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Abstract

Statistical algorithms not only involve drawing realizations from a given distribu-

tion or estimating the parameters of the related density, but a wider class of problems

such as optimal control, data assimilation and non-convex optimization. Unlike a

deterministic search algorithm, e.g. one based on quasi-Newton updates, stochastic

search schemes can make use of concepts from both deterministic dynamics and

stochastic theory of noise to strike a balance between exploitation and exploration

in the design space. In the quest for more efficacious schemes, researchers have

drawn on ideas from contemporary physics and differential geometry in arriving at

suitably constrained dynamical systems that guide the search, and the work in this

dissertation is similarly inspired. To start with, a survey of the state-of-the-art is

presented in Chapter 1 to motivate and put in perspective the work in the chapters to

follow. Chapter 2 dwells on a Riemannian geometric approach to non-convex opti-

mization, wherein the flow that minimizes a given objective function with progress-

ing iterations is constrained to live on a manifold defined using a metric derivable

by treating the objective function as energy. Specifically, the underlying dynami-

cal system is designed as a geometrically adapted Langevin stochastic differential

equation (SDE). The same adaptation, albeit with a Riemannian metric given by

the Fisher information matrix obtainable from the available likelihood, is used in

Chapter 3 to arrive at an MCMC method. In Chapter 4, a time-recursive scheme

for stochastic optimal control is proposed using SDEs integrated strictly forward

in time, thus bypassing the computationally inexpedient forward-backward route

to solve the Hamilton-Jacobi-Bellman (HJB) equation. We address the combined

state-parameter estimation problem via stochastic filtering in Chapter 5, with a new
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proposal for the parameter dynamics for higher accuracy and faster convergence.

The thesis is concluded in Chapter 6 with a summary and scope for future research.

Impact Statement

The most significant contribution of this thesis is perhaps in laying out a novel

stochastic approach to pose and solve a broad class of non-convex optimization

problems within a Riemannian geometric setting. Specifically, it is shown that a

Riemannian structure to the optimal search may be brought forth via the objec-

tive function alone and the stochastic update is implemented using time integration

of an appropriately constructed Langevin dynamics developed on the Riemannian

manifold. While such a geometric makeover significantly accelerates the search

process, the stochastic update avoids the pitfall of solutions being stuck around lo-

cal extrema. Given the ubiquity of non-convex optimization across a broad swathe

of applications of industrial interest and the ready adaptability of the method to

optimization with constraints, the novel perspective offered in our proposal should

constitute a noteworthy scientific advance in this much researched area. It might

also be usefully exploited in neural network schemes where optimization is exten-

sively used to determine the learning parameters. By way of a specific application

of a fairly general appeal, we have used the new optimization paradigm to propose a

Riemannian geometric makeover of the MCMC method, widely acclaimed as one of

the top ten algorithms of the 20th century. We have implemented the new scheme

for identifying the unknown parameters of a posterior probability density from a

given set of realizations – a problem of central interest in statistical model cali-

bration, among others. Through a carefully chosen set of numerical examples, the

salient advantages of a properly constructed manifold-based search are once more

brought forth vis-à-vis the classical route and a few other existing schemes that have

also aimed at organizing manifold-based searches. This thesis has also described a

novel and computationally efficacious strategy for stochastic optimal control (SOC)

of dynamical systems including mechanical oscillators, where the control term is

linear. Such problems routinely appear in myriad practical applications such as
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option pricing, risk hedging, insurance and robotics. The proposal is based on a

predictive approximation to the terminal cost using Ito’s formula, thereby obviating

the need for costly and repetitive evaluations of forward and backward solutions at

every update. Whilst ensuring a minimal overall cost, our posing of the SOC prob-

lem may however yield a different path vis-à-vis the conventional setting. Finally,

we have considered the problem of estimation of states and parameters of dynami-

cal systems within the framework of stochastic filtering. With certain energy-based

arguments, our contribution has been in tweaking the prediction equations towards

a faster and more accurate search for the parameters. Given the extensive use of

stochastic filtering algorithms for real-time data assimilation in atmospheric mod-

elling and other areas, the proposed parameter dynamics should have its share of

usefulness in system identification problems of great practical import.

The Riemannian geometric and energy-based principles emphasized in this

work for developing statistical algorithms are perhaps a step forward in a more

nuanced and rational exploitation of advanced physical theories, in line with the

ongoing research focus worldwide in the same direction.
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Chapter 1

Introduction

A few of the most successful methods in statistical analysis are inspired from

physics; a couple of examples being the simulated annealing method of optimiza-

tion inspired by thermodynamics and the Hamiltonian Monte Carlo (HMC) method

of Markov chain Monte Carlo (MCMC) based on Hamiltonian mechanics. That

simulated annealing and HMC are known to be efficient owes largely to the fact

that the underlying concepts are drawn from classical particle physics. However,

after a review of the state-of-the-art in many of these methods, an important obser-

vation may be made. There remains considerable scope to exploit concepts from

Riemannian or non-Euclidean geometry of manifolds to develop new methods that

are more informed and hence more efficient, fast and accurate.

Bearing this in mind, and in an attempt to exploit the power of physics, stochas-

tic analysis and differential geometry simultaneously, this thesis proposes novel

methods in optimization, MCMC, stochastic optimal control (SOC) and parameter

estimation via data assimilation (DA). Towards this end, one of the fundamental

principles used is stochastic development - a concept for the treatment of stochastic

differential equations (SDEs) on Riemannian manifolds (RM). Another theme that

can be seen recurring in this thesis is the use of some aspects of energetics to define a

pseudo-energy surface on which the solution of the problem is sought. Yet another

feature common across all the methods discussed is that of Monte Carlo simula-

tions, i.e. using a finite number of samples to approximate the desired probability

distribution.
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Indeed, many problems in statistical analysis are or may be construed as those

of either optimization or probabilistic sampling. This is true in particular for the

methods that are discussed in this thesis, viz. finding the global extremum of a

non-convex function, MCMC, SOC and combined state and parameter estimation

via data assimilation. Interestingly enough, it has been shown that the problems

in optimization and sampling are related [1]. It basically has to do with the fact

that the functions f (x) and f (x)
τ

have the same minima, and the Langevin Monte

Carlo algorithm for f (x)
τ

in the limit τ → 0 reduces to the gradient descent method

for f (x). Moreover, the problems of optimal control and data assimilation also

have an interesting relationship as discussed in this introduction. In what follows,

the problem statement and the proposed methodology for the next four chapters is

given in brief. Moreover, the state-of-the-art is also described in a simple language

for each of these methods; a detailed literature survey and the technical details for

these methods are provided in the respective chapters. The thesis is concluded in

Chapter 6 with a summary and a few possible directions for future research.

Chapter 2 discusses a method of unconstrained non-convex optimization. We

focus on continuous optimization problems. The method basically consists of inte-

grating an SDE, in particular the annealed Langevin diffusion equation [2], on an

RM. First, this chapter provides the derivation of a general SDE on an RM (based

on the concept of stochastic development) on which the optimization scheme di-

rectly depends. The concept of stochastic development is the one that is central to

the construction of the Brownian motion (which is an SDE with a trivial drift) on

an RM. We extend this approach to an SDE with a non-zero drift, thus obtaining an

equation of a general SDE on an RM. There are two basic differences between the

proposed method and the methods of optimization on an RM available in the liter-

ature. The first is that while the existing methods are deterministic, the proposed

one is stochastic. The second is that, existing RM methods are only meant for con-

strained optimization problems wherein the constraint surface is itself treated as an

RM. We, however, propose a way of defining an RM for an unconstrained prob-

lem which is discussed in the chapter. Now, evolutionary optimization schemes like
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genetic algorithms [3] consist of some of the most successful methods of global

optimization. One aspect worth appreciating - when compared to the evolutionary

schemes - is that while the evolutionary schemes have an additional randomization

step to facilitate exploration of the search space, this randomness occurs naturally in

the proposed method owing to the inherent stochasticity of the equation being used.

Another distinction between the proposed and evolutionary schemes is that while

the former depends on gradient information of the objective function, most evolu-

tionary schemes are gradient-free. It thus has directional information to facilitate

better exploitation of the search space.

In Chapter 3, we discuss the application of the SDE on an RM as derived

in Chapter 2 to MCMC. An MCMC problem consists of drawing samples from

a desired density. These may then be used to approximate complicated integrals

(e.g. determine the expectation of certain functions of a random variable) or other

quantities when analytical solutions to such problems are unavailable. The method-

ology as proposed may be considered as the RM counterpart of the Metropolis ad-

justed Langevin Algorithm (MALA) [4]. Algorithm-wise, it is similar to that of

the optimization algorithm in Chapter 2, except for a couple of points. The first

is, the metric is now given by the Fisher-Information matrix (FIM) for the class of

problems considered (statistical estimation of parameters). The second is the ab-

sence of annealing and hence the presence of an accept-reject step in line with the

Metropolis-Hastings algorithm. Indeed, it is possible to get away with the second

difference, in which case the algorithm may be considered as the RM counterpart

of the unadjusted Langevin algorithm (ULA) [2]. However, we chose to work with

the accept-reject step as it is easier to compare the proposal with several other meth-

ods of MCMC on RM from the literature. The aim of this chapter, in addition to

providing a novel MCMC method, is to shine light on some of the issues with the

existing methods. These are discussed in Section 3.4. The observations thus made

are reinforced with some examples involving a few basic probability distributions,

demonstrating that our method is the only one able to converge in moderate to high

dimension. This chapter also affords insights into the Fisher-Information being an
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appropriate metric for problems in statistical parameter estimation.

Chapters 4 and 5 are about SOC and, parameter estimation via DA respec-

tively; these problems have an interesting relationship, i.e. they may be looked

upon as two sides of the same coin. For an optimal control problem, the objective

is to determine an additional control force to the noisy process dynamics in order to

realize certain objectives. e.g. to reach a desired terminal state whilst minimizing a

certain total cost. On the other hand, the objective of DA (of states alone or states

and parameters; see Sections 5.2 and 5.3) is also to find an additional force-like

term in the noisy process dynamics; the aim now is to determine the true evolution

of certain states (that have already evolved in time) by making use of the avail-

able measurements that may be partial (i.e. not all states may be measured) and

noisy (owing to instrumentation error). The problem of DA (and, by analogy, also

SOC) is one of sampling from the posterior distribution. The data are the measure-

ments available, while the dynamics of measurements defines the likelihood. The

prior is defined by the dynamics of the system under consideration. Hence, this

is essentially a Bayesian problem whose solution is the evolution of the posterior

probability. The fundamental difference between this framework and MCMC then,

is that, in MCMC the posterior remains frozen in time, whereas it does in the case

of data assimilation thus making it more difficult to solve.

The method of SOC in Chapter 4 is derived for a class of problems referred

to in the community as linear-quadratic (LQ) control, which is defined in Section

4.3. This is the most commonly encountered class of problems, and this choice is

crucial to the derivation of the proposed method. It is well-known that the solution

of an SOC problem may be associated with that of a partial differential equation

(PDE) with a terminal condition; particularly the Hamilton-Jacobi-Bellman equa-

tion (HJB) [5]. When the HJB equation is semilinear and satisfies certain other

constraints (discussed in Chapter 4), it can be solved via a nonlinear version of the

Feynman-Kac formula [6]. According to this approach, the solution to the PDE may

be obtained by simulating an associated pair of partly coupled forward-backward

stochastic differential equations (FBSDEs). This method can be exploited for a
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certain class of SOC problems wherein the associated HJB equation is semilinear

and satisfies certain constraints. Although an elegant way to interpret and solve a

PDE, simulating the system of FBSDEs can be computationally demanding. In our

work, the HJB equation pertaining to the SOC problem is reformulated such that

instead of the given terminal condition, the proposed PDE is now subject to a corre-

sponding initial condition. Associated with the PDE, we then derive a set of SDEs

whose solutions move only forward in time. This approach has a significant com-

putational advantage over the original formulation. Moreover, since the method of

FBSDEs generally requires simulating SDEs from the current to the terminal time

at every step, the integration errors may accumulate and carry forward in estimating

the control force. This error is particularly high initially, since the time of integra-

tion is the longest there. The proposed method bypasses such errors and is thus

more robust. Unsurprisingly, it also exhibits a lower sampling variance. In addition

to the computational superiority, this approach has another advantages over the tra-

ditional FBSDEs. First, the control may be started at any intermediate time - this

being particularly beneficial for chaotic systems as explained in the chapter - which

is not possible for FBSDEs. Second, the terminal time for the proposed method

may be flexible, which is again not possible for the FBSDEs. This is because the

HJB equation is subjected to a terminal condition, thus making the knowledge of

terminal time imperative.

