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Abstract

Measurements of the large-scale structure of the universe are key observables to

study fundamental physics. This thesis focuses on the calibration of photometric

redshift distributions of extragalactic galaxy surveys and their impact on the

analysis of large-scale structure data.

First, I examine the impact of redshift distribution uncertainties on the

cosmological inference from weak lensing measurements. The weak gravitational

lensing effect, known as cosmic shear, distorts the shape of galaxy images due

to the distribution of gravitating matter along the line sight. Thus, it provides

a probe of the matter distribution in the universe. However, modelling the

observed cosmic shear signal requires knowledge about the distribution of

observed galaxies along the line of sight, which is usually determined through

photometric redshifts. I develop a method that accurately propagates residual

redshift distribution uncertainties into the weak lensing likelihood and perform

a self-calibration of the redshift distribution with cosmic shear data.

Second, I develop a new method to assign photometrically observed galaxies

to tomographic redshift bins. The goal is to obtain compact distributions and

to reduce the overlap between redshift bins caused by catastrophic outliers

in the photometric redshift estimation. This is achieved by combining a self-

organising map with a simulated annealing algorithm which optimises the

clustering cross-correlation signal between a photometric galaxy catalogue and

a spectroscopically observed sample of reference galaxies.

Finally, I perform consistency tests in cosmological analyses. These tests

include a study of the consistency between the constraints on cosmological
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parameters probed by the five tomographic bins of the Kilo-Degree Survey.

Furthermore, I study the internal consistency of the ΛCDM model by dividing

the model into regimes: one that describes the evolution of the isotropic

background of the universe and one describing matter density perturbations.

This model is constrained by cosmic shear, galaxy clustering, and cosmic

microwave background measurements.



Impact Statement

This thesis focusses on the role of photometric redshift distributions in current

and future extragalactic galaxy surveys. These surveys provide observations

of billions of galaxies which allow us to better understand the fundamental

properties of the Universe.

Our works provides a method to accurately propagate residual uncertainties

in photometric redshift distributions into the cosmological inference from weak

lensing measurements. Photometric redshifts allow us to determine the distances

of extragalactic objects, which are required in the modelling of cosmological

observables. This is achieved through observations of objects with a set of broad

filters that allow us to construct a low-resolution measurement of the spectral

energy distribution, from which we infer the redshift of an object. Given the

statistical power of upcoming galaxy surveys, the handling of uncertainties in

the photometric redshift estimation will be crucial in the analysis of cosmological

data. Our work therefore improves on an important aspect of the analysis of

upcoming cosmological surveys and is currently being adopted in an upcoming

analysis of data from the Kilo-Degree Survey.

Additionally, we develop an optimisation method for the assignment of

photometrically observed galaxies to tomographic redshift bins. Cosmological

analyses are often performed tomographically, which allows us to study the

properties of the Universe in slices along the line of sight. This is usually done

by assigning galaxies to bins based on their photometric redshift estimate,

which however is subject to catastrophic outliers, where the photometric red-

shift estimate differs greatly from the true redshift of the galaxy. Our work
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provides an optimised assignment scheme, which makes the underlying redshift

distributions in each tomographic bin more compact, helping to improve the

accuracy of future cosmological surveys.

Finally, we perform consistency tests in cosmological analyses. These tests

play an important role in studies of cosmological data, since we require our

datasets to be self-consistent in order to infer robust constraints on cosmological

parameters. Our work therefore makes an important contribution to the analysis

of cosmological data.

The work presented in this thesis has resulted in a peer-reviewed publication

(chapter 2; Stölzner et al., 2021) and a second publication that has been

submitted for peer-review (chapter 3; Stölzner et al., 2023). Additionally,

the work presented in section 5.2 has been included in one of the key papers

of the analysis of the fourth data release of the Kilo-Degree Survey (Asgari

et al., 2021). Finally, the results of section 5.3 are also part of a peer-reviewed

publication (Ruiz-Zapatero et al., 2021).
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Chapter 1

Introduction

1.1 Homogeneous cosmology

The current cosmological model is based on two fundamental aspects: Einstein’s

theory of General Relativity and the cosmological principle. Einstein’s theory of

General Relativity connects the energy content of the Universe to the structure

of spacetime. Thus, it allows us to understand the evolution of the Universe on

large scales. The cosmological principle states that the Universe is homogeneous

and isotropic when viewed on large scales, i.e. the structure of the Universe

looks the same for every observer looking in any direction. However, we require

a deviation from uniformity at small scales in order to explain the evolution of

structure in the Universe, such as galaxies.

The field of cosmology has made rapid progress in the last 30 years, thanks

to large data sets from various instruments. In particular, space-based Cosmic

Microwave Background (CMB) experiments such as the Cosmic Background

Explorer (COBE, Mather et al., 1990), the Wilkinson Microwave Anisotropy

Probe (WMAP, Bennett et al., 2003), and most recently Planck (Planck

Collaboration et al., 2014), large galaxy surveys such as the 2dF and 6dF

Galaxy Survey (Colless et al., 2001; Jones et al., 2004), the Sloan Digital

Sky Survey (SDSS, Abazajian et al., 2003), the Kilo-Degree Survey (KiDS,

Kuijken et al., 2015), and the Dark Energy Survey (DES, Abbott et al., 2018),

supernovae observations such as Riess et al. (1998), the Supernova Cosmology
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Project (SCP, Perlmutter et al., 1999), SH0ES (Riess et al., 2016), and Pantheon

(Scolnic et al., 2018), and many other experiments have conducted valuable

tests of the predictions of the ΛCDM cosmological model and have significantly

improved our understanding of the Universe.

In this introduction we review the key aspects of the theory of General

Relativity and the evolution of large-scale structure in the Universe. Addi-

tionally, we introduce photometric redshift estimation techniques and weak

gravitational lensing, which are the focus of chapters 2, 3, and 4.

1.1.1 General Relativity

In Einstein’s theory of General Relativity the spacetime metric gµν plays a

fundamental role. It connects the coordinates xµ of an observer and the

invariant line element ds by

ds2 = gµνdxµdxν . (1.1)

The metric incorporates the effects of gravity and is therefore a function of

time and space gµν(xµ). In a homogeneous and isotropic Universe, the most

general metric is the so-called Friedmann Lemaitre Robertson Walker (FLRW)

metric, which is in comoving spherical coordinates given by

ds2 = −dt2 +a2(t)
[

dr2

1−kr2 + r2
(
dθ2 +sin2 θdϕ2

)]
, (1.2)

where we adopt the signature (−1,1,1,1) of the metric tensor and use units

with the speed of light c= 1. Here, the time coordinate is t, and the spatial

coordinates are given by r, θ, and ϕ. In this equation, the scale factor a(t)

accounts for the expansion of space, relating comoving and physical coordinates

by

xi
phys = a(t)xi

comoving. (1.3)

Note that the scale factor can only depend on time, because if it depended

on the spatial coordinates, homogeneity would be violated. The imprint of
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spatial curvature is encoded in the factor k. Due to homogeneity and isotropy

the curvature must be the same everywhere at a given time. There are three

possible scenarios: for k = 0 the Universe is Euclidean and is called flat. For

k > 0 it is positively curved and called a closed Universe. For k < 0 the Universe

is negatively curved and therefore called open. We can further restrict the

possible values of k by applying transformations to r and a(t): r̃ = r
√

|k| and

ã(t) = a(t)/
√

|k|. After this rescaling, the metric is formally the same as in Eq.

(1.2), but with the factor k restricted to 0,+1, or -1, depending on whether the

Universe is flat, closed, or open.

The relation between the metric and the matter and energy content of the

Universe is given by the Einstein equation:

Gµν +Λgµν = 8πGTµν , (1.4)

where Gµν is the Einstein tensor, G is the gravitational constant, and Tµν is

the energy-momentum tensor. In this equation, Λ denotes the cosmological

constant, which was first introduced by Einstein to give a static solution to the

equation under the assumption that Λ is constant in time and space. However,

in today’s cosmological model it accounts for the accelerated expansion of the

Universe caused by Dark Energy. Employing the cosmological principle we find

that the energy-momentum tensor takes the form of a perfect fluid, given by:

Tµν = (p+ρ)uµuν −pgµν , (1.5)

with the pressure p, the energy density ρ, and the four-velocity uµ of the

fluid. For a comoving observer the velocity is uµ = (1,0,0,0) and therefore the

stress-energy tensor Tµ
ν becomes diagonal:

Tµ
ν = gµαTαν = diag(−ρ,p,p,p), (1.6)

where we summed over repeated indices. By inserting the FLRW metric into
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the Einstein equation, we find the relation between the scale factor and the

energy content of the Universe, which is given by the Friedmann equations

(Friedmann, 1922, 1924):

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 + Λ
3 , (1.7)(

ä

a

)
= −4πG

3 (ρ+3p)+ Λ
3 . (1.8)

The first Friedmann equation (1.7) gives a relation between the Hubble param-

eter H(t), which is defined as the relative expansion rate

H(t) = ȧ(t)
a(t) , (1.9)

and the homogeneous energy density of the Universe ρ(t), the spatial curvature

k and the cosmological constant Λ. The acceleration equation (1.8) gives

information about whether the expansion of the Universe is accelerating or

decelerating.

1.1.2 The content of the Universe

The energy density ρ entering the first Friedmann equation (1.7) is the sum

over all different components present in the Universe. We distinguish between

the ultra-relativistic component (radiation) and the non-relativistic component

(matter). The associated energy densities ρR and ρM scale differently with the

scale factor due to their equation of state. The Friedmann equation becomes

H2 =
(
ȧ

a

)2
= 8πG

3 (ρR +ρM )− k

a2 + Λ
3 . (1.10)

Furthermore, we can define the energy density of curvature and Dark Energy

as ρK = − 3k
8πGa2 and ρΛ = Λ

8πG , respectively. Thus, the Friedmann equation

becomes:

H2 =
(
ȧ

a

)2
= 8πG

3 (ρR +ρM +ρK +ρΛ) . (1.11)
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This equation describes the evolution of the Universe. Given the different

evolution with the scale factor, each component might have dominated during

different epochs in the history of the Universe. We discuss the four components

below.

Radiation: This component is comprised of photons from the cosmic mi-

crowave background (CMB) and neutrinos. The contribution of radiation to

the total energy density at the present time is less than 1%.

Matter: This component consists of two types of matter. First, baryonic

matter which refers to all visible matter that contributes to approximately 5%

of the total energy density of the current Universe (Planck Collaboration et al.,

2020b). In the context of cosmology, the term baryon refers to neutrons, protons,

and electrons although in particle physics electrons are correctly classified as

leptons. The second type of matter does only interact gravitationally, but

not through electromagnetic forces, and is therefore called dark matter. The

first evidence of dark matter was found through the velocity dispersion of

galaxies in the Coma cluster (Zwicky, 1933) and through galaxy rotation curves

(Rubin and Ford, 1970), while modern experiments observed a contribution

of approximately 26% of dark matter to the total energy density (Planck

Collaboration et al., 2020b).

Curvature: This component describes the contribution of spatial curvature,

as discussed in section 1.1.1, to the total energy density of the Universe.

Dark Energy: This component comprises the remaining 69% of the energy

density of the Universe and is indistinguishable from a cosmological constant

with current observational capabilities. Therefore, it is a primary focus of

upcoming surveys such as Euclid (Laureijs et al., 2011) and the Vera C. Rubin

Observatory’s Legacy Survey of Space and Time (LSST; LSST Science Col-

laboration et al., 2009). It was first detected through observations of Type Ia

supernovae (Riess et al., 1998; Perlmutter et al., 1999) and is responsible for

the accelerated expansion of the Universe at the present time.

For each component we can derive the evolution of the Hubble parameter



1.1. Homogeneous cosmology 33

during an epoch in which this component is the dominating one. For radiation

and matter we first need to determine how the energy density scales with a.

The first Bianchi identity, Tµν
;µ = 0, yields

ρ̇= −3 ȧ
a

(ρ+p) = −3 ȧ
a

(1+w)ρ, (1.12)

where we defined the equation of state parameter of the fluid as w = p/ρ. This

equation tells us how the energy gets diluted due to the expansion of the

Universe depending on the equation of state. By integrating Eq. (1.12) we find

the scaling of ρ with respect to the scale factor:

ρ∝ a−3(1+w). (1.13)

For each given species we insert the corresponding equation of state parameter

in order to infer the scaling of the energy density with respect to the scale

factor. Via integration of Eq. (1.11) we find the evolution of the scale factor

during the epoch in which one of the components is dominating:

1. Radiation domination: For ultra-relativistic matter we know the

equation of state from statistical thermodynamics, which is given by

p= ρ
3 . Thus, Eq. (1.13) yields

ρ∝ a−4 ⇒H2 ∝ a−4 ⇒ a∝ t
1
2 . (1.14)

2. Matter domination For non-relativistic matter the kinetic energy is

negligible, implying p= 0 and thus w = 0. Then, Eq. (1.13) leads to

ρ∝ a−3 ⇒H2 ∝ a−3 ⇒ a∝ t
2
3 . (1.15)

3. Curvature domination For curvature, the Friedmann equation yields

H2 ∝ k

a2 . (1.16)
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Here, we have to distinguish between the three possible values of k. For

k = 0 the Universe is flat and there is no effect of curvature at all. For

k = +1 and k = −1 we find

H2 ∝ a−2 ⇒ a∝ t. (1.17)

However, for k = +1 and assuming that there is no cosmological constant,

the expansion stops at some point due to the scaling proportional to a−2

and the Universe recollapses afterwards.

4. Cosmological constant domination The cosmological constant is a

term in the Friedmann equation which does not scale with a and therefore

leads to an exponential expansion of the Universe. This can also be

inferred by treating the cosmological constant as a species contributing

to the cosmological fluid. Comparing the cosmological constant to the

energy-momentum tensor (1.6), we see that the cosmological constant is

equivalent to a fluid with Tµ
ν = − Λ

8πGδ
µ
ν . This is the energy-momentum

tensor of a perfect fluid with equation of state ρ= −p= Λ
8πG . Eq. (1.12)

then yields ρ̇= 0 and therefore we find

H2 = const ⇒ a∝ e
Λt
3 , (1.18)

which is equivalent to what we read off from the Friedmann equation.

As shown above, the Hubble parameter evolves during the four epochs

proportional to a−4, a−3, a−2, and a0. Due to these scalings and the fact that

the scale factor is always increasing, the four components can have potentially

dominated the expansion of the Universe from early to late times in the order in

which they were listed. However, the existence of these terms in the Friedmann

equation does not necessarily imply that each individual component dominated

the expansion at some point during the history of the Universe. From the

proportionality of the scale factor with respect to time during the four epochs we
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infer that the Universe is in decelerated expansion during radiation domination

and matter domination, while the rate of expansion stays constant during

curvature domination. Only during cosmological constant domination we do

find accelerated expansion.

By measuring the energy densities of the contents of the Universe and the

value of the Hubble parameter at the present time we can extrapolate a(t) at

any time and thus infer the history of the Universe. Evaluating the Friedmann

equation at the present time yields

1 = 8πG
3H2

0
ρR,0 + 8πG

3H2
0
ρM,0 − k

a2
0H

2
0

+ Λ
3H2

0
(1.19)

= ΩR +ΩM +Ωk +ΩΛ, (1.20)

where we defined the relative contributions of the term x to the present day

expansion by Ωx and used the subscript 0 for quantities evaluated today. The

Friedmann equation in terms of these quantities at any time is then given by

H2(a) =H2
0

[
ΩR

(
a0
a

)4
+ΩM

(
a0
a

)3
+Ωk

(
a0
a

)2
+ΩΛ

]
, (1.21)

where H0 refers to the value of the Hubble parameter at the present time.

Recent observations taken by the Planck satellite have shown that the spatial

curvature of our Universe is very close to zero with ΩK = 0.001±0.002 (Planck

Collaboration et al., 2020b) therefore we can neglect ΩK and parameterise the

evolution of our Universe by the four parameters ΩR, ΩM , ΩΛ and H0.

1.2 The Large Scale Structure of the Universe

1.2.1 Matter power spectrum

General Relativity, as discussed in section 1.1, describes the evolution of the

homogeneous background of the Universe on large scales. This is consistent

with CMB experiments which only find temperature fluctuations of order

∆T/T ∼ 10−5 (Smoot et al., 1992). However, the existence of the so-called
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cosmic web, which is comprised of structures such as galaxy clusters, voids, and

filaments, requires perturbations from the homogeneous background in order

for these structures to be formed. In the cosmological model it is postulated

that after the Big Bang the Universe went through a period of accelerated

expansion, called inflation. Inflation is capable of explaining the statistical

homogeneity of the Universe at large scales and the existence of structures,

which originate from quantum fluctuations that grow to cosmological scales

during the period of accelerated expansion.

We parameterise perturbations from the homogeneous background via the

density contrast

δ(x, t) = ρ(x, t)− ρ̄(t)
ρ̄(t) , (1.22)

where ρ̄(t) denotes the mean matter density of the Universe at time t and

ρ(x, t) is the matter density at a position x and time t. Assuming the presence

of primordial fluctuations after the end of inflation, we describe the amplitude

of the fluctuations as a power spectrum P (k) using

(2π)3P (k)δD(k +k′) = ⟨δ(k)δ(k′)⟩, (1.23)

where δD is the Dirac delta function and the angular brackets denote the

ensemble average. Here, δ(k) is the Fourier transform of the matter power

spectrum which is defined by

δ(k) =
∫
e−ik·xδ(x)dx. (1.24)

We assume that the primordial power spectrum P0 is only dependent on the

amplitude k of the wave vector. Therefore, we find

P0(k) = As

(
k

k0

)ns

, (1.25)

where As is the amplitude of primordial fluctuations and ns denotes the scalar

spectral index with ns = 1 corresponding to a scale-invariant Harrison-Zel’dovich



1.2. The Large Scale Structure of the Universe 37

power spectrum. Additionally, k0 denotes the pivot scale which is arbitrarily

set to k0 = 0.05Mpc−1. At later times, the power spectrum is modulated by the

transfer function T (k) that depends on cosmological parameters describing the

growth of matter perturbations and by the growth factor D(t) describing how

initial perturbations grow with time. If we assume Gaussian initial conditions,

i.e. we assume that the initial perturbations are generated from a Gaussian

random field as predicted by the theory of inflation (Guth, 1981), and assuming

linear perturbations, the power spectrum can be computed via

P (k,t) = As

(
k

k0

)ns

T 2(k)D2(t). (1.26)

The time and scale dependencies of the power spectrum can be separated

because of the homogeneity of the Universe.

The matter power spectrum quantifies the scale dependence of density

perturbations which can be measured by various cosmological probes. The

shape of the power spectrum is determined by the evolution of perturbations

during different times. In general, these can be derived from relativistic

perturbation theory which, for the purpose of determining the evolution of

cold dark matter, can be approximated by Newtonian perturbation theory.

However, the formation of stars, galaxies, and clusters are non-linear processes

that cannot be described by linear perturbation theory and that can only

be computed numerically. Therefore, the non-linear growth of structures is

commonly modelled using numerical simulations.

In Fourier space, the evolution of density perturbations δ is given by

(Dodelson, 2003)

δ̈+2Hδ̇+
(
c2sk

2

a2 −4πGρ̄
)
δ = 0, (1.27)

where cs denotes the sound speed. During radiation domination, relativistic

perturbation theory predicts a negligible density contrast, so that Eq. (1.14)

and Eq. (1.27) yield

δ̈cdm + δ̇cdm
t

= 0. (1.28)
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Thus, we find either δcdm = const. or δcdm ∝ ln t, so that matter perturbations

either grow slowly or do not grow at all during this era. On the other hand,

a matter dominated universe can be parameterised via Ωm = 1, so that Eq.

(1.15) and Eq. (1.27) reduce to

δ̈m + 4δ̇m
3t − 2δm

3t2 = 0, (1.29)

where we used c2s = 0. Therefore, we find δm ∝ 1
t and δm ∝ t2/3, so that

perturbations grow with a power law. However, if the Universe does not

expand, the second term in Eq. (1.27) vanishes, which leads to an exponential

growth of perturbations. Finally, during Dark Energy domination we find

a∝ exp(Ht) so that Eq. (1.27) yields

δ̈m +2Hδ̇m = 0. (1.30)

Therefore, we find δm = const. or δm ∝ exp(−2Ht). Thus, Dark Energy domi-

nation leads to a suppression of the growth of structure.

So far, we have only considered perturbations that are smaller than the

Hubble radius, which is defined by

rH(t0) = c

H0
. (1.31)

The Hubble radius defines a sphere centred on an observer at the present time

outside of which objects move away from the observer with a speed faster than

the speed of light. Therefore, the Hubble radius is interpreted as the horizon

of the observable Universe. Perturbations outside the horizon grow with a

different rate than perturbations inside the horizon, which can be derived as

follows: We consider two patches of the Universe inside and outside the horizon

with the same Hubble rate. The Friedmann equations yield

8πG
3 ρout − κout

a2 = 8πG
3 ρin, (1.32)
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where ρout and ρin denote the density outside and inside the horizon, respectively,

and κout is the curvature outside the horizon. Additionally, we assumed a flat

Universe inside the horizon. We find

ρin −ρout
ρout

= 3
8πG

κout
a2ρout

. (1.33)

Therefore, perturbations outside the horizon evolve like

δ ∝ 1
a2ρ

. (1.34)

From this equation we can infer the evolution of perturbations outside the

horizon, which grow proportional to t during radiation domination and propor-

tional to t2/3 during matter domination while being suppressed during Dark

Energy domination.

The growth of perturbations then allows us to explain the shape of the

matter power spectrum, which is illustrated by the black line in Fig. 1.1. An

important quantity characterising the power spectrum is the scale of the matter-

radiation equality keq that determines the turnover of the power spectrum.

Perturbations on large scales with k < keq enter the horizon during matter

domination. Therefore, they grow proportional to t during radiation domination

and proportional to t2/3 when the Universe is matter dominated. On large

scales, the matter power spectrum therefore scales like the primordial power

spectrum with P ∝ kns and ns ≈ 1. On the other hand, perturbations with

k > keq enter the horizon during radiation domination. Therefore, they grow as

t during radiation domination until they enter the horizon, when their growth

stops. They then grow again during matter domination. Therefore, small-scale

perturbations are suppressed compared to large-scale perturbations and the

matter power spectrum is a decreasing function of k on small scales.

Additionally, Fig. 1.1 shows measurements of the linear matter power

spectrum from the CMB observations (Planck Collaboration et al., 2020a),

weak lensing (Troxel et al., 2018), galaxy clustering (Reid et al., 2010), and
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Figure 1.1: Measurements of the linear matter power spectrum from CMB observa-
tions (Planck Collaboration et al., 2020a), weak lensing (Troxel et al.,
2018), galaxy clustering (Reid et al., 2010), and the Lyman-alpha forest
(Palanque-Delabrouille et al., 2015). The solid black line shows the
ΛCDM model prediction for the linear matter power spectrum while the
black dotted line shows the impact of non-linear clustering at redshift
z = 0.

the Lyman-alpha forest (Palanque-Delabrouille et al., 2015). However, many

experiments do not probe the linear power spectrum directly, but instead

require non-linear corrections. In particular, probes that utilise galaxies as

tracers of the matter power spectrum in reality do not measure the matter

power spectrum, but instead measure the galaxy power spectrum. On large

scales, these power spectra can be related via a linear bias model (Kaiser,

1984), but this model breaks down on small scales, where non-linear processes

determine the formation of stars and galaxies and the clustering of galaxies.

The dark matter distribution on non-linear scales can for example be modelled

using the popular halo model formalism, which assumes that all dark matter

is distributed in dark matter halos. Galaxies are then formed within the dark
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matter halos, so that they trace the distribution of dark matter. In this model,

the dark matter distribution is summarised by the halo mass function (Jenkins

et al., 2001), which describes the number density of dark matter halos with a

given mass at a given redshift, the halo density profile (Navarro et al., 1996),

which describes the distribution of mass within dark matter halos, and the

halo bias function (Zehavi et al., 2005), which relates dark matter halos to the

underlying dark matter distribution. By accounting for non-linear corrections,

the galaxy power spectrum can then be related to the matter power spectrum.

By observing the distribution of galaxies on the sky we can probe the matter

power spectrum and therefore we can use observations to derive constraints on

cosmological parameters using Eq. (1.26). However, galaxies only give insight

into the distribution of baryonic matter which acts as a tracer of the underlying

dark matter density. A common assumption is a linear bias model (Kaiser,

1984) that relates the visible galaxy overdensity δg to the total matter density

via

δg = bgδ, (1.35)

where bg denotes the linear galaxy bias that can in general depend on the scale

k and on galaxy properties such as luminosity, type, colour, stellar mass, and

redshift (Fry, 1996; Mann et al., 1998; Tegmark and Peebles, 1998). In this

model, the observed galaxy power spectrum is related to the matter power

spectrum via

Pg(k,z) = b2gP (k,z). (1.36)

This relation is utilised in studies of galaxy clustering (see for example

Abazajian et al., 2003). However, a linear bias model in general is too simplistic

and thus the modelling of the galaxy bias is a crucial task that can potentially

induce systematic errors in the inferred constraints on cosmological parameters.

Alternatively, measurements of weak gravitational lensing of galaxies is a

powerful probe that gives access to the combined distribution of baryonic and

dark matter. Therefore, it is an essential part of the cosmological analyses of
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upcoming large-scale galaxy surveys such as Euclid and LSST. However, both

galaxy clustering and weak gravitational lensing require information about the

distribution of galaxies in three dimensions and hence require estimates of the

distance of the observed galaxies. In an expanding Universe the wavelength of

a photon emitted from an object is stretched proportional to the scale factor,

so that the observed wavelength is larger than the emitted wavelength. This

increase in the observed wavelength is usually defined in terms of redshift

z ≡ λo −λe

λe
, (1.37)

which is used as a measure of the distance to the observed object. In section

1.3 we discuss how we can measure the redshift of large samples of galaxies

observed in modern extragalactic galaxy surveys.

1.2.2 Large scale structure probes

As discussed in the previous section, the matter content of the Universe is

mostly comprised of dark matter, which is not directly observable due to its

lack of electromagnetic interactions. Thus, the matter power spectrum can

only be probed indirectly through observations of baryonic matter. Although

a significant proportion of the baryonic matter is located in intergalactic gas

clouds, one of the most powerful probes of the matter spectrum are observations

of astrophysical objects, in particular galaxies. These observations give access

to the density field of galaxies, which serves as a biased tracer of the underlying

dark matter distribution. In this section we review two of the most important

probes of the large scale structure of the Universe: galaxy clustering and weak

gravitational lensing.

1.2.2.1 Galaxy clustering
A direct measurement of the galaxy density field is provided by extragalactic

surveys which observe the angular position of galaxies on the sky as well as the

distance of galaxies in the form of redshift. Fig. 1.2 shows a map of galaxies

observed by SDSS up to a redshift of z = 0.15. We observe that galaxies are not
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Figure 1.2: Map of galaxies observed by SDSS. Each dot represents a galaxy with
the colour representing the g-r colour. Image credit: M. Blanton and
SDSS. Source: https://www.sdss.org/science/orangepie/, pub-
lished under a Creative Commons Attribution license (CC-BY).

distributed randomly, but aggregate in so-called groups and clusters that are

gravitationally bound and form structures, called filaments. By analysing these

structures we can measure the three-dimensional power spectrum of galaxies,

Pg(k), which can be related to the matter power spectrum by assuming a bias

model as outlined in section 1.2.1.

