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Abstract—In this paper, the problem of maximizing the sum
rate of all the multicasting groups in an intelligent reflecting
surface (IRS)-assisted millimeter wave multicast multiple-input
multiple-output communication system is studied. In the con-
sidered model, one IRS is deployed to assist the communication
from a multi-antenna base station (BS) to the multi-antenna
users that are clustered into several groups. Our goal is to
maximize the sum rate of all the multicasting groups by jointly
optimizing the transmit beamforming matrices of the BS, the
receive beamforming matrices of the users, and the phase shifts
of the IRS. To solve this non-convex problem, we first use a block
diagonalization method to represent the beamforming matrices
of the BS and the users by the phase shifts of the IRS. Then,
substituting the expressions of the beamforming matrices of the
BS and the users, the original sum-rate maximization problem
can be transformed into a problem that only needs to optimize
the phase shifts of the IRS. To solve the transformed problem,
a manifold method is used. Simulation results show that the
proposed scheme can achieve up to 14.93% gain in terms of
the sum rate of all the multicasting groups compared to the
algorithm that optimizes the hybrid beamforming matrices of
the BS and the users using our proposed scheme and randomly
determines the phase shifts of the IRS.

I. INTRODUCTION

Millimeter wave (mmWave) communications utilize the
30-300 GHz frequency band to achieve multi-gigabit trans-
missions. However, mmWave suffers from severe path loss
and is easily blocked by obstacles due to the short wave-
length. To address these problems, massive multiple-input
multiple-output (MIMO) and intelligent reflecting surface
(IRS) have been proposed [1], [2]. However, deploying IRS
and massive MIMO over mmWave communication systems
faces several challenges such as IRS location optimization,
joint active and passive beamforming design.

A number of existing works [3]–[8] have studied the
problems of optimizing the phase-shift matrix of the IRS and
beamforming matrix of the transceiver. In [3], the authors
maximized the received signal power by jointly optimizing
a transmit precoding vector of the base station (BS) and
the phase shift coefficients of an IRS. The authors in [4]
maximized the spectral efficiency by jointly optimizing the
reflection coefficients of the IRS and the hybrid precoder
and combiner. The work in [5] studied the hybrid precoding
design for an IRS aided multi-user mmWave communication
system. A geometric mean decomposition-based beamform-
ing scheme was proposed for IRS-assisted mmWave hybrid
MIMO systems in [6]. In [7], the authors optimized channel

estimator in a closed form while considering the signal
reflection matrix of an IRS and an analog combiner of a
receiver. The authors in [8] jointly optimized the coordinated
transmit beamforming vectors of the BSs and the reflective
beamforming vector of the IRS, so as to maximize the mini-
mum weighted signal-to-interference-plus-noise ratio (SINR)
of users. However, most of these existing works [3]–[8] only
consider the deployment of IRS over unicast communica-
tion networks in which each BS transmits independent data
streams to each user.

Multicast enables the BS to transmit a content to multiple
users using an identical radio resource, thus improving the
spectrum and energy efficiency [9]–[11]. However, deploying
IRS over multicast communication systems faces several new
challenges. First, the users in a group that have different
channel conditions need to be served by a coordinated
beamforming matrix, thus complicating the design of the
beamforming matrix of the transmitter. Besides, in a multicast
system, the data rate of a group is limited by the user with
the worst-channel gain [12]. Therefore, in a multicast system,
one must maximize the data rate of the user with the worst-
channel gain in each group.

The main contribution of this paper is a novel IRS as-
sisted multigroup multicast system. In particular, we consider
an IRS-assisted mmWave multicast MIMO communication
system. In the considered model, one IRS is used to assist
the communication from a multi-antenna BS to multi-antenna
users that are clustered into several groups. To maximize the
sum rate of all the multicasting groups, we jointly optimize
the transmit beamforming matrices of the BS, the receive
beamforming matrices of the users, and the phase shifts of
the IRS. We formulate an optimization problem with the
objective of maximizing the sum rate of all the multicasting
groups under amplitude constraint of radio frequency (RF)
beamforming matrices, maximum transmit power constraint,
and unit-modulus constraint of the IRS phase shifts. To
solve this problem, we first use a block diagonalization (BD)
method to represent the beamforming matrices of the BS and
the users by the phase shifts of the IRS. Then, we substitute
the expressions of the beamforming matrices of the BS and
the users into the original problem so as to transform it to
a problem that only needs to optimize the phase shifts of
the IRS. The transformed problem is solved by a manifold
method. Simulation results show that the proposed scheme
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Fig. 1. An IRS-aided mmWave multigroup multicast MIMO communication
system.