The problem of DA or stochastic filtering is to estimate the posterior distribu-

tion of states of a dynamical system given a noisy physics model and noisy measure-

ments. Chapter 5 is about DA in general. In particular, however, our focus is on the

estimation of parameters of a dynamical system within the data assimilation frame-

work. Typically, while solving this type of problem, the unknown parameters of

the system are appended to the state vector and data assimilation is performed over

this combined state and parameter vector. The parameters do not really have any

physical evolution, hence their evolution is taken simply as Brownian motion - this

forms the noisy physics model for the parameters. It is worth noting that stochas-

ticity is essential in the evolution of states as well as parameters without which the
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machinery of data assimilation may break down. Now, the Brownian motion pro-

posal for parameter dynamics, being quite random, has certain disadvantages. In

Chapter 5, we construct a proposal for parameters to replace Brownian motion. We

draw inspiration from Chapter 2 and define a pseudo-energy term and construct a

Langevin diffusion equation using this energy. We provide one possibility for the

definition of pseudo-energy using measurements, however, it is quite flexible as dis-

cussed further in the chapter. The motivation behind using an energy to define the

Langevin diffusion (in Chapter 2 as well as Chapter 5) comes from the canonical

ensemble in statistical mechanics [7]. Specifically, consider a mechanical system

immersed inside a heat bath at a given temperature; then the canonical ensemble is

the statistical ensemble of all possible states of the mechanical system when it is in

thermal equilibrium with the heat bath. Each distinct microstate of the canonical

ensemble is assigned a probability P which is related to the total energy (E) of that

microstate as follows:P ∝ exp(−E). Thus, the ∇ logP in the Langevin diffusion

may be considered as −∇E, thereby allowing one to construct Langevin diffusion

using energy instead of probability. We discuss the proposed approach in detail and

illustrate its performance on a few examples.



Chapter 2

Stochastically developed Langevin

dynamics: derivation and application

to non-convex optimization

This chapter is largely based on the published work in [8] with emphasis on the

application of stochastic development to non-convex optimization.

2.1 Introduction
At their core, most problems in statistical analysis are those of optimization. These

problems may either be convex or non-convex. Convex optimization problems have

a unique extremum and are hence simpler to solve. The majority of continous opti-

mization problems however, fall in the category of non-convex functions; examples

range from matrix completion problems[9] to neural networks[10]. Non-convex

problems are more difficult to solve for a number of reasons such as the exis-

tence of multiple extremas, saddle points, presence of very flat regions or regions of

widely varying curvature. In this chapter, our interest is in continuous non-convex

problems. There are well-established methods for solving convex problems such

as the gradient descent [11], conjugate gradient [12], Newton and quasi-Newton

methods like the Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [13]. The success of methods for non-convex problems on the

other hand relies on a good exploration-exploitation trade-off. Loosely put, ex-
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ploitation aims at quickly finding a local minimum given an initial point, whereas

exploration is aimed at searching the space for a different initial point which will po-

tentially be closer to a better local minima. [14] is a gradient-based method which is

well-known for global optimization. It generalizes Nesterov’s accelerated gradient

method [15] for convex optimization problems to non-convex problems. A majority

of methods for global optimization, however, fall in the broad class of gradient-free

evolutionary schemes that are based on biological heuristics and may not necessar-

ily have a mathematical basis. Examples of these include, but are not limited to,

genetic algorithms [3], particle swarm optimization [16], ant colony optimization

[17], differential evolution [18] , covariance matrix adaptation [19, 20]. An inter-

esting exception to these derivative-free methods is the replica exchange method

[21] wherein a deterministic gradient descent is aided by stochastics to facilitate

exploration. Specifically, the deterministic gradient descent and Langevin diffusion

equation are evolved simultaneously and as soon as the Langevin trajectory gives a

better solution, the starting points for both these dynamics are swapped. We pro-

pose a method that is also based on the Langevin diffusion, however, it is devised

by marrying the concepts from stochastics and differential geometry alongwith a

bit of physics. This is aimed at utilizing the best of the two subjects in a seamless

manner thus bypassing the need for an additional step or intervention to help with

exploration of the solution space.

While there are Riemannian manifold (RM) versions of several well-known

methods for non-convex optimization such as the steepest descent, conjugate gradi-

ent and Newton’s methods [22], these are all deterministic methods applicable only

to constrained problems and posed in a way where the constraint surface is itself

the manifold. We propose, perhaps for the first time, a method based on Rieman-

nian geometry for optimization problems without any constraints. This may also be

the first time that a stochastic method of non-convex optimzation is proposed using

Riemannian differential geometry.

Towards this, we first derive a stochastic differential equation (SDE) on an RM

using the concept of stochastic development as per [23]. Next, we make use of ener-
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getics to arrive at a possible Riemannian metric. The Whitney embedding theorem

[24], guarantees an embedding of any RM within a sufficiently higher dimensional

Euclidean space. Characterizing the embedding space is however no trivial task in

general. Since embedding within a higher dimensional Euclidean manifold is gen-

erally infeasible, the understanding of diffusion on a manifold that is intrinsically

defined must be through the use of frame bundles [25]. As an alternative and with

inspiration drawn from the work in [23], we emply the framework of stochastic de-

velopment that is used for the derivation of the equation for Brownian motion on

an RM, leading to the celebrated Laplace-Beltrami operator. We essentially extend

this approach for a general SDE, i.e. an SDE with a non-trivial drift. We then ap-

ply this result to determine the equation of Langevin diffusion on an RM which is

used for optimization in this chapter and Markov chain Monte Carlo in the next.

This result is also applied to other interesting problems like developing a stochastic

Hamiltonian preserving numerical integration scheme as in [8]. We limit our work

to unconstrained problems for now, but it may not be too difficult to recast any

constrained problem as an unconstrained one by using for instance the method of

Lagrange multipliers (augmented Lagrangian) or penalty functions. Therefore, the

proposed methods may also be extended to be used for problems with constraints.

The rest of this chapter is organized as follows. Section 2.2 describes the con-

cept of stochastic development after a brief review of the relevant background. In

Section 2.3, we provide the derivation for a special case via a different route to

arrive at the same result. Finally, we illustrate the proposed method on a few bench-

mark problems in non-convex optimization in Section 2.4 and compare the results

thus obtained with a few other competing algorithms before concluding the work in

Section 2.5.

2.2 Stochastic development on a Riemannian Mani-

fold
By way of a ready reference, we give brief reviews of concepts in stochastic calculus

and differential geometry in sections 2.2.1 and 2.2.2 respectively. The main result is
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provided in Section 2.2.3, where we use the notion of frame bundles on Riemannian

manifolds to stochastically develop an SDE with a non-trivial drift.

2.2.1 A brief review of stochastic calculus

Stochastic calculus deals with the properties of solutions of SDEs. A typical form

of an SDE is as follows:

dxt = α(xt , t)dt +β (xt , t)dBt (2.1)

Here, xt represents the stochastic process, α(xt , t) and β (xt , t) are vector and matrix

valued functions, respectively and dBt is the Brownian vector increment at time t,

with all its scalar components being independent of one another. In the above equa-

tion, α(xt , t)dt is referred to as the drift term and β (xt , t)dBt as the diffusion term. If

we remove the diffusion term from (2.1), it reduces to an ordinary differential equa-

tion (ODE). It is worth emphasizing that the Brownian motion Bt is everywhere

continuous but nowhere differentiable and this calls for an approach different from

the standard calculus in RN in solving an SDE. The pursuit of stochastic calcu-

lus essentially begins with the interpretation of the diffusion (stochastic) integral∫ t
t0 β (xs,s)dBs. There are mainly two versions of stochastic calculus, viz. Ito and

Stratonovich, and it is readily possible to switch between the two. In Ito’s calculus,

the stochastic integral is interpreted as

∫ t

t0
β (xs,s)dBs = lim

maxi(ti+1−ti)→0
∑

i
β (xti, ti)(Bti+1−Bti) (2.2)

where t0 < t1 < ... < ti < ... is a discretization of the closed interval [t0, t]. In

Stratonovich calculus, on the other hand, this integral is interpreted as

∫ t

t0
β (xs,s)dBs = lim

maxi(ti+1−ti)→0
∑

i

1
2
(β (xti, ti)+β (xti+1, ti+1))(Bti+1−Bti) (2.3)

While the Ito version has the physical appeal of causality built into its construction,

the Stratonovich version conforms better with the features of standard calculus in

RN . We interpret the solution of SDEs in this work in Ito’s sense. The basic ingredi-
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ent of this calculus is Ito’s formula which we now describe. Consider the stochastic

process x(t) which is the solution of the following SDE:

dx(t) = µ(t)dt +σ(t)dB(t) (2.4)

If f (x) is a twice continuously differentiable function of x, then Ito’s formula gives

the following SDE for f (x(t)):

d f (x(t)) = f ′(x(t))dx(t)+
1
2

f ′′(x(t))d[x,x](t) (2.5)

= ( f ′(x(t))µ(t)+
1
2

f ′′(x(t))σ2(t))dt + f ′(x(t))σ(t)dB(t)

In the equation above, [x,x](t) denotes the quadratic variation of x(t) and is defined

as

[x,x](t) = lim
δr→0

r

∑
i=1
||(x(tr

i )− x(tr
i−1))||2 (2.6)

where this limit is taken over the set of all possible partitions:

0 = tr
0 < tr

1 < tr
0 < ... < tr

r = t with δr = max
1≤i≤r

(tr
i − tr

i−1)

One of the most remarkable results in the theory of stochastic calculus is that

the quadratic variation of the Brownian motion is [B,B](t) = t with probability 1;

the result is remarkable since, although Brownian motion is stochastic, its quadratic

variation returns a strictly deterministic quantity [6]. Mainly owing to non-linearity

in the drift and/or diffusion terms, an analytical solution to an SDE is generally not

available. Solutions in general must therefore be obtained through various numeri-

cal integration schemes, such as the Euler-Maruyama [26].

2.2.2 A brief review of concepts from differential geometry

Differential geometry is the mathematical machinery for performing calculus over

an arbitrarily shaped hypersurface in any dimension, say Rd and can be seen as a

useful generalization of standard calculus in the Euclidean setting. The departure

from the Euclidean set-up is specifically captured through certain incompatibility
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tensors, e.g. the curvature tensor in Riemannian geometry. A small neighbour-

hood around every point in the hypersurface, which is referred to as the manifold,

is represented by a local co-ordinate chart, possibly drawn from the embedding Eu-

clidean space. The embedding Euclidean space is of a strictly higher dimension,

say Rn with n > d. These local charts overlap smoothly to enable calculations on

the manifold as a whole. An important concept in the theory of differential geom-

etry is that of a tangent plane. As the name suggests, it is the unique plane tangent

to the manifold at a given point. Formally, a manifold is called Riemannian if the

tangent plane at every point p is equipped with an inner product with respect to a

given metric g such that, if Xp and Yp are two vectors on the tangent plane, we have

⟨Xp,Yp⟩= [gp]i jxiy j (2.7)

where Xp = xiei ,Yp = y je j ; {ei}d
i=1being the canonical basis vectors in Rd .

In the Euclidean setting, we have gi j = δi j where δi j represent the Kronecker

delta symbols. Loosely speaking, g encapsulates the notion of how distances and

angles between two vectors are measured on a tangent plane. It is known that ev-

ery RM is associated with a unique Riemannian metric. Now that we have seen

that every point on the RM has a tangent plane attached to it and that every tangent

plane in turn has a unique metric, one must also figure out a way to smoothly move

from one tangent plane to another in a close neighbourhood of the former (parallel

transport of vector and tensor fields). This is precisely where the concept of a con-

nection comes in. For a given Riemannian metric g, the coordinate representation

of the connection is given as

γ
k
i j =

1
2

gkl[∂ig jl +∂ jgil−∂lgi j] (2.8)

In the above equation, gkl = g−1
kl and the symbols γk

i j are also referred to as the

Christoffel symbols. It must be noted that γ is not a tensor, as it does not transform

like one under a smooth change of co-ordinates. The usual concept of derivatives of

vectors in Rn does not apply to the RM, since any two vectors lying in two different



2.2. Stochastic development on a Riemannian Manifold 31

tangent planes are objects of different vector spaces, and hence cannot be added or

subtracted in the usual way. The equivalent notion of derivative on the RM is known

as covariant derivative and it is defined in terms of the connection. The covariant

derivative of a vector Y along a vector X in terms of the Christoffel symbols is

defined as follows:

∇XY = [XY k +X iY j
γ

k
i j]ek (2.9)

where X = X iei, Y = Y je j, ei is the unit vector in the ith co-ordinate direction in

terms of a local chart. We emphasize that equation (2.9) is valid only within the cut

locus; roughly speaking the cut locus at a point p on the manifold is that neighbour-

hood (on the manifold), every point in which has a geodesic connecting the point p

(see below for the definition of a geodesic on the RM).

