̄)). The result now follows from Lemma 2.1. �

Acknowledgments. The first author is supported by a Royal Society Re-
search Fellowship. The second author is supported by the Engineering and
Physical Sciences Research Council (EPSRC) grant EP/V006541/1 ‘Selmer
groups, Arithmetic Statistics and Parity Conjectures’.

References

[1] A. J. Best, L. A. Betts, M. Bisatt, R. van Bommel, V. Dokchitser, O. Faraggi, S. Kun-
zweiler, C. Maistret, A. Morgan, S. Muselli, and S. Nowell. A user’s guide to the local
arithmetic of hyperelliptic curves. To appear in Bulletin of the London Mathematical
Society.

[2] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models, vol-
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[19] Michel Raynaud. p-groupes et réduction semi-stable des courbes. In The Grothendieck
Festschrift, Vol. III, volume 88 of Progr. Math., pages 179–197. Birkhäuser Boston,
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