The most important statistic to characterise the spatial distribution of

galaxies is the two-point correlation function, which describes the excess of

galaxy pairs within a given volume relative to a random distribution. Consid-

ering a point x and an average galaxy number density n̄, the probability of

finding a galaxy in a volume element dV is given by

P = n̄dV, (1.38)

which is independent of x if the Universe is statistically homogeneous. The

probability of finding a galaxy at x and at the same time finding a second

galaxy at location y is given by

P = (n̄dV )2 (1+ ξg (x,y)) . (1.39)

https://www.sdss.org/science/orangepie/
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In this equation we introduced the two point correlation function of galaxies,

ξg (x,y), characterising the probability of finding an excess of galaxies due to

clustering. For ξg > 0 we find an excess of galaxies in the volume element while

for ξg < 0 we find a shortage of galaxies. If ξg = 0, galaxies are uncorrelated and

the probability of finding galaxy pairs reduces to the product of two random

distributions. Analogously, we define the correlation function of the total

matter density ρm as

⟨ρm(x)ρm(y)⟩ = ρ̄2
m (1+ ξm(x,y)) , (1.40)

where we defined ξm(x,y) = ⟨δ(x)δ(y)⟩ and used ⟨δ(x)⟩ = 0, which follows from

Eq. (1.22). Since we assume the Universe to be homogeneous and isotropic, the

correlation function can only depend on the separation of the two coordinates

r = |x −y|. Moreover, since we only observe a single Universe, we employ the

ergodic hypothesis allowing us to replace the ensemble average with a spatial

average, which makes the correlation function accessible in practice.

Observationally, we can calculate the correlation function by counting the

number of galaxy pairs of a given separation r relative to the number of galaxy

pairs in a randomly distributed sample of galaxies. One particular estimator of

the correlation function is then given by

ξg(r) = DD(r)−RR(r)
RR(r) , (1.41)

where DD(r) denotes the number of galaxy pairs in a bin of width ∆r in[
r− ∆r

2 , r+ ∆r
2

]
and RR(r) is the number of pairs in a randomly distributed

sample. This is the simplest estimator for the two-point correlation function

of galaxies. However, alternative estimators have been studied, some of which

are preferable to the standard estimator given in Eq. 1.41 due to being less

sensitive to noise (see for example Kerscher et al., 2000). In particular, one of

the most commonly used estimators is the Landy-Szalay estimator (Landy and
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Szalay, 1993), which is defined as

ξLS
g (r) = DD(r)−2DR(r)+RR(r)

RR(r) . (1.42)

Here, DR(r) denotes the number of pair counts among the data and the random

sample. In chapter 3 we will apply the Landy-Szalay estimator to calculate

the cross-correlation between samples of photometrically and spectroscopically

observed galaxies.

Spectroscopic observations of galaxies have shown that in a certain range

of separations the galaxy correlation function can be approximated with a

power law

ξg(r) =
(
r

r0

)−γ

, (1.43)

with a correlation length r0 = 5.05±0.26h−1Mpc and a slope γ = 1.67±0.03

found by Hawkins et al. (2003) on scales 0.1h−1Mpc < r < 12h−1Mpc for

galaxies in the 2dF Galaxy Redshift Survey. Eq. 1.43 requires information

about the position of galaxies in 3D. However, accurate distance measurements

are difficult to obtain. As an alternative, we can measure the clustering of

galaxies projected onto two dimensions on the sky. The angular two point

correlation w(θ) can be obtained from the three-dimensional correlation function

via integration along the line of sight (see for example Peebles, 1980). Again

assuming the power law defined in Eq. (1.43), we find

w(θ) = Aθ1−γ , (1.44)

with an amplitude A that can be derived from the real-space correlation function

if the redshift distribution of galaxies is known. Analogous to Eq. (1.41), we

can determine the angular correlation function from observations by counting

galaxy pairs in bins of angular separation θ.

In practice, we can relate both the galaxy correlation function and the

matter density correlation function to the corresponding power spectra. Under

the assumption that the distribution of galaxies in the Universe traces the
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underlying dark matter distribution, we derive constraints on the matter power

spectrum and thus constrain cosmological parameters. This, however, proves

challenging since it requires an assumption about the relation between galaxy

and matter power spectra. A popular choice is the linear bias model given in

Eq. (1.36) which, however, in general is dependent on various galaxy properties.

For example, Zehavi et al. (2005) found that SDSS galaxies are more clustered

the more luminous they are. Moreover, red galaxies show a higher clustering

amplitude and a steeper slope than blue galaxies. Therefore, bias parameters

of different galaxy samples need to be accounted for in cosmological analyses

of galaxy clustering. An option to break the degeneracy between cosmological

parameters and galaxy bias is to measure clustering as a function of cosmic time,

for example through baryon acoustic oscillations and redshift-space distortions,

since we expect the clustering of galaxies to evolve over time due to the growth

of structures. Thus, the determination of the redshift of galaxies, discussed in

section 1.3, is a vital tool that enables such analyses of galaxy clustering.

1.2.2.2 Weak gravitational lensing

The gravitational lensing effect is the deflection of light emitted by distant

galaxies caused by gravitational fields. Such gravitational fields are due to

massive objects, acting as lenses, distributed between the observer and the

observed source galaxy. This effect is commonly categorised into two types.

First, if the deflection is strong enough, multiple images of the same galaxy

can be identified in the same observation, the galaxy image can be distorted

into arcs, or, if the source galaxy is perfectly aligned the lens, the image can

appear as a ring. This effect is referred to as strong gravitational lensing.

However, the source galaxy needs to be closely aligned with the lens in order to

create the strong gravitational lensing effect. Thus, strong gravitational lenses

are comparatively rare. The second type of gravitational lensing, called weak

gravitational lensing, is a lot more common. This effect manifests itself when

the deflection of the light is small, leading to a distortion of the shape and size

of the distant galaxy, which is often unobservable by visual inspection of the
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galaxy image since we do not know the original size and shape of the source

galaxy. Therefore, weak lensing studies require an ensemble of galaxy images

in order to statistically measure the distortion of galaxy shapes that can be

directly related to the matter power spectrum.

The weak gravitational lensing effect is a powerful probe of cosmology,

since it directly maps all gravitating matter along the line of sight and does

not require knowledge about the relation between the galaxy and matter

distribution. While cosmic shear by the large scale structure was first detected

by Kaiser et al. (2000), Bacon et al. (2000), Wittman et al. (2000), and Van

Waerbeke et al. (2000), recent cosmological analyses from the three current

weak lensing experiments KiDS (Asgari et al., 2021), HSC (Hikage et al., 2019),

and DES (Amon et al., 2022) have showcased the potential of cosmic shear

measurements as a probe of the cosmological model and therefore it is a primary

probe for upcoming galaxy surveys, such as Euclid and LSST.

To model the weak lensing effect we follow Bartelmann and Maturi (2017)

and consider the lens system illustrated in Fig. 1.3. We make use of the

thin-lens approximation, where the extent of the lens along the line of sight is

small compared to the distance between the observer and the source galaxy. In

this approximation we can describe light paths as straight lines. The observer

is located at position O, the source galaxy at S, and the image of the galaxy

appears at I. The distances between the observer and the source galaxy, the

observer and the lens, and the lens and the source galaxy are DS, DL, and DLS,

respectively. We read off the angular position β of the source from the point of

view of the observer

β = θ −α, (1.45)

where θ denotes the angular position of the image from the point of view of

the observer and the reduced deflection angle is α. If we use angular diameter

distances D, we find that the Euclidean relation for the separation s between

two lines enclosing an angle γ

s=D ·γ (1.46)
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Figure 1.3: Geometry of a thin-lens system. The observer is located at position
O, the source galaxy at S, and the image of the galaxy appears at I.
The distances between the observer and the source galaxy, the observer
and the lens, and the lens and the source galaxy are DS, DL, and DLS,
respectively. Figure adapted from (Bartelmann and Maturi, 2017).

still holds. Therefore, we can write the reduced deflection angle as

α ≡ DLS
DS

α̂. (1.47)

We employ Fermat’s principle stating that light travelling between two points

takes the path that minimises travel time, so that the deflection angle is given

by

α̂ = −2
∫

∇⊥Φdλ, (1.48)

where Φ denotes the gravitational potential, ∇⊥ is the gradient perpendicular

to the light ray, and dλ parameterises the distance travelled. Instead of

perpendicular distances, in weak lensing we typically consider the position of
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galaxies in terms of their angular position θ on a sphere. Therefore, we replace

the gradient ∇⊥ =D−1
L ∇θ. Using Eqs. (1.47) and (1.48) we find

α = ∇θ

(
2 DLS
DLDS

∫
Φdz

)
≡ ∇θψ, (1.49)

where we defined the lensing potential ψ.

In general, the assumption of a thin lens does not hold since the light

emitted by the source galaxy is continuously distorted by the large-scale

structure of the Universe. Therefore, we need to generalise this expression for

an extended lens. This can be achieved by using the flat-sky approximation and

integrating over comoving distances. Under the assumption of a flat Universe

we find

ψ(θ) = 2
∫ χS

0

χS −χ

χSχ
Φ(χ⊥(θ),χ∥)dχ. (1.50)

Here, χS denotes the comoving distance to the source galaxy and the gravita-

tional potential is evaluated at positions χ∥ parallel and χ⊥(θ) perpendicular

to the line of sight.

Assuming a source much smaller than the typical scale of variations in

the deflection angle, we can linearise the lens equation (1.45) using a Taylor

approximation. We find

δβ ≈ Aδθ, (1.51)

where δβ and δθ denote the extent of the source and the image, respectively

and A is the Jacobian matrix of the mapping between the source and the image,

defined as

Aij = ∂βi

∂θj
= δij − ∂2ψ

∂θiθj
≡ δij −ψij . (1.52)

Eq. (1.51) states that the mapping between the source and its image is

proportional to the curvature of the lensing potential ψij , which in the absence

of a lensing potential reduces to an identical mapping. The Jacobian matrix is
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often parameterised as

A =

1−κ 0

0 1−κ

+

−γ1 −γ2

−γ2 γ1

 , (1.53)

with the gravitational shear

γ = γ1 + iγ2 = 1
2(ψ11 −ψ22)+ iψ12, (1.54)

and the convergence

κ= 1
2(ψ11 +ψ22) = 1

2∇2ψ. (1.55)

Eq. (1.53) illustrates two different effects of the lensing potential acting on a

galaxy image. The first term describes a magnification of the source galaxy,

while the second term is associated with a change in the shape of the galaxy.

In observations we only measure the separation δθ of the image. Therefore,

we want to infer the separation δβ of the original source galaxy, which requires

the inverse of Eq. (1.51):

δθ ≈ A−1δβ. (1.56)

The images are typically only slightly distorted so that κ ≪ 1 and |γ2| ≪ 1.

Thus, the Jacobian matrix is invertible and reads

A−1 = µ

1−κ+γ1 γ2

γ2 1−κ−γ1

 , (1.57)

where the magnification factor is defined as

µ= 1
detA = 1

(1−κ)2 −γ2 ≈ 1+2κ. (1.58)

The distortion of the galaxy image causes the shape of a circular source

galaxy to become elliptical. The ellipticity of a galaxy image is typically defined
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via

ϵ= a− b

a+ b
, (1.59)

where a and b denote the semi-major and semi-minor axes, respectively. How-

ever, the observed galaxies in general are non-circular with an intrinsic ellipticity

ϵs. Thus, the observed ellipticity reads

ϵ= ϵs +g

1+ ϵsg∗ ≈ ϵs +g, (1.60)

with the reduced shear

g ≡ γ

1−κ
. (1.61)

Assuming that galaxies are randomly oriented, the ensemble average of intrinsic

galaxy ellipticities is zero, i.e. ⟨ϵs⟩ = 0. Therefore, for a large galaxy sample,

we find

⟨ϵ⟩ = γ. (1.62)

However, if we average over a large area of the sky we expect the shear

signal to vanish since we assume isotropy of the Universe on large scales.

Therefore, we typically employ two-point statistics to measure the effects of

weak gravitational lensing. To derive the angular power spectrum of cosmic

shear, we first transform κ, γ1, and γ2, given in Eq. (1.54) and Eq. (1.55), to

Fourier space. We find

2κ̂= −l2ψ̂, 2γ̂1 = −(l21 + l22)ψ̂, γ̂2 = −l1l2ψ̂, (1.63)

with hats denoting Fourier transformed quantities. We calculate

4 |γ̂|2 =
(
(l21 − l22)2 +4l21l22

)
4
∣∣∣ψ̂∣∣∣2 = (l21 + l22)2

∣∣∣ψ̂∣∣∣2 = 4 |κ̂|2 . (1.64)

Thus, we find equality between the power spectra of convergence and shear. In

Fourier space the convergence power spectrum is related to the convergence



1.2. The Large Scale Structure of the Universe 52

two-point correlation function via

⟨κ̂(ℓ)κ̂∗(ℓ′)⟩ = (2π)2δ
(2)
D (ℓ− ℓ′)Cκ(ℓ). (1.65)

Using κ= 1
2∇2ψ and the Poisson equation we find

κ= 4πG
∫ χS

0

χ(χS −χ)
χS

a2ρ̄mδdχ= 3H2
0Ωm
2

∫ χS

0

χ(χS −χ)
aχS

δdχ, (1.66)

with the density contrast δ defined in Eq. (1.22). The second equality follows

by comparing Eq. (1.11) and Eq. (1.21), from which we find the mean matter

density ρ̄m = 3H2
0Ωm /8πGa3. Using the Limber approximation (Kaiser, 1992),

we find that the angular power spectrum of a quantity x(θ) is given by

Cx(ℓ) =
∫ χS

0

w2(χ)
χ2 Px

(
l+1/2
χ

)
dχ, (1.67)

where Px denotes the 3D power spectrum and w(χ) is a weight function. From

Eq. (1.66) we identify the weight function

w(χ) = 3H2
0Ωm
2

χ(χS −χ)
aχS

, (1.68)

so that the convergence power spectrum, which is equal to the shear power

spectrum, becomes

Cγ(ℓ) = Cκ(ℓ) = 9
4H

4
0Ω2

m

∫ χS

0

(
χS −χ

aχS

)2
Pδ

(
ℓ+1/2
χ

,χ

)
dχ, (1.69)

with the matter power spectrum Pδ.

While Eq. (1.69) describes the shear power spectrum of galaxies located

in a single source plane at χS, cosmic shear surveys observe galaxies that are

distributed over a long distance range. Additionally, weak lensing analyses are

performed tomographically by dividing the observed sample into slices along

the line of sight in order to enhance the precision with which cosmological

parameters can be determined (Hu, 1999). Thus, we require a modelling of the
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cosmic shear signal in each tomographic bin and the cross-correlation signal

between bins, which arises since lensing is a cumulative effect. In this case, the

cross-correlation power spectrum between two bins α and β is given by

C(αβ)
γ (ℓ) =

∫ χH

0

q(α)(χ)q(β)(χ)
χ2 Pδ

(
ℓ+1/2
χ

,χ

)
dχ, (1.70)

where χH is the comoving horizon distance. Here, we defined the lensing

efficiency by

q(α)(χ) = 3H2
0Ωm
2

χ

a(χ)

∫ χH

χ
n(α)

χ (χ′)χ
′ −χ

χ′ dχ′, (1.71)

where n(α)
χ (χ) denotes the distribution of sources in redshift bin α. In chapter 2

we present a flexible model to parameterise redshift distributions of tomographic

redshift bins and develop a method to propagate residual uncertainties in the

redshift distribution into a weak lensing analysis.

1.3 Photometric redshifts

Modern extragalactic galaxy surveys observe millions of objects and aim to

construct three-dimensional maps of the Universe from two-dimensional images

of galaxies on the sky. To do so, we need to determine the distance of the

observed objects. Distances are commonly inferred from the cosmological

redshift, which provides a measure of the apparent motion of an object away

from the observer due to Hubble’s law. A photon with wavelength λe, emitted

by an object moving away from the observer, loses energy while travelling

towards the observer due to the expansion of the Universe. Therefore, it is

detected at a longer wavelength λo. The redshift of the observed object is

defined as the ratio between emitted and observed wavelength:

z ≡ λo −λe

λe
. (1.72)
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Since photons travel on geodesics with ds2 = 0, we can use Eq. (1.2) to infer a

relation between wavelength and scale factor (see for example Peacock, 1998):

λo

λe
= ao

ae
, (1.73)

where ae denotes the scale factor at the time of the emission of the photon.

Using Eq. (1.72) and defining a0 ≡ 1, we find

a(z) = 1
1+ z

. (1.74)

We can now express the Hubble parameter, given in Eq. (1.21), as a function

of redshift:

H2(z) =H2
0
[
ΩR (1+ z)4 +ΩM (1+ z)3 +Ωk (1+ z)2 +ΩΛ

]
. (1.75)

Finally, assuming a cosmological model, we can use this expression to determine

the comoving distance of the observed object, which is defined via

dc(z) =
∫ z

0

1
H(z′)dz′, (1.76)

from which we infer the physical distance using Eq. (1.3).

The most accurate redshift measurement of a given object is inferred from

spectroscopic observations. By measuring the flux as a function of wavelength

through a spectrograph we obtain the spectral energy distribution (SED) of the

object. We can then identify features such as the wavelength of emission and

absorption lines of atoms and molecules in the observed SED. The rest-frame

wavelengths of these features are well known thanks to laboratory experiments

and therefore we can employ Eq. (1.72) to infer the redshift. This technique,

commonly referred to as spectroscopic redshift, provides redshift measurements

with high precision. However, the measurement of the full spectrum of an object

with a high signal-to-noise ratio requires a significant amount of telescope time.

Therefore, this technique limits the number of objects that can be observed in
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a survey. Additionally it limits the depth in magnitude up to which objects

can be observed, which is determined by the achievable signal-to-noise ratio.

This makes this method infeasible for surveys that prioritise a large number of

observed objects.

Instead of spectroscopy, many modern surveys rely on photometry to

infer redshifts. As an alternative for measuring the full SED, the spectrum is

observed through a set of filters. Each filter has a well-determined transmission

function T b(λ) describing the fraction of the photon flux that passes through

filter b at a given wavelength λ. Fig. 1.4 shows the transmission curves of the six

filters (u, g, r, i, z, and y) of the Vera C. Rubin Observatory’s Legacy Survey of

Space and Time. Given the relatively broad filters, spanning wavelength ranges

of ∆λ≈ 100 − 200 nm, this technique provides low-resolution measurements of

the spectrum. Thus, it is impossible to identify narrow features like individual

emission and absorption lines. However, broad features such as the Balmer

break can be identified in photometric observations. This feature is caused

by the absorption of photons in star-forming galaxies by ionised hydrogen

atoms. Photons with a wavelength below the Balmer limit with rest-frame

wavelength λB = 346.6 nm are absorbed, leading to a suppression of the SED

below the Balmer limit. A similar feature can be found at the Lyman limit with

rest-frame wavelength λL = 91.2 nm. These features cause so-called dropouts

which are sources that can be observed in one filter but not in the neighbouring

one. Depending on the filter in which the dropout is found we can locate

the position of the Balmer or Lyman break and hence we can estimate the

redshift of the galaxy. Additionally, the broad wavelength range observed in

each exposure of the camera leads to a higher signal-to-noise ratio. Thus, the

telescope time required to observe a single object is greatly reduced compared

to spectroscopic observations. Additionally, the higher signal-to-noise ratio

gives access to fainter objects and therefore increases the depth of the survey.

To estimate redshifts from photometry, commonly referred to as photo-

metric redshifts, we can use template-fitting methods. This technique, first
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Figure 1.4: Transmission functions of the six filters used by the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time. Source: https:
//github.com/lsst/throughputs

introduced by Baum (1962) and further developed by Puschell et al. (1982), Koo

(1985), Loh and Spillar (1986), and Connolly et al. (1995), has become widely

used in surveys that require redshifts for a large number of faint sources. The

photometric redshift is estimated using a library of theoretical SED templates

that describe the normalised flux Ft(λ,z) for a galaxy of type t shifted to

redshift z. For each template we infer the flux observed through each filter

band b via

F b
t (z) =

∫ ∞

0
Ft(λ,z)T b(λ)dλ. (1.77)

By maximising the likelihood Lt defined by

− logL ∝ χ2
t (z) =

∑
t

(
Fobs − cF b

t (z)
σb

)2

, (1.78)

where σb is the uncertainty on the flux measurement in filter b and c is a

normalisation constant, we infer the best-fitting redshift and galaxy type.

https://github.com/lsst/throughputs
https://github.com/lsst/throughputs
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However, degeneracies between the templates observed through a limited set of

filters lead to catastrophic outliers, where the photometric redshift estimate

differs greatly from the true redshift of the galaxy.

The maximum likelihood method can be improved using a Bayesian frame-

work, introduced by Benítez (2000) and implemented in the popular code

BPZ. Using Bayes’s theorem, the probability of a galaxy with colour C and

magnitude m having redshift z is given by

p(z, t|C,m) ∝ p(z, t|m)p(C|z, t,m), (1.79)

where p(C|z, t,m) is equivalent to the likelihood L and p(z, t|m) denotes the

prior probability of a galaxy with magnitude m having redshift z and type

t. Thus, this method allows incorporating prior information on the observed

galaxies in a survey into the photometric redshift estimation, reducing the

amount of catastrophic outliers. Nevertheless, photometric redshift estimates

are in general less reliable than their spectroscopic counterparts. However, the

ability to observe large numbers of faint objects makes photometric observations

attractive for surveys that prioritise the number of observed sources over precise

redshift estimates, such as weak lensing studies.

1.4 The current status of cosmology
Recent developments in cosmology over the past few decades have led to rapid

progress in our understanding of the Universe. Some of the most influential

probes are measurements of temperature anisotropies in the CMB, most re-

cently by Planck (Planck Collaboration et al., 2020b), which are in excellent

agreement with a flat ΛCDM cosmological model of a Universe consisting

of approximately 5% baryons, 26% cold dark matter, and 69% dark energy.

Moreover, large spectroscopic and photometric galaxy surveys, such as SDSS,

DES and KiDS, have derived constraints on cosmological parameters with

unprecedented precision.

However, recent analyses revealed a tension between CMB observations
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Figure 1.5: Marginalised posterior distribution of σ8 and Ωm, measured by Tröster
et al. (2021); Planck Collaboration et al. (2020b); Heymans et al. (2021),
and Abbott et al. (2018). Figure adapted from Heymans et al. (2021).

from Planck and probes of the large-scale structure of the Universe, for example

the so-called 3x2pt analysis by Heymans et al. (2021), which combines three

cosmological analyses with two-point correlation functions: weak lensing from

KiDS, galaxy clustering from the Baryon Oscillation Spectroscopic Survey

(BOSS), and galaxy-galaxy lensing from KiDS, BOSS, and the 2-degree Field

Lensing Survey (2dFLens). This tension manifests itself in the structure growth

parameter S8 = σ8
√

Ωm/0.3 which was measured to be S8 = 0.766+0.020
−0.014. This

value is 8.3±2.6% lower than the value measured by Planck. The tension is

illustrated in Fig. 1.5 showing the constraints on σ8 and Ωm from Heymans

et al. (2021) in red compared to Planck in grey and earlier analyses in blue and

yellow. It is currently at a level between 2 and 3 σ, which raises the question

of whether or not this is a statistical fluctuation or if our current cosmological

model is insufficient to correctly describe the evolution of the Universe between

early times (probed by the CMB) and late times (probed by galaxy surveys).

This remains a field of active research in cosmology.
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In addition to the apparent tension between the CMB and galaxy redshift

surveys, direct model-independent measurements of the current expansion rate

H0 by Riess et al. (2021) are in 4.2 σ tension with the prediction from Planck

under the assumption of a ΛCDM cosmological model. Direct measurements

of H0 are obtained from the so-called cosmic distance ladder, which is a multi-

step process to determine the distance to extragalactic objects. It relies on

observations of Cepheids and type Ia supernovae, which are objects of known

intrinsic luminosity, so called standard candles. The first rung of the cosmic

distance ladder consists of distance measurements of Cepheids in the Milky

Way via the parallax method. These Cepheids act as a calibration sample,

for which we know both the distance and the apparent magnitude. Using

the relation between the period of variability and the absolute magnitude of

Cepheids (Leavitt and Pickering, 1912), the distance of extragalactic Cepheids

can then be obtained from observations of their apparent magnitude and period.

Thus, observations of Cepheids in the host galaxies of type Ia supernovae

allow for the calibration of the type Ia supernova distances. Since supernovae

are visible from great distances, this allows for distance measurements of far

galaxies from which the Hubble constant is obtained. This study finds a

value of H0 = 73.2 ± 1.33kms−1Mpc−1 which is in disagreement with the value

inferred by Planck of H0 = 67.37 ± 0.54kms−1Mpc−1. The tension is even

more stringent than the aforementioned S8-tension and raises the question if

we need to consider an extended cosmological model in order to explain the

discrepancy between probes of the early and late Universe. In particular, since

H0 measurements via the cosmic distance ladder are model-independent, we

require a cosmological model that accelerates the expansion of the Universe at

later times in order to make the two measurements compatible. However, other

possible explanations are systematic effects in the calibration various quantities

in the cosmic distance ladder that bias the inferred H0 value or statistical

fluctuations, although these are less likely given the current level of the tension.

In the next few years, multiple new instruments will come online which will
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allow us to constrain cosmology with unprecedented precision. In particular, the

Legacy Survey of Space and Time (LSST, Ivezić et al., 2019) will be conducted

at the newly built Vera C. Rubin Observatory located on the peak of Cerro

Pachón in southern Chile. This survey will observe billions of objects in six

optical filter bands, shown in Fig.1.4, over the course of 10 years. With a

8.4m primary mirror and a field of view of 3.5 deg in diameter it will be able

to observe an area of about 18000deg2 of the southern sky every three days.

Thus, it will enable various scientific studies, most importantly the study of

dark matter and dark energy through measurements of weak lensing, galaxy

clustering, and type Ia supernovae.

In addition to the ground-based LSST, space-based telescopes such as

ESA’s Euclid satellite (Laureijs et al., 2011) and NASA’s Nancy Grace Roman

Space Telescope (Spergel et al., 2015) will be set to launch within the next

few years. These instruments will provide observations that are highly comple-

mentary to LSST (Rhodes et al., 2017; Eifler et al., 2021), since they are not

affected by atmospheric effects. This allows for higher-resolution images. On

the downside, given the limited size of space-based telescopes, they will not be

able to observe objects as faint as the ones observed by LSST and therefore

will detect fewer objects. With these upcoming instruments we will be able to

constrain cosmological parameters with an even higher precision than before

and gain insight into the nature of the aforementioned tensions found in current

surveys.



Chapter 2

Self-calibration and robust

propagation of photometric

redshift distribution

uncertainties in weak

gravitational lensing

The calibration of the redshift of galaxies via photometric methods is a major

source of uncertainty in many cosmological analyses, as discussed in section

1.3. Thus, the propagation of redshift distribution uncertainties in a consistent

way into the cosmological analysis plays a crucial role in cosmic shear studies.

In this chapter, we reproduce the work on this subject published in Stölzner

et al. (2021).

Abstract: We present a method that accurately propagates residual uncer-

tainties in photometric redshift distributions into the cosmological inference

from weak lensing measurements. The redshift distributions of tomographic

redshift bins are parameterised using a flexible modified Gaussian mixture

model. We fit this model to pre-calibrated redshift distributions and imple-

ment an analytic marginalisation over the potentially several hundred redshift

nuisance parameters in the weak lensing likelihood, which is demonstrated
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to accurately recover the cosmological posterior. By iteratively fitting cosmo-

logical and nuisance parameters arising from the redshift distribution model,

we perform a self-calibration of the redshift distributions via the tomographic

cosmic shear measurements. Our method is applied to the third data release of

the Kilo-Degree Survey combined with the VISTA Kilo-Degree Infrared Galaxy

Survey (KV450). We find constraints on cosmological parameters that are

in very good agreement with the fiducial KV450 cosmic shear analysis and

investigate the effects of the more flexible model on the self-calibrated redshift

distributions. We observe posterior shifts of the medians of the five tomographic

redshift distributions of up to ∆z ≈ 0.02, which are however degenerate with

an observed decrease of the amplitude of intrinsic galaxy alignments by about

10%.

2.1 Introduction

Weak gravitational lensing by the large-scale structure of the Universe, known

as cosmic shear, is a powerful probe of cosmology. Rapid progress is being made

in this field thanks to current and upcoming dedicated surveys such as the Dark

Energy Survey (DES; Drlica-Wagner et al., 2018; Zuntz et al., 2018; Sevilla-

Noarbe et al., 2021; Gatti et al., 2021), the Subaru Hyper Suprime-Cam (HSC;

Aihara et al., 2018; Hikage et al., 2019), and the European Southern Observatory

(ESO) Kilo-Degree Survey (KiDS; Kuijken et al., 2019; Asgari et al., 2021).