Now that we have a way of moving from one point on the manifold to another

using the connection, we can define curves. An important example of a curve on

the manifold, parametrized by t, is that of a geodesic. It is the shortest path joining

two given points on the manifold. The equation of a geodesic is as follows:

ẍk(t)+ ẋi
t ẋ

j
t γ

k
i j(x(t)) = 0 (2.10)

The Euclidean equivalent of the above equation is just ẍk(t) = 0, solutions to which

are straight lines.

2.2.3 The concept of stochastic development

We may combine the basics of stochastic calculus with differential geometry to

recast an SDE, originally posed in a d dimensional Euclidean space, on an RM M

of the same dimension. A systematic framework for this is provided by stochastic

development, which has been used in [23] to recast a Brownian motion on M. We

presently use a similar strategy for SDEs that have a non-zero drift. In order to

relate the canonical d dimensional Euclidean basis to a basis of the tangent plane

TxM at the point x ∈ M, we need an additional construct of a d + d2 dimensional

manifold called the frame bundle F(M). While the d-dimensional component of
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F(M) is the base manifold M itself, the remaining d2-dimensional part corresponds

to orthogonal linear transformations applied to vectors on TxM. We now reflect on

how the connection ∇ on M manifests itself on the frame bundle F(M). Clearly, a

frame at a point x ∈M provides a linear isomorphism between the Euclidean space

Rd where the solution of a standard SDE evolves and the d-dimensional tangent

plane TxM to M on which the solution needs to be projected. Thus, it is through the

frame bundle that we can track these paths on M once we know how it evolves in

Rd . Let E1, ...,Ed be the co-ordinate basis vectors of the d-dimensional Euclidean

space. Now, considering a frame q at x, we note that the vectors qE1, ...,qEd make

up a basis for TxM.

We denote by F(M)x the set of all frames at x so that the elements of F(M)x

may be acted upon by GL(d,R), the general linear group. This means that any linear

transformation of F(M)x is also a valid frame at x. F(M)x is also called a fibre at

x. However, the base manifold M is presently Riemannian so that the torsion tensor

is zero, and thus an orthonormal frame remains orthonormal upon parallel transport

along M. There is thus no loss of generality in restricting the general linear group

to the orthogonal group O(M). Roughly speaking, a fibre Fx at a point x on M is

defined as a space attached to that point. We may now define a surjective or onto

map π : F (M )x −→M. We define the frame bundle as the union of sets of frames

at different points on the manifold, i.e. F(M) =
⋃

x∈M F(M)x. At this stage, we may

actually look upon F(M) itself as a (differentiable) manifold of dimension d + d2.

Accordingly, the projection map π : F(M)−→M is also smooth. Now we consider

a point q ∈ F(M) and the associated tangent space TqF(M) at the same point. It is

a vector space of dimension d + d2. We refer to a tangent vector Y ∈ TqF(M) as

vertical if Y is tangent to the frame F(M)πq. These vertical tangent vectors form a

subspace VqF(M) of TqF(M) and it is of dimension d2. Let the base manifold M

be equipped with a Riemannian connection ∇. Then a curve qt in F(M), which is

basically a smoothly varying field of frames, could be projected to a smooth curve

xt = πqt on M. We call the frame field qt horizontal if the vector field qtE is parallel

along the projected curve xt on the base manifold M for an arbitrary vector E ∈Rd .
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We recall here that a vector field V along the curve xt on M is called parallel along

xt if ∇ẋV = 0 for every t. This is just an extension of the notion of parallel vectors

in the Euclidean setting. The vector Vxt at xt is the parallel transport of the vector

Vx0 at x0.

(a) q is an isomorphism between Rd and TxM - the tangent space at x on M

(b) The horizontal motion of qt on M : The tangent vectors (q0E1, q0E2) at Tx0M are
parallelly transported according to the curvature of M

Figure 2.1: Stochastic development : a schematic illustration

We call a tangent vector X ∈ TqF(M) horizontal if it is tangent to the horizontal

curve qt . The space of horizontal vectors at q is denoted by HqF(M); it is a subspace
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of TqF(M) and is dimension d. We thus have the direct-sum decomposition

TqF(M) =VqF(M)⊕HqF(M)

. Using the projection π : F(M)−→M, a pushforward operation π∗ : HqF(M)−→

TxM may be defined. Specifically, consider any vector X ∈ TxM and a frame q at

x. The horizontal lift of X is then a unique horizontal vector X∗ ∈ HqF(M) such

that its projection returns the original vector itself, i.e. π∗X∗ = X . Now consider

any Euclidean vector E ∈ Rd . The vector HE(q) at the point q in F(M) is defined

by the horizontal lift of the vector qE on M, i.e. HE(q) = (qE)∗. Hence, (qE)∗

may be interpreted as a horizontal vector field on F(M). Corresponding to the

unit (orthonormal) coordinate vectors E1, ...,Ed in Rd , we note that Hi := HEi, i =

1, ...,d, are the associated horizontal vector fields of the frame bundle that span the

horizontal subspace HqF(M) at each q ∈ F(M).

We may adopt any valid local chart x = {xi} in a neighbourhood O⊂M. Using

the inverse of the projection map, this local chart on the base manifold M induces a

local chart Õ = π−1(O) in F(M). Thus, let Xi =
∂

∂xi , 1 ≤ i ≤ d, be the coordinate

basis vectors. For a frame q ∈ Õ, we have qEi = Q j
i X j for some matrix Q = (Qi

j).

Accordingly, we get (x,q) ∈ Rd+d2
as the local chart for Õ. Then, the vertical

subspace VqF(M) is spanned by Xk j =
∂

∂Qk
j
, 1 ≤ j,k ≤ d. Also, the vector fields

{Xi,Xi j,1≤ i, j ≤ d} span TqF(M), q ∈ Õ. An expression for the horizontal vector

field Hi in terms of the local coordinates is given as follows.

Hi(q) = Q j
i X j−Q j

i Ql
mγ

k
jl(x)Xkm (2.11)

For the sake of brevity, we skip the proof here and refer to ([23]).

From the definition of qt , which is the horizontal lift of a smooth curve xt on

M, we have q−1
t ẋt ∈Rd since ẋt ∈ Txt M. We define the anti-development of {xt} on

M as a curve ut in Rd such that the following equation is satisfied.

ut =
∫ t

0
q−1

s ẋsds.
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In other words, qt u̇t = ẋt and by the definition of horizontal vector fields, we have

Hu̇t (qt) = (qt u̇t)
∗ = (ẋt)

∗ = q̇t , i.e. the anti-development ut and the horizontal lift qt

of a curve xt on M are simply related by an ODE. In view of our work in the next

subsection, it is expedient to rewrite the last equation as

q̇t = Hi(qt)u̇t (2.12)

If we start from an Euclidean curve ut in Rd and a frame q0 at the point x0 on M, the

unique solution of the above ODE is given by a horizontal curve qt in F(M). We

refer to this horizontal curve as the development of ut in the frame manifold F(M).

Its projection on M given by πqt is called the development of ut in M.

2.2.4 Local coordinate expression of a developed SDE on RM

We extend equation 2.12 to the stochastic case and write it in the Stratonovich sense

as:

dqt = Hiq(t)◦dW i
t (2.13)

where the Ito SDE for the Euclidean stochastic process Wt has the following form:

dW i
t = α

i(Wt)dt +β
i
j(Wt)dB j

t (2.14)

From [23] (see proposition 2.1.3), the horizontal vector fields are locally given by

the equation below.

Hi(q) = Qi
jX j−Qi

jQ
l
mγ

k
jlXkm (2.15)

where

Xi =
∂

∂xi Xkm =
∂

∂Qk
m

(2.16)
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Hence, written in the Stratonovich sense, the equation for qt = {xi
t ,Q

i
j(t)} is

dxi
t = Qi

j(t)◦dW j
t (2.17)

dQi
j(t) = −γ

i
kl(xt)Ql

j(t)Q
k
m(t)◦dW m

t (2.18)

From equation (2.17) and in the Ito sense, we have

dxi
t = Qi

j(t)dW j
t +

1
2

d⟨Qi
j(t),dW j

t ⟩ (2.19)

= Qi
j(t)α

j(Wt)dt +Qi
j(t)β

j
m(Wt)dBm

t +
1
2

d⟨Qi
j(t),dW j

t ⟩

Let dMi
t = Qi

j(t)β
j

m(Wt)dBm
t be the martingale part. Then we have

d⟨Mi
t ,M

j
t ⟩ = ⟨Qi

m(t)β
m
r (Wt)dBr

t ,Q
j
n(t)β

n
s (Wt)dBs

t ⟩ (2.20)

= Qi
m(t)β

m
r (Wt)Q j

n(t)β
n
r (Wt)dt (2.21)

However, we have qEl = Qi
lXi and δlm = ⟨qEl,qEm⟩ = ⟨Qp

l Xp,Q
q
mXq⟩ =

Qp
l Qq

m⟨Xp,Xq⟩ = gpqQp
l Qq

m. Thus, QgQT = I or QT Q = g−1. Accordingly, we

may write

d⟨Mi
t ,M

j
t ⟩= [β T g−1

β ]i jdt (2.22)

Now, let σ = Qβ . Note that the identity Q =
√

g−1 is a direct consequence of

the torsion-free nature of the frame-bundle, i.e. the orthonormal frame retains the

orthonormality upon parallel transport along a smooth curve on the base manifold.

It is equivalent to the requirement that the connection 1-forms in the cotangent space

at any point on the base manifold are skew symmetric. Indeed, the same identity

has been used in the literature while developing Brownian motion on an RM. We



2.2. Stochastic development on a Riemannian Manifold 37

may now write

dMi
t = [Qβ ]imdBm

t (2.23)

= σ
i
mdBm

t (2.24)

From equation (2.18), we have

dQi
j(t) =−γ

i
kl(xt)Ql

j(t)Q
k
m(t)dW m

t +
1
2

d⟨−γ
i
kl(xt)Ql

j(t)Q
k
m(t),dW m

t ⟩ (2.25)

Thus, the last term on the RHS of equation (2.19) becomes

d⟨Qi
j,dW j

t ⟩ = ⟨dQi
j,dW j

t ⟩ (2.26)

= ⟨−γ
i
kl(xt)Ql

j(t)Q
k
m(t)dW m

t ,dW j
t ⟩

= ⟨−γ
i
kl(xt)Ql

j(t)Q
k
m(t)[α

m(Wt)dt +β
m
p (Wt)dBp

t ], [α
j(Wt)dt +β

j
q (Wt)dBq

t ]⟩

= −γ
i
kl(xt)Ql

j(t)Q
k
m(t)β

m
p β

j
q ⟨dBp

t ,dBq
t ⟩

= −γ
i
kl(xt)Ql

j(t)Q
k
m(t)β

m
p β

j
pdt

= −γ
i
kl(xt)[Qβ ]lp[Qβ ]kpdt

= −γ
i
kl(xt)σ

l
pσ

k
pdt

Note that the contraction β m
p β

j
p over p makes sense as the diffusion coefficient β in

equation (2.14) has the same representation in its covariant, contravariant or mixed

forms. Substituting in equation (2.19), we arrive at the developed SDE.

dxi
t = [

√
g−1(xt)]

i
jα

j(Wt)dt +σ
i
m(Wt)dBm

t −
1
2

σ
l
pσ

k
pγ

i
kl(xt)dt (2.27)
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where σ = Qβ as mentioned earlier. Finally, we must emphasize the important role

the Ito representation plays in incorporating the evolution of the frame field given

by equation (2.25) within the local coordinate expression for the developed SDE

as above. In particular, we do not need an additional SDE describing the evolving

frame field. Without the Ito correction term in equation (2.19), this would not have

been possible.

2.3 Riemannian manifold embedded in a Euclidean

space: a special case

In order to glean additional insights into stochastic development, we consider the

special case where a curve in Rd is required to be projected on an d−1-dimensional

RM which can be embedded in Rd . For further simplicity and ease of illustration,

let d = 3 and the RM be a 2-dimensional surface S. Moreover, let us first consider

the problem of deterministic orthogonal projection of a space curve (in R3) on the

surface S. Let S be parametrized as:

S = φ(u1,u2) : u1,u2 ∈U ⊂ R2 (2.28)

where φ may be regarded as a Euclidean 3-vector. Note that U is an open patch of

parametric co-ordinates u1,u2. Let e1,e2 be the 3-dimensional basis vectors on this

parametric patch.