can achieve up to 14.93% gain in terms of the sum rate of
all the multicasting groups compared to the algorithm that
optimizes the hybrid beamforming matrices of the BS and the
users using our proposed algorithm and randomly determines
the phase shifts of the IRS.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an IRS-aided mmWave multigroup multicast
MIMO communication system in which a BS is equipped
with NB antennas serving K users via an IRS, as shown
in Fig. 1. The users are divided into H groups. We assume
that the users in a group will request the same data streams
and the data streams requested by the users in different
groups are different. The set of user groups is denoted by
H = {1, 2, . . . ,H}. Meanwhile, the set of users in a group
h is denoted as Hh. We also assume that each user can only
belong to one group, i.e., Hi ∩Hj = ∅, ∀i, j ∈ H, i 6= j. In
our model, the direct communication link between the BS and
a user is blocked due to unfavorable propagation conditions.
Each user is equipped with NU antennas and MU RF chains
to receive ζ data streams from the BS. The BS simultaneously
transmits Hζ independent data streams to the users by MB

RF chains1.
At the BS, the transmitted data streams of H user groups

are precoded by a baseband transmit beamforming matrix
F B =

[
F B

1 ,F
B
2 , . . . ,F

B
H

]
∈ CMB×Hζ , with F B

h being the
transmit beamforming matrix of group h. After that, each
transmitted data stream of H user groups is precoded by an
RF transmit beamforming matrix F R ∈ CNB×MB

.
The received data streams of user k in group h are first

processed by an RF receive beamforming matrix W R
k ∈

CNU×MU
. Then, user k uses a baseband receive beamfoming

matrix W B
k ∈ CMU×ζ to recover ζ data streams.

In our model, an IRS is used to enhance the received
signal strength of users by reflecting signals from the
BS to the users. We assume that the signal power of
the multi-reflections (i.e., reflections more than once) on
the IRS is ignored due to severe path loss. The phase-
shift matrix of the IRS is Φ = diag

(
ejφ1 , . . . , ejφM

)
∈

1The numbers of RF chains are subject to the constraints Hζ ≤ MB ≤
NB and ζ ≤MU ≤ NU.

CM×M , where diag
(
ejφ1 , . . . , ejφM

)
is a diagonal matrix

of
[
ejφ1 , . . . , ejφM

]
, M is the number of reflecting elements

at the IRS, and φm ∈ [0, 2π] is the phase shift introduced by
element m of the IRS.

1) Channel Model: The BS and the users employ uniform
linear arrays (ULAs), and the IRS uses a uniform planar array
(UPA). The normalized array response vector for an ULA is

a (r) =
1√
N

[
1, . . . , ej

2πd
λ (N−1) sin(r)

]T
, (1)

where N is the number of antennas in ULA, d is an interval
between two antennas, and λ is the signal wavelength. The
normalized array response vector of UPA is

a(θ, η)=
1√
Fy×Fz

[1, . . . , ej
2πd
λ ((Fy−1) cos η sin θ+(Fz−1) sin η)]T,

(2)

where Fy × Fz is the number of elements in UPA, Fy and
Fz are respectively the number of elements in the horizontal
and vertical directions. The BS-IRS channel HB ∈ CM×NB

and the channel HR
k ∈ CNU×M from the IRS to user k in

group h can be respectively given as

HB =

√
NBM

Y

Y∑
i=1

αia
(
θA
i , η

A
i

) (
a
(
rD
i

))H
, (3)

HR
k =

√
MNU

L

L∑
i=1

βia
(
rA
i,k

) (
a
(
θD
i , η

D
i

))H
, (4)

where Y is the total number of paths (line-of-sight (LOS) and
non-line-of-sight (NLOS)) between the BS and the IRS, L is
the total number of paths (LOS and NLOS) between the IRS
and user k, θA

i denotes the azimuth angle of arrival of the
IRS, θD

i denotes the azimuth angle of departure of the IRS, ηA
i

denotes the elevation angle of arrival of the IRS, ηD
i denotes

the elevation angle of departure of the IRS, rA
i,k represents

the arrival angle of user k, rD
i represents the departure angle

of the BS, αi and βi are complex channel gains. a
(
rD
i

)
and a

(
rA
i,k

)
denote the normalized array response vectors of

the BS and user k, respectively.
(
a
(
rD
i

))H
is the Hermitian

transpose of a
(
rD
i

)
. a
(
θA
i , η

A
i

)
represents the normalized

array response vector of the IRS over the effective channel
from the BS to the IRS. a