These surveys allow us to test the predictions of the standard Lambda cold

dark matter (ΛCDM) cosmological model by constraining the matter density

and the amplitude of matter density fluctuations to unprecedented precision.

The main observables of weak lensing experiments are distortions of the

ellipticities of background galaxies. Due to the weak signal and the impact of

noise on the ellipticity measurement, this effect is measured statistically from

large samples of galaxies. In order to model the theoretical prediction of the

observed signal, an accurate calibration of the source redshift distribution is

required. Given the large number of sources in a typical weak lensing survey, a
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complete spectroscopic redshift measurement is infeasible, and therefore the

redshift is estimated from photometry (see Salvato et al. 2019 for a review).

Several methods of photometric redshift calibration have been developed,

such as direct calibration with spectroscopic subsamples that are, potentially

after re-weighting, representative of the full sample (Lima et al., 2008; Bonnett

et al., 2016; Hildebrandt et al., 2017) and angular cross-correlation clustering

measurements with spectroscopic reference samples that overlap in redshift (e.g.

Newman, 2008; Matthews and Newman, 2010; Ménard et al., 2013; McLeod

et al., 2017). These methods can be merged using hierarchical Bayesian models

that combine photometry measurements of individual galaxies and clustering

measurements with tracer populations in a robust way (Sánchez and Bernstein,

2019; Alarcon et al., 2020). Furthermore, the redshift distribution in weak

lensing surveys can be self-calibrated to some extent from the data themselves

(Zhang et al., 2010; Benjamin et al., 2013; Schaan et al., 2020). However, it is

not only crucial to adopt a calibration method that estimates the true redshift

distribution as precisely as possible, but also to choose a model that is flexible

enough to describe the redshift distribution accurately. Such a model then

allows us to propagate uncertainties in the redshift distribution, which arise

from the calibration, into the actual cosmic shear analysis.

Examples of such flexible redshift distribution models are Gaussian mixture

models (Hoyle and Rau, 2019; Leistedt et al., 2019) and hierarchical logistic

Gaussian processes (Rau et al., 2020), which are applied to calibrate redshift

distributions of galaxy samples via cross-correlation clustering measurements

with overlapping spectroscopic samples. Gaussian processes are non-parametric,

that is, they are not limited by a functional form, and therefore they fulfil the

condition of being able to accurately fit the redshift distribution. However,

since the fit parameters of the Gaussian process are non-linear, implementing

the Gaussian process in the weak lensing likelihood (with fit parameters acting

as nuisance parameters) and subsequent marginalisation requires a carefully

chosen kernel that needs to be adapted to the redshift distribution. As an
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alternative to Gaussian processes, the redshift distribution can be parameterised

using linear basis function models with a fixed number of parameters, so that

we can readily apply an analytic marginalisation over nuisance parameters.

It is common to parameterise the uncertainty on the redshift distribution

using a shift in the mean of the distribution (Hildebrandt et al., 2020, 2021;

Hikage et al., 2019; Abbott et al., 2018; Hoyle et al., 2018), which captures the

effect of uncertainties in the redshift distribution on the weak lensing analysis

to the first order (Amara and Réfrégier, 2007). However, with larger surveys

and decreasing statistical uncertainties, the contribution of higher orders will

become important (Wright et al., 2020a). Furthermore, this parameterisation

has the disadvantage of introducing probability weights at negative redshift

values. Therefore, it is particularly interesting to adopt redshift distribution

models that capture arbitrary variations in the distribution.

In this paper we present such a flexible redshift distribution model with

linear fit parameters, as well as a technique that provides an analytic marginal-

isation over nuisance parameters that originate from the redshift distribution

calibration. We parameterise the redshift distribution of samples of galaxies as

a ‘comb’, that is, a modified Gaussian mixture model with fixed, equidistant

separation between components, identical variance, and a fixed number of com-

ponents. The amplitudes of each Gaussian component serve as fit parameters

in the redshift distribution calibration.

We implement this redshift distribution model in the weak lensing like-

lihood. Since the model is linear in the fit parameters, we can analytically

marginalise over the fitted amplitudes. The advantage of this procedure is that

we can use a large number of components to fit the redshift distribution, which

gives the model enough flexibility to fit a potentially complex redshift distribu-

tion. At the same time, we do not increase the total number of free sampling

parameters of the likelihood, so that it is still feasible to sample the likelihood

without a significant increase in runtime. Additionally, the marginalisation

method allows us to propagate correlations between all fit parameters of the
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redshift distribution into the likelihood. Thus, we incorporate the correlation

between the redshift distributions of tomographic bins, which are induced by

the calibration method, into the cosmic shear analysis. We then demonstrate

our approach on the KiDS+VIKING (KV450) dataset comprising the ESO

KiDS (Kuijken et al., 2015, 2019; de Jong et al., 2015, 2017) and the fully

overlapping VISTA Kilo-Degree Infrared Galaxy Survey (VIKING; Edge et al.,

2013) on a survey area of 450 deg2.

In order to allow the cosmic shear measurement to self-calibrate the

redshift distribution, we adopt a two-step calibration method. First, we fit

the comb model to the redshift histograms of Hildebrandt et al. (2020), which

were calibrated with deep spectroscopic subsamples. Second, we apply an

iterative fitting method of both the cosmological and nuisance parameters

originating from the redshift calibration. The best-fit nuisance parameters then

represent a model of the redshift distribution that is calibrated with both deep

spectroscopic catalogues and cosmic shear data. In contrast to the fiducial

analysis of Hildebrandt et al. (2020), this method takes the full variability

in the redshift distributions into account. When sampling the weak lensing

likelihood, we then marginalise analytically over the set of best-fit nuisance

parameters.

The paper is structured as follows: In Sect. 2.2 the redshift distribution

model is described. The theoretical modelling of the cosmic shear signal with

analytic marginalisation over nuisance parameters is presented in Sect. 2.3,

and the cosmic shear self-calibration method of the redshift distributions is

described in Sect. 2.4. Results are presented in Sect. 2.5 and discussed in Sect.

2.6.

2.2 Redshift distribution model

We modelled the redshift distribution, n(α)(z), of each tomographic bin, α, as

a comb, that is, a slightly modified Gaussian mixture with Nz components per

bin, with fixed, equidistant separation in redshift between the components, and
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with identical variance σ2
comb:

n(α)(z)B
Nz∑
i=1

Aα
i K

(
z;zi,σ

2
comb

)
, (2.1)

where the only free parameters to be fitted are the amplitudes Aα
i . The model

is linear in the amplitudes, which allows us to apply an analytic marginalisation

over nuisance parameters when sampling the weak lensing likelihood. We chose

to model the normalised ‘teeth’ of the comb as

K
(
z;zi,σ

2
comb

)
= z

N(zi,σcomb) exp
{

−(z− zi)2

2σ2
comb

}
, (2.2)

with normalisation over the interval [0,∞]:

N(zi,σ) =
√
π

2 ziσ erfc
(

− zi√
2σ

)
+σ2 exp

{
− z2

i

2σ2

}
. (2.3)

While this method does not depend on a particular choice of K, this form has

the advantage of ensuring n(α)(0) = 0. The redshift distribution is normalised

so that
Nz∑
i=1

Aα
i = 1 . (2.4)

Using Eq. (2.4), we write the amplitude of the Nz-th component in terms of

the remaining Nz −1 amplitudes:

Aα
N = 1−

Nz−1∑
i=1

Aα
i . (2.5)

Inserting Eq. (2.5) back into Eq. (2.1), we find

n(α)(z) = K
(
z;zNz ,σ

2
comb

)
(2.6)

+
Nz−1∑
i=1

Aα
i

[
K
(
z;zi,σ

2
comb

)
−K

(
z;zNz ,σ

2
comb

)]

B
Nz∑
i=1

Aα
i ni(z) , (2.7)
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where we redefined the amplitude Aα
Nz

≡ 1 and

ni(z) = K
(
z;zi,σ

2
comb

)
−K

(
z;zNz ,σ

2
comb

)
· (1− δiNz) . (2.8)

Since the amplitudes should be positive, it is convenient to define

aα
i B lnAα

i (2.9)

as the actual fit parameters. The final result of the redshift calibration procedure

with data dcal is then

Σ (2.10)

Pr({aα
i }|dcal) ≈ N

(
aα

i ;a∗α
i ,Σcal

)
, (2.11)

where the posterior is approximated by a multivariate Gaussian distribution

with best-fit a∗α
i and covariance Σcal.

The model developed in this section is a particular example of a linear basis

function model, which is a class of models that involve linear combinations of

fixed non-linear functions of the input variables (see for example Bishop, 2006).

While the linear dependence on the model parameters simplifies the analysis of

this class of models, it requires the choice of an appropriate number of basis

function components. In this work we determine the number of components

by repeatedly performing a fit to the observed data with a varying number of

components and selecting the model that provides the best fit to the observed

data. Alternatively, a common approach in regression problems is to turn

to Bayesian frameworks, which provide methods of determining the model

complexity. A Bayesian framework requires the specification of a prior on the

model parameters, which can work similarly to penalty terms in regularised

least-squares regression. In particular, so-called shrinkage priors (see van Erp

et al. 2019 for a review) are used to reduce the size of coefficient estimates

by shrinking them towards zero. Variables that correspond to coefficients

that are shrunk exactly to zero drop out of the model. Therefore, assuming
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a shrinkage prior provides a method to reduce the dimensionality of a given

model. Furthermore, the linear model can be related to Gaussian process

models when imposing Gaussian priors on the basis function amplitudes (see

for example Bishop, 2006).

2.3 Theoretical modelling of the cosmic shear

signal

2.3.1 Weak lensing model and likelihood

It is standard practice to use two-point statistics of the gravitational shear

as summary statistics in weak lensing studies. In this paper we employ the

two-point shear correlation function between two tomographic bins. However, it

is straightforward to apply the formalism to other two-point statistics, such as

Complete Orthogonal Sets of E/B-Integrals (COSEBIs; Schneider et al., 2010)

and band power estimates derived from the correlation functions (Schneider

et al., 2002; Becker and Rozo, 2016; van Uitert et al., 2018), since they are all

linear functionals of the cosmic shear angular power spectrum.

The two-point correlation function between two tomographic bins, α and

β, is defined via

ξ
(αβ)
± (θ) = 1

2π

∫ ∞

0
dℓℓC(αβ)

GG (ℓ)J0,4(ℓθ), (2.12)

where J0,4(ℓθ) are Bessel functions of the first kind and C(αβ)
GG (ℓ) is the angular

weak lensing convergence power spectrum. Using the Limber approximation,

the angular power spectrum reads (Kaiser, 1992)

C
(αβ)
GG (ℓ) =

∫ χH

0
dχq

(α)(χ)q(β)(χ)
f2

K(χ) Pδ

(
ℓ+1/2
fK(χ) ,χ

)
, (2.13)

where Pδ is the matter power spectrum and fK , χ, and χH are the co-moving

angular diameter distance, the co-moving radial distance, and the co-moving
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horizon distance, respectively. The lensing efficiency is given by

q(α)(χ) = 3H2
0Ωm

2c2
fK(χ)
a(χ)

∫ χH

χ
dχ′n(α)

χ (χ′)fK(χ′ −χ)
fK(χ′) , (2.14)

with a(χ) being the scale factor and nα(z)dz = n
(α)
χ (χ)dχ being the distribution

of galaxies in redshift bin α. Since q(α) is a linear functional of the corresponding

redshift distribution, it is straightforward to extract the amplitudes of the

redshift distribution model. We find

C
(αβ)
GG (ℓ) =

Nz∑
i,j=1

Aα
i A

β
j

∫ χH

0
dχqi(χ)qj(χ)

f2
K(χ) Pδ

(
ℓ+1/2
fK(χ) ,χ

)
(2.15)

B
Nz∑

i,j=1
Aα

i A
β
j c

′
ij(ℓ) , (2.16)

where we defined qi(χ) as the lensing efficiency of the i-th component of the

redshift distribution model, as defined in Eq. (2.6). In the final equality

we defined c′ij(ℓ), which is the angular weak lensing power spectrum for two

Gaussian mixture components at zi and zj , as redshift distributions. Using Eq.

(2.12), we can compute the two-point shear correlation function between two

tomographic redshift bins via

ξ
(αβ)
GG (θ) =

Nz∑
i,j=1

Aα
i A

β
j

∫ ∞

0

dℓℓ
2π J0/4(ℓθ)c′ij(ℓ) (2.17)

B
Nz∑

i,j=1
Aα

i A
β
j x

(ij)
± (θ) , (2.18)

where we defined the two-point correlation function of two Gaussian comb

components, x(ij)
± (θ).

The observed weak lensing signal does not correspond to ξ(αβ)
± directly, but

is contaminated by correlations between intrinsic ellipticities of neighbouring

galaxies, II, and correlations between intrinsic ellipticities of foreground galaxies
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and background galaxies, GI (Hirata and Seljak, 2004):

ξ± = ξGG + ξII + ξGI. (2.19)

We followed the method presented in Hildebrandt et al. (2017) to model

the effects of intrinsic galaxy alignments using a ‘non-linear linear’ model

(Hirata and Seljak, 2004; Bridle and King, 2007; Joachimi et al., 2011). The

contributions of GI and II alignments to the two-point shear correlation function

were calculated using Eq. (2.12) with the II and GI angular power spectra:

C
(αβ)
II =

∫
dχ n

(α)(χ)n(β)(χ)
f2

K(χ) PII

(
ℓ+1/2
fK(χ) ,χ

)
, (2.20)

C
(αβ)
GI =

∫
dχ q

(α)(χ)n(β)(χ)+n(α)(χ)q(β)(χ)
f2

K(χ) PGI

(
ℓ+1/2
fK(χ) ,χ

)
. (2.21)

Again, we used the linear dependence on the redshift distribution to extract

the amplitudes of the redshift distribution model in analogy to Eq. (2.18). The

power spectra of intrinsic galaxy alignments, PII and PGI, are related to the

matter power spectrum Pδ via

PII(k,z) = F 2(z)Pδ(k,z) (2.22)

PGI(k,z) = F (z)Pδ(k,z), (2.23)

with

F (z) = −AIAC1ρcrit
Ωm

D+(z) . (2.24)

Here, D+(z) denotes the linear growth factor, ρcrit is the critical density at

redshift z = 0, and C1 is a fixed normalisation constant that is set such that

C1ρcrit = 0.0134 (Joachimi et al., 2011). The redshift-independent amplitude

of intrinsic alignments, AIA, is left as the only free parameter, which is imple-

mented as a sampled nuisance parameter in the weak lensing likelihood.
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In general, the Gaussian log-likelihood is defined as

L = −1
2χ

2 +const.= −1
2
∑
ij

(di −mi)C−1
ij (dj −mj)+const. , (2.25)

where di and mi denote the observed data and the model prediction, respectively,

with the inverse covariance C−1
ij . Thus, the weak lensing log-likelihood reads

L = −1
2

∑
l,α,β,l′,α′,β′

∆(αβ)
l Z(l,α,β)(l′,α′,β′) ∆(α′β′)

l′ +const. , (2.26)

where the indices α and β run over all unique combinations of tomographic

redshift bins. The two-point correlation function is analysed in θ-bins that

are denoted by l. The inverse covariance, which is assumed to be cosmology

independent, is given by Z with elements Z(l,α,β)(l′,α′,β′). We have defined

∆(αβ)
l ≡ d

(αβ)
l −

Nz∑
i,j=1

Aα
i A

β
j x

(ij)
± (θl) , (2.27)

where dl denotes the element of the observed data vector in θ-bin l at angu-

lar scale θl and the indices i and j count over all possible combinations of

components of the redshift distribution model. We note that all cosmology

dependence is in the x(ij)
± (θ).

2.3.2 Marginal likelihood

The goal is to analytically derive the likelihood of a weak lensing experiment,

marginalised over the potentially large number of nuisance parameters origi-

nating from the redshift calibration. We denote the parameters over which we

sample the posterior distribution by psam and parameters that we analytically

marginalise over by pana. In particular, psam includes cosmological parameter

as well as nuisance parameters that account for intrinsic alignments, baryon

feedback, and additive shear bias. The parameters pana are the collection of
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amplitude parameters {aα
i }. We obtain

Pr(d|psam) =
∫

dNanapana Pr(d|psam,pana)Pr(pana) , (2.28)

where the prior on analytically marginalised parameters is given, in this case,

by the posterior of the fit to the redshift distribution defined in Eq. (2.11).

In the following we assume that the overall weak lensing likelihood is

Gaussian. Moreover, we apply a Laplace approximation to the posterior in the

sub-space spanned by the redshift nuisance parameters, that is, we effectively

assume the posterior to be well represented by a Gaussian in this regime. As

shown by Taylor and Kitching (2010), we can always maximise the likelihood

for non-Gaussian distributions so that the assumption of Gaussianity locally

around the peak of the likelihood is justified. The marginalised log-likelihood,

Lmarg ≡ −2lnPr(d|psam) , (2.29)

is then given by Bridle et al. (2002) and Taylor and Kitching (2010):

Lmarg = Lfid − 1
2L

′τ
[
L′′ +2Σ−1

cal
]−1L′ +lndet

(
I+ 1

2L
′′Σcal

)
, (2.30)

where I denotes the identity matrix and Lfid is the log-likelihood evaluated at

the best fit of the nuisance parameters,

Lfid ≡ −2lnPr(d|psam,p
∗
ana) . (2.31)

The vector of derivatives of the log-likelihood with respect to the nuisance

parameters aα
i is denoted by L′, and the Hessian matrix of second derivatives

with respect to the nuisance parameters is denoted by L′′. Analytic expressions

of these quantities are given in Appendix A.1. All of these derivatives are to be

evaluated at the best fit of the nuisance parameters p∗
ana. The covariance matrix

of nuisance parameters, originating from the calibration of the photometric

redshift distribution, is given by Σcal. For the Nbin tomographic bins used in
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the analysis, Nbin ×Nz nuisance parameters are marginalised over (modulo

those amplitudes fixed by the normalisation of the redshift distribution given

in Eq. (2.4)).

To test the validity of the approximate marginalised likelihood, we could

perform a short initial Markov chain Monte Carlo (MCMC) analysis of the full

likelihood, as proposed by Taylor and Kitching (2010). This method would allow

us to identify potential non-Gaussianities. Any non-Gaussian parameters could

then be removed from the analytic marginalisation and instead numerically

marginalised over via MCMC. The downside of this method is that the initial

MCMC run is computationally expensive, especially when the number of

nuisance parameters is large. As an alternative to a full MCMC, we could

instead sample the likelihood with a reduced set of nuisance parameters in

order to validate the approximations made in the marginalised likelihood. By

selecting different sets of nuisance parameters, for example those describing

the tails of the redshift distribution, we could probe the likelihood in different

regions of the parameter space. This would allow us to gradually test the

assumption that the posterior distribution in the sub-space spanned by the

nuisance parameters can be approximated by a Gaussian.

2.4 Redshift distribution self-calibration

It is standard practice to include nuisance parameters δzi in the weak lensing

likelihood (Abbott et al., 2018; Hikage et al., 2019; Asgari et al., 2021), which

linearly shift the whole redshift distribution of each tomographic bin with

a prior that is derived from the calibration with external datasets. When

sampling the likelihood, this then allows for a self-calibration of the redshift

distribution with cosmic shear measurements through a shift in the mean of

the redshift distributions within the allowed prior range.

In this work we replaced the shifts in the mean with the amplitudes of

the comb components. Thus, the model can accommodate more complex

variations in the redshift distributions. This, however, comes at the cost of
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an increase in the number of nuisance parameters from 5 to 5×Nz, where the

number of Gaussian components per bin, Nz, is typically of order 30. Given

the dimensionality of the new nuisance parameter space, a sampling of nuisance

parameters via MCMC methods becomes computationally prohibitive. Thus,

we marginalised analytically over the uncertainties on the fitted amplitudes,

as outlined in Sect. 2.3.2. By doing so, we lose the ability, however, to self-

calibrate the redshift distributions with cosmic shear data since the amplitudes

no longer appear as free parameters in the likelihood. In order to retain the

calibration of the redshift distribution with cosmic shear data, we performed

an additional calibration step.

Our goal is to find the best fit in the combined parameter space of cosmo-

logical and nuisance parameters. Given the high dimensionality of the nuisance

parameter space, we adopted an iterative method, which is illustrated in Fig.

2.1:

First, we fitted the Gaussian comb model, defined in Sect. 2.2, to pre-

calibrated redshift distribution histograms. This was done by minimising

χ2 =
∑
ij

(
ndata

i −nmodel
i

)
C−1

ij

(
ndata

j −nmodel
j

)
, (2.32)

where ndata
i and nmodel

i are the observed and modelled histogram amplitudes

in bin i, respectively, and C−1
ij denotes the inverse covariance matrix between

the histogram bins in all five tomographic redshift bins. We estimated the

uncertainties on the fit parameters by resampling the data vector using a

multivariate Gaussian distribution, from which we calculated the covariance

matrix Σcal of the fit parameters.

Second, we fixed the amplitudes of the Gaussian comb to the best-fit

parameters found in the previous step. We then ran a non-linear optimiser

to find the best-fit parameters psam of the standard weak lensing likelihood

conditioned on the best-fit parameters pana. This step is illustrated by the blue

arrows in Fig. 2.1.
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Third, for fixed parameters psam, the displacement from the peak of the

likelihood in the sub-space of parameters pana is given by (Taylor and Kitching,

2010):

δpana = −L′
[
L′′ +2Σ−1

cal
]−1

, (2.33)

assuming a Gaussian prior on the parameters pana. Fixing the parameters psam

to the ones found in step 2, we used Newton’s method to minimise Eq. (2.33)

so that the parameters pana converge towards the peak of the likelihood. Since

the constraints on these parameters, which describe the redshift distribution,

are dominated by the external priors through the original calibration, we

anticipated the correction by the Newton step to be small. 1 The red arrows

in Fig. 2.1 represent this calibration step.

By iterating over steps 2 and 3, we expected small corrections of both

sets of parameters towards their best-fit values in the combined parameter

space. The best-fit parameters p∗
ana then represent the redshift distributions of

each tomographic bin, calibrated using both spectroscopic catalogues and the

actual cosmic shear measurements. After calibrating the redshift distributions,

we set the amplitudes of the Gaussian comb in the weak lensing likelihood

to the best-fit parameters and proceeded with the sampling of the likelihood

in cosmological parameter space with pre-marginalised redshift distribution

parameters. The sampling of the weak lensing likelihood is illustrated by the

green arrows in Fig. 2.1.

While it is advantageous to infer the initial values for pana from a prior

redshift calibration, the optimisation scheme itself is expected to be valid for

any initial values. We tested for the existence of local minima in the posterior

distribution by performing the optimisation for various choices of the initial

values. We find that each optimisation converges towards consistent parameter

values, which shows that the optimisation method succeeds in finding the global

1For a likelihood that is close to Gaussian, we can find the maximum in one step. However,
even if the initial redshift distribution is substantially different from the true underlying
distribution, so that the likelihood at the initial values of the fit parameters is non-Gaussian,
we can use Newton’s method to iterate towards the peak (Taylor and Kitching, 2010).
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Figure 2.1: Sketch of the iterative fitting method used to determine the best fit
in the combined parameter space of cosmological and nuisance pa-
rameters. We alternate between optimising cosmological parameters
(numerically; blue arrows), keeping nuisance parameters fixed, and
optimising nuisance parameters (using Newton’s method; red arrows),
keeping cosmological parameters fixed. After several iterations we
achieve convergence to the best fit in the combined parameter space.
After optimising the likelihood, we set the amplitudes of the Gaus-
sian comb to the best-fit parameters and proceed with sampling the
likelihood in cosmological parameter space (dotted orange line) while
analytically marginalising over nuisance parameters (green arrows).

minimum of the posterior distribution.

2.5 KV450 likelihood analysis
We used data from the ESO KiDS (Kuijken et al., 2015, 2019; de Jong et al.,

2015, 2017) and the fully overlapping VIKING survey (Edge et al., 2013). This

dataset, dubbed KV450, combines optical and near-infrared data on a survey

area of 450 deg2. The photometric redshift calibration is greatly improved

compared to the earlier KiDS dataset (Hildebrandt et al., 2017) thanks to

the addition of five near-infrared bands from VIKING that complement the

four optical bands from KiDS. These additional bands improve the accuracy

of photometric redshifts, which are used to define the tomographic bins. The
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fiducial technique of redshift calibration in KV450 utilised a weighted direct

calibration, dubbed DIR, of five tomographic bins with deep spectroscopic

catalogues. Uncertainties on the redshift distribution are estimated by a

spatial bootstrapping method (Hildebrandt et al., 2020). The robustness

of the photometric redshift calibration has been tested by excluding certain

catalogues from the calibration sample as well as using alternative calibration

samples. Additionally, the angular cross-correlation between KV450 galaxies

and spectroscopic calibration samples has been studied as an alternative to the

fiducial direct weighted calibration.

Our analysis is based on the fiducial KV450 cosmic shear analysis presented

in Hildebrandt et al. (2020), in which the combined KiDS+VIKING dataset

(Wright et al., 2019) is binned into five tomographic redshift bins based on

their most probable Bayesian redshift, zB, inferred with the photo-z code BPZ

(Benítez, 2000). Four bins of width ∆z = 0.2 in the range 0.1< zB ≤ 0.9 and a

fifth bin with 0.9< zB ≤ 1.2 are defined and calibrated using the aforementioned

direct calibration method. The estimated redshift distribution is then used to

model the two-point shear correlation function, and constraints on cosmological

parameters are derived via sampling of the weak lensing likelihood.

Self-organising maps (SOMs) have recently been proposed as a method to

mitigate systematic biases arising from the redshift calibration, by assigning

galaxies to groups based on their photometry (Buchs et al., 2019; Wright et al.,

2020a; Masters et al., 2015). This method allows samples of galaxies to be

constrained such that they are fully represented by spectroscopic reference

samples. It was recently applied to the KV450 (Wright et al., 2020b) and KiDS-

1000 (Hildebrandt et al., 2021; Asgari et al., 2021) datasets. However, in those

works the uncertainties on the redshift distributions are parameterised in terms

of shifts in the mean of the redshift distributions with a prior that parameterises

correlations between the redshift distributions of tomographic bins. This prior

is inferred from simulations (Wright et al., 2020a; Hildebrandt et al., 2021;

van den Busch et al., 2020). A spatial bootstrapping was not performed, and
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as such an estimate of the full covariance of the redshift distribution is not

available. In this work we therefore reverted to the fiducial KV450 dataset, for

which such an estimation of the full covariance of the redshift distribution is

available, and we leave the application to more recent KiDS datasets to future

work.

In this work we calibrated the redshift distribution by fitting the Gaussian

comb model defined in Sect. 2.2 to the redshift distribution histograms of

Hildebrandt et al. (2020). Additionally, we extended the KV450 likelihood

code originally used in the fiducial analysis of Hildebrandt et al. (2020) by

implementing the analytic marginalisation over nuisance parameters. The

original likelihood is publicly available in the MontePython2 package (Audren

et al., 2013; Brinckmann and Lesgourgues, 2019). We sampled the likelihood

in the MultiNest 3 mode (Feroz et al., 2009, 2019) using the python wrapper

PyMultiNest 4 (Buchner et al., 2014). The matter power spectrum is

estimated with the public code Class5(Blas et al., 2011) with non-linear

corrections from HMCode (Mead et al., 2015).

We adopted the cosmological model from Hildebrandt et al. (2020), that

is, a flat ΛCDM cosmology with five parameters: ωCDM, ωb, As, ns, and h.