Let x be a point on S. On the tangent space TxM, define the tangent vectors

g1 =
∂φ

∂u1 and g2 =
∂φ

∂u2 so that the Riemannian metric G is given in components by

Gi j = gi.g j (2.29)

Now, in line with the frame field approach we have adopted in Section 2.2.3

for stochastic development, let F : TxM→ R2 be a frame at x ∈ S such that

Fi jg j = ei (2.30)



2.3. Riemannian manifold embedded in a Euclidean space: a special case 39

where ei denotes the representation of the Euclidean vector ei on TxM. We may now

write:

< ei,e j >= δi j = FikGklFl j =⇒ FT F = G−1 (2.31)

We thus have F =
√

G−1 as a possible solution. At this stage, consider a space

curve p(t) in R3 and let q(t) = q(u1(t),u2(t)) be its orthogonal projection on S.

Following [27], the basic idea is to find the point q(t) ∈ S such that the Euclidean

vector q⃗p(t) is normal to the tangent space Tq(t)S at q(t). This requires that

q⃗p(t).gi = 0 ∀i (2.32)

where q⃗p(t) = q(t)− p(t), so that upon differentiation with respect to t, we have

dq
dt

.gi + q⃗p(t).
dgi

dt
=

d p
dt

.gi (2.33)

Using chain rule, viz. dq
dt =

dq
dui

dui

dt = giu̇i and dgi
dt = ∂gi

∂u j u̇ j, we arrive at

(
gi.g j + q⃗p.

∂gi

∂u j

)
du j

dt
=

d p
dt

.gi (2.34)

If n denotes the unit normal to TxM at q, then q⃗p = ρn for a positive scalar ρ .

Moreover,
{

Hi j =
∂gi
∂u j

.n
}

is the matrix of the second fundamental form. Thus, we

may rewrite equation 2.34 as:

(
Gi j +ρHi j

)
u̇ j = ṗ.gi (2.35)

To see how equation 2.35 for the evolution of u̇ j(t) is related to the frame (that

played a role in our intrinsic description of development in Section 2.2.3), we note

that Hi j =
∂gi
∂u j .n contains the normal n. Indeed, the evolution of n in the ambient

3-dimensional Euclidean space along with the orthogonality of n with gi, i= 1,2 de-

termines how the frame bundle evolves in the present context. In other words, n(t)

should be treated as an additional variable (analogous to the frame evolution com-

ponent of Hi in equation 2.27 Section 2.2.4) and its evolution may be determined
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by rewriting equation 2.32 as:

ρ(t)n(t).gi = 0 (2.36)

and differentiating it with respect to t. Defining Ki j =
∂gi
∂u j , which is a vector for each

(i, j)−pair, we may rewrite equation 2.35 as

(
Gi j +ρ(t)Ki j.n(t)

)
u̇ j = ṗ.gi (2.37)

=⇒ u̇i =

(
I+G−1K.

∫ t

0

d
ds

[ρ(s)n(s)]ds
)−1

ik
G−1

k j ṗ.g j (2.38)

= G−1
i j ṗ.g j +h.o.t. (2.39)

Although the indicial notations for the matrix G are as per usual, there is perhaps a

slight abuse of notation in those for the vector gi’s in the equation above. Typically,

gi would represent the i−th component of a vector g, but in the equation above, gi

is itself a vector for i = [1,2]. Upon an Euler discretization of the ODE in equation

2.39 and choosing ρ(0) = 0, we see that the second term on the RHS is of O(∆t)2(∆t

being the time step-size), and hence of higher order. Now, using Fgi = ei or gi =

F−1
i j e j =

[√
G
]

i j e j, we may write

u̇i = G−1
i j ṗ.g j (2.40)

= FT
ik Fk j ṗ.F−1

jl el (2.41)

= FT
ik δkl ṗ.el (2.42)

= FT
il ṗ.el (2.43)

=
[√

G−1
]

il
ṗ.el (2.44)

=
[√

G−1
]

il
ṗl (2.45)

This last equation is the same as the co-ordinate component of equation 2.12 in

Section 2.2.4 (since the frame component is explicitly accounted for already), now

arrived explicitly for a 2-dimensional surface embedded in 3-dimensional Euclidean

space, unlike the intrinsic description using moving frames in Section 2.2.3. The
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stochastic counterpart may then be derived in the same manner as in Section 2.2.4.

2.4 Illustrative examples

In this section, we consider the application of stochastic development to the mini-

mization of a non-convex objective function without constraints. Within a stochastic

search framework, we specifically do this by developing the overdamped Langevin

SDE whose evolution is additionally guided by a simulated annealing procedure.

In this context, note that a strictly positive, smooth, scalar-valued and non-convex

objective function f (x) could be looked upon, at least locally, as an energy-like

functional in the space of the design variables. We consider the minimization of the

Ackley and Rastrigin functions which constitute two of the benchmark problems in

[28], often used to test the performance of an optimization scheme. Treating f (x)

as the energy, we may readily determine g and γ; see Appendix A for details. Dur-

ing a stochastic search involving a non-convex function, g may sometimes become

negative-definite, particularly during the initial stages. As noted before, we use an

additive regularizer of the type ϒI in order to ensure positive-definiteness of g. We

then use the developed SDE for the overdamped Langevin dynamics with simulated

annealing to carry out the evolutionary search for the global minimum of f (x). The

results so obtained are also contrasted with those via the overdamped Langevin dy-

namics with simulated annealing, but without stochastic development as well as the

equation for Langevin diffusion on Riemannian manifolds from the literature. One

may note that the simulated annealing step expedites a more exhaustive search of

the design space during the initial stages.

2.4.1 The Ackley function

The Ackley function f (x) to be minimized is given by:

f (x) = f (x1, ...,xn) =−aexp

(
−b

√
1
n

n

∑
i=1

x2
i

)
−exp

(
1
n

n

∑
i=1

cos(cxi)

)
+a+exp(1)

(2.46)
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where n is the dimension of x, the design variable. The overdamped Langevin SDE

is of the following form.

dXt =−βt∇ f (Xt)dt +
√

2βtdBt (2.47)

Its stochastically developed version as per equation 2.27 is:

dXt =−βt
√

g−1∇ f (Xt)dt +
√

2βt
√

g−1dBt−βtg−1
γdt (2.48)

where

gi j =
1
2

∂ 2 f (x)
∂xi∂x j

+ϒδi j (2.49)

The equation existing for diffusions on RM (typically used for Markov chain

Monte Carlo (MCMC)) is [29, 30, 31, 32, 33]

dXt =−βtg−1
∇ f (Xt)dt +

√
2βt
√

g−1dBt−βtg−1
γdt (2.50)

The Riemannian connection γ can be obtained from the derivatives of g (Ap-

pendix A). Since we need to compute g and γ to arrive at the developed SDE, our

scheme is not gradient-free unlike most others based on meta-heuristics, e.g. the

genetic algorithm. However, when the gradient of the objective function is avail-

able, it is expected that the present approach should have the benefit of a relatively

faster convergence. For a 40-dimensional Ackley function, we have reported the

results in Figure 2.3. An ensemble size of only five particles has been used for this

purpose. The problem parameters used are as provided in Table 2.1. As can be seen

in the figure, the solutions through the Euclidean route and the existing equation

for Langevin diffusion on an RM fail to converge for the 40-dimensional problem,

while the stochastically developed version converges within 40 steps. We may note

that the Euclidean version works for the 2-dimensional case; see Figure 2.2. How-

ever, in this case too, the quality of performance of the geometric version is much

better. In reporting these results, the algorithm parameters are so chosen (by trial

and error) as to represent the best performance of each method. More specifically,
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(a) (b)

(c) (d)

Figure 2.2: 2-dimensional Ackley function minimization: results by the proposed method
are shown in (a) those via equation 2.50 in (b) and its Euclidean counterpart in
(c). Evolutions of function values pertaining to these three methods are com-
pared in (d).

the integration step size dt for the proposed scheme is always chosen about two or-

ders of magnitude higher than its Euclidean counterpart. The annealing parameter

β represents a temperature-like quantity in the diffusion equation, a higher value

implying more exploration of the search space. This may also be perceived as scal-

ing of the integration time step dt with time - which is why a smaller value is used

in the Euclidean case than in the geometric case. For an optimal performance in

terms of fastest convergence to the true function value (known for the benchmark

problems considered), both the dt and β values have to be tuned for any method.

Several pairs of these are tried for one method at a time, and the one resulting in the

best (visually) function value plot is chosen.

2.4.2 The Rastrigin function

The Rastrigin function is given by the following expression:

f (x) = f (x1, ...,xd) =
d

∑
i=1

[b(xi)
2−acos(2πxi)]+a×d (2.51)
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(a) (b)

(c) (d)

Figure 2.3: 40-dimensional Ackley function minimization: results by the proposed method
are shown in (a) those via equation 2.50 in (b) and its Euclidean counterpart in
(c). Evolutions of function values pertaining to these three methods are com-
pared in (d).

Similar to the Ackley function, results for this case are provided in Figures 2.4 and

2.5. The results show a similar trend to that of the Ackley function. The parameters

used for each of the methods are again provided in Table 2.1.

2.5 Concluding remarks
We have only provided an outline of what seems to be a potentially powerful and

geometrically inspired stochastic search scheme, applications of which could be

many. In the presence of an equality constraint, one may readily modify the energy

function by adding a term that penalizes the violation of the constraint. While we

have adopted an energy-based route for the stochastic search, a geometrically devel-

oped version of a martingale based approach [34] could as well be used. A geomet-

ric variant of the stochastic approximation framework [35] is also worth exploring.

Note that, within the current setup, constrained optimization problems could also

be solved through an appropriate modification of the energy, viz. via a penalty term

similar to the first two problems. Indeed, given any cost function (path dependent or

otherwise) and a diffusion process, one may construct an appropriate Feynman-Kac
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(a) (b)

(c) (d)

Figure 2.4: 2-dimensional Rastrigin function minimization: results by the proposed
method are shown in (a) those via equation 2.50 in (b) and its Euclidean coun-
terpart in (c). Evolutions of function values pertaining to these three methods
are compared in (d).

(a) (b)

(c) (d)

Figure 2.5: 40-dimensional Rastrigin function minimization: results by the proposed
method are shown in (a) those via equation 2.50 in (b) and its Euclidean coun-
terpart in (c). Evolutions of function values pertaining to these three methods
are compared in (d).
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Proposed Existing Euclidean
2-dimensional Ackley

step size 0.5 0.05 0.01
β0 1000 1000 50
decay factor ν 0.01 0.001 0.001
regularizer ϒ 106 106 -

40-dimensional Ackley
step size 0.5 0.5 0.001
β0 50000 50000 1000
decay factor ν 0.01 0.0001 0.01
regularizer ϒ 106 106 -

2-dimensional Rastrigin
step size 0.1 0.1 0.001
β0 50 50 5
decay factor ν 0.001 0.0001 0.001
regularizer ϒ 106 106 -

40-dimensional Rastrigin
step size 0.1 0.01 0.001
β0 50 50 5
decay factor ν 0.001 0.0001 0.0001
regularizer ϒ 106 106 -

Table 2.1: Parameters used for the three equations used for optimization for all the prob-
lems considered, the Ackley and Rastrigin functions in 2 and 40 dimensions.
Step size is dt. β0 is the initial value of β in equations 2.47 (proposed), 2.50
(existing) and 2.48 (Euclidean). β is decayed with time as per the following ex-
pression: βk+1 =

βk
exp(ν)k and ϒ is the regularizer used for the metric in equation

2.49

path integral from which an action functional could be identified. This action func-

tional could offer a general approach to construct a Riemannian metric and hence

stochastically develop the underlying diffusion process. We intend to consider these

issues in the future.

In the next chapter, we discuss the application of the main result derived in

this chapter, i.e. equation 2.27 to MCMC. The methodology is essentially the same

as that adopted for optimization, except for a few details. One, annealing is not

made use of, i.e. β = 0.5 in equation 2.48 at all time steps. Instead, a Metropolis-

Hasatings accept-reject step is used. Two, the Fisher information matrix (FIM) is

used as the Riemannian metric. We also discuss why the FIM is an appropriate

metric to use for statistical parameter estimation problems.