(
θD
i , η

D
i

)
represents the normalized

array response vector of the IRS over the effective channel
from the IRS to user k. The effective channel from the BS to
user k in group h is Hk = GtGrH

R
kΦHB, where Gt and Gr

are the antenna gains of the BS and each user, respectively.
2) Data Rate Model: We assume that the BS obtains the

channel state information (CSI). The BS is responsible for
designing the reflection coefficients of the IRS. As a result,
the detected data of user k in group h is given by

ŝk,h=
(
W B

k

)H (
W R

k

)H
HkF

RF Bs+
(
W B

k

)H (
W R

k

)H
nk,

(5)
where s =

[
sT

1, . . . , s
T
H

]T ∈ CHζ×1 represents the
data streams to be transmitted to all users, with sh =
[sh,1, . . . , sh,ζ ]

T ∈ Cζ×1 being ζ streams that will be trans-
mitted to each user in group h. nk ∈ CNU×1 is an additive
white Gaussian noise vector of user k. Each element of nk



follows the independent and identically distributed complex
Gaussian distribution with zero mean and variance σ2. In (5),
the first term represents the signal received by user k. The
second term is the noise received by user k. The estimated
data stream i received by user k in group h can be expressed
as

ŝik,h =
(
wB
k,i

)H (
W R

k

)H
HkF

Rf̄B
hish,i

+

ζ∑
j=1,j 6=i

(
wB
k,i

)H (
W R

k

)H
HkF

Rf̄B
hjsh,i

+

H∑
m=1,m/∈Hh

ζ∑
l=1

(
wB
k,i

)H (
W R

k

)H
HkF

Rf̄B
ml
sm,l

+
(
wB
k,i

)H (
W R

k

)H
nk,

(6)

where hi = (h− 1) ζ+ i, wB
k,i denotes row i of matrix W B

k ,
and f̄B

hi
denotes column hi of matrix F B. In (6), the first

term represents the desired signal. The second term is the
interference caused by other streams of user k. The third term
is the interference caused by the users from other groups.
The fourth term is the noise. The SINR of user k in group
h receiving data stream i is given by

ξik,h
(
W R

k ,W
B
k ,ν,F

R,F B
h

)
=∣∣∣∣(wB

k,i

)H (
W R

k

)H
HkF

Rf̄B
hi

∣∣∣∣2
Iik,h + Jik,h + σ2

,

(7)

where Iik,h is short for Iik,h
(
W R

k ,W
B
k ,ν,F

R,F B
h

)
and Iik,h =

∑ζ
j=1,j 6=i

∣∣∣∣(wB
k,i

)H (
W R

k

)H
HkF

Rf̄B
hj

∣∣∣∣2
represents the interference from user itself, Jik,h
is short for Jik,h

(
W R

k ,W
B
k ,ν,F

R,F B
h

)
and

Jik,h =
∑H
m=1,m/∈Hh

∑ζ
l=1

∣∣∣∣(wB
k,i

)H (
W R

k

)H
HkF

Rf̄B
ml

∣∣∣∣2
represents the interference from other groups. The achievable
data rate of user k in group h is given by

Rk,h
(
W R

k ,W
B
k ,ν,F

R,F B
h

)
=

ζ∑
i=1

log2

(
1 + ξik,h

(
W R

k ,W
B
k ,ν,F

R,F B
h

))
,

(8)

Due to the nature of the multicast mechanism, the achiev-
able data rate of group h depends on the user with minimum
data rate, which is defined as follows:

min
k∈Hh

{
Rk,h

(
W R

k ,W
B
k ,ν,F

R,F B
h

)}
. (9)

B. Problem Formulation

Next, we introduce our optimziation problem. Our goal is
to maximize the sum rate of all the multicasting groups via
jointly optimizing the transmit beamforming matrices F B,
F R, the receive beamforming matrices W R, W B, and the
phase shift ν of the IRS. Mathematically, the optimization
problem is formulated as

max
W B
k ,W

R
k ,F

R,F B,ν

H∑
h=1

min
k∈Hh

{
Rk,h

(
W R

k ,W
B
k ,ν,F

R,F B
h

)}
(10)

s.t.
∥∥F RF B

∥∥2

F
≤ P, (10a)∣∣F R (i, j)