Additionally, the model includes four nuisance parameters that account for

intrinsic alignments (AIA), baryon feedback (Abary), and additive shear bias

(δc and Ac). We note that, in contrast to the fiducial KV450 analysis, we did

not include linear shifts δzi in the mean redshift in each tomographic bin as

nuisance parameters since variations in the redshift distributions are taken

into account by the amplitudes of the Gaussian comb model with analytic

marginalisation over the corresponding uncertainties. Our choices of priors

for the nine cosmological and nuisance parameters are identical to the ones

used in Hildebrandt et al. (2020) and are reported in Table 2.1. Finally, we

adopted the cosmic shear data from Hildebrandt et al. (2020), which consists
2https://github.com/brinckmann/montepython_public
3https://github.com/farhanferoz/MultiNest
4https://github.com/JohannesBuchner/PyMultiNest
5https://github.com/lesgourg/class_public

https://github.com/brinckmann/montepython_public
https://github.com/farhanferoz/MultiNest
https://github.com/JohannesBuchner/PyMultiNest
https://github.com/lesgourg/class_public
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Parameter Symbol Prior
CDM density ωCDM [0.01,0.99]
Scalar spectrum amplitude ln(1010As) [1.7,5.0]
Baryon density ωb [0.019,0.026]
Scalar spectral index ns [0.7,1.3]
Hubble parameter h [0.64,0.82]
Intrinsic alignment amplitude AIA [−6,6]
Baryon feedback amplitude Abary [2.00,3.13]
Constant c-term offset δc 0.0000±0.0002
2D c-term amplitude Ac 1.01±0.13

Table 2.1: Model parameters and their priors for the KV450 cosmic shear anal-
ysis, adopted from Hildebrandt et al. (2020). The first five rows are
cosmological parameters, and the remaining rows represent nuisance
parameters. Brackets indicate top-hat priors, and values with errors
indicate Gaussian priors. We note that, in contrast to Hildebrandt
et al. (2020), linear shifts in the mean of the redshift distributions are
excluded.

of measurements of the two-point shear correlation functions between the five

tomographic redshift bins and the corresponding analytic covariance matrix.

2.5.1 Redshift distribution self-calibration

The first step in the calibration of the KV450 redshift distribution was to fit

the modified Gaussian mixture model, defined in Sect. 2.2, to the redshift

histograms of Hildebrandt et al. (2020), which are pre-calibrated with deep

spectroscopic samples. The fit was done simultaneously for all five tomographic

redshift bins in order to account for the correlations between bins. We performed

the fit using two different input data histograms: the fiducial histograms with a

bin width of ∆z = 0.05 and histograms with a smaller bin width of ∆z = 0.025.

Although both histograms trace the same underlying redshift distribution of

galaxies in each tomographic bin, their biases and variances will generally be

different. By fitting the comb model to the two types of histograms, we tested

how the redshift distribution calibration is affected by noise.

Moreover, we were free to choose the number of Gaussian components

of the redshift distribution model and the variance of each component. In

Appendix A.2 we perform several tests, comparing different choices for the
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Figure 2.2: Fit results of a Gaussian mixture with 30 components to the redshift
distribution in five tomographic redshift bins. Blue curves indicate red-
shift distributions fitted to the pre-calibrated DIR redshift histograms,
shown in black. Shaded regions indicate the uncertainties on the red-
shift distributions derived from the diagonal elements of the correlation
matrix of fit parameters, shown in Fig. 2.3. Orange curves represent
the redshift distributions after iterative optimisation of cosmological
and nuisance parameters.

aforementioned free parameters, and address their impact on the cosmological

analysis. In particular, as a rule of thumb for the width of the Gaussian

component, σcomb, we limited ourselves to values that ensure an overlap of two

to three components at each point in redshift space. We find that the analysis

is robust with respect to these choices. In this section we report our fiducial

result using a model with Nz = 30 equidistant components between 0 ≤ z ≤ 2

and a variance of σcomb = 0.067, which is equal to the separation between

the mean redshift of each component. This model was fitted to the redshift

histograms with a bin width of ∆z = 0.05. The best-fit model is illustrated

as blue curves in Fig. 2.2; the shaded regions indicate the uncertainties on

the redshift distributions, which are derived from the diagonal elements of the

covariance matrix of fit parameters. The correlation matrix of fit parameters is
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Figure 2.3: Correlation matrix of best-fit comb amplitudes with 30 components
per redshift bin.

AIA S8 χ2

fiducial KV450 likelihood 0.8656 0.7708 179.88
1. cosmology optimisation 0.7353 0.7768 180.67
2. nuisance optimisation — — 179.11
3. cosmology optimisation 0.7903 0.7882 178.62

Table 2.2: Results of the iterative fitting of cosmological and nuisance parameters
to the KV450 cosmic shear data and comparison to the fiducial KV450
likelihood. When optimising cosmological parameters, we fit ωcdm, ωb,
As, ns, and h as well as the nuisance parameters AIA, Abary, δc, and
Ac. When optimising nuisance parameters, we vary the amplitudes of
the Gaussian comb. Results are shown for the two most interesting
parameters, AIA and S8, for which the cosmic shear likelihood has the
largest constraining power. We find convergence after three iterations
of the calibration, which results in a better fit to the cosmic shear data
compared to the fiducial analysis.

shown in Fig. 2.3.

We proceeded with a further calibration of the redshift distribution using

the iterative fitting method of cosmological and nuisance parameters described

in Sect. 2.4. The fit result after each step for the two parameters that are

mostly constrained by the data, the intrinsic alignment amplitude AIA, and the

amplitude of matter density fluctuations, S8 = σ8(Ωm/0.3)0.5, are reported in

Table 2.2. We note that in this analysis, S8 is a derived parameter that is inferred

from Class. The iterative optimisation method shows a fast convergence to

the best fit in the full parameter space of cosmological and nuisance parameters
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after only two cosmology optimisation steps and one redshift nuisance parameter

optimisation. This was unsurprising since we started from an already well-

calibrated redshift distribution and as such expected only small corrections

from the Newton optimisation step.

Using the best-fit χ2 values as a measure of goodness of fit, we find that

with χ2 = 178.62 our model provides an improvement in χ2 of roughly 1% with

respect to the fiducial KV450 model with a value of χ2 = 179.88. While in the

present analysis allowing for a full variation in redshift distribution only gives a

slight improvement compared to a linear shift in the mean, this method could

become more relevant for future analyses with increased precision.

It is common practice to assess the goodness of fit by making the assumption

that the χ2 statistic follows a χ2 distribution with Ndof =Nd −NΘ, where Nd

is the size of the data vector and NΘ is the number of sampling parameters.

However, this assumption is only valid under the condition that the data

are normally distributed, the model is linearly dependent on the sampling

parameters, and there is no informative prior on the parameter ranges (see

for instance Joachimi et al., 2021). In general, these conditions are not met

in cosmological analyses, and this is particularly true for this work since we

assumed a Gaussian prior on the amplitudes of the Gaussian comb, which

is inferred from the redshift distribution calibration. Therefore, the naive

estimation of the number of degrees of freedom is a poor estimation of the true

effective number of degrees of freedom since we added a large number of strongly

correlated nuisance parameters with informative priors. For a conservative

estimate of the number of degrees of freedom in our model, we can assume the

nuisance parameters to be essentially fixed by the prior and therefore do not

count them as sampling parameters, which leads to Ndof = 186. While a more

robust estimate of the effective number of degrees of freedom can be inferred

from mocks or posterior predictive data realisations (Spiegelhalter et al., 2002;

Handley and Lemos, 2019b; Raveri and Hu, 2019; Joachimi et al., 2021), we

refrain from a further interpretation of the goodness of fit.



2.5. KV450 likelihood analysis 83

0.22 0.24 0.26 0.28

zmed

z-bin 1

0.36 0.38 0.40 0.42

zmed

z-bin 2

0.55 0.60

zmed

z-bin 3

0.725 0.750 0.775

zmed

z-bin 4

0.90 0.92 0.94 0.96

zmed

z-bin 5

comb, DIR calibration comb, iterative calibration KV450 fiducial

Figure 2.4: Posterior distribution of the median redshift of each tomographic red-
shift bin, inferred by drawing realisations of the Gaussian comb ampli-
tudes from a multivariate Gaussian distribution. Black curves indicate
the median redshift of the KV450 redshift histograms calibrated using
the fiducial DIR method. The blue curves show the median redshift of
the Gaussian comb that is fitted to the DIR histograms. The orange
curves represent the median redshift of the Gaussian comb after itera-
tive self-calibration with cosmic shear measurements.

We find a shift in the two most interesting parameters for which the cosmic

shear likelihood has the largest constraining power, AIA and S8, compared

to the fiducial KV450 analysis. These shifts are further investigated in the

following section, where we sample the weak lensing likelihood and derive

marginalised posteriors of cosmological parameters. The resulting redshift

distributions after iterative self-calibration are illustrated as orange curves in

Fig. 2.2.

Figure 2.4 shows comparisons of the median of the redshift distribution

of each tomographic bin inferred from the original DIR histograms and the

Gaussian comb before and after iterative calibration. We chose the median

as our summary statistic since the mean of the DIR histograms is less stable

with respect to variations in the cutoff redshift at the high-redshift tail of the

distribution, which is most likely caused by the underestimation of the error

bars in the DIR method. The median, on the other hand, is less sensitive to

the choice of the cutoff redshift. The distribution of the median redshift of

the fiducial KV450 redshift histograms is inferred by resampling the redshift

histograms from a multivariate Gaussian distribution with the DIR covariance

matrix that describes correlations between histogram bins of all tomographic

bins. Similarly, the distribution of the median redshift of the Gaussian comb
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model is obtained by resampling the comb amplitudes using the covariance

matrix of comb amplitudes. We find that the fit of the Gaussian comb yields

constraints on the median redshift that are about 50% tighter relative to the

DIR histograms. However, we would expect that both the redshift histograms

and the comb model show similar constraints on the median redshift. The

fact that the constraints from the comb model are tighter than the ones from

the redshift histograms can be interpreted as a sign that the model is not

flexible enough to accurately describe the full shape of the redshift distribution.

This can potentially be alleviated by further optimising the parameters that

characterise the Gaussian comb model. This is left for future work. Additionally,

we observe that the shift in the median after iterative self-calibration is largest

in the first two redshift bins and less significant in the three higher redshift bins.

This is most likely caused by degeneracies between the amplitude of intrinsic

alignments and the redshift distributions, which is discussed in the following

sections.

2.5.2 Marginalisation over nuisance parameters

Using the redshift distribution calibrated in the previous section, we sampled

the weak lensing likelihood in cosmological parameter space with analytical

marginalisation over the uncertainty on the amplitudes of the fitted redshift

distribution. Prior to the sampling of the marginalised likelihood, we tested

whether we could reproduce the result of the fiducial KV450 analysis by sampling

the likelihood with the comb model, but without applying the marginalisation

over nuisance parameters. The results of this consistency test, discussed in

Appendix A.3, show that the two models are in good agreement.

Figure 2.5 illustrates the results, comparing (i) the KV450 likelihood with

a Gaussian comb and analytical marginalisation over nuisance parameters with

(ii) the fiducial KV450 likelihood. We show marginalised posteriors and best-fit

values for the two parameters that are fully constrained with KV450 data, AIA

and S8. The posterior distribution of all remaining parameters is shown in

Appendix A.4. We find a slight shift in the posterior towards smaller values of
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Figure 2.5: Marginalised posteriors for AIA and S8. The orange contours present
the results from the KV450 likelihood with a self-calibrated Gaussian
comb and analytical marginalisation over nuisance parameters, while
the blue contours refer to the fiducial KV450 constraints. The star
indicates the best-fit values from Table 2.2 for the KV450 likelihood
with a Gaussian comb, and the cross indicates the best-fit values for
the fiducial KV450 likelihood. The dashed contour shows the posterior
distribution from the KV450 ‘gold’ sample (Wright et al., 2020b), which
is constructed by removing photometric sources that are not directly
represented by the overlapping spectroscopic reference samples using
SOMs. Therefore, this contour is inferred from a different sample of
galaxies with a different redshift distribution.

the intrinsic alignment amplitude and larger values of S8. Additionally, Fig. 2.5

shows the posterior distribution for the KV450 ‘gold’ sample, which is derived

using SOMs (Wright et al., 2020b). We emphasise that Wright et al. (2020b) use

a different selection of the photometric sample by removing photometric sources

that are not directly represented by the overlapping spectroscopic reference

samples. Thus, the redshift distributions of the fiducial KV450 sample and the

KV450 gold sample are not comparable.

The constraint from the KV450 gold sample on the intrinsic alignment

amplitude, AIA, is compatible with AIA = 0, whereas Hildebrandt et al. (2020)

found AIA ≈ 1. However, these results are still consistent within their errors, as

discussed by Wright et al. (2020b). The iterative self-calibration of the redshift
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distribution performed in this work leads to a decrease in the intrinsic alignment

amplitude of about 10% (see Table 2.2). Thus, we find a trend similar to that

found by Wright et al. (2020b), although the change in the intrinsic alignment

amplitude is not as strong. Recent studies of intrinsic alignments have also

found results that are in disagreement with the fiducial KV450 analysis, such as

Fortuna et al. (2021), who predict AIA = 0.1+0.1
−0.1. Since the constraints on the

intrinsic alignment amplitude differ between analyses and the role of intrinsic

alignments is a subject of active research, it is worth investigating how this

parameter can influence the theoretical prediction of the cosmic shear signal.

The intrinsic alignment amplitude, AIA, is not a cosmological parameter,

but instead originates from the modelling of correlations between intrinsic

ellipticities of neighbouring galaxies, II, and correlations between intrinsic

ellipticities of foreground galaxies and background galaxies, GI. As can be

inferred from Eqs. (2.22) and (2.23), the GI term gives a negative contribution

to ξ± that is proportional to AIA, whereas the II term contributes positively,

proportionally to A2
IA. Thus, a shift in the redshift distribution can (at least to

some extent) be counteracted by a shift in the intrinsic alignment amplitude, so

that overall we find a good fit to the observed cosmic shear two-point correlation

function. This effect is a possible explanation for the observed shift in the

contours in Fig. 2.5, which nevertheless are still in good agreement.

Furthermore, since the signal-to-noise ratio is lower in the low redshift

bins compared to the high redshift bins, the relative contribution of intrinsic

alignments is stronger in the low redshift bins. This can explain the larger shift

in the median of the redshift distribution in the first two redshift bins that is

observed in Fig. 2.4. This is illustrated in Fig. 2.6, which shows the relative

difference between the best-fit KV450 two-point shear correlation functions of

the fiducial likelihood and the best fit after iterative calibration of cosmological

and nuisance parameters. We find a relative difference of the best-fit curves of

up to 20%, which is largest in the first redshift bin. This is compatible with

the observed shift in the median of the redshift distribution of the first redshift
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bin shown in Fig. 2.4.

The black data points in Fig. 2.6 show the relative difference between

the observed two-point correlation function and the fiducial best fit. These

indicate that the signal-to-noise ratio in this bin is very low, so that the shift

in the posterior redshift distribution does not have a significant impact on

the overall best-fit likelihood value of the combined fit. In the second bin

we find the smallest shift in the best-fit curve, although Fig. 2.4 shows a

significant shift in the median of the redshift distribution in this bin. This

is an indication that the shift in the intrinsic alignment amplitude towards a

lower value possibly mitigates the effect of the shifted redshift distribution, so

that the effect on the likelihood value is minimal. From these observations, we

conclude that the intrinsic alignment parameter AIA does not solely measure

the amplitude of intrinsic alignments, but instead picks up contributions from

systematic shifts in the redshift distribution due to the degeneracy between

the parameters. Variations between the constraints on the intrinsic alignment

parameter were also reported by Wright et al. (2020b), who found differences of

up to |∆AIA| ∼ 1.0σ between analyses. However, since Wright et al. (2020b) used

a different galaxy sample, the intrinsic alignment amplitude could be intrinsically

different. Furthermore, the effect of the intrinsic alignment parameter mitigating

systematic effects has been studied recently in other works, such as van Uitert

et al. (2018) and Efstathiou and Lemos (2018).

We conclude that our method provides constraints on cosmological pa-

rameters that are compatible with the fiducial KV450 analysis while taking all

photometric redshift uncertainties into account. Our model provides a slightly

better fit of the redshift distribution to the cosmic shear data since the large

number of model parameters allows the model to reflect small variations in

the redshift distribution. However, we suspect that variations in the redshift

distribution can be correlated with variations in the intrinsic alignment ampli-

tude, and therefore a tighter prior on the intrinsic alignment parameter through

external constraints is required. Our approach can help reduce the degeneracy
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Figure 2.6: Relative difference between the best-fit KV450 two-point shear cor-
relation functions of the fiducial likelihood and the best fit after the
iterative calibration of cosmological and nuisance parameters: ξ+ (up-
per right) and ξ− (lower left). Black data points illustrate the relative
difference between the observed two-point shear correlation functions
and the best fit of the fiducial likelihood.
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between intrinsic alignments and redshift distributions by providing a more

accurate redshift distribution calibration.

2.6 Summary and conclusions

In this paper we developed a method to model photometric redshift distribu-

tions of galaxy samples with strong correlations between tomographic bins

using a modified Gaussian mixture model. We have shown that photometric

redshift uncertainties arising from the calibration of the redshift distribution

can be accurately propagated to the weak lensing likelihood via an analytic

marginalisation over the model parameters. This allowed us to use a fairly

complex model of the redshift distribution without an increase in the number of

sampling parameters in the weak lensing likelihood. Additionally, we developed

an iterative method to fit cosmological and nuisance parameters in order to

perform a self-calibration of the redshift distribution with cosmic shear data.

We applied these methods to the public KiDS+VIKING-450 (KV450) cos-

mic shear data. We fitted the modified Gaussian mixture model to the fiducial

KV450 redshift distributions in five tomographic bins that were calibrated

with deep spectroscopic surveys and implemented the marginalisation method

in the public KV450 likelihood code. We performed the iterative fitting and

found fast convergence to the best fit in the combined space of cosmological

and nuisance parameters. Next, we sampled the weak lensing likelihood using

the redshift distribution that was calibrated in the previous step and derived

constraints on cosmological parameters.

We found that our model can fit complex redshift distributions thanks to

the tunable number of model parameters. Since we marginalise analytically

over nuisance parameters, the large number of redshift nuisance parameters

does not increase the runtime of the posterior sampling. Our model provides a

slightly better fit to the data compared to the fiducial KV450 likelihood since

the fiducial likelihood only allows a shift in the mean of the redshift distribution

of each bin and thus requires a pre-calibrated redshift distribution that closely
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resembles the true underlying distribution. Given the large uncertainties of

photometric redshift calibration methods in general, a complex model that can

reflect the uncertainties is advantageous. Therefore, with decreasing statistical

uncertainties and increasing survey data, the method presented in this paper is

particularly useful for upcoming surveys, where we expect higher order moments

of the redshift distribution uncertainty to become increasingly important.

The marginalised posterior distributions of the remaining model parameters

are in agreement with the fiducial KV450 analysis. However, we found slight

shifts in the posterior constraints on the model parameters, which are strongest

for the amplitude of intrinsic alignments, AIA. We suspect that these shifts are

caused by degeneracies between the redshift distribution amplitudes and the

intrinsic alignment amplitude, so that a shift in the redshift distribution can be

compensated by a shift in the intrinsic alignment amplitude. This mitigation

of systematic effects by the intrinsic alignment parameter is likely to be the

reason for the relatively large shift in the median of the redshift distribution

in the second redshift bin that we found after the iterative calibration of

model parameters. However, testing the suspected degeneracy between the

redshift distribution amplitudes and the amplitude of intrinsic alignments

requires a sampling of the likelihood with both redshift distribution amplitudes

and the intrinsic alignment amplitude as free parameters. Given the large

number of redshift distribution amplitudes such a sampling is computationally

unfeasible. Thus, to get unbiased constraints on the redshift distribution, we

require a tighter prior on the intrinsic alignment parameter through external

constraints. This will ensure that systematic effects are not absorbed by the

intrinsic alignment parameter. This result is consistent with earlier works,

such as Wright et al. (2020b), Hildebrandt et al. (2020), Fortuna et al. (2021),

van Uitert et al. (2018), and Efstathiou and Lemos (2018), which also found

discrepant values of the intrinsic alignment amplitude and studied systematic

effects on intrinsic alignments. Thus, this work further emphasises the necessity

of an accurate modelling of intrinsic alignments.
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While finalising this work, Hadzhiyska et al. (2020) put forward a paper

on the analytic marginalisation of redshift distribution uncertainties applied

to galaxy clustering measurements from the HSC first data release. Their

marginalisation method results in a modified data covariance matrix that

downweights modes of the data vector that are sensitive to variations in the

redshift distribution. This approach also allowed them to take the full shape

of the redshift distribution into account. However, since this method directly

modifies the data covariance matrix, it is unclear if it allows for a self-calibration

of the redshift distribution with cosmic shear measurements.

The method presented in this paper is not only applicable to cosmic shear

analyses, but can also be adapted to other probes, such as galaxy-galaxy lensing

and galaxy clustering. Therefore, it can especially be used in future joint ‘6x2pt’

analyses, which combine all two-point correlation functions between overlapping

imaging and spectroscopic surveys.



Chapter 3

Optimising the shape of

photometric redshift

distributions with clustering

cross-correlations

Cosmological analyses, such as studies of cosmic shear or galaxy clustering, are

usually performed tomographically, which requires the assignment of galaxies to

redshift bins. This is usually done using estimates of the photometric redshift of

galaxies and thus the inferred redshift bins are subject to catastrophic outliers

in the redshift estimation, as discussed in section 1.3. In this chapter, we

reproduce the work presented in Stölzner et al. (2023), in which an optimisation

method for the assignment of galaxies to redshift bins is developed.

Abstract: We present an optimisation method for the assignment of photomet-

ric galaxies into a chosen set of redshift bins. This is achieved by combining

simulated annealing, an optimisation algorithm inspired by solid-state physics,

with an unsupervised machine learning method, a self-organising map (SOM)

of the observed colours of galaxies. Starting with a sample of galaxies that

is divided into redshift bins based on a photometric redshift point estimate,

the simulated annealing algorithm repeatedly reassigns SOM-selected subsam-

ples of galaxies, which are close in colour, to alternative redshift bins. We
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optimise the clustering cross-correlation signal between photometric galaxies

and a reference sample of galaxies with well-calibrated redshifts. Depending

on the effect on the clustering signal, the reassignment is either accepted or

rejected. By dynamically increasing the resolution of the SOM, the algorithm

eventually converges to a solution that minimises the number of mismatched

galaxies in each tomographic redshift bin and thus improves the compactness

of their corresponding redshift distribution. This method is demonstrated on

the synthetic LSST cosmoDC2 catalogue. We find a significant decrease in the

fraction of catastrophic outliers in the redshift distribution in all tomographic

bins, most notably in the highest redshift bin with a decrease in the outlier

fraction from 57 per cent to 16 per cent.

3.1 Introduction

The calibration of the redshift distribution of cosmological surveys plays a

crucial role in current studies of cosmology. While spectroscopic observations

of galaxies allow for accurate redshift measurements of the source redshift

distribution, complete spectroscopic measurements are often infeasible given

the large number of observed objects in current and upcoming surveys, such

as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST;

Ivezić et al., 2019) and the European Space Agency’s Euclid survey (Laureijs

et al., 2011). Therefore, surveys often rely on multi-band photometry to

determine the redshift of observed objects (see Salvato et al., 2019, for a

review). However, photometric methods suffer from systematic biases and

catastrophic outliers in the redshift estimation and thus require a sophisticated

calibration of the redshift distribution in order to derive robust constraints on

cosmology (see for example: Ma et al., 2006; Huterer et al., 2006; Bernstein

and Huterer, 2010; Cunha et al., 2014).

Cosmological analyses, for example studies of weak gravitational lensing by

the large-scale structure of the Universe, are often performed tomographically,

which allows for the utilisation of information about the evolution of the
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Universe. In tomographic cosmic shear analyses the galaxy sample is split

into several redshift bins using photometric redshift estimates of individual

galaxies. The cosmic shear signal is then estimated by measuring the cross-

correlation between the shapes of galaxies in the tomographic bins, which

improves constraints on cosmological parameters (Hu, 1999).

A tomographic analysis usually requires two steps. First, the sample of

galaxies needs to be divided into redshift bins. This is usually done using galaxy

photometry, which are used to estimate the redshift of individual galaxies in

the survey, for example via spectral energy distribution (SED) template fitting

codes. However, the true redshift distributions of tomographic bins extend

beyond the bin boundaries because of noise, systematic biases and catastrophic

outliers in the photometric redshift estimation. Therefore, the second step

is the calibration of the actual redshift distribution of each tomographic bin

which is important when deriving theoretical predictions for the observed weak

lensing signal given the sensitivity of the observed signal to the tails of the

redshift distribution (Ma et al., 2006). For example, such calibration methods

include angular cross-correlation clustering measurements with overlapping

spectroscopic reference samples (e.g. Newman, 2008; Matthews and Newman,

2010; Ménard et al., 2013; McQuinn and White, 2013; McLeod et al., 2017; van

den Busch et al., 2020; Gatti et al., 2022) and direct calibration methods with

spectroscopic subsamples that are, potentially after re-weighting, representative

of the full sample (Lima et al., 2008; Bonnett et al., 2016; Hildebrandt et al.,

2017). Furthermore, hierarchical Bayesian models that combine photometry

measurements of individual galaxies and clustering measurements with tracer

populations in a robust way have been used for redshift calibration (Sánchez and

Bernstein, 2019; Alarcon et al., 2020). Additionally, the clustering properties

of photometric galaxies can be utilised to increase the precision of photometric

redshifts (Jasche and Wandelt, 2012). Moreover, self-organising maps (SOMs)

can be used to assign galaxies to groups based on their photometry (Masters

et al., 2015; Buchs et al., 2019; Wright et al., 2020a; Myles et al., 2021),
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which allows one to derive subsamples of galaxies that are fully represented by

spectroscopic reference samples.

In this work we develop a calibration method that improves the first step

by reducing the number of outliers in tomographic redshift bins. We develop a

method that updates the assigned redshift bin of galaxies in a given photometric

catalogue that otherwise would be assigned to an incorrect redshift bins if point

estimates of the photometric redshift are used to assign galaxies to bins. The

goal is to obtain a sample of galaxies that is divided into well-localised redshift

bins. This is achieved by combining a self-organising map, which is used to

group galaxies of a similar colour into cells, with measurements of clustering

cross-correlations. We make use of point estimates of the photometric redshifts

of galaxies to divide a galaxy catalogue into tomographic bins and apply a

simulated annealing algorithm to reassign (SOM-based) cells of galaxies to

alternative redshift bins. The optimisation algorithm utilises measurements of

the clustering cross-correlation between the photometric sample and a reference

sample with well-calibrated redshift measurements and maximises correlations

between photometric and reference bins of the same redshift while minimising

correlations between bins that are disjoint in redshift. We demonstrate the

method on the synthetic LSST cosmoDC2 catalogue (Korytov et al., 2019).

The paper is structured as follows: The methods that we use are described

in section 2. We show our results in section 3 and finally we discuss our main

conclusions in section 4.

3.2 Methodology

In this section we summarise the optimisation method, called SharpZ, that

we use to assign photometric galaxies to tomographic redshift bins, which is

illustrated in Fig. 3.1. We start from a catalogue of galaxies that are observed

in several photometric bands from which point estimates of the photometric

redshift of individual galaxies are estimated. These redshift estimates are used

to divide the catalogue into tomographic bins. We aim to minimise mismatches
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between the photometric redshift and the true redshift of the catalogue that are

caused by imprecise redshift estimates in order to infer tomographic bins that

are well-localised within the bin boundaries. We employ an overlapping sample

of reference galaxies which is divided into the same tomographic bins using

accurate redshift measurements in order to quantify how well the true redshift

distribution of the photometric sample resembles the redshift distribution of

the well-calibrated reference sample. To do so, we measure the angular cross-

correlation between the photometric sample and the reference sample. This

measurement relies on the property that galaxies cluster spatially, so that we

expect a clustering signal between two overlapping photometric and reference

samples, whereas samples that are separated in redshift are expected to show no

clustering signal. Further details on the clustering measurements can be found

in section 3.2.1. We employ a simulated annealing algorithm, explained in

section 3.2.2, to randomly reassign photometric galaxies to a different redshift

bin in order to maximise the correlation between overlapping photometric

and reference bins while minimising the correlation of bins with no overlap in

redshift. However, a reassignment of single galaxies only has a marginal impact

on the correlation signal between different samples, since the cross-correlation

is a statistical property of large samples of galaxies. Therefore, we additionally

employ a self-organising map, which is described in section 3.2.3, to derive sets

of galaxies of similar colour. By reassigning a set of galaxies in each step of the

simulated annealing algorithm, we achieve a measurable effect on the clustering

signal between photometric and reference samples, which allows us to employ

the combined clustering signals as an objective function to be maximised by

the algorithm.