Chapter 3

Stochastically developed Langevin

dynamics: application to Markov

chain Monte Carlo

This chapter is a modified version of the work in [36], a preprint. The section

containing a proof in the preprint (an alternative to the proofs provided in sections

2.2 and 2.3 of Chapter 1) is moved to Appendix A of this thesis for a better flow of

the presentation.

3.1 Introduction
Markov Chain Monte Carlo (MCMC) is an active field of research with a rich body

of literature that is fast-growing. Significant applications of an MCMC algorithm

include, among others, evaluating a complex integral and sampling from an unnor-

malized distribution. The latter is especially useful when it is difficult to obtain

the normalizing constant of a distribution or when sampling from the density is

quite non-trivial even though the density may itself have a simple form. MCMC

is perhaps the only known general approach to find the volume enclosed by an n-

dimensional convex body with a reasonable computational overhead [37]. It has

also been used to sample from the posterior probability in stochastic filtering prob-

lems based on Sequential Monte Carlo (SMC). In a more general context, MCMC

has been employed for optimization as well, see e.g. [38]. In [39], the authors
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discuss and demonstrate an interesting approach to modify a few existing MCMC

methods to enable their applications to a wide range of problems including but not

limited to data assimiliation and image registration. MCMC methods, in combi-

nation with existing machine learning algorithms, have also been exploited in ap-

plications such as particle filtering [40], robotics [41], computational biology [42],

genetics [43] and machine learning [44], to name only a few.

We refer to [45] for a recent review of MCMC methods, with an interesting

discussion on a few popular misconceptions. The Metropolis Adjusted Langevin

Algorithm (MALA) [4], the Hamiltonian Monte Carlo (HMC) approach [46] and

related methods that make use of the gradient of the target density to design a pro-

posal distribution for the Markov chain may be considered as ’first-order’. MALA

uses Langevin dynamics in conjunction with the Metropolis accept-reject step.

There are several MCMC algorithms that are based on Langevin dynamics, e.g.

the Metropolis adjusted Langevin truncated algorithm or MALTA [4], the projected

unadjusted Langevin algorithm (ULA) [47], proximal MALA [48], underdamped

Langevin MCMC [49], Moreau-Yosida Unadjusted Langevin Algorithm (MYULA)

and Moreau-Yosida Regularized Metropolis Adjusted Langevin Algorithm (MY-

MALA) [50], the ULA [2] which is free from the Metropolis accept-reject step and

is essentially the approach used in Chapter 2. Note that [4], [51], [52], [53], [2],

[54], investigated the convergence properties of various Langevin diffusion based

MCMC methods. There are also several studies that focus on the scaling, con-

vergence and mixing properties of the Langevin-class of MCMC algorithms. For

instance, in the context of sampling from a log-concave density using MALA, [55]

proves a non-asymptotic upper bound on the mixing time to demonstrate the ben-

efit of the accept-reject step, viz. an exponentially improved dependence on error

tolerance. Similar bounds on the error of sampling from a target density based on

three different schemes of discretized Langevin dynamics have been reported [56].

[57] proposes a new approach to quantify convergence of underdamped Langevin

dynamics to equilibrium.

In this work, our focus is on MALA. It is a class of MCMC methods in which
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the Markov Chain evolves as per the overdamped Langevin dynamics. Specifically,

the Langevin SDE (interpreted in the sense of Ito) is given by

dxt =
1
2

∇Ldt +dBt . (3.1)

Here L is the log-likelihood of the target density and dB the standard Brownian

increment such that dB ∼N (0,
√

dt). Since the Langevin dynamics involves gra-

dient information of the target distribution, the method is more likely to move to-

wards regions of high probability, which is a major advantage over the use of largely

arbitrary proposal distributions.

If the Langevin SDE could be solved exactly, all the particles would be ac-

cepted and there would be no need for a Metropolis adjust step. However this is

rarely the case. The SDE may be solved by various numerical integrators – the

Euler-Maruyama method being often used – that introduce integration errors and

hence necessitates the Metropolis-Hastings accept-reject step. This step also helps

improving the convergence characteristics of the algorithm. However, MALA does

have its share of disadvantages, e.g. cases involving highly correlated multivariate

distributions.

As we have just noted, MALA is based on the Euclidean Langevin SDE. Work-

ing with SDEs in the Euclidean setting however comes with its shortcomings. The

two major inadequacies of working in the Euclidean setting are as follows. First,

owing to the noise term in the SDE, there is a possibility of a gradual increase in

the variance of numerical solutions to SDEs. Second, the space-filling properties of

Brownian motion may cause delayed convergence. These issues gain in importance

as the dimension of the problem increases and form the motivation for our present

work. Despite the spectrum of research areas in which MCMC finds application and

the many flavours of it that have been explored, hardly an effort has been made at

exploiting the differential geometric aspects to develop faster and more accurate al-

gorithms. Whenever diffusions on Riemannian manifolds (RM) are considered, it is

either directly in the language of frame bundles or exponential and log maps which

is inaccessible to non-specialists, see e.g. [58], or in the form of an SDE which
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simultaneously uses Amari’s natural gradient [59] in conjunction with the equation

for Brownian motion on an RM. [33] is a work on MCMC belonging to the latter

category. To our understanding, this work is however beset with certain issues (dis-

cussed in detail in Section 3.4) which is indeed one of the motivating factors for this

article. We present here an MCMC method based on the stochastic development of

a general SDE on an RM as derived in the previous chapter and use it specifically in

the context of the overdamped Langevin diffusion equation to obtain the geometri-

cally adapted version of MALA, which we will refer to as Geometrically Adapted

Langevin Algorithm (GALA) from here on. The resulting algorithm for GALA is

also given in Section 3.2, which may be considered a ‘second-order’ method, as it

makes use of derivatives up to the second order for the proposal step; this is unlike

MALA which is a ‘first-order’ method.

The rest of the chapter is organized as follows. In Section 3.2, we derive the

stochastic development of an SDE on the RM starting with a brief review of dif-

ferential geometry and stochastic calculus for completeness. Section 3.3 discusses

the relevance of Fisher-Information matrix as a Riemannian metric for the mani-

fold MCMC methods. Section 3.4 discusses work related to GALA. Section 3.5

contains an illustration of the method on the couple of problems discussed above.

We conclude the chapter in Section 3.6 with a discussion on the outcomes and an

outline of the future scope.

3.2 Methodology

We aim at estimating the true parameter vector θ ∗ of a probability density given

a set of samples drawn from it. With our interest in MALA, the evolution of the

parameter vector θ(t) is governed by the Langevin SDE,

dθ(t) =
1
2

∇L(θ(t))dt +dBt (3.2)
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where L is the log likelihood. In accordance with (2.27), the stochastically devel-

oped counterpart of (3.2) is then given by

dθ
i
t =

1
2
[
√

g−1(θt)]i j∇L(θt)
jdt+[

√
g−1(θt)]imdBm

t −
1
2
[g−1(θt)]klγ

i
kl(θt)dt (3.3)

Algorithm for GALA

While the pseudo-code presented below could be readily adapted for problems re-

lated to sampling from given densities, it is presently for purposes of estimating

the parameter vector θ ∗ of a given distribution using GALA, when the observations

{z}N
i=1 are available from a known probability density function px(.;θ ∗), where

x ∈Ω and (Ω,F ,P) is a complete probability space.

Algorithm 1: GALA
Result: MCMC chain of length K
Data: N samples {z}N

i=1 distributed as per px(.;θ ∗)
Initialize: θτ for τ = 1

for τ = 1 : K−1 do
Evaluate the log-likelihood L(θτ) as L(θτ) = log(px(z|θτ))
where px(z|θτ) = ∏

N
i=1 px(zi;θτ)

Obtain the Fisher-Information matrix (FIM), which is the Riemannian
metric g(θτ) = E[(∇θ L(θτ))(∇θ L(θτ))

T ]
Determine the Riemannian connection
Γk

i j(θτ) =
1
2gkl(θτ)[∂ig jl(θτ)+∂ jgil(θτ)−∂lgi j(θτ)]

Integrating the SDE (3.3) by Euler-Maruyama method, we have the
following proposal

θ i
τ+1 = θ i

τ +[
√

g−1(θτ)]i j∇L(θτ)
j∆t +[

√
g−1(θτ)]imdBm

t −
1
2 [g
−1(θτ)]klΓ

i
kl(θτ)∆t

Accept θτ+1 as per the Metropolis-Hastings acceptance probability α

determined as follows:
α = min

(
px(z|θτ+1)q(θτ |θτ+1)
px(z|θτ )q(θτ+1|θτ )

,1
)

where q(y|x) is the multivariate Gaussian density with mean
µ i : xi +[

√
g−1(x)]i j∇L(x) j∆t− 1

2 [g
−1(x)]klΓ

i
kl(x)∆t, covariance

matrix Σim : ∆t[g−1(x)]im evaluated at y.
end
return {θτ}K

τ=1
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3.3 Significance of Fisher-Information in statistical

parameter estimation

The class of problems considered in this chapter comprise of estimating parameters

of a certain probability distribution given independent and identically distributed

(i.i.d.) samples from that distribution. The Riemannian metric used in these exam-

ples in equation 3.3 is the FIM. In this section, we try to glean insights into why this

is an appropriate metric by making use of the Kullback-Leibler divergence [60].

Let N i.i.d. samples Z = [zi]
N
i=1 , be available from a distribution whose corre-

sponding probability density is pθ∗(x;θ ∗) where θ ∗ is unknown. The aim is to solve

for the parameter θ ∗. Digressing a bit from the main point to appreciate a couple

of interesting points; we may also look at this problem as one maximising the like-

lihood L(θ ;Z) = ΠN
i=1 pθ (zi;θ) or the log-likelihood logL(θ ;Z) over θ . It is worth

noting here that different realizations of Z may lead to different solutions of θ , how-

ever as N→∞, they converge in distribution to N (θ ∗, I(θ ∗)−1/2), see Chapter 6 in

[61]. Unlike maximising the likelihood, when looked upon as an MCMC problem,

we naturally obtain a distribution of the parameter estimate. Indeed, in the 1945

article by C R Rao, it is shown that the variance of the estimator is upper bound

by the inverse of the FIM. The paper also discusses how the parametric space of

probability densities can be treated as an RM. Coming back to the rationale of us-

ing the FIM as a Riemannian metric, consider the likelihoods corresponding to two

parameter values θ ∗ and θ ∗+∆θ . The Kullback-Leibler divergence between these

likelihoods, where the one with θ ∗ is taken as the reference is given as follows

KL(L(θ ∗+∆θ ;Z)||L(θ ∗;Z)) (3.4)

=
∫

log
(

L(θ ∗+∆θ ;Z)
L(θ ∗;Z)

)
L(θ ∗+∆θ ;Z)dZ (3.5)

=
∫
[logL(θ ∗+∆θ ;Z)− logL(θ ∗;Z)]L(θ ∗+∆θ ;Z)dZ (3.6)
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Expanding logL(θ ∗;Z) according to Taylor series about θ ∗+∆θ , we have

logL(θ ∗;Z) = logL(θ ∗+∆θ ;Z)−∆θ
T

∇θ∗+∆θ logL(θ ∗+∆θ ;Z) (3.7)

+∆θ
T

∇
2
θ∗+∆θ logL(θ ∗+∆θ ;Z)∆θ (3.8)

where ∇θ∗+∆θ logL(θ ∗+∆θ ;Z) and ∇2
θ∗+∆θ

logL(θ ∗+∆θ ;Z) are the gradient and

Hessian of the log-likelihood, respectively. Substituting the above expression in 3.6,

we have

KL(L(θ ∗+∆θ ;Z)||L(θ ∗;Z)) (3.9)

=
∫
[∆θ

T
∇θ∗+∆θ logL(θ ∗+∆θ ;Z)−∆θ

T
∇

2
θ∗+∆θ logL(θ ∗+∆θ ;Z)∆θ ]L(θ ∗+∆θ ;Z)dZ

= ∆θ
TE(∇θ∗+∆θ logL(θ ∗+∆θ ;Z))−∆θ

TE(∇2
θ∗+∆θ logL(θ ∗+∆θ ;Z))∆θ

(3.10)

where E(.) is the expectation with respect to the density L(θ ∗+∆θ). In what fol-

lows, we show that the expectation of the gradient of the log-likelihood vanishes.