∣∣ =
∣∣W R

k (i, j)
∣∣ = 1,∀i, j, (10b)

0 ≤ φm ≤ 2π,m = 1, . . . ,M, (10c)

where P is the maximum transmit power of the BS,∥∥F RF B
∥∥
F

is the Frobenius norm of F RF B, ν =[
ejφ1 , . . . , ejφM

]H
, F R (i, j) denotes the element (i, j) of

matrix F R, with
∣∣F R (i, j)

∣∣ being the amplitude of F R (i, j).
The maximum transmit power constraint of the BS is given in
(10a). Constraint (10b) represents the amplitude constraints
of the RF beamforming matrices of the BS and each user,
while (10c) shows the phase shift limits of the IRS. Due
to non-convex objective function (10) and non-convex con-
straints (10a)-(10c), problem (10) is non-convex, and hence
it is hard to solve. Next, we introduce an efficient scheme to
solve problem (10).

III. PROPOSED SCHEME

In this section, we first use the phase shift ν of the IRS
to represent the fully digital transmit beamforming matrix of
the BS and receive beamforming matrix of the users. Then,
we substitute them in (10) to transform problem (10). To
solve the transformed problem, the phase shift ν of the IRS
is optimized by a manifold method. Finally, we introduce the
entire algorithm used to solve problem (10).

A. Block Diagonalization Method

1) Simplification of Optimization Problem: W B
kW

R
k and

F RF B are regarded as a whole, that is, problem (10) is
solved as a problem of fully digital beamforming. Once
the fully digital transmit beamforming matrix and receive
beamforming matrix are obtained, we can use the algorithm
in [13] to find the hybrid transmit beamforming matrices and
receive beamforming matrices to approximate the fully dig-
ital transmit beamforming matrix and receive beamforming
matrix, as done in [14]. Although the fully digital architecture
has better performance, the cost and energy consumption
of hardware implementation are too high, so the hybrid
architecture is chosen. Let B = [B1, . . . ,BH ] ∈ CNB×Hζ

be a fully digital transmit beamforming matrix which has the
same size as the hybrid transmit beamforming matrix F RF B

and Jk ∈ CNU×ζ be a fully digital receive beamforming
matrix of user k in group h. The size of Jk is equal to that of
the hybrid receive beamforming matrixW R

kW
B
k . Substituting

B and Jk in (10), problem (10) can be transformed as

max
B,J,ν

H∑
h=1

min
k∈Hh

{Rk,h (Bh,Jk,ν)} (11)

s.t. (10c) ,

‖B‖2F ≤ P, (11a)

where J = diag (J1, . . . ,JK).



2) Optimization of B and J : Due to the low complexity
of a BD method, we use it to find the relationship between
ν and the fully digital transmit beamforming matrix B of
the BS as well as the receive beamforming matrix J of the
users.

Lemma 1: Given ν and the power allocation matrix Gh =
diag (p1, . . . , pζ) in group h, where pi = P

Hζ is the transmit
power of data stream i, B and J can be given by

Bh (ν) = Ṽ
(0)
h

(
V

(1)
1 + · · ·+ V (1)

K√
|Hh|

)√
P

Hζ
, (12)

Jk (ν) = U
(1)
k , (13)

where Ṽ (0)
h = null

(
H̃h

)
, U (1)

k , and V (1)
k can be obtained

by singular value decomposition (SVD) of HkṼ
(0)
h with

HkṼ
(0)
h =

[
U

(1)
k ,U

(2)
k

] [
Σ

(1)
k 0

0 Σ
(2)
k

] [
V

(1)
k ,V

(2)
k

]H
.

Proof: To prove Lemma 1, we first define H̃h as

H̃h
∆
= [H1, . . . ,Hh−1,Hh+1, . . . ,HH ]

T
, (14)

whereHh−1 is the effective channels of all users in group h−
1. We assume that the rank of H̃h is L̃k. Next, we introduce
the use of BD method to represent the transmit beamforming
matrices of the BS and the receive beamforming matrices of
the users by the phase shifts of the IRS. To eliminate the
inter-group interference, we define Ṽ (0)

h ∈ CN
B×(NB−L̃k) as

Ṽ
(0)
h = null

(
H̃h

)
, (15)

where null
(
H̃h

)
represents that Ṽ (0)

h lies in the null space

of H̃h. Hence, we have H̃hṼ
(0)
h = 0. The self interference

of each user can be eliminated by the SVD ofHkṼ
(0)
h , which

is

HkṼ
(0)
h =

[
U

(1)
k ,U

(2)
k

] [Σ(1)
k 0

0 Σ
(2)
k

] [
V

(1)
k ,V

(2)
k

]H
.