3.2.1 Galaxy clustering

In order to determine how well localised within bin boundaries the true redshift

distribution of the tomographic bins is, we employ an additional data set

comprised of galaxies for which an accurate redshift measurement is available.

This can be obtained for example, through spectroscopic observations of galaxies
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Figure 3.1: Sketch of the optimisation algorithm that reassigns photometric galaxies
to alternative redshift bins. We train a self-organising map (SOM)
with a high resolution Roriginal on the observed colours of galaxies in
the photometric sample, from which we infer SOMs with arbitrary
resolutions R < Roriginal . Additionally, we infer point estimates of the
photometric redshift to divide the sample into tomographic bins, so
that each SOM node is assigned initially to the most common redshift
bin of galaxies in this node. We initialise the simulated annealing
algorithm with a starting temperature Tmax and a resolution Rmin,
which is coupled to the temperature. In each iteration of the annealing
algorithm we select a node of a SOM with the current resolution,
which we randomly reassign to a different redshift bin. Measuring
the angular cross-correlation between the photometric sample and the
reference sample, we calculate the energy of the system from Eq. (3.3).
Comparing the change in energy and the current temperature, we
determine whether to keep the redshift bin assignment or to restore
the previous state using Eq. (3.8). We then decrease the system’s
temperature and, depending on the temperature, we either keep the
current SOM resolution or increase the resolution using the scheme
outlined in Fig. 3.2. We iterate through these steps until we reach the
given final temperature Tmin and final resolution Rmax.

on the same area. Thus, we distinguish between two galaxy samples:

1. A photometric galaxy sample of galaxies, which is comprised of objects

that are observed through several optical filters. The photometric mea-

surements of those objects are used to infer redshift estimates via the

template fitting code BPZ (Benítez, 2000).

2. A reference sample, which is comprised of objects with precise redshift

measurements, for example through spectroscopic observations.
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Here, we assume for simplicity that the reference sample is fully representative

of the photometric sample. While the method can be applied with a reference

sample that only partially overlaps with the photometric sample, as discussed in

section 3.4, the impact of an inhomogeneous reference sample will be explored

in forthcoming work.

Both the photometric sample and the reference sample are divided into

Nbins redshift bins based on photometric redshift estimates and spectroscopic

redshift measurements, respectively. We then measure the two-point correlation

function between photometric bins and reference bins using the public code

TreeCorr (Jarvis et al., 2004). Using the angular positions of galaxies, we

compute the cross-correlation wphot−ref
ij between photometric bin i and reference

bin j via the Landy-Szalay estimator (Landy and Szalay, 1993) defined in Eq.

(1.42). For each bin of angular separation Θ the cross-correlation is defined as

wphot−ref
ij =

Dphot
i Dref

j −Dphot
i Rref

j −Rphot
i Dref

j +Rphot
i Rref

j

Rphot
i Rref

j

, (3.1)

where Dphot
i Dref

j denotes the number of observed galaxy pairs of the photometric

and reference bins within a single angular bin with range θ ∈ [0.01◦,0.1◦].

Dphot
i Rref

j and Rphot
i Dref

j denote the number of observed galaxy pairs of a

random sample with uniform density that follows the geometry of the survey

and the photometric and reference bins, respectively. Finally, Rphot
i Rref

j denotes

the number of galaxy pairs of random samples.

After calculating the cross-correlation between all combinations of pho-

tometric and reference bins, we construct the cross-correlation matrix whose

elements are defined via

ρij =
wphot−ref

ij

wref
j

. (3.2)

Here, wref
j denotes the auto-correlation of reference bin j, which serves as a

normalisation factor and is calculated by replacing Dphot
i with the reference

sample Dref
j in Eq.(3.1).

The correlation matrix defined in Eq. (3.2) acts as a measure of how
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well the galaxies in each bin of the photometric sample match the underly-

ing true redshift bin. If the redshifts of photometric galaxies were perfectly

determined, the correlation matrix between photometric and reference bins

would therefore resemble a diagonal matrix. However, we expect non-zero

correlation signals between neighbouring redshift bins that are induced by the

large structure at their common boundary. The relative magnitude of these

off-diagonal correlation signals is dependent on the width of the redshift bins

and therefore we expect these signals to be small given the relatively broad

redshift bins considered in this work. Additionally, noise and catastrophic

outliers in the redshift estimation lead to mismatches between the photometric

redshift estimates and the underlying truth and therefore reduce the correlation

signal on the diagonal elements. Consequently, they induce a correlation signal

on the off-diagonal elements of the cross-correlation matrix. Therefore, we aim

to optimise the correlation matrix with the goal to achieve convergence towards

a diagonal matrix, which would indicate an optimal assignment of photometric

galaxies to redshift bins. The optimisation algorithm requires an objective

function, which we define as the difference between the average elements on

the diagonal and the off-diagonal elements of the covariance matrix:

E ≡ 1
Nbins

∑
i

ρii − 1
Nbins −1

∑
i,j

ρij

 , (3.3)

where Nbins denotes the number of tomographic redshift bins. This equation,

which quantifies the diagonality of the matrix, defines the so-called ‘energy’

of the system, which the simulated annealing algorithm maximises in order to

optimise the assignment of photometric galaxies into redshift bins. Furthermore,

our choice of normalisation ensures that the energy is independent of the total

number of tomographic redshift bins.

Future applications of this work include studies of a more realistic setup

where the reference sample consist of a collection of spectroscopically observed

galaxies which are not necessarily representative of the photometric sample.
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In this case, the correlation matrix is dependent on the galaxy bias of the

photometric and reference samples. Assuming a linear bias model (Kaiser,

1984), the mean galaxy overdensity is related to the mean matter overdensity

via

δg = bδm, (3.4)

where the bias b can depend on the scale and on colour, redshift, and morphology

of galaxies (Fry, 1996; Mann et al., 1998; Tegmark and Peebles, 1998). For a

representative reference sample the cross-correlation between the photometric

sample and the reference sample is proportional to the product of the biases

(see for example Moessner and Jain, 1998),

wphot−ref
ij ∝ bphot

i bref
j , (3.5)

while for the auto-correlation of the reference sample we find

wref
i ∝

(
bref
i

)2
. (3.6)

Here, we assumed a redshift-dependent galaxy bias, which, however, is assumed

to be constant within the boundaries of the photometric redshift bins. The

diagonal elements of Eq. (3.2) for a photometric sample with perfect redshift

estimates become

ρii = bphot
i

bref
i

, (3.7)

which is equal to one since we assumed a representative reference sample.

3.2.2 Simulated annealing

To optimise the assignment of photometric galaxies to tomographic redshift

bins we employ a simulated annealing algorithm (Kirkpatrick et al., 1983;

Kirkpatrick, 1984; Černý, 1985), which is a technique inspired by the process

of heating and cooling metals to reduce their defects and thus maximising the

energy of the given system. This method was originally applied in optimisa-

tion problems in large discrete parameter spaces and has been generalised to
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optimisation problems in continuous parameter spaces (Vanderbilt and Louie,

1984; Corana et al., 1987; Bohachevsky et al., 1986; Press and Teukolsky, 1991).

An overview of the algorithm and its applications is provided, for example,

in Henderson et al. (2003) and Press et al. (2007). Simulated annealing has

been widely used in various fields, including astrophysics. For example, Stoica

et al. (2008) used simulated annealing to detect filaments in galaxy catalogues,

while Tempel et al. (2014, 2016) applied it as a tool to detect patterns in

filaments. Moreover, Chira and Plionis (2019) applied a simulated annealing

algorithm to identify patterns in astronomical images. While In contrast to

typical optimisation methods, which usually aim to find the exact optimum,

the simulated annealing algorithm achieves an approximation of the global

optimum (Mitra et al., 1986). In this work, the system is characterised by

a set of labels that refer to the redshift bin of each individual galaxy in the

photometric sample and the energy of the system is defined in Eq. (3.3). Given

the large number of observed galaxies in photometric surveys we deem exact

optimisation methods computationally infeasible and thus we employ the simu-

lated annealing algorithm to optimise the sorting of galaxies into redshift bins.

Additionally, the algorithm features a method of avoiding local extrema which

allows for finding an approximation of the global optimum of the objective

function.

The simulated annealing algorithm works as follows: The system is char-

acterised by a set of labels lk that denote the redshift bin to which each

photometric galaxy k is assigned. For a given set of labels we use Eq. (3.3) to

measure the current energy of the system. Additionally, the system is assigned

a temperature T which is a hyperparameter that decreases exponentially from

an initial temperature Tmax to a temperature Tmin. At each iteration of the

algorithm the state of the system is altered, i.e. a subset of galaxies is assigned

to a different redshift bin, resulting in a change in the system’s energy. We

then calculate the change in energy ∆E which is used in conjunction with the

temperature to determine whether the altered state is accepted or rejected. A
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value ∆E > 0 indicates that the altered state provides a better solution to the

optimisation problem and therefore the new state is accepted. If ∆E < 0, the

altered state provides a worse solution to the optimisation problem. However,

the algorithm allows for a temporary acceptance of a worse solution in order

to be capable of leaving local maxima of the objective function and finding

the global solution to the optimisation problem. This is achieved by drawing a

random number α in the interval [0,1] and comparing the change in energy to

the current temperature of the system by evaluating

P = exp
(

∆E
T

)
. (3.8)

If P > α, the altered state is accepted and otherwise it is rejected. This allows

the algorithm to temporarily explore regions of lower energy that provide a

worse solution to the optimisation problem. Since the temperature decreases

exponentially, the acceptance probability of a state that worsens the optimi-

sation also decreases over time, so that eventually the algorithm with a high

probability only accepts states that provide a better solution to the optimisation

problem. Therefore it is important to determine the appropriate setting of

the initial and final temperatures, Tmax and Tmin, so that the algorithm starts

with a reasonable probability of accepting worse solutions and finishes at a

temperature at which only states that provide a better solution are accepted.

3.2.3 Self-organising maps

The selection of galaxies that are reassigned to a different redshift bin in each

iteration is a crucial step in the simulated annealing algorithm. The energy

defined in Eq. (3.3) is dependent on the angular cross-correlation between the

photometric and reference sample which we optimise by reassigning galaxies

to alternative redshift bins. Thus, it is essential to select a set of galaxies

that are reassigned together in order to achieve a measurable effect on the

objective function. Additionally, we want to select groups of galaxies that are

likely to belong to the same tomographic bin, so that they can be reassigned
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to a common redshift bin. As a tool to select groups of galaxies we use a

self-organising map that is trained on the colour measurements of individual

galaxies in the photometric sample. This allows for the selection of galaxies of

a similar colour, which we expect to also be close in redshift.

A self-organising map (SOM; Kohonen, 1990) is a type of artificial neural

network that produces a low-dimensional representation of high-dimensional

data using an unsupervised learning technique. SOMs have been widely used in

the context of photometric redshift estimation in large cosmological surveys. In

particular, Geach (2012) first proposed a SOM as a tool for object classification

and estimation of photometric redshifts with deep spectroscopic samples which

was applied to data from the Cosmological Evolution Survey (COSMOS; Scoville

et al., 2007). Additionally, Way and Klose (2012) used a SOM to estimate

photometric redshifts of galaxies from SDSS DR7 (Abazajian et al., 2009).

SOMs were also used to characterise spectroscopic outliers in SDSS (Fustes

et al., 2013) and to derive photometric redshift PDFs (Carrasco Kind and

Brunner, 2014; Speagle and Eisenstein, 2017). Recently, SOMs have been used

in weak lensing surveys such as KiDS (Wright et al., 2020a; Hildebrandt et al.,

2021) and DES (Buchs et al., 2019; Myles et al., 2021) to calibrate photometric

redshift distributions of weak lensing source catalogues in various tomographic

bins.

In this work, we project a data set containing five colour measurements

(u-g, g-r, r-i, i-z, and z-y) onto a two-dimensional space. The map space of

the SOM consists of nodes that are arranged on a two-dimensional grid that is

usually connected via a rectangular or hexagonal geometry. Furthermore, the

topology of the map can be chosen as either planar or toroidal, where the top

and bottom as well as the left and right edges are connected to avoid boundary

effects. The total number of nodes determines the so-called resolution of the

SOM, which determines how well the SOM can separate features in the original

data space. In this work, we refer to a map consisting of a rectangular grid of

(R x R) nodes as a map of resolution R. For every SOM node there exists a
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weight vector that links the node to a point in the original high-dimensional

data space and thus consists of the corresponding colour values. The training

process iteratively alters the randomly initialised weight vectors so that they

provide a mapping between the SOM nodes and the data set. In each step the

Euclidean distance between the weight vectors and a randomly selected data

point is computed. The weight vector of the node that is closest to the data

point is called the best matching unit (BMU). Additionally, the neighbourhood

of the BMU is identified, which consists of all nodes within a given radius

around the BMU. All weight vectors inside the neighbourhood are shifted

towards the data point by a fraction of their distance to the data point. This

fraction is dependent on the distance between weight vector and data point

so that the closer a node is to the BMU, the more its weight vector is shifted.

This process is repeated for all data points in the training sample. Moreover,

the radius of the neighbourhood around the BMU shrinks over time, so that

the number of altered weight vectors in each training step also decreases.

After training, the weight vectors provide a mapping of the galaxy sample

onto a two-dimensional space where galaxies of similar colour are mapped close

together while dissimilar galaxies are mapped further apart. Galaxies that are

mapped onto a specific node then form a set of galaxies which are close in

the original colour space. The total number of SOM nodes then dictates how

accurate galaxy clusters in the original colour space can be separated.

Since the SOM groups galaxies in cells that are similar in colour space, we

expect that these galaxies are also close in redshift. Therefore, we make use of

the SOM nodes to select sets of galaxies that are assigned to a different redshift

bin in each step of the simulated annealing algorithm. Thus, the resolution of

the SOM determines the number of galaxies that are relabelled at a time, which

imposes a limit on the accuracy of the resulting final assignment of galaxies to

redshift bins. While a low-resolution SOM allows us to relabel more galaxies at

a time and thus results in a shorter runtime of the algorithm, a high-resolution

SOM gives a more accurate result since it allows for a finer separation of
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galaxies in colour space. Thus, it is advantageous to vary the resolution while

running the algorithm, starting with a SOM at a low resolution, denoted Rmin,

and increasing the resolution over time up to the maximum resolution Rmax.

The advantage of this method is that in the beginning, when we expect the

fraction of mislabelled galaxies to be highest, we reassign a larger number of

galaxies at a time. By increasing the resolution over time we continuously

split the SOM nodes into two, which allows for a finer separation of galaxies

in colour space so that the accuracy of the final assignment improves. Finally,

we stop the algorithm at a resolution Rmax, at which the average number of

galaxies per node becomes so small that continuing the relabelling becomes

computationally infeasible given the small impact on the energy of the system.

In order to be able to dynamically scale the resolution of the SOM, we

train a SOM at a high resolution and apply clustering methods to merge

nodes that are close in the original data space. From the hierarchy of merged

SOM nodes we can then extract a SOM with a lower number of nodes, which

corresponds to a lower resolution. This allows us generate SOMs with any

arbitrary resolution lower than the original resolution without training multiple

SOMs. Standard hierarchical clustering techniques (see for example Müllner,

2011) allow for building a hierarchy, where two objects that minimize a given

agglomeration criterion are clustered in each step. Thus, this method can

be used to iteratively merge the two SOM nodes with the minimum distance

between their corresponding weight vectors. However, such clustering methods,

applied to the weight vectors of the SOM, do not make use of the information

on the number of galaxies in each node. Therefore, we perform the SOM

clustering using a weighted method, illustrated in Fig. 3.2, that utilises the

additional information on the number of galaxies per node.

We construct clusters in a bottom-up approach by iteratively merging

nodes until only a single node is left. Initially, every node of the high-resolution

SOM forms its own cluster. We identify the two nodes with the smallest

distance between their corresponding weight vectors. Using the number of
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Figure 3.2: Sketch of the clustering method that is used to decrease the resolution
of a SOM. We combine nodes of a high-resolution SOM, consisting of
M nodes, using the number N of galaxies that are mapped onto each
SOM node and the weight vectors x, that connect the two-dimensional
SOM data space to the original high dimensional data space. In each
step we merge the two SOM nodes with the minimum distance of
their corresponding weight vectors and compute the weight vector of
the combined node as the average of the two weight vectors, where
the number of galaxies in each node act as weights. By iterating the
merging process we build a hierarchy of clusters until all SOM nodes
are merged into one single node after M −1 steps. From the hierarchy
of nodes we can derive SOMs with any resolutions lower than the
resolution of the original SOM.
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galaxies that are assigned to each node as weights, we compute the weight

vector of the combined node by calculating the weighted average of the two

weight vectors. Starting with a SOM consisting of M nodes, we are left with

one single node after M − 1 clustering steps. After building the hierarchy of

merged SOM nodes we can then infer SOMs at resolutions lower than the

resolution of the initial SOM.

3.3 Results

We apply the redshift calibration method to the cosmoDC2 catalogue (Korytov

et al., 2019). This is a large synthetic catalogue designed by the LSST Dark

Energy Science Collaboration to support the development of analysis pipelines.

In particular, we employ a subset of the cosmoDC2_1.1.4 catalogue, covering

about 58 deg2 of the sky with a magnitude limit of i < 25.3, which corresponds

to the LSST gold sample selection for weak lensing (LSST Science Collaboration

et al., 2009). This catalogue provides colour measurements of approximately

107 galaxies with redshifts 0< z < 3 in the six LSST filter bands (u,g,r,i,z, and

y). The photometric redshift is estimated via the template fitting code BPZ

(Benítez, 2000). In Appendix B.1 we provide a comparison between the point

estimate of the photometric redshift and the true redshift of galaxies in the

catalogue. Based on the photometric redshift estimate we divide the catalogue

into ten bins of equal redshift width between 0< z < 2, where the redshift range

of the i-th bin is defined as [0.2(i−1),0.2i], and one additional bin with z > 2.

To generate the reference sample of galaxies with well-calibrated redshifts, we

draw a random subset of the catalogue that contains 10 per cent of the total

galaxies. We assume that we are provided with precise redshift measurements

for the galaxies in this subsample and therefore we divide the reference sample

into the aforementioned redshift bins using the true simulated redshift. Since

in this case the reference sample is perfectly representative of the photometric

sample, Eq. (3.7) shows that for an optimal assignment of photometric galaxies

the correlation matrix should become close to an identity matrix with small
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contributions on off-diagonal elements between neighbouring bins, which are

induced by the large-scale structure at their common boundary. However, the

resolution of the SOM determines the number of galaxies that are typically

grouped into one node. Therefore, it imposes a limit on how well the SOM can

separate galaxies by redshift, so that we do not expect the correlation matrix

to converge to an exact identity matrix.

We train a self-organising map and 200x200 nodes on a rectangular grid

on the observed colours of galaxies in the photometric sample using the public

code Somoclu (Wittek et al., 2017) and choose a toroidal geometry to avoid

boundary effects. The SOM is illustrated in Fig. 3.3a with colours representing

the mean of the true simulated redshift of galaxies in each node. We note

that the true redshift is used solely for illustration purposes and is not used in

the further analysis of the photometric sample. In Appendix B.2 we provide

comparisons between SOMs at different resolutions that are inferred from the

high-resolution SOM using the method described in section 3.2.3.

As can be observed in Fig. 3.3a, the SOM achieves a separation of galaxies

by redshift by relying purely on the colour information of individual galaxies.

Furthermore, we find regions where high-redshift nodes are adjacent to low-

redshift nodes, which we presume is where catastrophic errors in the photometric

redshift estimate preferentially occur (Masters et al., 2015).

We assign each SOM node to a redshift bin, depending on the most common

photometric redshift bin of galaxies in each node. This is illustrated in Fig.

3.3b with colours indicating tomographic redshift bins. We note that a small

number of SOM nodes do not contain any galaxies, so that they cannot be

assigned to a redshift bin, which is indicated by a label of ‘-1’. Comparing

Fig. 3.3b to the true redshifts, shown in Fig. 3.3a, we find that some SOM

nodes show a significant mismatch between the true redshift and photometric

redshift bin, especially in the region of high-redshift galaxies. This is further

emphasised by the left panel of Fig. 3.4, which shows the cross-correlation

matrix between the photometric and reference samples. We find a rather low
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(a) Colours indicate the photometric redshift
bin of each SOM node, based on the true
redshift of individual galaxies, which does
not enter the optimisation process and is
used for illustration purpose of the ideal
bin assignment only.

(b) Colours indicate the initial photometric
redshift bins of each SOM node, based on
the estimate of the photometric redshift
of individual galaxies inferred with BPZ.

(c) Colours represent the final redshift bin of
each SOM node after running the simu-
lated annealing algorithm.

(d) Colours represent the shift of the redshift
bin of each node between panels b and c.

Figure 3.3: Illustration of the self-organising map used in the analysis. The SOM
consists of 200x200 nodes on a rectangular grid in toroidal geometry
and is trained on the observed colours of galaxies in the photometric
galaxy sample. Coloured labels indicate the tomographic bin to which
galaxies in each node are assigned, with SOM nodes which do not
contain any galaxies labelled with ‘-1’.
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Figure 3.4: Left: Initial cross-correlation matrix between bins of the photometric
sample, inferred from photometric redshift estimates, and the reference
sample. Right: Cross-correlation matrix after optimisation of the bin
assignment of the photometric sample. A perfect assignment with
noise-free clustering measurements would yield the identity matrix.

correlation signal on the diagonal for high redshift bins, indicating a mismatch

of the redshifts of galaxies in these bins. Looking at the off-diagonal elements,

we find high non-zero cross-correlation signals between the photometric and

reference samples. This suggests that high-redshift bins are contaminated with

low redshift galaxies and vice versa, caused by catastrophic failures in the

photometric redshift estimation with BPZ.

We then proceed with re-sorting galaxies in the photometric sample to

different tomographic bins using the simulated annealing algorithm described

in section 3.2.2. Here, the initial state of the system is the set of redshift

bin labels obtained from the photometric redshift estimates illustrated in Fig.

3.3b. We start with an initial SOM resolution of Rmin = 30, obtained with the

method outlined in section 3.2.3. The SOM resolution is increased over time

until reaching the final resolution of Rmax = 80. This is achieved by coupling

the SOM resolution linearly to the temperature of the system which decreases

from Tmax to Tmin. The range of the SOM resolution is chosen so that in the

initial phase a larger portion of galaxies is relabelled which then decreases with

increasing SOM resolution. We determine the maximum temperature such that

initially there is a chance of about 50% to accept a worse state for a typical
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value of ∆E at a resolution of Rmin. The minimum temperature on the other

hand is chosen such that the chance of accepting a worse state at resolution

Rmax approaches zero. The simulated annealing algorithm returns a modified

set of redshift bin labels, where SOM nodes were relabelled to different redshifts

bins in order to diagonalise the cross-correlation matrix shown in the left panel

of Fig. 3.4. The resulting optimised matrix is shown in the right panel of Fig.

3.4. We observe that the algorithms succeeds in reducing the cross-correlation

signal between photometric and reference bins on the off-diagonal elements

while increasing the auto-correlation signal on the diagonal and thus increasing

the energy of the system, defined in Eq. (3.3), from 0.56 to 0.68. In Appendix

B.3 we discuss the evolution of the energy during the simulated annealing

optimisation.

The resulting redshift bins of each SOM node are illustrated in Fig. 3.3c,

which is the equivalent to Fig. 3.3b, but instead of the initial redshift bin labels

we show the modified labels returned by the algorithm. A comparison of the

two figures shows that the simulated annealing algorithm indeed succeeds in

identifying those regions of the SOM where the photometric redshift estimates

do not match the true redshift of the galaxies and therefore shifts these nodes

towards higher redshift bins. This is further illustrated in Fig. 3.3d, where

we show the magnitude of the shift in the redshift label per SOM node with

positive numbers indicating a shift towards higher redshift bins and negative

numbers indicating a shift towards a lower redshift bin. We find that the most

significant changes occur in the aforementioned high-redshift nodes and at the

boundaries between high- and low-redshift nodes.

The redshift distributions of the tomographic bins are illustrated in Fig.

3.5 with dashed lines indicating the initial redshift distributions and solid

lines representing the distributions after relabelling via simulated annealing.

We note that the redshift distributions are inferred from the true underlying

redshifts of galaxies assigned to each bin, which are not available in a real

observational data set and need to be calibrated separately, e.g. via cross-
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Figure 3.5: Comparison of the initial redshift distribution of each tomographic bin,
obtained using the photometric redshift estimate of individual galaxies
(dashed lines), and the redshift distribution after simulated annealing
(solid lines). Dotted lines indicate the redshift bin edges.

correlation measurements. We find that the algorithm significantly improves

the redshift distributions of high-redshift bins, which initially showed significant

deviations from the predefined redshift intervals in the tails of the distribution.

The correlation matrix shown in Fig. 3.4 indicates a low-level anticorrelation

between photometric bin 1 and reference bins 4 and 5 that remains even after

optimisation. However, this feature is not observed in Fig. 3.5 which shows no

significant overlap between the redshift distribution of bin 1 with either bin 4

or bin 5. The origin of this feature is unclear.

We quantify the extent to which the redshift distributions lie within the

boundaries of the redshift bins in the left panel of Fig. 3.6, comparing the

initial and final distribution. We find that the algorithm helps to shift the

redshift distribution significantly to lie within the bin boundaries, especially

in the higher redshift bins, where we find improvements of about 30 per cent.

Additionally, in the right panel of Fig. 3.6 we quantify how much of the redshift

distribution is located within the tails of distribution. Here, we define the

tails of the distribution as the region in redshift space that lies more than
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Figure 3.6: Left: Comparison of the percentage of probability mass of the redshift
distributions, shown in Fig. 3.5, within the respective bin range before
and after simulated annealing. Right: Comparison of the percentage
of the redshift distribution that is located within the tails of the
distribution, where we define the tails of the distribution as the region
in redshift space that lies more than one bin width outside of the
boundaries of a given tomographic bin.

one bin width outside of the boundaries of a given tomographic bin. We find

a substantial decrease of the tails of the redshift distribution. Again, the

biggest improvements are found in the high redshift bins where initially a

large percentage of the distribution is located in the tails, which decreases

significantly after the simulated annealing. The biggest change is found in bin

11, which initially only contains 32 per cent of the probability mass within the

bin boundaries and a large fraction of about 57 per cent in the tails of the

distribution. These quantities shift significantly in the final redshift distribution,

with about 64 per cent within the bin boundaries and 16 per cent in the tails.

Furthermore, we find significant improvements in bin 9, which initially contains

about 22 per cent of galaxies within bin boundaries which increases to 57 per

cent. The fraction of galaxies in the tails of this redshift bin also decreases

significantly from 47 per cent to 11 per cent.

3.4 Conclusions
In this paper we presented a method, SharpZ, to group a sample of galaxies

into tomographic redshift bins using estimates of the photometric redshift

with subsequent re-sorting using an algorithm that optimises the angular

cross-correlation between the photometric galaxy sample and an overlapping
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sample of reference galaxies. We utilised a simulated annealing algorithm that

reassigns groups of galaxies to redshift bins and determines the effect on the

cross-correlation matrix by calculating a measure of the diagonality of the

matrix. This was combined with a self-organising map (SOM) that was trained

on the colour information of photometric galaxies. The SOM allows choosing

sets of galaxies that are reassigned in each step of the simulated annealing.