E(∇θ∗+∆θ logL(θ ∗+∆θ ;Z)) (3.11)

= E(∇θ∗+∆θ

N

∑
i=1

log p(zi;θ
∗+∆θ)) (3.12)

=
N

∑
i=1

E(∇θ∗+∆θ log p(zi;θ
∗+∆θ)) (3.13)

=
N

∑
i=1

E
(

∇θ∗+∆θ p(zi;θ ∗+∆θ)

p(zi;θ ∗+∆θ)

)
(3.14)

=
N

∑
i=1

∫
(∇θ∗+∆θ p(zi;θ

∗+∆θ))dzi (3.15)

=
N

∑
i=1

∇θ∗+∆θ

∫
p(zi;θ

∗+∆θ)dzi (3.16)

= 0 ∵
∫

p(zi;θ
∗+∆θ)dzi = 1∀i (3.17)
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Substituting E(∇θ∗+∆θ logL(θ ∗+∆θ ;Z)) = 0 in equation 3.10, we have

KL(L(θ ∗+∆θ ;Z)||L(θ ∗;Z)) =−∆θ
TE(∇2

θ∗+∆θ logL(θ ∗+∆θ ;Z))∆θ (3.18)

Now, −E(∇2
θ∗+∆θ

logL(θ ∗+∆θ ;Z)), on the right-hand side of the equation

above, is the FIM. We have thus shown that the error in distance in distributions due

to an error of ∆θ in the parameters is the norm of the error vector ∆θ with respect

to the FIM. Since we are interested in minimizing the distance in probability (corre-

sponding to a given parameter value) with respect to the true density (corresponding

to the true parameter value) rather than the Euclidean distance between two given

parameter vectors, it makes sense to use the FIM as the Riemannian metric.

3.4 Related work
In this section, we discuss work related to GALA. The closest by far is [33]. The

authors therein propose two major categories of MCMC methods on an RM, the first

is based on Langevin dynamics and the second on Hamiltonian dynamics. Within

the Langevin dynamics based methods, there are again two versions - the manifold

Metropolis adjusted Langevin algorithm (MMALA) and the simplified MMALA.

First, consider the MMALA which is closest to GALA. The equation for generating

samples in [33] is proposed as (after correcting for a factor half in the last term):

θ
i
τ+1 = θ

i
τ +[g−1(θτ)]i j∇L(θτ)

j
∆t +[

√
g−1(θτ)]imdBm

t −
1
2
[g−1(θτ)]klΓ

i
kl(θτ)∆t

(3.19)

The authors use Amari’s natural gradient ([g−1(θτ)]i j∇L(θτ)
j) in the equation

for Brownian motion on an RM - a well-known equation in the literature. A rigorous

justification of this step is however not available. While Amari’s natural gradient

is known to be a valid gradient of deterministic curves on an RM, it may not nec-

essarily hold for diffusions. The article by Amari on natural gradient [59] has in

fact used this gradient only for a deterministic method. Indeed, the origin of G−1

as a multiplying factor to the drift vector field appearing in a differential equation

on an RM can be traced to certain basic principles of geometric mechanics; e.g. see
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[62]. Specifically, a differential equation representing a balance law (e.g. of linear

momentum) is essentially a balance of forces which in turn are co-vectors. Repre-

senting such an equation in terms of vectors (e.g. velocity, acc. etc.) requires the

sharpening operation using G−1; see Chapter 3 of [63]. Unfortunately, for SDEs

written in terms of incremental states (co-vectors), a vector representation may not

be not meaningful. This calls into question the use of G−1 as a multiplier of the

drift.

In the simplified MMALA, the connection term (last term in (3.19)) is dropped,

perhaps for the sake of simplification. In this setting, the invariant distribution of

the proposal equation may not remain unchanged owing to the following reasons.

First, since the SDE is different, so is the proposal density and its associated in-

variant distribution. The acceptance step may however enforce convergence to the

target distribution, at least in some cases. Complications may arise, for instance, if

the proposal SDE corresponds to a density whose invariant measure differs consid-

erably from the target measure; it may no longer behave as an importance sampling

scheme. In the Euclidean setting, the invariant distribution of any SDE pertains

to the stationary solution of the Fokker-Planck equation. Hence, the case wherein

simplified MMALA surely converges to the correct target distribution is when G

is constant (see (B.3) in Appendix). This also corresponds to the preconditioned

MALA, which is a well-established Euclidean MCMC method, though not an RM

method. In practice, for parameter estimation problems, when enough data is avail-

able so that the posterior is almost a Dirac measure and as parameters converge

to one value, simplified MMALA may behave as a preconditioned MALA as it-

erations progress. This may no longer hold when considering sampling problems

when G(Xt) never converges to one value, or even for parameter estimation prob-

lems when the data is scarce and the posterior has a large variance. An alternative

might perhaps be to consider the multiplicative noise along with an appropriately

added drift for the Langevin dynamics (see [64]) which is known to converge to

the correct distribution. This last version has been arrived at in a follow-up article

by [65] by a slightly different approach. It is done with the objective of correcting
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the MMALA proposal in equation (3.19) so that it converges to the target distribu-

tion. In order to achieve this, a couple of adjustments are made to (3.19) so that

it becomes equal to the multiplicatively driven Langevin system [64]. Although

this proposal converges to the correct target distribution, it essentially remains a

Euclidean method and not quite an RM proposal; see again [64].

Moving on to the RM-HMC method, the formalism in [33] seems to have been

based on Theorem 6.4 of [66] which corresponds to the case when the Hamilto-

nian consists of only kinetic energy. This special case of Hamiltonian requires the

evolution of the system state φ to follow a geodesic on the RM (so that ∇ .
φ

.
φ = 0).

The Hamiltonian considered by [33] however consists of both potential energy and

kinetic energy both, so the equations of motion presented need more justification.

Intuitively, we can see that these may not be valid from the following perspective.

For an n-dimensional manifold with coordinates x1,x2...xn, the time derivative (ve-

locity
.
xi) is a tangent space object, see for instance Chapter 1 of [67]. The definition

of acceleration would therefore necessitate the underlying Riemannian connection

in the expression, since it requires an evolution across different tangent spaces. In

other words, the time derivatives of momenta in Hamilton’s equations must contain

the Riemannian connection, see for instance the original work done in [68] where

the Riemannian connection was duly incorporated. A more general case of this

(presence of external forcing) is also derived in [69] and [62] by taking a variation

of the action functional in terms of the Lagrangian, wherein the equations of mo-

tion are identical with those obtained in [68] for the case of no external forcing.

Moreover, even though the phase space volume interpreted in the Euclidean space

is conserved in [33], the Riemannian volume over the same phase space may not

(e.g. see Chapter 3 of [63] for the computation of the Riemannian volume).

Unfortunately, in most of the available literature on RM based MCMC meth-

ods [70, 65, 71], the invariant distribution of a d− dimensional proposal on an RM

is examined using the Fokker-Planck equation evolving in a d−dimensional Eu-

clidean space. We think this is inappropriate because any path evolving on an RM

of dimension d is actually a D−dimensional path in the embedding Euclidean space,
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where D ≥ d + 1 according to Nash’s embedding theorem [72]. Therefore, if the

invariant distribution were to be found using the Fokker-Planck equation, it should

be accomplished in a Euclidean space of appropriately higher dimension. This is

very challenging for the following reasons. The first is, in more cases than other-

wise, it is difficult if not impossible to determine the embedding dimension D. Even

if D can be determined, we must then re-write the d− dimensional stochastically

developed equation in the D− dimensional (Euclidean) embedding space, which is

often infeasible or difficult whilst defeating the very purpose of stochastic develop-

ment. Finally, we would also need to redefine the probability space pertaining to

the dimension D of the embedding space.

GALA does not satisfy the Euclidean Fokker-Planck equation, as expected,

and is still successful for all the problems considered. A tempting possibility would

perhaps be to consider the so-called Fokker-Plack equation on RMs [73]. GALA

does not conform to this either, even though MMALA does (see (B.6) in Appendix).

But, as numerically evidenced in the observed divergence of MMALA for most

problems considered here, one anticipates that the last cited form of Fokker-Planck

equation is perhaps not the right equation to study invariant distributions on RMs.

Overall, the global properties of diffusions on RMs are far from adequately under-

stood in the literature, though some first steps are taken. For instance, some work on

the short time aymptotics of the heat kernel, which is related to the transition prob-

ability of a Brownian motion on an RM, has been reported in Chapters 4 and 5 in

[23]. However, a more complete understanding of invariance may require an under-

standing of the long-term asymptotics, which may not be well-defined depending

on the structure of the curvature tensor. Accordingly, the question of invariance,

though important, remains unresolved as yet.

So far, the discussion was about the theoretical issues arising in the related

work. The numerical examples reinforce these observations, wherein it is shown

that MMALA fails to converge for all problems except the logistic regression case.

Unlike in other cases, the metric for the logistic regression problem is symmetric

for which the MMALA proposal via equation 3.19 reduces to the multiplicative
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Langevin dynamics (see equation 2.50 in Chapter 2), which by construction [64] is

a Euclidean proposal and converges to the target distribution. Even as the MMALA

does converge for this problem, it takes longer compared to GALA as reported

in Figure 3.8 and Table 3, thus reinforcing the argument of it being a Euclidean

method. This contrast becomes more pronounced with an increase in the dimension.

Finally, a word about the problems considered in [33]; these are problems in

which, typically, the connection term is either small or vanishes altogether. There-

fore, in such problems, the method either reduces to or asymptotically behaves like

pre-conditioned MALA. Owing to the symmetry in the metric, the logistic regres-

sion problem in particular, as mentioned in the previous paragraph, reduces to the

multiplicative Langevin dynamics. However, for even a 1D problem when the data

size is large or a high-dimensional correlated problem like the Gaussian example

with unknown mean and covariance considered in this work, when the connection

term becomes important in the proposal step, MMALA diverges as seen in Figures

3.1 and 3.5.

3.5 Illustrative examples

In this section, we illustrate the workings of GALA on a suite of related methods

for two classes of parameter estimation problems. In the first, given a set of real-

izations from a probability distribution with a known functional form, we estimate

the unknown parameters. The second problem concerns logistic regression wherein

N number of explanatory variables with the corresponding binary response vari-

ables are given, and the aim is to reconstruct the regression parameters. Some of

these problems have been considered in [33], though the authors therein work with

one-dimensional Gaussian or uncorrelated multivariate Gaussian distributions. Ex-

tending the geometric construction from one to multivariate densities is however

non-trivial, and this is what we accomplish in this section. In addition, we also

consider the parameter estimation of Rayleigh, Weibull and Banana-shaped distri-

butions by way of highlighting how an erroneous departure from proper stochastic

development could either yield an incorrect solution or failure of the method for
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the estimation problem involving a non-Gaussian density. We compare the results

obtained with GALA with those obtained by MALA, MMALA, and in some cases

corrected MMALA, No-U-turn sampler (NUTS) and HMC methods as well.

We consider toy problems ranging from a 1-dimensional Rayleigh to a 65-

dimensional multivariate Gaussian and the heavy-tailed Weibull distribution to a

highly twisted Banana-shaped distribution. The reason to work with such toy prob-

lems is to demonstrate the accuracy of estimation. As will be seen in the results

for large dimensional examples, Stan [74, 75] and other methods converge to in-

correct parameters. It is not too difficult to oversee this issue in problems with real

datasets where the true parameter values remain unknown. The priors for all ex-

amples except for logistic regression is taken as uniform, as it slightly increases

the problem difficulty and perhaps also leads to a fairer comparison among various

methods. The initialization for various methods is kept the same except for Stan

in which case its defaults are used. Figures 3.1-3.8 show the behaviour of various

methods in the burn-in phase, which helps to visualize the speed of convergence.

Tables display a comparison of various performance metrics of all the methods af-

ter the burn-in phase. Effective sample size (ESS) is often used as a performance

metric which is fine for a sampling problem, since indeed samples are desired from

a distribution. However, we believe it is perhaps not the right metric for parameter

estimation problems considered in this work for the following reason - assuming

enough data is available, the posterior distribution would be almost like a Dirac

measure at the correct parameter value and an ideal algorithm should converge to

the correct parameter value and stay there. However, ESS for such a solution would

vanish, which is clearly not the right inference. Therefore, we do not consider ESS

comparison, but instead use burn-in and acceptance rate, since a longer burn-in and

a high rejection rate lead to wasted computation. We thus choose the algorithm pa-

rameters so as to reduce the burn-in period. The burn-in is determined based on the

first time the Markov chain enters within a tolerance level of the correct parameter

value and stays there. The acceptance percentage represents the number of samples

accepted for the entire chain, i.e. including the burn-in phase. The estimated mean
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and sample variance for the parameters are determined based on a certain number

(different for different problems, as specified in the caption of each table) of sam-

ples after burn-in, while the true parameter value for each problem is mentioned in

the black bar in the tables. For multi-variate cases, the norm of the sample variance

(in Table 3.3) corresponds to the norm calculated from the sample variances of the

scalar-valued components.