(16)
We assume that the rank of HkṼ

(0)
h is Lk, the column

vectors of U (1)
k ∈ CNU×ζ , U (2)

k ∈ CNU×(Lk−ζ), V (1)
k ∈

C(NB−L̃k)×ζ , and V (2)
k ∈ C(NB−L̃k)×(Lk−ζ) can form or-

thonormal sets, Σ
(1)
k ∈ Cζ×ζ and Σ

(2)
k ∈ C(Lk−ζ)×(Lk−ζ)

are diagonal matrices of singular values. Bh (ν) must be
designed to cancel the inter-group interference as well as
the interference of all users in this group. Thus, Ṽ (0)

h and
K∑
i=1

V
(1)
i must be included in Bh (ν), which can be given by

Bh (ν) = Ṽ
(0)
h

(
V

(1)
1 + · · ·+ V (1)

K√
|Hh|

)
G

1/2
h , (17)

where |Hh| is the number of users in group h, 1√
|Hh|

ensures that the power of
(
V

(1)
1 +···+V (1)

K√
|Hh|

)
is unit, and Gh

is the power allocation matrix in group h. To eliminate the

interference of all users in this group, the fully digital receive
beamforming matrix Jk of user k in group h is written as

Jk (ν) = U
(1)
k . (18)

Substituting Gh into (17), we have

Bh (ν) = Ṽ
(0)
h

(
V

(1)
1 + · · ·+ V (1)

K√
|Hh|

)√
P

Hζ
. (19)

This completes the proof.
From Lemma 1, we can see that Bh (ν) mainly depends

on the orthogonal bases of the null space of users in other
groups, the orthogonal bases of the subspace of users in group
h, the maximum transmit power of the BS and number of
groups, Jk (ν) depends on the effective channel of user k
and the orthogonal bases of the null space of users in other
groups.

3) Simplification of Problem (11): Based on the Lemma 1,
the interference caused by other groups Jik,h and user
itself Iik,h can be eliminated by the fully digital transmit
beamforming matrix Bh (ν) and receive beamforming ma-
trix Jk (ν). Substituting Bh (ν) and Jk (ν) into (11), the
achievable data rate of user k in group h can be rewritten as
follows:

Rk,h (Bh (ν) ,Jk (ν) ,ν) =
ζ∑
i=1

log2

(
1 +

∣∣∣(jk,i (ν))
H
Hkb̄h,i (ν)

∣∣∣2/σ2

)
,

(20)

Let
∣∣∣(jk,i (ν))

H
Hkb̄h,i (ν)

∣∣∣2/σ2 =λi, (20) can be rewritten
by

Rk,h (Bh (ν) ,Jk (ν) ,ν) =

ζ∑
i=1

log2 (1 + λi) ,

= log2 ((1 + λ1)× · · · × (1 + λζ)) ,

= log2

∣∣∣∣∣∣∣
1 + λ1 · · · 0

...
. . .

...
0 · · · 1 + λζ

∣∣∣∣∣∣∣ .
(21)

Therefore, we have

Rk,h (Bh (ν) ,Jk (ν) ,ν)

= log2 det
(
Iζ +

∣∣∣(Jk (ν))
H
HkBh (ν)

∣∣∣2/σ2

)
,

(22)

where det(·) represents the determinant of a square matrix,
and Iζ is an ζ × ζ identity matrix. Substituting Bh (ν) and
Jk (ν) into (22), we have

Rk,h (Bh (ν) ,Jk (ν) ,ν)

= log2 det


Iζ+

∣∣∣∣∣∣
(
U

(1)
k

)H
HkṼ

(0)
h

 K∑
i=1

V
(1)
i

√
|Hh|

√ P
Hζ

∣∣∣∣∣∣
2

σ2


.