Additionally, the resolution of the SOM was increased over time in order to

achieve a greater accuracy of the final resulting photometric redshift bins.

We applied this method to a synthetic catalogue, cosmoDC2, that aims to

resemble measurements of the upcoming Vera C. Rubin Observatory’s Legacy

Survey of Space and Time. Our results show that the method significantly re-

duces the fraction of catastrophic outliers in the tails of the redshift distribution

in all tomographic bins, most notably in the highest redshift bins where we find

improvements by up to 40 per cent. We found that it succeeds in shifting the

redshift distributions towards being within the boundaries of the tomographic

bins. High redshift bins show the greatest improvements, where the probability

mass within the bin boundaries increases up to about 30 per cent, while the

improvement in the low redshift bins, whose redshift distributions initially are

already quite compact, is smaller with the probability mass increasing by a

few percent. Additionally, we found that the method also greatly reduces the

amount of the redshift distribution that is located in the tails of the distribution.

Again, we find the biggest improvement in the high redshift bins, where the

initial performance of the photometric redshift estimates is worst.

The quality of the redshift distributions inferred with our optimisation

method depends on the choice of the SOM parameters. Initially, we trained

a SOM consisting of 200 x 200 nodes and scaled the resolution from low to

high during the optimisation process. The resolution determines the number

of galaxies that are reassigned together to an alternative redshift bin, which

scales from large numbers of galaxies to smaller numbers. Thus, the resolution

imposes a limit on how well the SOM can separate features in colour space
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that can be associated with different redshift bins. By choosing a maximum

resolution we therefore implicitly put a limit on the quality of the final redshift

distribution that can be achieved. The quality of the final redshift distributions

can be improved by increasing the maximum resolution at the cost of a longer

computation time since a higher resolution implies a selection of fewer galaxies

in each step, up to the limit where the algorithm selects individual galaxies.

However, at a certain point noise in the clustering observable will limit the

observable effect on the objective function. Therefore the method is ultimately

limited by both the noise limit of the clustering measurement and the SOM

resolution. Additionally, the choice of features on which the SOM is trained

influences how well the SOM can separate galaxies of different redshifts. In

our analysis we trained the SOM on five galaxy colours, which we found to

perform well for the data set considered in this work. Future applications

with alternative data sets should however explore alternative sets of training

features, for example different colour combinations or the addition of magnitude

information, which can help breaking colour-redshift degeneracies.

In our analysis we made the assumption that the reference sample covers

the full area observed by the photometric survey, while in a realistic application

the reference sample will only have a partial sky overlap with the photometric

survey. However, as long as the survey is spatially homogeneous, we can optimise

the assignment of galaxies to tomographic bins in the area covered by both the

photometric and reference survey and then use the SOM to expand the redshift

bin assignments to the full photometric survey. Therefore, a complete overlap

of the two samples is not a general requirement of the method. Additionally,

the SOM can be used to reproduce the results without re-running the simulated

annealing algorithm. Moreover, we can further improve the calculation of the

clustering signal by measuring the cross-correlation signal between reference

samples and cells of the highest-resolution SOM. For a given assignment of

SOM cells to tomographic bins we can then stack the cross-correlation signals

of the individual cells using the hierarchical structure of the SOM. In this
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way, we obtain the correlation signal between photometric and reference bins

without re-calculating the cross-correlation in each step of the optimisation

algorithm, which will lead to a decrease in computational cost. This is studied

in section 4.1.

Additionally, we made the assumption that the reference sample is fully

representative of the photometric sample. In section 4.4 we study how an

incomplete reference sample influences the cross-correlation measurements

between the photometric and reference sample and how it impacts the quality

of the inferred tomographic bins.

While finalising this work, Zuntz et al. (2021) put forward a paper on

the optimisation of the tomographic binning for the DESC 3x2pt analysis. In

particular, the ComplexSOM method utilises a matrix of auto- and cross-

power spectra, which is a statistic similar to the one employed in this work.

While in this work the redshift bin edges of the galaxy sample are fixed, the

ComplexSOM method instead optimises the parameters that determine the

bin edges.

Our work demonstrates that the optimisation method provides a significant

improvement of the redshift distribution of a synthetic survey compared to

photometric estimates of the redshift. Therefore it provides a promising

complement to existing redshift calibration methods in upcoming surveys.

An application to observational data is left for future work.



Chapter 4

Optimising photometric redshift

distributions with realistic

reference datasets

In the previous chapter, we developed an optimisation method for the assign-

ment of galaxies to a set of redshift bins based on multi-band photometry. This

method relies on clustering cross-correlation measurements between photometri-

cally observed galaxies and a sample of reference galaxies with known redshifts.

It was tested on a simulated catalogue of galaxies, cosmoDC2, from which a

sample of reference galaxies that are representative of the full galaxy catalogue

was selected. This sample was comprised of 10% of galaxies in the simulated

catalogue. However, in an application with real data the reference sample will

be comprised of a compilation of spectroscopically observed galaxies which

are obtained from overlapping surveys. Thus, the reference sample will not

be representative of the photometric sample, since the selection of observed

galaxies differs among surveys and is optimised for measurements of baryon

acoustic oscillations and redshift-space distortions. Additionally, the density of

spectroscopically observed galaxies per square degree is much lower than the

density of photometrically observed galaxies, since spectroscopic observations

are more time-consuming. Therefore, it is essential to replace the idealised

reference sample, on which the optimised bin assignment scheme was developed,
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with a more realistic set of reference galaxies which is more similar to data that

can be expected from upcoming surveys.

In this chapter, we test and further develop the optimisation scheme

with a set of reference galaxies that mimics galaxies observed by the Dark

Energy Spectroscopic Instrument (DESI; DESI Collaboration et al., 2016).

Furthermore, we develop a method to calculate the cross-correlation signal

between photometric and reference samples that utilises the SOM to avoid the

repeated recalculation of the clustering signal, which leads to a decrease in

runtime of the optimisation algorithm.

4.1 SOM-based cross-correlation

measurements

The optimisation method presented in chapter 3 relies on the recalculation

of the clustering cross-correlation signal between photometric and reference

bins galaxies after the reassignment of a SOM-selected group of photometric

galaxies to a different tomographic redshift bin. Hence, the calculation of the

cross-correlation signal makes up the majority of the computing time. Here, we

develop a method that does not require a recalculation of the cross-correlation.

We take advantage of the method of galaxy selection via the SOM. Since we

assume that galaxies in each node are close in redshift and thus belong to

the same tomographic bin, we can pre-compute the cross-correlation between

all SOM-nodes and the set of reference bins. The full cross-correlation signal

between two specific photometric and reference bins can then be calculated by

stacking the cross-correlation measurements for all SOM nodes belonging to one

tomographic bin. The number of observed galaxy pairs between photometric

bin i and reference bin j, entering the Landy-Szalay estimator in Eq. (3.1), is

given by

Dphot
i Dref

j =
∑
k∈i

Dnode
k Dref

j , (4.1)
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where Dnode
k Dref

j is the number of galaxy pairs observed between SOM node k

and reference bin j. Here, we sum over all nodes k that are assigned to the

i-th photometric redshift bin. Similarly, the number of galaxy pairs between

random samples and photometric and reference bins and the number of galaxy

pairs between random samples are given by

Dphot
i Rref

j =
∑
k∈i

Dnode
k Rref

j ; (4.2)

Rphot
i Rref

j =
∑
k∈i

Rnode
k Dref

j ; (4.3)

Rphot
i Rref

j =
∑
k∈i

Rnode
k Rref

j , (4.4)

where Rnode
k denotes a random sample with uniform density proportional to

the number of galaxies in the k-th SOM node.

In each step of the optimisation we select a SOM node that is assigned to

a different redshift bin, which modifies the elements k that are summed in Eqs.

(4.1), (4.2). (4.3), and (4.4). However, Dnode
k and Rnode

k themselves remain

unchanged, so that we can pre-compute and store these quantities. Thus, the

calculation of the cross-correlation signal only requires a summation instead of

a recalculation of the number of galaxy pairs as was done in chapter 3. This

decreases the time required to construct the cross-correlation matrix defined in

Eq. (3.2) by a factor of 100. Therefore, it significantly decreases the runtime

of the algorithm, which is particularly useful when considering larger surveys

since the computing time required to count galaxy pairs scales with the number

of objects in the survey.

4.2 Probabilistic bin assignment scheme
The default method of reassigning a group of SOM-selected galaxies to alter-

native redshift bins, which was applied in chapter 3, randomly selects a new

redshift bin with equal probability for all alternative redshift bins. In this

section we develop a probabilistic assignment scheme in order to increase the

convergence rate of the optimisation algorithm. To do so, we make use of the
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Figure 4.1: Comparison of the energy as a function of steps between the default
bin assignment scheme and the probabilistic bin assignment scheme.

information about the photometric redshift estimate of individual galaxies in

each SOM node. For each SOM node, we derive the distribution of photometric

redshifts of galaxies. We then assign a selection probability to each redshift

bin relative to the number of galaxies with photometric redshift within the bin

boundaries. Thus, if the distribution of photometric redshift is spread across

multiple bins, we find a higher probability to reassign a SOM node to a more

populated bin. This allows the algorithm to converge faster to the optimal

solution if there is a fraction of galaxies with photometric redshift close to the

true redshift.

In Fig. 4.1, we compare the energy of the system as a function of steps

for the default bin assignment scheme and the probabilistic bin assignment

scheme. While the optimisation algorithm converges to the same energy with

both assignment schemes, the probabilistic bin assignment requires fewer steps.

Thus, the probabilistic bin assignment scheme further reduces the computing

time of the optimisation algorithm in addition to the reduction in computing

time due to the SOM-based cross-correlation measurements.



4.3. Results for idealised reference samples 121

4.3 Results for idealised reference samples

We test the SOM-based cross-correlation measurements on the idealised sample

of reference galaxies, which is comprised of 10% of galaxies in the cosmoDC2

catalogue. However, in contrast to the work presented in chapter 3, we employ

the full cosmoDC2 catalogue, covering 440 deg2 on the sky, instead of a subset

of the catalogue. This change is feasible because of the decrease in computing

time due to the SOM based cross-correlation measurements. Since the SOM

was trained on the colours of galaxies in the subset of the catalogue, we project

the remaining galaxies in the full catalogue onto the SOM in order to assign

each galaxy to a SOM node. In doing so, we assume that the dataset on which

the SOM was trained is representative of the full dataset. This is the case for

the cosmoDC2 dataset. However, it could still lead to a mild underperformance

of the assignment of galaxies to redshift bins.

During the optimisation process we discovered a tendency of the algorithm

to assign small populations of high-redshift galaxies to lower redshift bins,

which was most prominent in the third and fifth tomographic bin. This is

most likely due to a higher galaxy bias at high redshifts, which allows the

algorithm to achieve a higher signal on the diagonal elements of the correlation

matrix while only slightly increasing the signal on the off-diagonal, which is still

consistent with zero within the noise. To circumvent this issue we implement

two modifications in the definition of the energy, which was originally defined

in Eq. (3.3). Since the energy is an objective function that is chosen arbitrarily

to parameterise how close to diagonal the correlation matrix is, we can modify

this definition in order to improve the optimisation. First, we implement two

variables wdiag and woffdiag = 1 −wdiag, which parameterise a weight that is

applied to the diagonal and off-diagonal elements of the correlation matrix.

This allows us to reduce the gain in energy that is achieved by moving galaxies

with a high bias to low redshift bins. Additionally, for realistic reference samples

we expect the optimal values on the diagonal to differ from unity since the

galaxy bias of the reference sample in general is different from the galaxy bias
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Figure 4.2: Comparison of the initial redshift distribution (dashed lines) and the
final redshift distribution (solid lines) after optimisation of the bin
assignment with a SOM-based cross-correlation measurements. Dotted
lines indicate the redshift bin edges.

of the photometric sample, which can increase the gain in energy even further.

Thus, downweighting the diagonal values circumvents this issue. Secondly, we

take the absolute value of the off-diagonal elements before summation in order

to prevent negative entries on the off-diagonal compensating positive entries.

With these modifications, the energy reads

E ≡ 1
Nbins

∑
i

wdiagρii −
1−wdiag
Nbins −1

∑
i,j

|ρij |

 . (4.5)

The results of the optimisation with wdiag = 0.2 are shown in Fig. 4.2.

We note that since the dataset is comprised of the full cosmoDC2 catalogue,

the initial redshift distributions differ slightly from the ones shown in Fig.

3.5, which were obtained from a subset of the catalogue. We find a better

performance of the optimisation algorithm in bins 1, 9, 10, and 11 which are

more localised within their bin boundaries compared to the earlier results

presented in Fig. 3.5. Additionally, we find that the outlier rate is significantly

reduced, which is most prominent in the high-redshift bins which in Fig. 3.5
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Figure 4.3: Left: Comparison of the percentage of probability mass of the redshift
distributions, shown in Fig. 4.2, within the respective bin range before
and after optimisation. Right: Comparison of the percentage of the
redshift distribution that is located within the tails of the distribution,
where we define the tails of the distribution as the region in redshift
space that lies more than one bin width outside of the boundaries of a
given tomographic bin.

featured secondary peaks at low redshift that are mostly removed in Fig. 4.2.

These observations are illustrated in Fig 4.3, which shows a comparison of the

percentage of probability mass of the redshift distributions within the respective

bin range before and after optimisation and a comparison of the percentage of

the distribution located within the tails. However, we find that the final redshift

distributions in bins 3, 4, and 5 are slightly worse than the initial distributions.

This is most likely a residual effect of the assignment of high-redshift outliers to

low redshift bins. This issue can potentially be removed by further optimising

the weighting between elements on the diagonal and the off-diagonal. This is

left for future work.

4.4 Results for DESI-like reference samples
The Dark Energy Spectroscopic Instrument (DESI) will measure spectra of

about 35 million objects which are selected from three photometric surveys, re-

ferred to as the DESI Legacy Imaging Surveys (Dey et al., 2019). These surveys

completely overlap with DESI’s footprint which covers approximately 14000

deg2 on sky divided into two contiguous regions in the Northern and Southern

Galactic Caps covering an area of 9900 deg2 and 4000 deg2, respectively. Given

the overlap between footprints of DESI and LSST on a few thousand square
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degrees on sky, depending on the observing strategy (DESI Collaboration et al.,

2016), its spectroscopic observations of galaxies make it an ideal source of

reference galaxies for the characterisation of the redshift distribution of LSST

galaxies.

In this section, we explore the optimisation of tomographic bins of LSST

with a reference sample mimicking a sample observed by DESI which is available

in the cosmoDC2 catalogue. This sample is constructed from the cosmoDC2

catalogue with a DESI-like selection of four different types of objects: Luminous

Red Galaxies (LRGs), Emission Line Galaxies (ELGs), high redshift quasars

(QSOs), and a magnitude-limited sample (MagLim) approximating the DESI

Bright Galaxy Sample. The samples are selected as follows: for QSOs the

objects with the highest star formation rate (SFR) and a magnitude cut of

19.5< r < 23.4 are selected so that the number of objects per redshift and per

square degree, dNQSO/dzdΩ with dΩ = sinθdθdϕ, matches the values given

in Table 2.3 of DESI Collaboration et al. (2016). Subsequently, ELGs are

selected with the same criteria, but with an additional cut on the maximum

SFR defined as the minimum SFR of QSOs in order to ensure that the samples

are independent. The LRG sample is obtained by selecting objects with the

largest stellar mass while also limiting the maximum SFR to the minimum SFR

of the ELG sample. Finally, the MagLim sample is selected with a magnitude

cut of r < 19.5 which ensures that this sample is independent of the LRG, ELG,

and QSO samples. This selection method provides us with four samples of

different classes of objects akin to those that will be observed by DESI.

The corresponding redshift distributions of the four reference samples are

illustrated in Fig. 4.4. However, the redshift distributions in this figure show

some distinct features that would not be expected from a realistic catalogue

mimicking the DESI survey. The redshift distributions show dips in the redshift

distribution that are most prominent in the distribution of ELGs and which

are not present in the redshift distribution given by DESI Collaboration et al.

(2016). These dips are caused by unrealistic degeneracies between the redshift
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and the SFR of galaxies in the cosmoDC2 catalogue. Similar degeneracies are

found between the redshift and the stellar mass. SFRs and stellar masses are

used to select galaxies in rather broad histogram bins with ∆z = 0.1, given

by DESI Collaboration et al. (2016). Therefore, the degeneracies affect the

redshift distribution within the histogram bins, creating dips in the distribution

that would not be expected from a realistic sample of galaxies. Moreover, since

the magnitude-limited sample is explicitly constructed to exclude the other

samples, these features also affect the shape of the magnitude-limited sample.

Constructing a more realistic sample of DESI galaxies requires a realistic

modelling of the SFRs and stellar masses in the catalogue. Additionally, a

finer binning of the reference histogram could reduce the dips in the redshift

distribution that are picked up by the selection method. However, this is the

best approximation of a DESI-like galaxy sample that is readily available in the

cosmoDC2 catalogue. Since it is clearly non-representative of the photometric

sample studied in chapter 3, we deem this sample acceptable for a first study of

the optimisation method with non-representative reference samples and leave

the creation of a more realistic DESI-like sample for future work.

The sample of photometric galaxies is comprised of the remaining galaxies

in the cosmoDC2 catalogue that are not selected as reference galaxies. We

divide the photometric and the reference sample into nine bins between 0 ≤ z < 3

which are illustrated by the vertical dotted lines. Since the reference sample is

comprised of four subsamples of galaxies with different properties, we expect

the galaxy bias to be different for each subsample. Therefore, we keep the

subsamples separated when dividing the reference sample into redshift bins.

Since each subsample covers a different redshift range, we only select the

reference bins with a sufficient number of galaxies for the calculation of the

clustering cross-correlation with the photometric sample. We construct the

correlation matrix between photometric and reference samples with 12 reference

bins in total, which in some cases cover the same redshift range. A summary

of the properties of the reference bins is given in Table 4.1. In contrast
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Figure 4.4: Overview of the redshift distributions of galaxies in the cosmoDC2
catalogue with a DESI-like selection for four samples: Luminous Red
Galaxies (LRGs), Emission Line Galaxies (ELGs), high redshift quasars
(QSOs), and a magnitude-limited sample. The boundaries of the redshift
bins are illustrated by the vertical dotted lines.

to the idealised reference sample, which was comprised of 10% of galaxies

in the cosmoDC2 catalogue, the DESI-like reference sample contains only

approximately 1% of galaxies in the cosmoDC2 catalogue. Furthermore, we

choose broader bins above z = 1.2 because of the sparsity of high-redshift

reference galaxies.

After calculating the cross-correlation between the reference and photo-

metric samples in each SOM node using the method described in section 4.1,

we continue by running the optimisation algorithm on the newly constructed

cross-correlation matrix. Again, we employ the definition of the energy given in

Eq. (4.5) with wdiag = 0.2. The resulting redshift distributions are shown in Fig

4.5. Similar to the optimisation with the idealised reference sample, we find the

greatest improvements in the redshift distributions of high redshift bins. Espe-

cially the secondary peaks at low redshift in the initial redshift distributions of

bins 8 and 9 are greatly reduced. However, we find an increase in the redshift
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Sample Redshift Ngal

MagLim 0.0 ≤ z < 0.2 132775
0.2 ≤ z < 0.4 136824

LRG
0.4 ≤ z < 0.6 68795
0.6 ≤ z < 0.8 85809
0.8 ≤ z < 1.0 44812

ELG

0.6 ≤ z < 0.8 111912
0.8 ≤ z < 1.0 181733
1.0 ≤ z < 1.2 116785
1.2 ≤ z < 1.5 63173

QSO
1.2 ≤ z < 1.5 15019
1.5 ≤ z < 2.0 14797
2.0 ≤ z < 3.0 18223

Table 4.1: Redshift bins of a sample of reference galaxies with a DESI-like selection
function. The sample is divided into nine tomographic bins between
0 ≤ z < 3 separately for each of the four classes of objects in the DESI-
like catalogue: Luminous Red Galaxies (LRGs), Emission Line Galaxies
(ELGs), high redshift quasars (QSOs), and a magnitude-limited sample
(MagLim).

distribution of bin 9 at z ≈ 0.1 and in the redshift distribution of the first bin

at z ≈ 0.6. These features are most likely due to the aforementioned trade-off

between improvements of the signal on the diagonal at the cost of an only

small increase on the off-diagonal for small populations with high galaxy bias.

This effect is presumably stronger for the DESI-like reference sample which is

comprised of several subsamples with different galaxy biases. Nevertheless, we

find that this more realistic reference sample is capable of greatly improving the

assignment of photometric galaxies to redshift bins so that the true underlying

redshift distribution in each tomographic bin is substantially more localised

within the bin boundaries. This is illustrated in Fig. 4.6, which again provides a

comparison between the percentage of the initial and final redshift distributions

localised within the bin boundaries and the tails of the distribution. This figure

shows that there is improvement in the redshift distribution of all tomographic

bins. On the downside, the DESI-like sample is much more sparser as can be

inferred from the third column in Table 4.1. Therefore, we require broader bins
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Figure 4.5: Same as Fig. 4.2, but after optimisation with a DESI-like selected
reference sample.
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Figure 4.6: Same as Fig. 4.3, but after optimisation with a DESI-like selected
reference sample.

at high redshifts in order to obtain reference samples with a sufficiently high

density of objects for the cross-correlation measurement.

4.5 Conclusions
We conclude that with the updated definition of the energy and the SOM-

based method of constructing the cross-correlation matrix, our optimisation

method is capable of significantly improving the compactness of the redshift

distributions of tomographic bins with a realistic set of reference galaxies. While

we require broader bins at high redshift compared to the idealised reference
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sample, we still find a significant improvement in the high redshift bins. This

optimisation method was tested on a simulated dataset for the upcoming

LSST with a selection of reference galaxies resembling the DESI survey. In

future work, we plan to apply this method to real data in order to test the

performance of the optimised bin assignment scheme. For this purpose, we will

employ data from KiDS, which was already extensively used in several works

in the context of redshift calibration (Wright et al., 2020a,b; van den Busch

et al., 2020; Hildebrandt et al., 2021). Therefore, it is an ideal dataset for the

comparison of the performance of our optimised redshift bin assignment scheme

and the resulting constraints on cosmological parameters from cosmic shear

with well-established analyses.



Chapter 5

Internal consistency tests of

cosmological data

Photometric redshift distributions play a crucial role in analyses of cosmological

data. As discussed in chapter 3, we can optimise the assignment of galaxies to

tomographic redshift bins. However, we still require a careful propagation of

residual uncertainties in the redshift distribution into the cosmological inference

from weak lensing measurements, for example using the method discussed

in chapter 2. Given the importance of redshift distributions in weak lensing

analyses, it is essential to assess the internal consistency between redshift bins

of the weak lensing dataset in order to test the constraints on cosmological

parameters for systematic effects induced by the redshift calibration. Such

tests for systematic biases play a crucial role in the ongoing debate about the

apparent tension between probes of the early and late Universe, discussed in

section 1.4.

On the other hand, if the data itself is self-consistent, the tension between

probes of the early and late Universe can be interpreted as a sign of new physical

effects beyond the standard ΛCDM cosmological model. Therefore, it is equally

important to test the consistency of the ΛCDM model, for example through a

split into the homogeneous background and perturbations. If the data prefers

a different evolution of the Universe in these two regimes, this can be seen

as a sign that we require an extension of the cosmological model to alleviate
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the observed tension between probes. In this chapter, we perform two such

consistency tests. First, we test the internal consistency between tomographic

redshift bins in the KiDS-1000 weak lensing analysis in order to assess whether

or not the tomographic redshift bins prefer a different cosmology. Secondly, we

perform a test of the flat ΛCDM model by probing the consistency between

the homogeneous background and matter perturbations using a compilation of

weak lensing, galaxy clustering, Lyman-α, and CMB datasets.

5.1 Bayesian statistics
To test the consistency in a cosmological analysis we perform a comparison

between the standard cosmological model and an alternative model that is

designed to either probe the internal consistency of the data set or the internal

consistency of the cosmological model. This is achieved by employing Bayesian

statistics. These are based on Bayes’ theorem

P (θ|D) = P (D|θ)P (θ)
P (D) , (5.1)

which relates the posterior probability P (θ|D) for a set of model parameters θ

given the data D to the likelihood function P (D|θ) and the prior probability

of the model P (θ), normalised by the prior probability of the data P (D). In

this context, P (D) is called the evidence and can be computed via

Z =
∫
P (D|θ)P (θ)dθ. (5.2)

Here, we integrate over the volume of the prior, so that the evidence does

not explicitly depend on the model. In practice, we are usually interested

in the posterior distribution of cosmological parameters, which are obtained

by generating samples of the likelihood from the prior. In this way, we infer

constraints on cosmological parameters while omitting the evidence factor.

However, for the purpose of model comparison the evidence plays a key role.

The evidence can be interpreted as the probability of generating the data
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D given a specific model with parameters θ that are sampled from the prior.

In general, a model with a large number of parameters gives a lower evidence

than a model with less parameters, unless the more complicated model gives

a significantly better fit to the data. Thus, the evidence serves as a tool for

a comparison of two models that are supposed to describe the same dataset.

Assuming equal prior probabilities, we compare two models A and B using the

Bayes factor

R = ZA
ZB

=
∫
P (D|θA)P (θA)dθA∫
P (D|θB)P (θB)dθB

, (5.3)

where θA and θB denote a set of model parameters for model A and B,

respectively. In general, a value of R > 1 indicates preference for model A,

whereas R < 1 indicates preference for model B. However, the Bayes factor

can only be interpreted qualitatively and there is no consensus on a threshold

that signals a clear preference for a specific model. A common choice is to use

Jeffreys’ scale (Jeffreys, 1939) to evaluate the Bayes ratio. In this interpretation,

a value of 1 ≤R< 3 is associated with weak preference for model A, 3 ≤R< 20

with definite preference, and 20 ≤ R < 150 with strong preference. Finally,

R ≥ 150 is interpreted as very strong preference for model A. However, due

to the integration over the prior volume in Eq. (5.2), the evidence is strongly

dependent on the prior. In general, a smaller prior volume increases the evidence

and therefore changing the prior volume in principle allows for arbitrary changes

in the Bayes factor. If the priors are well-motivated, we can rely on the Bayes

factor to make a statement about the preferred model. However, in practice

we often choose wide, uninformative priors, which makes the Bayes factor a

suboptimal metric for model comparison.

The usage of the Bayes ratio as a metric to quantify the tension between

the DES Y1 and Planck datasets is discussed in Handley and Lemos (2019a).

Considering two independent datasets A and B that are combined at the

likelihood level, the Bayes factor is given by

R =
∫ PAPB

π
dθ =

〈PB
π

〉
PA

=
〈PA
π

〉
PB
, (5.4)
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where PA and PB denote the posterior of the two datasets and π is the shared

prior. Thus, Handley and Lemos (2019a) interpret the Bayes ratio as the

average over the posterior of one dataset of the ratio between the posterior

of the other dataset and the prior. Furthermore, it is pointed out that the

Bayes ratio is only dependent on the priors on constrained parameters shared

between both likelihoods and not on the priors on unconstrained parameters or

additional nuisance parameters. The choice of wide priors, which is often made

in order to be uninformative, can hide an existing tension between datasets. On

the other hand, choosing a physically reasonable prior that does not significantly

change the posterior distribution can provide a lower bound on the Bayes ratio.