Figure 3.1: Parameter σ in the Rayleigh density via GALA (∆t = 0.2), MALA (∆t = 0.01),
MMALA (∆t = 0.15) and HMC (∆t = 0.04,L = 50) for N = 200 sample ob-
servations

3.5.1 Estimating the parameters of a probability distribution

Rayleigh distribution. Consider a problem where N samples {z}N
i=1 are avail-

able from a Rayleigh distribution with unknown parameter σ , which we wish to

estimate. We first derive the developed equation for the Rayleigh distribution fol-

lowing the steps listed in the pseudo-code in Section 3.2 (see Appendix B for a

detailed derivation)

dσt =

(
−
√

N
2

+
∑

N
i=1 z2

i

4σ2
√

N
+

σt

4N

)
dt +

σt

2
√

N
dBt (3.20)
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which may be contrasted with those in MALA and MMALA as

MALA: dσt =

(
−N

σ
+

∑
N
i=1

z2
i

)
dt +dBt (3.21)

MMALA: dσt =

(
−σt

4
+

∑
N
i=1 z2

i
8σtN

+
σt

4N

)
dt +

σt

2
√

N
dBt (3.22)

Results in the burn-in phase for parameter reconstruction by various methods

are shown in Figure 3.1. Several performance metrics over 10 repeated simulations

are summarized in Table 3.1. HMC requires integration over 50 steps of Hamilto-

nian dynamics for one proposal. This implies a similarly enhanced cost of proposal

as shown in Table 3.1 for comparison. The sample variance (variance of the MCMC

samples after discarding burn-in) obtained by GALA is lower compared to other

methods.

(a) (b)

(c) (d)

Figure 3.2: Reconstructing the parameter in the Rayleigh density: a comparison of results
via different methods with varying number of observations; (a) GALA; (b)
MALA; (c) MMALA; (d) HMC

As part of our convergence study, we now compare the performances of dif-

ferent methods as the number of observations increases. We present the results for

Rayleigh distribution which, though one-dimensional, is unsymmetric enough to be
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a good test problem. As anticipated and as shown in Figure 3.2, the performance

of most methods improves, such as in the forms of ESS being higher and burn-in

period smaller, with increasing number of observations. The exception is MMALA

where it sharply deteriorates; this likely happens as the dynamics is not properly

developed on the RM. In other words, MMALA appears to confine the Langevin

dynamics somewhat incorrectly, a feature more visible with an increased quantum

of observation data. The slight ambiguity in the performance of HMC may be at-

tributed to suboptimal tuning.

GALA MALA MMALA HMC
Rayleigh (True σ = 2)

burn-in 48,54,68 27,29,48 338,397,500 11,13,23

Acceptance
(%)

90.05,90.75,
92.4

76.5, 77.85,
79.95

86.85,88.95,
90.25

77.2, 78.72,
81.1

Estimated
mean

2.0298,2.0353,
2.0396

2.031,20.361,
2.0399

2.0206,2.0523,
2.0384

2.0345,2.0390,
2.0440

Sample
variance

[1.8,2.1,2.7]
×10−3

[2.9,3.1,3.3]
×10−3

[2.8,4.5,8]
×10−3

[4.6,5.1,6.1]
×10−3

Runtime
(seconds)

1.0605 0.9821 1.0904 2.1387

Banana (True B = 0.1)
burn-in 9,11,12 12,13,14 - 54,59,63

Acceptance
(%)

100,100,
100

83.7,84.7,
86.7 -

94.3, 95.02,
96.2

Estimated
mean

0.1005,0.1005,
0.1005

0.1006,0.1007,
0.1008 -

0.1005,0.1005,
0.1006

Sample
variance

[0.8,2,3]
×10−8

[2.4,3.1,4.03]
×10−6 -

[2,2.2,2.5]
×10−5

Runtime
(seconds)

0.2 0.25 0.42 0.48

Table 3.1: Comparison of various performance metrics (minimum, median and maximum)
for 2000 posterior samples obtained over 10 independent runs of each method.
200 and 10 observations are used for the Rayleigh and Banana distribution, re-
spectively. The mean and sample variance are calculated based on 1000 samples
after discarding the burn-in samples for each method.

Banana-shaped distribution. Next, consider the 2-dimensional banana-
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shaped distribution, the joint probability density of which is given by

pxy(x,y;B) = exp
(
− x2

200
− 1

2
(y+Bx2−100B)2

)
(3.23)

The banana-shaped distribution is basically a twisted Gaussian distribution with a

twist parameter B and forms a good test distribution in the context of problem ge-

ometry. Our interest, as in the previous example, is in estimating the parameter B.

Detailed derivation of the stochastically developed equation for this distribution is

given in the Appendix B. Figure 3.3 compares results in the burn-in phase for the

twist parameter reconstructed by GALA, MALA and HMC given a set of only 10

sample points. The MMALA method fails for this problem. Similar to the Rayleigh

distribution, in this problem too HMC requires integration of Hamiltonian dynam-

ics over 50 time steps for one proposal, considerably increasing the computational

cost. Again, Table 3.1 gives a summary of the various performance metrics for

the methods considered. GALA performs better compared to other methods for

all the metrics considered, particularly in the sample variance which is 4 orders of

magnitude lower than HMC and 3 orders lower than MALA whilst taking the least

computation time. Indeed, given the fully connected nature of curves in one dimen-

Figure 3.3: Parameter B in the Banana-shaped distribution via GALA (∆t = 0.1), MALA
(∆t = 0.000005), MMALA (∆t = 0.1) and HMC (∆t = 0.0001,L = 50) for
N = 10 sample observations
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sion, the full potential of a Riemannian geometric method such as GALA is not

realized for 1D cases, as in the Rayleigh and banana-shaped distribution problems.

In what follows, we consider a few higher dimensional illustrations to showcase the

potential benefits of GALA.

Weibull distribution. The Weibull distribution is 1-dimensional and charac-

terised by two parameters. This heavy-tailed distribution is important as it can be

used to represent many different shapes by appropriately choosing the two param-

eters (viz. the shape parameter, k and the scale parameter, λ ). The current estima-

tion problem therefore involves these two parameters. The shape of the probability

density is very sensitive to changes in the parameter k. A detailed derivation of

the developed equation for this distribution is given in the Appendix B. Figure 3.4

gives a comparison of results through GALA, MALA, MMALA and HMC in the

burn-in phase. The estimation by GALA, which is manifestly of a superior qual-

ity vis-á-vis MALA and MMALA, is only matched by the HMC. Table 2 gives a

comparison of the various performance metrics. GALA performs better than other

methods overall, particularly the variance, which is at least one order of magnitude

lower than the other methods. However, owing to a complex nature of the gradi-

ents with respect to the desired parameters, the expectations appearing in the FIM

have been numerically evaluated for GALA and MMALA, see Appendix B for the

expressions. Note that this issue could either possibly be solved analytically, or ac-

celerated numerically (since numerical expectations can be parallelised), and only

appears for very specific distributions. This aspect may be borne in mind whilst

assessing the reported comparisons of these two methods with MALA and HMC,

particularly the computation time.

Multivariate Gaussian distribution. Now consider a multivariate Gaussian

distribution. Again, the detailed derivation for the developed equation is included in

the Appendix B. In order to better understand the performance variation of different

methods with increasing dimensionality, we consider a sequence of problems with

number of parameters to be estimated varying from 5 to 65. Figure 3.5 shows the

chain plots for the 65-dimensional parameter problem with 10 unknown mean and
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(a) k

(b) λ

Figure 3.4: Parameters of the Weibull distribution via GALA (∆t = 0.1), MALA(∆t =
0.0005), MMALA (∆t = 0.1) and HMC (∆t = 0.01,L = 10) for N = 400 sam-
ple observations; (a) shape parameter - k; (b) scale parameter - λ

55 covariance matrix components (i.e. for a 10-dimensional Gaussian distributed

dataset) obtained by GALA, MALA, MMALA, corrected MMALA [65] and Stan,

for a few components of the mean vector and the covariance matrix. All methods

except GALA fail for the 65-dimensional problem. For most of the components,

MALA does not converge in the 1000 steps considered. MMALA diverges, and all

samples after about 400 iterations are rejected. Stan (brms package in R) converges

for all the mean components; however, out of the 55 components of the covariance

matrix, it only converges to correct values for one or two. For the remaining compo-

nents, it converges to incorrect parameter values. The computation time with Stan

is also (at least) five times more than GALA for this particular problem.

Figure 3.6 gives the variation in performance as well as computation time of

several methods with increasing dimension. Specifically, it gives the minimum
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GALA MALA MMALA HMC
Weibull (True λ = 1, True k = 1.5)

burn-in 8,8,9 24,33,56 137,180,254 4,16,39

Acceptance
(%)

95.15,95.8,
96.45

100,100,
100

100,100,
100

98.95, 99.45,
99.7

Estimated
mean λ

1.03,1.031,
1.031

1.029,1.031,
1.036

0.999,1.043,
1.075

1.03,1.032,
1.033

Sample
variance λ

[5.9,6.6,7.4]
×10−5

[0.98,1.1,1.2]
×10−3

[1.3,2.5,4.3]
×10−3

[0.89,1.1,1.3]
×10−3

Estimated
mean k

1.532,1.533,
1.535

1.52,1.53,
1.54

1.458,1.537,
1.565

1.53,1.534,
1.538

Sample
variance k

[1.8,2,2.2]
×10−4

[2.2,2.8,4]
×10−3

[3.9,6,9.8]
×10−3

[2.6,3,3.1]
×10−3

Runtime
(seconds)

29.13∗ 8.23 27.45∗ 5.32

Table 3.2: Comparison of various performance metrics (minimum, median and maximum)
for 2000 posterior samples obtained over 10 independent runs of each method.
400 observations are used for estimation. The mean and sample variance are
calculated based on 1000 samples after discarding the burn-in samples for each
method. The runtime for GALA and MMALA is unreasonably high due to the
numerical expectations used for the Riemannian metric and its derivatives based
on 2000 Weibull samples generated every iteration.

and maximum norms of the estimated mean parameter vector across 4 independent

chains of length 1000 each (with the last 100 samples if there is no convergence,

otherwise with all the samples following burn-in ). The gradual performance de-

terioration of most methods, with GALA being the sole exception is a highlight of

this figure. For instance, all methods but Stan (which fails to converge for the cross-

covariance term σ12) converge to the correct solution for the 5-parameter (2D Gaus-

sian) problem. For the 9-parameter problem (3D Gaussian) case, all methods but

corrected MMALA and GALA fail, even as we observe a markedly slower rate of

convergence with corrected MMALA. For still higher dimensional cases, all meth-

ods except GALA fail (at least for the 1000 steps over which the simulations are

presently performed). Figure 3.6 also displays the computational time of all meth-

ods (except MMALA due to rejection of all samples after a few steps) according

to dimension. Stan stands out as the method whose computational time increases
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Figure 3.5: A few components of the mean vector and covariance matrix for the 65 pa-
rameter multivariate Gaussian distribution via several competing methods; the
legend indicating different methods used is shown separately.

the fastest with dimension, whereas MALA, corrected MMALA, and GALA have

similar computational times across 5-65 dimensions for this problem.

Figure 3.7 shows the ranges of sample variance and burn-in length for GALA

across dimensions 5-65. Again it may be noted that this is only a representative
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trend with increasing dimension for only 4 independent chains and may vary with

initial conditions. The sample variances do not vary much across dimension, which

is an impressive robustness across dimensions. The burn-in lengths increases with

the problem dimension, but seemingly linearly. A 5-D problem with a sample size

of 1000 requires a burn-in of 50 iterations, whereas a 65-D problem with a sample

size of 30000 requires a burn-in of only 400 iterations. These two metrics of per-

formance are demonstrating the unique strength of GALA – as it is the only one to

converge towards the solution – and its exceptional efficiency and scalability.

3.5.2 Application to Logistic Regression

In this subsection, we take up a logistic regression problem, one that arises fre-

quently in diverse fields like machine learning, social and medical sciences. Let

XD×N = {X (1),X (2),X (3)...X (N)} represent N samples of the D-dimensional ex-

planatory variables that are available along with the binary response variable t1×N .

Here each ti is a Bernoulli random variable with the probability of success de-

pending on X (i). Assuming that the true regression coefficients are represented by

β(D+1)×1, the probability of success for each X (i)
D×1 is given by

p
(

X (i)|β
)
= p(ti = 1) =

1

1+ exp
(
−β0 +∑

D
j=1 β jX

(i)
j

)
The likelihood of the data is then the product of likelihoods over the N data points.