(23)



Since Hi (Hk)
H

= 0 (i 6= k), we have Hk

(
V

(1)
i

)H
= 0

(i 6= k). Substituting (16) into (23), we have

Rk,h(Bh(ν),Jk(ν),ν)=log2det
(
Iζ+

P

|Hh|Hζσ2

(
Σ

(1)
k

)2
)
.

(24)
Then, the optimization problem in (11) can be transformed
as

max
ν

H∑
h=1

min
k∈Hh

{
log2 det

(
Iζ +

P

|Hh|Hζσ2

(
Σ

(1)
k

)2
)}

s.t. (10c) .
(25)

B. Phase Optimization with Manifold Method

1) Approximation of Σ
(1)
k : Since Σ

(1)
k in (25) is unknown,

we use the function of phase shift to represent Σ
(1)
k , which

is proved in Theorem 1.
Theorem 1: When the numbers of antennas of the BS and

the users are more than 128, Σ
(1)
k (i, j) ≈ βiαjνHcij , where

cij =
(
a
(
θD
i , η

D
i

))* ◦ a
(
θA
j , η

A
j

)
with

(
a
(
θD
i , η

D
i

))*
being

the conjugate of
(
a
(
θD
i , η

D
i

))
and ◦ being the Hadamard

product.
Proof: See Appendix A.

From Theorem 1, we can see that Σ
(1)
k depends on the

distance αj between the BS and the IRS, the distance βi
between the IRS and user k, the angle a

(
θA
j , η

A
j

)
from the

BS to the IRS, the phase shifts of the IRS, and the angle
a
(
θD
i , η

D
i

)
from the IRS to user k.

2) Problem Transformation: Based on Theorem 1, the
optimization problem (25) can be rewritten as

max
ν

H∑
h=1

min
k∈Hh

ζ∑
i=1

log2

(
1 +

P

|Hh|Hζσ2
|Dk (i, i)|2

)
(26)

s.t. (10c) ,

|dij | =
∣∣νHcij∣∣<τ, ∀i 6= j, (26a)

where dii = νHcii, Dk (i, i) = αiβidii (i ∈ {1, . . . , ζ}),
and τ is a small positive value. Constraint (26a) is to make
sure that Dk is approximately a non-square diagonal matrix
such that HkṼ

(0)
h = AkDk (A)

H [
z(K−|Hh|)ζ+1; . . . ; zKζ

]
can be treated as an approximation of the truncated
SVD of HkṼ

(0)
h , where z(K−|Hh|)ζ+1 denotes row

(K − |Hh|) ζ + 1 of matrix Z. Constraint (26a) can be
removed and this omission does not affect the validity of our
proposed solution [4]. Hence, problem (26) can be rewritten
as follows:

max
ν

H∑
h=1

min
k∈Hh

ζ∑
i=1

log2

(
1 +

P

|Hh|Hζσ2
|Dk (i, i)|2

)
s.t. (10c) .

(27)

Substituting Dk (i, i) = αiβiν
Hcii into (27), the problem

(27) can be transformed as follows:

max
ν

H∑
h=1

min
k∈Hh

{
ζ∑
i=1

log2

(
1 + biν

HCiiν
)}

s.t. (10c) ,

(28)

Algorithm 1 Proposed Scheme for Solving Problem (10)
1: Input: HB,HR

k , ζ, P, σ
2.

2: Calculate Bh (ν) and Jk (ν) by Lemma 1.
3: Find the phase shift ν̂ of the IRS by solving problem (28).
4: Obtain Bh (ν̂) and Jk (ν̂) by Lemma 1.
5: Calculate F̂ B, F̂ R, Ŵ B, and Ŵ R by the algorithm in [13].
6: Output: ν̂, F̂ B, F̂ R, Ŵ B, Ŵ R.

TABLE I
SIMULATION PARAMETERS

Parameters Values Parameters Values
M 16× 16 NB 64
NU 64 MB 8
MU 4 ζ 4
Y = L 7 Gt 24.5 dBi
Gr 0 dBi σ2 -90 dBm
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Fig. 2. Sum-rate changes as the transmit power of the BS.

where Cii ∆
= cii

(
cii
)H

and bi
∆
= P
|Hh|Hζσ2 |αiβi|2. Since

constraint (10c) is non-convex unit modulus, we use a man-
ifold method [15] to solve problem (28).

Given ν̂ obtained via solving problem (28), we can use
Lemma 1 to calculate Bh (ν̂) and Jk (ν̂). Then, we use the
algorithm in [13] to find F̂ B, F̂ R, Ŵ B, and Ŵ R.