In order to circumvent the issue of the prior dependence of the Bayes

factor, Handley and Lemos (2019a) and Lemos et al. (2020) propose the so-

called suspiciousness as an alternative statistic to quantify the tension between

datasets. The suspiciousness is understood as the value of the Bayes factor

corresponding to the narrowest prior that does not significantly change the

shape of the posterior. To define the suspiciousness, we first consider the

Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)

D =
∫
P (θ|D) ln

(
P (θ|D)
P (θ)

)
dθ =

〈
ln
(
P (θ|D)
P (θ)

)〉
P (θ|D)

, (5.5)

where ln
(

P (θ|D)
P (θ)

)
is the Shannon information (Shannon, 1948). In general,

the KL divergence is a measure of the difference between two distributions,

while in this case it quantifies the average information provided by the data

when going from the prior to the posterior. Since the Shannon information

is prior dependent, the KL divergence is also dependent on the prior. The

suspiciousness S is then defined as

lnS = lnR− lnI, (5.6)
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where I denotes the information ratio

lnI =DB −DA. (5.7)

For a multivariate Gaussian posterior distribution, Handley and Lemos (2019a)

show that both lnR and lnI are dependent on the prior via an additive term of

lnVπ, where Vπ is the volume of the prior. Thus, the dependence on the prior

volume in Eq. (5.6) cancels out, so that the suspiciousness is prior independent.

Therefore, the suspiciousness can be employed as an alternative metric to

quantify the tension between datasets, which is unaffected by changes in the

prior as long as they do not affect the shape of the posterior distribution.

In general, large positive values of the suspiciousness indicate agreement

between datasets, while large negative values are associated with disagreement.

Moreover, Lemos et al. (2020) show that under the assumption of a Gaussian

posterior the quantity d− 2logS follows a χ2 distribution. Here, d denotes

the Bayesian model dimensionality (Spiegelhalter et al., 2002) quantifying the

effective number of constrained parameters. The tension probability p of the

two datasets being this discordant by chance is determined via

p=
∞∫

d−2logS

χ2
d(x)dx, (5.8)

where χ2
d denotes the d-dimensional χ2 distribution. While this is only true

for Gaussian posteriors, Handley and Lemos (2019a) propose computing the

Bayesian model dimensionality of the shared constrained parameters via

d= dA +dB −dAB, (5.9)

where dA and dB denote the individual model dimensionalities of the two

datasets A and B, while dAB denotes the model dimensionality of the combined

dataset. The tension probability can further be cast into a corresponding σ

level. A value of p < 0.05 corresponds to a 2σ Gaussian standard deviation and



5.1. Bayesian statistics 135

is considered as moderate tension, whereas p < 0.003, corresponding to 3σ, is

considered as strong tension. With this definition, the suspiciousness provides

a quantitative measurement of the tension between two datasets. However,

Handley and Lemos (2019a) point out that for non-Gaussian distributions only

overly small values of p should be regarded with suspicion since p is only a

rough estimate of the tension. In this case, the suspiciousness indicates tension

if S ≪ −
√
d/2, where p serves as a metric for the difference between the left

and the right side of the inequality.

In this chapter, we perform consistency tests that rely on a split of the data

vector into two parts which are each modelled independently with separate sets

of cosmological parameters. This split of the data vector into two regions is

dependent on how we probe the consistency of the given dataset. For example,

if the data consists of measurements in several redshift bins, we can test the

consistency between redshift bins by splitting the data vector along redshift bins.

On the other hand, to probe the consistency of the cosmological model, the data

vector can be divided into a region describing the homogeneous background

and a region describing matter perturbations. We then test the following

hypotheses:

1. There exists one set of cosmological parameters that describe the data.

2. There exist two sets of cosmological parameters that each describe one

part of the dataset.

Hence, the first hypothesis refers to the fiducial cosmological analysis of the

given dataset, whereas the second hypothesis corresponds to an analysis with a

split data vector. By evaluating the aforementioned tension metrics we assess

the question of whether or not the data shows a preference for the split model,

indicating a tension between the two parts of the data vector.

As an alternative to quantifying the tension in terms of the Bayes factor

or the suspiciousness, we consider the posterior distributions of the two sets

of cosmological parameters in the second hypothesis. Sampling the likelihood
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Figure 5.1: Sketch of the significance criterion for the tension between two dupli-
cates of a parameter θ modelling the observed data in two regimes. The
blue curve shows the posterior distribution of the difference between
both instances of the parameter. We evaluate the posterior at the
origin, indicated by the vertical red dotted line, and infer the fraction
of the distribution with a lower posterior density, illustrated by the
grey shaded region. This fraction is identified with the probability
mass of a one-dimensional Gaussian distribution outside of an interval
[−mσ,mσ], where m denotes the level of the tension in terms of σ.

provides us with two posterior distributions for each cosmological parameter.

In the absence of tension between the two regimes in which the data is split

we expect both posteriors to constrain a similar region in parameter space.

However, we expect the two contours to be broader than in the standard

analysis, since splitting the data into subsets leads to a loss in constraining

power in the two regions. Deviations between the posterior distributions of

parameter duplicates are interpreted as a sign of tension within the dataset.

Therefore, we quantify the deviation between the two posterior distributions to

test whether the data prefers a different cosmology in the two regions.

We follow the methodology of Köhlinger et al. (2019) and derive the

posterior distribution of the difference between parameter duplicates. If both

parameters are consistent, we expect the posterior distribution of the difference

to be centred around the origin. A deviation from the origin indicates an

inconsistency between the two parts of the data vector. An example of such
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a posterior distribution in one dimension is illustrated in Fig. 5.1, where

the blue curve represents the posterior of the difference ∆θ between two

instances of a single parameter θ. We evaluate the posterior distribution

at the origin, indicated by the vertical red dotted line, and determine the

fraction of the distribution with lower density, illustrated by the grey shaded

region. This fraction then serves as a metric for the tension between the two

parameter instances. The lower the fraction the less likely it is that they are in

agreement. To infer the m value of the tension we identify the fraction with

the probability mass of an one-dimensional Gaussian distribution outside of

the interval [−mσ,mσ].

5.2 Internal consistency between tomographic

bins in KiDS-1000

The most recent analysis of cosmic shear data from the fourth data release of

KiDS (Kuijken et al., 2019) has provided some of the most stringent constraints

on the structure growth parameter S8 to date. Given the importance of these

measurements in the ongoing debate about tensions between early and late

Universe probes, it is essential to perform a robust cosmological analysis by

testing for systematic effects. Asgari et al. (2021) test the consistency of

the cosmological analysis by comparing three kinds of two-point statistics

that compress the observed cosmic shear data: Complete Orthogonal Sets

of E/B-Integrals (COSEBIs; Schneider et al., 2010), band power estimates

derived from correlation functions (Schneider et al., 2002; Becker and Rozo,

2016; van Uitert et al., 2018), and two-point correlation functions of cosmic

shear. Additionally, the sensitivity of the analysis to the choice of astrophysical

and nuisance parameters was tested. In this section we review the internal

consistency tests of tomographic redshift bins that were performed as part

of the weak lensing analysis of the KiDS-1000 dataset. These results were

summarised in section 4.3 and Appendix B.2 of Asgari et al. (2021).
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Figure 5.2: Redshift distribution of KiDS-1000 galaxies in five tomographic redshift
bins selected via their best-fit photometric redshift zB. Figure adapted
from Asgari et al. (2021).

5.2.1 Methodology

The KiDS galaxy sample contains measurements of galaxy magnitudes in nine

photometric bands from which photometric redshifts are inferred with the

template-fitting code BPZ(Benítez, 2000). Based on their best-fit photometric

redshift estimate zB, the observed galaxies are divided into five tomographic

bins between 0.1<zB ≤ 1.2. The underlying redshift distributions are calibrated

using catalogues of deep spectroscopic reference galaxies that were re-weighted

with a self-organising map (Hildebrandt et al., 2021). The redshift distributions

and the boundaries of the five bins are displayed in Fig. 5.2. As can be seen in

this Figure, the underlying redshift distributions of the five tomographic bins

overlap significantly due to the imprecise photometric redshift estimates, as

discussed in section 1.3.

The simplest possible consistency test between redshift bins can be per-

formed by removing entire redshift bins from the analysis and determining the

effect on the constraints on cosmological parameters. In this way, we determine

to what extent each redshift bin contributes to the inferred value of S8, which

is the best constrained parameter in weak lensing analyses. The removal of
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redshift bins results in a loss of constraining power causing an inflation of the

uncertainty on S8. Asgari et al. (2021) quantify the loss of constraining power

in terms of the parameter Σ8 = σ8(Ωm/0.3)α, where α = 0.5 corresponds to

the established definition of S8. This choice was made because the degeneracy

between σ8 and Ωm differs between summary statistics, depending on the

angular scales entering the analysis. A loss in constraining power by less than

15% was found when excluding single redshift bins, except for the fifth bin

which causes a 60% increase in uncertainty. Similarly, the exclusion of redshift

bins causes a change in the numerical value of Σ8 by up to 1.8σ when removing

the fourth bin and up to 0.5σ when removing the fifth bin.

The aforementioned consistency test does not necessarily indicate an

inconsistency between redshift bins because the observed signal is expected to

be strongest at higher redshifts. Since light emitted from more distant galaxies

passes through more structure between the source and the observer, it is more

affected by the lensing effect. Thus, the exclusion of high redshift bins from the

analysis leads to a significant loss of signal. Therefore, it is desirable to perform

a consistency test that does not require the removal of a significant portion

of the observed signal. To do so, we compare the constraints on cosmological

parameters preferred by the individual bins by simultaneously modelling the

cosmic shear signal with two independent sets of cosmological parameters.

We follow the methodology outlined in Section 5.1 and split the data

vector into two parts: one that contains cosmic shear measurements in one

individual redshift bin and its cross-correlation with the remaining bins and

one that contains cosmic shear measurements in the remaining bins and their

cross-correlation. Both parts of the data vector are coupled through the data

covariance matrix. The signal in both parts can then be modelled independently,

for example using two instances of the cosmological code CLASS (Blas et al.,

2011). We run five separate MCMC analyses in which we separate a single

redshift bin at a time. This analysis is implemented in the 2COSMOS extension

of the parameter estimation code MontePython (Köhlinger et al., 2019).
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Parameter Prior Dupl.
ωcdm Reduced cold dark matter density [0.051,0.255] yes
ωb Reduced baryon density [0.019,0.026] yes
S8 Amplitude of matter density fluctuations [0.1,1.3] yes
h Reduced Hubble parameter [0.64,0.82] yes
ns Spectral index of the prim. power spectrum [0.84,1.1] yes
AIA Amplitude of intrinsic galaxy alignments [−6,6] yes
Abary Baryon feedback parameter [2,3.13] yes
δz Shift in the mean of KiDS n(z) distributions N (µ,C) no

Table 5.1: Sampling parameters and their priors, adopted from Asgari et al. (2021).
The upper section lists cosmological parameters, while the lower section
shows nuisance parameters. The third column reports whether the
parameter is duplicated in the split analysis between redshift bins. The
five shift parameters δz are correlated through their covariance matrix C
and their means µ are fixed to their mean values reported by Hildebrandt
et al. (2021).

The sampling parameters and their priors are listed in Table 5.1. We compare

results from the split analysis to the ones from the fiducial KiDS analysis with

a single cosmological model using the metrics discussed in section 5.1.

In contrast to the analysis we presented in Asgari et al. (2021), we make

a few modifications to the MCMC sampling. Previously, we made use of

the MultiNest sampler (Feroz et al., 2009, 2019). Nested samplers, such

as MultiNest, sample the posterior distribution with a set of so-called live

points, which are repeatedly replaced with new points with a larger value of the

posterior. After replacement of a live point it is referred to as a dead point. Since

randomly generating points with higher posterior values is computationally

inefficient, especially in high-dimensional data spaces or when the current set

of live points is close to the maximum of the posterior, MultiNest features an

ellipsoidal sampling technique (Mukherjee et al., 2006). This method calculates

a D-dimensional ellipsoid from the current set of live points and generates a

new point within the ellipsoid, which is expanded by a factor that is inversely

proportional to the efficiency. MultiNest provides two distinct estimates of

the Bayesian evidence. In addition to the traditional method of calculation the

evidence from the set of accepted samples, it provides an alternative evidence
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estimate based on the so-called importance nested sampling (INS) method. This

method makes use of all points drawn during sampling, instead of discarding

points that do not lie within a certain iso-likelihood contour. In principle, both

estimates of the evidence should agree within their error bars. However, as

shown by Lemos et al. (2022), ellipsoidal sampling can lead to biased estimates

of both the posterior and the evidence if the efficiency is too high, so that the

expansion factor of the ellipsoid is too small. In this case, the ellipsoid does not

enclose the tails of the posterior distribution, which are then excluded from the

sampling. This issue can be resolved by tuning the efficiency hyperparameter

at the cost of a longer runtime of the sampling algorithm. Additionally, the

optimal value of the efficiency is unknown a priori, so that tuning the parameter

requires running multiple chains. In practice we find a deviation of the two

evidence estimates when sampling the posterior distribution with the fiducial

MultiNest settings of Asgari et al. (2021). Since the Bayes factor, defined in

Eq. (5.3), requires an estimate of the evidence, it becomes even more unreliable

for model comparison because it is not clear which estimate is closer to the

truth. Therefore, in Asgari et al. (2021) we reported the Bayes factors for both

estimates.

Here, we circumvent this issue by using the PolyChord sampler (Handley

et al., 2015a,b), which is an alternative nested sampling code featuring a slice-

sampling method (Neal, 2003; Aitken and Akman, 2013) for the generation

of new live points. This method generates new live points from random slices

through the parameter space including the current live point. Lemos et al.

(2022) find a minimal bias in the evidence estimate from PolyChord and

show that evidence estimates are more robust with respect to changes in the

hyperparameters. However, we find that in our application the runtime of the

PolyChord sampler is several times slower than the MultiNest sampler.

Therefore, we replace the CLASS calculation of the matter power spectrum with

the CosmoPower (Spurio Mancini et al., 2022) emulator, which significantly

reduces the computational cost of the MCMC sampler, providing a speed-up
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by a factor of up to O(104). The emulator is trained on matter power spectra

computed with CLASS including non-linear corrections from HMCode (Mead

et al., 2015). The training samples are generated on a grid within the prior

ranges reported in Table 5.1 for the five cosmological parameters listed in

the upper section and the baryon feedback parameter. We find errors in the

emulation of the matter power spectrum of less than 0.01% for redshifts between

0 ≤ z < 5 and wavenumbers between 10−5 MPc−1 ≤ k < 10MPc−1.

5.2.2 Results

In Fig. 5.3 we present the marginal posterior distribution from the split analysis

using band power spectra in the subspace spanned by S8 and Ωm. In each

panel the orange contour represents constraints from a single redshift bin

while the blue contour shows the constraints from the remaining redshift bins.

Visually, we find consistency between both sets of cosmological parameters

in all bins except for the second one, where there is no overlap between the

two contours. Additionally, the fourth bin prefers slightly lower S8 values, as

can be observed from the shift in the orange posterior in the bottom middle

panel which, however, still overlaps with the constraints from the remaining

bins. Moreover, the dotted contours show the posterior distributions obtained

with the MultiNest sampler with calculation of the matter power spectrum

with CLASS, which were analysed in Asgari et al. (2021). We find good

consistency between the two samplers with slightly broader contours from

the PolyChord sampler. This is consistent with Lemos et al. (2022), who

found that MultiNest systematically reports smaller credible intervals than

PolyChord.

We quantify the significance of the split cosmological model by calculating

the Bayes factor and the suspiciousness in comparison to the standard ΛCDM

analysis. The results are reported in Table 5.2. The leftmost column provides

the evidence Zsplit of the split analysis, while the next column shows the Bayes

factor logR = logZfid − logZsplit for the comparison between the fiducial and

the split cosmological model. We find preference for the fiducial cosmological
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Figure 5.3: Marginalised posterior distributions in the S8-Ωm plane of the con-
sistency test between tomographic redshift bins. The test duplicates
cosmological parameters with one set of parameters modelling the signal
in one single bin while the other set models the signal in the remaining
bins. The covariance between bins in accounted for via the data covari-
ance matrix. The orange contours refer to the cosmological parameters
of the isolated bin and the blue contours show the constraints from
the remaining bins. The solid contours show the results from sampling
the parameter space with the PolyChord sampler with emulation of
the matter power spectrum with CosmoPower, whereas the dotted
contours display posteriors obtained with the MultiNest sampler and
calculation of the matter power spectrum with CLASS.

model in all redshift bins except the second one, which shows strong preference

for the split model when interpreting with Jeffreys’ scale. This is in agreement

with the visual inspection of the marginalised posterior distribution in Fig. 5.3,

which indicated an inconsistency between the posteriors in the second bin. The

remaining columns show the suspiciousness, the Bayesian model dimensionality

of the split model, and the tension probability and the corresponding σ value

of the tension between redshift bins. Here, the tension probability is calculated

from Eq. (5.8) with ddiff = dsplit −dfid, where dsplit and dfid denote the Bayesian

model dimensionalities of the split and the fiducial analysis, respectively. In
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this analysis, the effective number of constrained parameters is smaller than

the number of model parameters due to the usage of informative priors and

parameter degeneracies.

As shown by Joachimi et al. (2021), popular methods of determining the

effective number of parameters (see for example Spiegelhalter et al., 2002;

Handley and Lemos, 2019b) give biased estimates of the effective number

of parameters and therefore we require a more robust estimate that can be

obtained by running computationally expensive chains with a large number of

realisations of the cosmic shear data vector. Thus, the tension probabilities

reported in Table 5.2 must be interpreted with caution. Furthermore, the split

analysis of the first redshift bins results in a Bayesian model dimensionality

that is lower than the model dimensionality of the fiducial analysis, so that ddiff

becomes negative. Consequently, we cannot calculate the tension probability

for this bin. Most likely, the reason for this is that the cosmological parameters

are mostly unconstrained by the first redshift bin, because of the low cosmic

shear signal at low redshifts. This is illustrated by the orange contour in the top

left panel of Fig. 5.3, which mostly corresponds to the prior distribution of S8

and Ωm. Thus, the limited constraining power of this bin and the shortcomings

of our estimation method of the Bayesian model dimensionality result in an

unrealistic estimate of ddiff .

To further assess the tension between the contours of the split analysis in

Fig 5.3, we derive the posterior distribution of the difference between duplicated

cosmological parameters. The resulting contours are shown in Fig. 5.4 for S8

and Ωm. Here, a value of ∆S8 = 0 and ∆Ωm = 0 corresponds to consistency

between the two parameter instances. Any deviation of the contour from

the zero point can then be interpreted as a sign of tension. As outlined in

Section 5.1, we quantify the tension between the two parameter instances by

determining the fraction of the posterior with lower density than the value at

the origin. We calculate the tension between the one-dimensional posterior

distributions of S8, Ωm, and AIA. Additionally, we determine the tension for
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split −ln Z log10R ln S d p Nσ

z-bin 1 85.1±0.1 0.5±0.1 0.7±0.1 5.2±0.2 − −
z-bin 2 80.3±0.2 91.6±0.1 98.0±0.1 7.5±0.2 (8.2±3.3) ·10−5 4.0±0.1
z-bin 3 88.9±0.2 2.2±0.1 0.7±0.11 8.4±0.3 0.691±0.069 0.4±0.1
z-bin 4 85.3±0.2 0.6±0.1 93.2±0.11 7.4±0.2 0.011±0.003 2.6±0.1
z-bin 5 88.2±0.2 1.9±0.1 90.1±0.11 7.7±0.2 0.325±0.044 1.0±0.1

fid. 83.9±0.1 - - 5.9±0.2 - -

Table 5.2: Evidence, Bayes factor, suspiciousness, Bayesian model dimensionality,
tension probability, and tension level for a split cosmological analysis
of cosmic shear data from KiDS-1000. The split separates individual
tomographic redshift bins that are modelled with a separate set of
cosmological parameters with cross-correlations taken into account via
the data covariance matrix. The bottom row provides the evidence and
the Bayesian model dimensionality of the fiducial analysis with one set
of cosmological parameters.

two combinations of the three parameters. We include the intrinsic alignment

parameter AIA since this parameter can to some extent mitigate systematic

effects, as seen in section 2.5.2 (see also van Uitert et al., 2018; Efstathiou and

Lemos, 2018).

The resulting tension levels are reported in Table 5.3. We find that the

tension is strongest in the second redshift bin, reaching 2.7σ and 1.4σ for

∆(S8) and ∆(AIA), respectively. When combining the two parameters we find

2.5σ, while adding ∆(Ωm) increases the tension even further. However, Ωm is

relatively poorly constrained by the data, so that the increased tension might

just be caused by additional noise fluctuations. This test further corroborates

our previous findings of an internal inconsistency between the second redshift

bin and the remaining bins. Additionally, we find that the slight shift in S8 in

the fourth bin, observed in the bottom middle panel of Fig. 5.3, corresponds

to a 1.5σ shift in S8.

The apparent tension in the second bin can potentially be explained

by a contamination with a small population of high-redshift galaxies in this

bin. Such a galaxy population would induce a signal due to more structure

being present between the source and the observer. If this population remains

undetected when calibrating the redshift distribution, the theoretical prediction
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Figure 5.4: Marginalised posterior distributions of the difference between parameter
duplicates in the consistency test between tomographic redshift bins,
shown in Figure 5.3. Each panel presents constraints from an analysis
that isolates a single redshift bin.

split ∆(Ωm) ∆(S8) ∆(AIA) ∆(S8,AIA) ∆(Ωm,S8,AIA)
z-bin 1 0.1σ 1.6σ 0.4σ 0.7σ 0.4σ
z-bin 2 0.3σ 2.7σ 1.4σ 2.5σ 2.9σ
z-bin 3 0.3σ 0.0σ 0.2σ 0.0σ 0.0σ
z-bin 4 0.3σ 1.5σ 1.5σ 1.4σ 2.0σ
z-bin 5 0.1σ 0.6σ 1.1σ 0.8σ 0.4σ

Table 5.3: Significance of the tension in a split cosmological analysis of cosmic
shear data from KiDS-1000 that separates individual redshift bins. Each
part of the data vector is modelled with a separate set of cosmological
parameters from which we infer the posterior distribution of the difference
between parameter duplicates. The level m of the tension is quantified
by determining the fraction of the posterior with lower density than the
density at the origin which is identified with the probability mass of an
one-dimensional Gaussian distribution outside an mσ interval.
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for the observed signal would be systematically lower. This effect can then

be compensated with a higher amplitude of the matter power spectrum by

increasing S8. To test the effect of such a signal on the posterior distribution

of S8, we perform an analysis with a mock data vector in which we artificially

insert a signal at high redshift. Using a Gaussian distribution centred at z = 1.6

with a width of σ = 0.05 we generate two mock data vectors: one that contains

5% of the total number of galaxies at high redshifts in the second bin and one

that contains 20% of the total number of galaxies. The former data vector

corresponds to a population of galaxies that could be undetected in a realistic

application, whereas the latter data vector serves as a cross-check of how a

unrealistically large population of high-redshift galaxies would bias the cosmic

shear constraints.

The resulting posterior distributions are illustrated in Fig. 5.5, where the

left and right panels corresponds to the mock data vector with 5% and 20%

of galaxies at high redshifts, respectively. Both contours show a significant

difference to the one obtained from real observed data. The bottom middle

panel in Fig. 5.3 shows no overlap between the two posterior distributions.

However, the bin 2 constraints from mock data overlap completely with the

contour originating from the remaining redshift bins. Only when considering an

unrealistically large outlier population we observe a slight shift of the posterior

distribution of the second bin towards higher values of S8. However, this shift is

by no means compatible with our findings from real observed data. Obtaining

a contour similar to the real observation we would require an even higher

outlier population, which is highly unlikely to be misidentified in the redshift

calibration. Thus, we conclude that is unlikely that the observed discrepancy

in the second bin is caused by an outlier population of galaxies and the source

of this tension remains unclear. However, Asgari et al. (2021) found that

excluding the first or the second bin has a negligible impact on the final results

of the KiDS-1000 cosmic shear analysis, which is why it is not excluded from

the fiducial analysis.
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Figure 5.5: Marginalised posteriors distributions in the S8-Ωm plane in a consistency
test with mock data vectors containing an undetected population of
galaxies at high redshifts. The left and right panels corresponds to
a mock data vector with 5% and 20% of galaxies at high redshifts,
respectively. The cross indicates the input cosmological parameters.

5.3 Consistency of background and

perturbations in the ΛCDM model
Recent analyses of cosmological data have indicated tensions in the standard

ΛCDM cosmological model. As discussed in section 1.4, measurements of

the Hubble parameter H0 through observations of the cosmic distance ladder

(Riess et al., 2021) and CMB predictions (Planck Collaboration et al., 2020b)

and measurements of the structure growth parameter S8 with galaxy surveys

(Heymans et al., 2021) and CMB data point towards a tension between probes

of the early and late Universe. This tension can have multiple origins. First, if

we assume that our cosmological model is complete, the tension might originate

from the data itself or its analysis. For example, unknown systematic effects

or shortcomings in the modelling of the observables can bias the constraints

on cosmological parameters. Second, if there are no systematic biases in the

observables, the tension might arise from an incomplete cosmological model

that lacks a description of important physical effects beyond ΛCDM. Therefore,

it is essential to test each hypothesis. In this section we focus on the possibility

of an incomplete cosmological model leading to a discrepancy between the

aforementioned probes. This analysis was published in Ruiz-Zapatero et al.
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(2021) and is summarised in this section.

5.3.1 Split cosmological model
Our model of the Universe consists of a homogeneous background (see section

1.1) that describes the Universe on large scales and perturbations that give

rise to matter density fluctuations causing the growth of large scale structure

(see section 1.2). By following the methodology of splitting the cosmological

model into two regimes that are modelled with independent sets of cosmological

parameters, we test the internal consistency of the ΛCDM model. Here, we

divide the cosmological model into the homogeneous background, referred to

as ‘geometry’, and perturbations which we refer to as ‘growth’. Similar to the

study in the previous section we employ the tension metrics discussed in section

5.1 to assess the consistency between the two theory regimes.

We employ several observables: weak gravitational lensing (WL), baryon

acoustic oscillations (BAOs), redshift space distortions (RSDs), and probes of

the early Universe. In the following we discuss how each observable probes

either the geometry or growth regime or a combination of both. A summary is

given in Table 5.4.

Weak lensing: Weak gravitational lensing probes the matter power spectrum

and thus we attribute the power spectrum in Eq. (1.69) to the growth regime.

On the other hand, the lensing efficiency, defined in Eq. (1.71), is dependent

on comoving distances (under the assumption of a flat Universe). Since the

comoving distance is purely related to the homogeneous background, we assign

the lensing efficiency to the geometry regime. Finally, the prefactor in Eq.

(1.71), originating from the Poisson equation, is assigned to the geometry

regime. As probe of weak lensing we again employ cosmic shear measurements

from KiDS-1000 (Asgari et al., 2021).

Baryon acoustic oscillations: BAOs are fluctuations in the density of bary-

onic matter and are thus classified as perturbations. However, our main BAO

observable, namely the position of the BAO peak, is solely related to the

homogeneous background, since the size of the sound horizon, which is the
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comoving distance a sound wave could travel between the beginning of the

Universe and the decoupling of photons and baryons, is dependent on the

matter content of the Universe. Therefore, the BAO observable is assigned to

the geometry regime. We employ BAO measurements from the 6dF galaxy

survey (Jones et al., 2009) and BOSS DR12 (Alam et al., 2017), which we refer

to as ‘clustering’. Additionally, we draw constraints on BAOs from observations

of the Lyman-α forest and quasars from eBOSS DR14 (Blomqvist et al., 2019;

de Sainte Agathe et al., 2019). These datasets are referred to as ‘Lyman-α’.

Redshift space distortions: RSDs are caused by peculiar velocities of galaxies

along the line of sight in addition to the cosmological expansion, leading to a

distortion of the spatial distribution of galaxies when viewed as a function of

redshift. Since the peculiar motion of galaxies is dependent on the surrounding

matter distribution, RSDs are related to the growth theory regime. We employ

measurements from BOSS DR12 (Alam et al., 2017) as probe of RSDs which

are included in the ‘clustering’ data set.

Early Universe: Instead of a full reanalysis of CMB data from Planck, which

would be beyond the scope of this work, we employ measurements of As, ns,

and θ∗ as a multivariate Gaussian likelihood obtained by marginalising the

Planck TT,TE,EE+lowl+lowE posterior distributions (Planck Collaboration

et al., 2020b) over the remaining parameters. While As and ns describe the

amplitude and the spectral index of the primordial power spectrum and thus

are attributed to the growth regime, the parameter θ∗ provides a measurement

of the BAO peak at the time of recombination and is thus assigned to the

geometry regime. The two remaining cosmological parameters, namely the

reduced baryon density ωb and the reduced cold dark matter density ωcdm,

cannot be readily categorised as either geometry or growth since they are both

related to density fluctuations as well as the expansion history. Thus, we refrain

from including CMB constraints on the matter densities in this analysis. We

refer to this dataset as ‘recombination’.
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geometry growth
BAO angular scale RSD growth rate
WL efficiency WL matter power spectrum
CMB first acoustic peak position CMB primordial power spectrum

Table 5.4: Overview of the observables used in the consistency test between back-
ground and perturbations in the ΛCDM model and their classification
into the two regimes.

5.3.2 Results

We sample the parameter space using the 2COSMOS extension of Mon-

tePython (Köhlinger et al., 2019) with matter power spectra inferred from

CLASS (Blas et al., 2011), using the MultiNest sampling method (Feroz

et al., 2009, 2019). The sampling parameters and their priors are listed in Table

5.1. The constraints of the split cosmological analysis on S8, Ωm, and h are

illustrated in Fig. 5.6. The orange and blue contours show the marginalised

posterior distributions from the geometry and growth regimes, respectively,

while the green contour illustrates the constraint from the fiducial analysis

with one set of ΛCDM parameters. Additionally, the red contours provide the

posterior distribution obtained by Planck Planck Collaboration et al. (2020b)

as a comparison. The leftmost column shows the constraints from an analysis

of weak lensing data only, while the remaining columns show the constraints

when subsequently adding data from clustering, Lyman-α, and recombination.

We find that for the various cosmological parameters in the two regimes the

constraining power differs among the probes. From the top row of Fig. 5.6 we

find that weak lensing only constrains Ωm very weakly. Clustering, Lyman-α,

and recombination data provide stronger constraints on Ωm in both regimes,

although the constraints on the geometry regime are a lot stronger. This is

as expected, since BAO measurements from galaxy clustering and Lyman-α

solely probe the homogeneous background. Only RSD measurements from

galaxy clustering allow constraining the growth regime, which remains mostly

unchanged when adding Lyman-α data since this dataset is not sensitive to the

growth regime. Adding recombination data then puts the strongest constraints
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Figure 5.6: Marginalised posterior distributions for S8, Ωm, and h in a split cos-
mological analysis in geometry (orange contours) and growth (blue
contours) theory regimes and the fiducial analysis with one set of
ΛCDM parameters (green contours). Additionally, the red contours
show constraints from Planck (Planck Collaboration et al., 2020b). The
leftmost columns shows constraints from weak lensing data only, while
the remaining columns show the constraints when adding clustering,
Lyman-α, and recombination data, respectively.

on the matter density in both regimes. Concerning S8, we find that none of the

probes constrains the geometry regime, so that the S8 posterior is driven by the

growth regime. However, considering the fiducial analysis, we find even stronger

constraints on S8, which are most likely driven by the interplay between Ωm

and S8 in the combined cosmological model. Overall, we visually find good

consistency between both theory regimes with the posterior distribution from

the fiducial analysis residing at the intersection between both contours.

The bottom row of Fig. 5.6 presents the marginalised posterior distri-

bution for h and Ωm. While the weak lensing observable is not capable of

constraining either h or Ωm significantly, the addition of clustering, Lyman-α,

and recombination data allows for constraining h in the geometry regime, so

that the fiducial contour is almost exclusively driven by the geometry regime.

Again, we visually find a good agreement between geometry, growth, and the
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Figure 5.7: Marginalised posterior distributions of the difference between parameter
duplicates in the split cosmological analysis in geometry and growth
theory regimes, shown in Fig. 5.6. The corresponding tension levels
are given in Table 5.5.

fiducial analysis.

To quantify the consistency between geometry and growth regimes we

consider the difference between parameter duplicates for S8, Ωm, and h. The

corresponding posterior distributions are presented in Fig. 5.7. Visually, the

two regimes seem in good agreement since the contours are centred around the

origin, which confirms the observation from Fig. 5.6. The associated tension

levels are given in Table 5.5. We find a maximum tension of 1.3σ in the h -

Ωm plane when combining data from weak lensing and galaxy clustering. All

remaining combinations of the three parameters show a lower tension. Thus, we

conclude that the data does not favour a split cosmological model and instead

shows good agreement with the standard cosmological model.

Comparing the posterior distributions of geometry and growth, shown in

Fig. 5.6, to the Planck posteriors, we find that individually the two regimes

are in agreement with Planck. However, when combining both regimes in the

fiducial analysis we find that Planck prefers a higher S8 value than the probes
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dataset ∆(Ωm) ∆(S8) ∆(h) ∆(h,Ωm) ∆(S8,Ωm,h)
WL 0.0σ 0.1σ 0.3σ 0.0σ 0.0σ
WL + Clust. 0.8σ 0.2σ 0.2σ 1.3σ 1.1σ
WL + Clust. + Ly-α 0.5σ 0.6σ 0.1σ 0.7σ 0.6σ
WL + Clust. + Ly-α

+ Recomb. 1.0σ 0.5σ 0.1σ 0.4σ 0.2σ

Table 5.5: Significance of the tension between the geometry and growth theory
regime in a split cosmological analysis. Each regime is modelled with a
separate set of cosmological parameters from which we infer the posterior
distribution of the difference between parameter duplicates. The level m
of the tension is quantified by determining the fraction of the posterior
with lower density than the density at the origin which is identified
with the probability mass of an one-dimensional Gaussian distribution
outside an mσ interval.

employed in this work. This is consistent with earlier studies of the KiDS-1000

dataset (Asgari et al., 2021; Heymans et al., 2021; Tröster et al., 2021). Thus,

we conclude that the tension cannot be attributed to the geometry or growth

regime. We note that while studies of KiDS-1000 data have found a tension of

up to 3σ, the remaining probes employed in this work have been shown to be

in agreement with Planck (see for example Sánchez et al., 2017; Handley and

Lemos, 2019a; Blomqvist et al., 2019). Therefore, we conclude that the tension

observed between S8 constraints from weak lensing and CMB experiments

cannot be explained by a discrepancy between the homogeneous background

and perturbations in the flat ΛCDM model since our analysis shows a good

consistency between both regimes.
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Conclusions

Photometric redshift distributions play a crucial role for precision cosmology. In

this thesis we developed a method to accurately propagate residual uncertainties

in photometric redshift distributions into the cosmological inference with weak

lensing data from KiDS. Additionally, we presented an optimisation method for

the assignment of photometric galaxies observed by LSST into a chosen set of

tomographic redshift bins, which is not only crucial for weak lensing analyses,

but also for studies of galaxy clustering. Finally, we performed consistency

tests between redshift bins in a weak lensing analysis and consistency tests

between probes of geometry and growth in the ΛCDM model.

In chapter 2, we propagated uncertainties in photometric redshift dis-

tributions into the weak lensing analysis of KV450. Weak lensing studies

measure the distortion of galaxy images due to the deflection of light to infer

the distribution of matter in the Universe. To model the observed signal they

require an accurate calibration of the redshift distribution of source galaxies and

are thus sensitive to residual uncertainties in the redshift distribution. These

uncertainties are usually accounted for via nuisance parameters that model a

shift in the mean of the redshift distribution. While this method is sufficient

for stage III surveys such as KiDS, we expect variations in the shape of the

redshift distribution to become significant for stage IV surveys such as LSST.

Additionally, galaxy clustering is more sensitive to the shape of the redshift

distribution, so that such analyses benefit from a more complex modelling of
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the uncertainties on the redshift distribution.

Instead of modelling a shift in the mean of the redshift distribution, we

parameterised the redshift distributions of tomographic redshift bins using a

flexible Gaussian mixture model which allows for the parametrisation of arbi-

trary changes in the shape of the redshift distribution via a set of amplitudes

of the Gaussian components. We performed a self-calibration of the redshift

distributions via cosmic shear measurements by iteratively fitting cosmolog-

ical and redshift nuisance parameters arising from the redshift distribution

model. We then implemented an analytic marginalisation method over the

nuisance parameters which recovered the cosmological posterior. This method

is particularly useful for upcoming surveys such as LSST, where we expect

higher order moments of the redshift distribution to become more important.

Using KV450 data, we found slight shifts in the posterior distributions of the

model parameters, which were strongest for the amplitude of intrinsic galaxy

alignments. This effect is likely caused by degeneracies between the redshift

distribution amplitudes and the intrinsic alignment amplitude, which allows

for the mitigation of systematic effects, and therefore we require a tighter prior

on intrinsic alignments through external constraints. This result is consistent

with earlier studies that also found discrepant values of the intrinsic alignment

amplitude (Wright et al., 2020b; Hildebrandt et al., 2020; Fortuna et al., 2021;

van Uitert et al., 2018; Efstathiou and Lemos, 2018).

In chapter 3, we optimised the assignment of photometrically observed

galaxies into tomographic redshift bins. Modern extragalactic galaxy surveys

often rely on photometric observations through a set of filters to infer estimates

of the redshifts of individual galaxies. This technique allows for the identification

of broad features in the spectral galaxy distribution, from which the redshift is

estimated. These estimates of the photometric redshift are commonly employed

to assign galaxies to a chosen set of redshift bins. Although this technique allows

us to observe large samples of galaxies in a short time, we find catastrophic

outliers, where the true redshift of an object is misestimated by a large amount.
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Additionally, the limited precision of photometric redshift estimates causes the

true underlying redshift distribution of galaxies in each tomographic bin to

spread outside the actual bin boundaries.

To reduce the rate of outliers in tomographic redshift bins inferred from

photometric redshift estimates, we developed an optimisation method that

moves galaxies between redshift bins. We optimised the clustering cross-

correlation signal between a sample of photometric galaxies and a reference

sample of galaxies with well-calibrated redshifts. This was applied to a simulated

data set, cosmoDC2, that mimics the upcoming LSST. Using a reference sample

that is representative of the photometric sample, we found a significant decrease

in the fraction of outliers in each tomographic bin, which was most prominent

at high redshifts.

An important extension of this work is to study how a realistic sample

of reference galaxies impacts the assignment of photometric galaxies to tomo-

graphic bins. In a realistic application, the sample of galaxies will be provided

by a complementary spectroscopic survey that overlaps on sky with the photo-

metric survey. For LSST, such observations can be provided by DESI. However,

given that spectroscopic observations are significantly more time-consuming

than photometric observations, leading to a smaller sample size of reference

galaxies, and because of different observing strategies of the two surveys, the

reference sample will not be representative of the photometric sample.

We studied the impact of a non-representative reference sample in chapter

4, where we constructed a DESI-like sample from the cosmoDC2 simulation

using selection functions that mimic a galaxy sample observed by DESI. Using

four samples of objects that will be observed by DESI, Luminous Red Galaxies,

Emission Line Galaxies, high redshift quasars, and a magnitude-limited sample,

which were selected from the cosmoDC2 catalogue, we performed the optimi-

sation of redshift bin assignments with a SOM-based method of calculating

the clustering cross-correlation between photometric and reference bins. We

found a similar performance of the optimisation to what was achieved with



158

the representative reference sample, although the DESI-like selected sample

requires broader bins at high redshifts given the sparsity of observed galaxies

and quasars in this redshift range. A future direction of this work is to examine

the optimisation method by applying it to real observed data. For this purpose,

KiDS provides an ideal dataset since it was already used extensively in studies

of the calibration of photometric redshift distributions, which will allow us to

assess how the optimised assignment of photometric galaxies to tomographic

bins influences the constraints on cosmological parameters. A challenge for the

analysis of real data from KiDS are the cross-correlation measurements with a

reference dataset which is comprised of data from various spectroscopic surveys

covering different regions of the KiDS footprint. We expect the galaxy bias of

reference galaxies to be vastly different for each spectroscopic sample, which

impacts the metric used to determine the quality of the redshift bin assignments.

Therefore, we potentially require to further modify the optimisation algorithm,

for example by adjusting the weighting between the diagonal and off-diagonal

elements of the cross-correlation matrix.

In chapter 5, we performed consistency tests in the cosmological analysis

of KiDS-1000. First, we tested the internal consistency between tomographic

redshift bins. This test is of particular importance in order to assess the

robustness of the analysis with respect to systematic effects. We performed

this test by modelling the cosmic shear signal in specific redshift bins with

a second independent set of cosmological parameters. This allowed us to

assess the consistency between the constraints on cosmological parameters

from individual redshift bins compared to the constraints from the remaining

redshift bins. We found good consistency between all redshift bins except for

the second one, which shows preference for a higher value of the amplitude of

matter density fluctuations, S8. While the source of this discrepancy remains

unclear and is under active investigation, Asgari et al. (2021) found that this

redshift bin has a negligible impact on the final result of the KiDS-1000 cosmic

shear analysis.
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Secondly, we performed a consistency test of the ΛCDM model. This

was achieved by splitting the model into the homogeneous background and

perturbations that give rise to matter density fluctuations causing the growth

of structure in the Universe. These two regimes were modelled with two

independent sets of cosmological parameters. By analysing the consistency

between the posterior distribution in the two regimes we tested if the data

prefers a different evolution of the universe for the homogeneous background

and perturbations, which would indicate an internal tension in the cosmological

model. We found good consistency between both sets of parameters, showing

that the two regimes are in good agreement. This result is consistent with the

recent analysis of galaxy clustering and weak lensing data from DES by Muir

et al. (2021), who split Ωm between geometry and growth theory regimes and

found no significant disagreement between the two regimes.

The calibration and modelling of photometric redshift distributions play

a crucial role for upcoming galaxy surveys, such as LSST and Euclid. Thus,

exploiting synergies between the two surveys will greatly benefit cosmological

analyses requiring accurate estimates of the redshift of observed objects. In

particular, combining observations of galaxies through the six LSST filters with

the three near-infrared filters of Euclid will improve the accuracy of the inferred

photometric redshifts and reduce the scatter and outlier rate (Rhodes et al.,

2017). A focus of upcoming surveys is a so-called 3x2pt analysis, which combines

cosmological analyses with two-point correlation functions of galaxy clustering,

weak lensing, and galaxy-galaxy lensing and will provide constraints on the

structure growth parameter S8 with unprecedented precision. Thus, we require

the characterisation of the true underlying redshift distribution of observed

objects. This can be achieved for example through angular cross-correlation

measurements with overlapping reference galaxies with spectroscopic redshift

measurements from DESI. Therefore, the combination of datasets from various

surveys is one of the most important tasks in future analyses of cosmological

data.
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The optimisation technique developed in chapter 3 and 4 provides a method

of further decreasing the rate of catastrophic outliers after the initial assignment

of galaxies to tomographic redshift bins based on photometric measurements.

Therefore, it will benefit the 3x2pt analysis which requires compact redshift

distributions. Additionally, the marginalisation method over residual redshift

distribution uncertainties from the calibration with spectroscopic reference

catalogues, developed in chapter 2, can be generalised to the analysis of galaxy

clustering and galaxy-galaxy lensing and is therefore applicable in an upcoming

3x2pt analysis of LSST data.



Appendix A

Appendix to Chapter 2

A.1 Marginalisation over nuisance parameters

In this appendix we provide the analytic expressions for the vector of derivatives

of the log-likelihood with respect to the nuisance parameters aα
i of the redshift

distribution and the Hessian matrix of second derivatives with respect to the

nuisance parameters. These quantities enter the calculation of the log-likelihood

marginalised over the nuisance parameters described in Sect. 2.3.2. For the

specific case of marginalising over the redshift distribution nuisance parameters,

the vector L′ has elements

∂L
∂aµ

m
=

∑
l,l′,α,β,α′,β′

∂∆(αβ)
l

∂aµ
m

Z(l,α,β)(l′,α′,β′) ∆(α′β′)
l′ (A.1)

+ ∆(αβ)
l Z(l,α,β)(l′,α′,β′)

∂∆(α′β′)
l′

∂aµ
m

 ,

with
∂∆(αβ)

l

∂aµ
m

= −Aµ
m

∑
i

x
(im)
± (θl)

(
δαµA

β
i + δβµA

α
i

)
, (A.2)

where δαβ denotes the Kronecker delta symbol. The indices α and β run over

all unique combinations of tomographic redshift bins. The two-point shear

correlation function of two Gaussian comb components, i and j, in θ-bin l

is denoted by x
(ij)
± (θl), and the inverse data covariance is given by Z. The

difference between the observed and predicted signals, as defined in Eq. (2.27),
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is denoted by ∆αβ
l . The elements of the Hessian matrix, L′′, read

∂2L
∂aµ
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A.2 Tests of the redshift distribution

calibration
In this appendix we test to what extent the number of Gaussian components

of the comb model affects the fit to the pre-calibrated redshift histograms.

Additionally, we test the stability of the fit results when changing the number

of bins of input data histograms and test the calibration method on simulations.

A.2.1 Width of input data histograms

The redshift distributions of Hildebrandt et al. (2020), calibrated with the

fiducial DIR method, consist of histograms with bin width ∆z = 0.05 for each

tomographic bin and a covariance matrix that links all five tomographic bins.

To test the sensitivity of the fit with respect to the input data, we performed

fits using a second set of histograms with a smaller bin width of ∆z = 0.025

that were calibrated with the same method.

Figure A.1 shows a comparison of two fits with 30 Gaussian components;
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Figure A.1: Comparison of the Gaussian comb with 30 components fitted to two
different pre-calibrated histograms. The blue and orange points show
histograms with bin widths of ∆z = 0.05 and ∆z = 0.025, respectively.
The error bars correspond to the diagonal elements of the covariance
matrix. The lines represent the Gaussian comb with 30 components
fitted to the data histograms. We note that when fitting the redshift
distribution, the full covariance matrix of the data histogram is taken
into account.

the blue lines represent a fit to the histograms with bin width ∆z = 0.05, and

the orange lines represent a fit to the histograms with bin width ∆z = 0.025. We

note that the error bars correspond to the diagonal elements of the covariance

matrix of the data histograms. The fit of redshift distributions, however, is

performed using the full covariance matrix.

By visually inspecting the fitted redshift distributions, we observe some

deviations between the two curves, which are, however, already present in

the input data. Although the two histograms are supposed to represent the

same source redshift distribution, they show some fluctuations (especially in

the peaks of the distributions), which have an impact on the fitted curves.

More importantly, however, we find goodness of fit values of χ2 = 4500 and

χ2 = 22750 for 50 and 250 degrees of freedom, respectively. This indicates a bad
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fit of the model to the data regardless of which data histogram is used. To find

the cause of the bad fit, we repeated the fit using only the diagonal elements

of the covariance matrix, which reduces the goodness of fit values to χ2 = 470

and χ2 = 1400 for 50 and 250 degrees of freedom, respectively. This test shows

that the bad fit is to a great extent caused by the off-diagonal elements of the

covariance matrix. However, excluding the off-diagonal elements does not lead

to an acceptable goodness of fit value. We suspect that the uncertainties on the

pre-calibrated redshift distributions are underestimated, which would explain

the discrepancies between the blue and orange data points shown in Fig. A.1.

Empirically, we find that rescaling the square root of the covariance Cij

between histogram bins by an additive and multiplicative factor via

C ′
ij =

(
2
√
Cij +0.01δij

)2
(A.5)

leads to χ2 = 80 for 50 degrees of freedom. With this rescaling, the widths of the

posterior distributions of the median redshift for both the redshift histograms

and the Gaussian comb, shown in Fig. 2.2, inflate by approximately the same

factor. Therefore, we assume that a potential underestimation of the error

bars impacts the fiducial analysis and the analysis presented in this paper in

the same way. We stress that the quality of the fit does not have a significant

impact on the main analysis of this paper, as shown in Appendix A.2.2, and

leave further investigation of an improved uncertainty quantification for the

pre-calibrated redshift distributions for future work.

A.2.2 Redshift distribution calibration with simulations

Since in Appendix A.2.1 we found that the Gaussian comb model provides a

bad fit to the actual data, which is likely caused by an underestimation of the

error bars, we tested our calibration method with simulations. We used redshift

distributions that are calibrated with the fiducial DIR method on simulated

mock catalogues (van den Busch et al., 2020) based on the MICE simulation

(Fosalba et al., 2015a; Crocce et al., 2015; Fosalba et al., 2015b; Carretero et al.,
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Figure A.2: Comparison of the Gaussian comb with 30 components fitted to pre-
calibrated histograms from the MICE simulation. The blue and orange
points show histograms with bin widths of ∆z = 0.05 and ∆z = 0.025,
respectively. The error bars correspond to the diagonal elements of
the covariance matrix. The lines represent the Gaussian comb with
30 components fitted to the data histograms. We note that when
fitting the redshift distribution, the full covariance matrix of the data
histogram is taken into account.

2015; Hoffmann et al., 2015). Analogous to Appendix A.2.1, we compared

two types of data histograms with bin widths of ∆z = 0.05 and ∆z = 0.025.

Figure A.2 shows a comparison of the two fits with 30 Gaussian components,

where blue lines represent a fit to the histograms with bin width ∆z = 0.05 and

orange lines represent a fit to the histograms with bin width ∆z = 0.025.

We find that with goodness of fit values of χ2 = 75 and χ2 = 320 for 50 and

250 degrees of freedom, respectively, our Gaussian comb model fits the data

reasonably well. Moreover, both the data histograms and the corresponding

fitted redshift distributions are in excellent agreement. We conclude that

the Gaussian comb model is capable of accurately describing the redshift

distribution. The worse goodness of fit when fitting real data is likely due to

the presence of noise and an underestimation of the uncertainties.
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Figure A.3: Comparison of a Gaussian comb with 20, 30, and 40 components
fitted to a pre-calibrated histogram with bin width ∆z = 0.05. The
width σcomb of the Gaussians is equal to the separation between
each component. Data points are shown in black, with error bars
corresponding to the diagonal elements of the covariance matrix. Blue,
orange, and green lines represent the Gaussian combs with 20, 30, and
40 components, respectively. We note that when fitting the redshift
distribution, the full covariance matrix of the data histogram is taken
into account.

A.2.3 Number of Gaussian components

In Fig. A.3 we show a comparison of fits of a Gaussian comb with 20, 30,

and 40 components to the pre-calibrated redshift histograms with bin width

∆z = 0.05. The width σcomb of the Gaussians is equal to the separation between

each component. We find that variations in the number of comb components

have a marginal impact on the redshift distribution, with changes of the median

of order ∆zmed = 0.001.
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Parameter fiducial KV450 KV450 with Gaussian comb
ωcdm 0.112+0.029

−0.060 0.112+0.046
−0.060

ln1010As 3.30±0.92 3.34±0.92
ωb 0.0223±0.0021 0.0222+0.0018

−0.0025
ns 1.03+0.15

−0.13 1.01±0.13
h 0.749+0.067

−0.028 0.746+0.062
−0.033

AIA 0.89+0.64
−0.58 0.87+0.64

−0.58
cmin 2.50+0.22

−0.45 2.49+0.23
−0.40

δc 0.00000±0.00019 0.00000±0.00019
Ac 1.03±0.12 1.02±0.12
Ωm 0.242+0.052

−0.11 0.242+0.055
−0.11

σ8 0.86+0.18
−0.20 0.87±0.17

S8 0.746+0.029
−0.028 0.748+0.029

−0.03

Table A.1: Comparison between the fiducial KV450 likelihood and the modified
likelihood with redshift distribution parameterised by the Gaussian
comb model. Reported are the mean posterior values and the 68%
confidence intervals. The first five lines are cosmological parameters,
and the remaining lines represent nuisance parameters.

A.3 Comparison between the fiducial KV450

likelihood and the modified likelihood

with Gaussian comb

In order to test if the fitted redshift distribution is capable of reproducing the

results of the fiducial KV450 analysis, we sampled the likelihood using the

Gaussian comb model as the parameterisation of the redshift distribution, but

without marginalisation over the uncertainties on the nuisance parameters. To

be able to compare the two likelihoods, we fixed the nuisance parameters δzi of

the fiducial KV450 likelihood. The results of these fits are presented Table A.1,

which shows the mean posterior values of cosmological and nuisance parameters.

We find that constraints from both setups are fully consistent, and therefore

we conclude that our Gaussian comb model can be used as an alternative to

the fiducial redshift distributions.
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Figure A.4: Marginalised posteriors for all parameters of the KV450 likelihood.
Blue contours present the results from the KV450 likelihood with a
Gaussian comb and analytical marginalisation over nuisance parame-
ters, while the orange contours refer to the fiducial KV450 constraints.

A.4 Posteriors of cosmological parameter

constraints
In Fig. A.4 we show marginalised posteriors of cosmological and nuisance

parameters. The KV450 likelihood with a Gaussian comb and analytical

marginalisation over nuisance parameters is compared to the fiducial KV450

likelihood.
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Appendix to Chapter 3

B.1 Photometric redshifts
In this Appendix we compare the true redshifts of galaxies in the synthetic

galaxy catalogue with the point estimate of the photometric redshift inferred

via SED template fitting. The left panel of Fig. B.1 shows a scatter plot of the

true redshift and the photometric redshift. The redshift distributions inferred

from the true redshift and the photometric redshift, respectively, are illustrated

in the right panel of Fig. B.1.
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Figure B.1: Left: Scatter plot of the true redshift of galaxies in the photometric
sample and the point estimate of the photometric redshift inferred via
SED template fitting. Right: Comparison between the true redshift
distribution and the redshift distribution inferred from point estimates
of the photometric redshift.
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B.2 SOM clustering
In this Appendix we provide a comparison of SOMs with decreased resolutions

derived from a high-dimensional SOM using the hierarchical clustering method

described in Section 3.2.3. The original SOM, trained on the observed colours

of galaxies with a resolution of R = 200, is illustrated in the top left panel of

Fig. B.2. The remaining panels show SOMs with lower resolutions, inferred

from the original SOM via clustering of the weight vectors. The bottom right

panel shows the SOM with a resolution of R= 30, which is the initial resolution

from which the simulated annealing algorithm selects groups of galaxies. The

top right panel shows the SOM with the final resolution R = 80, while a SOM

with an intermediate resolution of R= 55 is illustrated in the bottom left panel.

The colours in each panel represent the mean of the true redshift of galaxies

in each node. We note that since the low-resolution SOMs are constructed

from the high-resolution SOM with R = 200, the axes in each panel refer to

the index of the high-dimensional SOM.

B.3 Energy in the simulated annealing

optimisation
In this appendix we show the evolution of the energy during the simulated

annealing optimisation. In Fig. B.3 we illustrate the energy of the system

after six iterations of the algorithm. Each iteration corresponds to a full

run of the algorithm with an initial SOM resolution of Rmin = 30 and a final

resolution Rmax = 80 with Nsteps = 2000 1. We observe that in the first three

iterations the algorithm achieves an approximately equal increase in the energy

of the system, while the later iterations show smaller increases in the energy,

indicating that the algorithm converges towards the maximum energy. The

method of consecutively running the algorithm multiple times allows us to

explore how many steps in total are needed for the algorithm to converge

towards the maximum achievable energy for a given final resolution Rmax. We
1The computing time for one step on a 16 core machine is approximately 10 seconds
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Figure B.2: Illustration of the SOM used in the analysis at different resolutions.
The original SOM, trained on the observed colours of galaxies with
a resolution of R = 200, is illustrated in the top left panel. The
remaining panels show the SOM with reduced resolution inferred with
the clustering method described in Sect. 3.2.3. The colours represent
the mean of the true redshift of galaxies in each node.

note that after obtaining the final assignment of galaxies to tomographic bins

via simulated annealing, this result can potentially be further improved by

re-running the algorithm with an initial resolution of Rmin = 80 and an even

higher resolution Rmax which can be increased up to the initial resolution of

the SOM. However, this comes at the cost of a longer runtime, since higher

resolutions imply a selection of fewer galaxies in each step, up to the limit

where the algorithm selects individual galaxies. Furthermore, at a certain point

noise in the clustering observable will limit the observable effect on the energy

of the system.
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