IV. SIMULATION RESULTS

In our simulations, the coordinates of the BS and the
IRS are (2m, 0m, 10m) and (0m, 148m, 10m), respectively.
All users are randomly distributed in a circle centered at
(7m, 148m, 1.8m) with radius 10 m. The values of other
parameters are defined in Table I. For comparison purposes,
we use three baselines: a) the fully digital beamforming
matrices of the BS and the users as well as the phase of
each element of the IRS are optimized by the proposed
scheme (using proposed scheme to solve problem (11)), b)
the hybrid beamforming matrices of the BS and the users are
determined by the proposed algorithm and the phase shifts
of the IRS are randomly determined, and c) the fully digital
beamforming matrices of the BS and the users are determined
by the proposed scheme while the phase shifts of the IRS are
randomly determined.

Fig. 2 shows how the sum rate of all users changes as
the transmit power of the BS varies. From Fig. 2, we see
that, the performance achieved by the proposed algorithm is
similar to the optimal performance achieved by baseline a).
The is because the proposed shceme can find the optimal
hybrid beamforming matrices to represent the fully digital
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Fig. 3. Sum-rate versus number of reflecting elements at the IRS.

matrices. Fig. 2 also shows that compared to baseline b), the
proposed scheme can achieve up to 14.93% gain in terms of
the sum rate of all users when P=50 dBm and M=256. This
is because the proposed scheme optimizes the phase shifts of
the IRS by a manifold method.

In Fig. 3, we show how the sum of all users’ data rates
changes as the number of reflecting elements at the IRS
varies. Fig. 3 shows that the proposed scheme can achieve
up to 14% gain in terms of the sum of all users’ data rates
compared to baseline b) when M=240. This is due to the
fact that in the proposed scheme, the phase of each element
of the IRS is optimized by a manifold method, which can
align the angles of the cascaded channel and well deal with
module-one constraint.

V. CONCLUSIONS
In this paper, we have developed a novel framework

for an IRS-assisted mmWave multigroup multicast MIMO
communication system. The transmit beamforming matrices
of the BS, the receive beamforming matrices of the users,
and the phase shifts of the IRS were jointly optimized to
maximize the sum rate of all users. We have used a BD
method to represent the beamforming matrices of the BS and
the users by the IRS phase shifts. Then, we have transformed
the original problem to a problem that only needs to optimize
the IRS phase shifts. The transformed problem is solved by a
manifold method. Simulation results show that the proposed
scheme can achieve significant performance gains compared
to baselines.

APPENDIX A
To prove Theorem 1, we first define the effective channel

Hk as done in [4]
Hk = GtGrH

R
kΦHB = AkDk (A)

H
, (29)

where Ak =
[
a
(
rA
1,k

)
, . . . ,a

(
rA
L,k

)]
is a array response

matrix of user k, A =
[
a
(
rD
1

)
, . . . ,a

(
rD
Y

)]
is a ar-

ray response matrix of the BS, and Dk is an Y × L
matrix with element Dk (i, j) = βiαjdij , where dij =(
a
(
θD
i , η

D
i

))H
Φa

(
θA
j , η

A
j

)
= νHcij .

Given the effective channel Hk, we define H̃h as
H̃h = [H1, . . . ,Hh−1,Hh+1, . . . ,HH ]

T

=

A1 · · · 0
...

. . .
...

0 · · · AK

P [Σ̃ 0
0 0

]
Q

(A)
H

...
(A)

H

 . (30)

Let Z = Q

(A)
H

...
(A)

H

, Ṽ (0)
h =

[
z(K−|Hh|)ζ+1; . . . ; zKζ

]
,

with z(K−|Hh|)ζ+1 being row (K − |Hh|) ζ + 1

of matrix Z. Based on (29), HkṼ
(0)
h =

AkDk (A)
H [
z(K−|Hh|)ζ+1; . . . ; zKζ

]
. For ULA with

N antennas, when N is more than 128, the column vectors
of Ak and row vectors of (A)

H [
z(K−|Hh|)ζ+1; . . . ; zKζ

]
can form orthonormal sets [4]. Hence, HkṼ

(0)
h =

AkDk (A)
H [
z(K−|Hh|)ζ+1; . . . ; zKζ

]
can be considered as

an approximation of the truncated SVD of HkṼ
(0)
h , and

Dk can represent Σ
(1)
k .
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