Assuming a prior density on β as N (0,αI), where α is chosen appropriately, the

FIM and its derivative for the posterior are given by

Gpq =
N

∑
i=1

exp
(
−β0 +∑

D
j=1 β jX

(i)
j

)
X (i)

p X (i)
q

1+ exp
(
−β0 +∑

D
j=1 β jX

(i)
j

)2 +α
−1

δpq (3.24)

∂Gpq

∂βr
=−

N

∑
i=1

exp
(
−β T X̄ (i)

)
X̄ (i)

p X̄ (i)
q X (i)

r

(1+ exp(−β T X̄ i))
2 +2

N

∑
i=1

(
exp
(
−β T X̄ (i)

))2
X̄ (i)

p X̄ (i)
q X̄ (i)

r(
1+ exp

(
−β T X̄ (i)

))3

(3.25)

See the Appendix B for a detailed derivation. Thus, all the input quantities
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Figure 3.6: Top: Minimum and maximum of estimated parameter norms across 4 indepen-
dent chains of length 1000 each for Gaussian problems with varying dimen-
sions. The means are based on the samples after burn-in if convergence occurs,
otherwise it is determined using the last 100 samples. Bottom: A comparison
of computation time. MMALA is not included since after a few steps, all sam-
ples are typically rejected, which renders a comparison inappropriate.
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Figure 3.7: Left: ranges of sample variance after burn-in for GALA across the 4 indepen-
dent chains for Gaussian problems with varying dimensions. Right: ranges of
burn-in for GALA for across 4 independent chains. The bracketed labels on
X− axis indicate the size of dataset used.

needed for GALA are now determined. We show in Figure 3.8 a comparison of

results via GALA, MALA, MMALA and Stan (rstanarm package in R) for a few

regression parameters. For the 30-dimensional problem considered, the parameters

are chosen so that 25 of them are uniformly distributed in [0,15] while the remaining

5 are uniformly distributed in [−15,−10]. This is done to make the problem slightly

more challenging. MALA just about converges in the 3000 steps for this problem.

MMALA is faster than MALA though much slower than GALA; whereas Stan,

even though it is the fastest, fails for this problem. The burn-in with Stan are au-

tomatically discarded, which is reflected in the figures. Again, Table 3 summarizes

the various performance metrics. Similar to the Gaussian example, in this problem

too, the norm of the 30-dimensional mean and variance is given for convenience.

3.6 Concluding remarks
Exploiting the FIM as a Riemannian metric and the associated Riemannian con-

nection, we have stochastically developed a given SDE in the standard Euclidean

setting. Unlike the known equation for a Brownian motion developed on the RM,

the SDE that we geometrically adapt has a non-trivial drift term as well. We have

specifically used this novel construction to modify the Langevin SDE and hence

MALA. Our anticipation had been that a restriction of solutions to the Rieman-

nian hypersurface should yield significantly higher accuracy and faster convergence,
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Figure 3.8: A few of the reconstructed regression parameters for a 30 dimensional logistic
regression problem via several methods.
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GALA MALA MMALA Stan
Logistic Regression (30 dimensional), norm of true mean = 48.62

burn-in 1348,1363,
1294,1336 -

2222,2203,
2112,2185 -

Acceptance (%) 100,100,100,100 - 100,100,100,100 -

Norm of esti-
mated mean

48.81,48.8,
48.82,48.92 -

48.9,48.85,
48.82,48.76 -

Norm of sample
variance

0.01,0.0091,
0.01,0.02 -

0.016,0.01,
0.02,0.01 -

Runtime (sec-
onds)

966 819 852 ≈ 160

Table 3.3: Comparison of various performance metrics for 3000 samples obtained for the
logistic regression problem for each of the 4 independent runs of each method.
Whereas for the logistic regression problem, the estimates of the norm of mean
and sample variance are based on 500 samples after discarding burn-in. The
logistic regression codes for GALA and MMALA are parallelised to achieve a
40 % reduction in computation time, while that for MALA is not.

even though Brownian noise processes have unbounded variations. That this fea-

ture can indeed be realized is demonstrated through a couple of applications, e.g.

estimating the parameters in a probability density given a set of observations and

solving the logistic regression problem. For both problems, the GALA based ap-

proach far outperforms the standard MALA and HMC, both in faster burn-in and

estimation accuracy alike (e.g. sample variance smaller by orders of magnitude).

This relative superiority of performance is generally more pronounced as the prob-

lem dimension increases, and so is the superiority in computational cost compared

to Stan. This is particularly noticeable in the estimation of covariance in multivari-

ate normal distributions, where it is the only successful method.

Beyond performance, and scalability to high dimensions, we also want to high-

light the accessibility of GALA compared to HMC and NUTS (Stan). Indeed, HMC

requires tuning of two parameters for it to work efficiently, which becomes difficult

with an increase in dimension. The NUTS sampler was developed with the objec-

tive to get around this very difficulty, and claimed to perform at least as well as

HMC. However, we did not find Stan to be accessible. The installation on a Linux

or Windows machine for the MATLAB or R implementation of Stan (software to
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implement the NUTS sampler) failed, despite multiple attempts and several hours

of professional help from research software engineers. We finally moved to R on

Mac OS to successfully implement the ’rstan’ package. Even so, except for a few

standard distributions, just to set up the problem requires a fair bit of knowledge

to write a program in Stan. To overcome this, we worked with ’rstanarm’ for the

logistic regression problem and ’brms’ package in R for the multivariate Gaussian

problem. A few packages including the ’rstanarm’ and ’brms’ [76, 77] were de-

veloped to bypass the need for a user to program in Stan, which is useful, but one

package may be more straightforward than another for a given problem. Leav-

ing aside the difficulties in installation and the posing of the problem in Stan, we

observe from the results, that it converges to incorrect values for both large dimen-

sional examples considered in this work, viz. the 30-dimensional logistic regression

problem and the 65-dimensional Gaussian parameter estimation problem. Indeed,

this issue was explored in [78], and it was found that NUTS does not converge to the

correct invariant distribution, although it could be achieved with some modification.

In contrast, GALA is easy to implement, only a reasonable choice of dt allows the

algorithm to function efficiently, the value of dt we have used is typically one or

two orders of magnitude higher than that used for MALA. Unlike all first gradient

based methods, GALA requires the derivative of the FIM, which we provide in the

Appendix B for all the examples considered in this work, for a ready reference.

A word about a possible future direction before concluding this chapter. The

continuous but non-differentiable structure of the B.M. requires that we write the

SDEs in terms of differentials and not the usual derivatives. The derivation of the

developed equations on an RM, as in Section A.1, therefore required the language

of exterior calculus and Cartan’s structure equations. Although the curvature tensor,

or more precisely the curvature 2-form which is a fundamental tensor field of in-

compatibility on an RM, has appeared in our developed equation, we have presently

neglected it as a higher order term. An understanding and exploitation of this term

in the context of Monte Carlo algorithms is, to our understanding, an important el-

ement of future study, in particular while working in high dimensional spaces. A
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related curiosity also lies in a possible extension of the geometric framework to a

Riemann-Cartan manifold, which would enable the developed dynamics to be fur-

ther enriched by the torsion 2-form. Overall, the mathematical machinery of Car-

tan’s moving frame appears to be a powerful tool for an insightful understanding

of the role of geometry for stochastic development, possibly opening up routes to

more efficient Monte Carlo algorithms.

The next chapter is on stochastic optimal control (SOC). It may seem unre-

lated to the general theme followed so far, and it perhaps turned out to be so, but

we started out with an aim to use the stochastically developed SDE with the objec-

tive of solving for optimal control. Had this route been feasible, it may have led

to the solution of an optimal control problem by only integrating one SDE. How-

ever, the construction of the Riemannian metric required derivatives of complicated

integrals. We instead modified our approach to avoid this scenario and developed

a methodology to solve the optimal control problem that required integrating two

Euclidean SDEs. We discuss this approach in detail in the next chapter and how this

is different from the existing approaches for SOC using SDEs.



Chapter 4

Time recursive control of stochastic

dynamical systems using forward

dynamics and applications

This chapter is reproduced in its entirety from our work published in [79]. The only

addition here is the concluding paragraph.

4.1 Introduction
A stochastic optimal control (SOC) problem consists in the study of controlling the

response of a given dynamical system in the presence of noise such that an asso-

ciated cost functional is minimized. Problems of this genre arise in several fields

of natural science and engineering, a few of the most commonly encountered being

finance, robotics, control of vehicles as well as controlling movements in biolog-

ical systems. If the system is deterministic, the control problem may be solved

either by the Hamilton-Jacobi-Bellman (HJB) equation or by the well-known Pon-

tryagin’s minimum principle [5, 80]. The latter consists of a system of ordinary

differential equations (ODEs) similar to Hamilton’s equation of motion but with a

mixed boundary condition. Even when the system being considered is stochastic, it

may be shown that solving an SOC problem reduces to solving the HJB equation;

this is a partial differential equation (PDE) arrived at through the same conceptual

underpinnings as in the deterministic case [81]. The underlying basis for the deriva-



4.1. Introduction 76

tion and solution of the HJB equation for both deterministic and stochastic cases

is the dynamic programming principle, a powerful scheme for solving optimization

problems by a recursive definition of a value function that pertains to the optimal

strategy from the current to the terminal time [5]. The only difference in the de-

terministic and stochastic cases then is the use of Taylor expansion (in the former)

and Ito-Taylor expansion (in the latter) of a certain value function (defined in the

next section). This value function comes up naturally while using the principle of

dynamic programming. Moreover, for a small class of SOC problems, when the

system dynamics and cost functional are of a certain form, the optimal control may

in fact be determined by solving ODEs instead of the HJB equation; specifically a

Ricatti type equation in the Hessian of the value function.

The discussion so far has been about the solution of continuous-time and con-

tinuous state-space control problems. For discrete-time problems, the analog of

the HJB equation is the Bellman equation. Problems where the state-space is also

discrete and the model dynamics is not explicitly known, fall in the domain of rein-

forcement learning (RL), which is one of the three major fields of machine learning,

the others being supervised and unsupervised machine learning. RL may be looked

upon as a way to solve the most general optimal control problems, wherein neither

model information nor training data is provided; most common examples being au-

tonomous driving and playing board-games like Go [82]. All that is provided to the

RL model is a penalty or reward for its action (in the RL literature, the control is

referred to as action), and the objective is to maximize the reward. Interestingly,

[83] establishes the connection of stochastic optimal control with RL in continuous

space and time. In the present work, we focus on those continuous space and time

SOC problems wherein no restriction is put on the process dynamics and cost con-

tribution from the system states; but the control is assumed to act linearly on the

dynamics and its contribution to cost is assumed to be quadratic.

The existing methods to solve an SOC problem may be split into two broad

categories. The first is a spatio-temporal discretization based approach often us-

ing the finite element method; see [84, 85]. A method that, while not quite within
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the domain of finite-elements, is nonetheless closely related is studied in [86]. It

is a pseudo-spectral method to solve the HJB equation. The discretization based

approaches have a major disadvantage in that they are not readily scalable, i.e. it

may become computationally demanding, or even intractable, very quickly as the

dimension of the system increases. This problem is commonly known in the litera-

ture as the curse of dimensionality. The second class of methods is based on Monte

Carlo simulations which exploit the Feynman-Kac [6] formula or the so-called non-

linear Feynaman-Kac formula [87]. With an appropriate log transformation under

certain constraints, the HJB equation may be shown to reduce to a linear PDE of the

backward Chapman-Kolmogorov type. This makes it possible to develop schemes

to solve the PDE using the Feynman-Kac formula which basically requires simu-

lating SDEs and certain path integrals of solutions of the SDEs, followed by taking

appropriate expectations. Although linearization is very helpful from an algorith-

mic point of view, solutions thus obtained are restricted due to the constraints that

are required to enable linearization in the first place. [88, 89, 90] propose efficient

schemes based on the linearization of the HJB equation. The non-linear Feynman-

Kac, on the other hand, requires simulating a pair of partly coupled SDEs, i.e. the

forward-backward stochastic differential equations (FBSDEs); see [91, 92] for an

introduction to backward SDEs. [92, 93, 94, 95, 96] propose effective schemes

based on backward SDEs. The Monte Carlo route addresses the issue of scalability

(which is a major disadvantage of discretization based methods) to a great extent;

however it may still be computationally intensive, particularly the schemes based on

the non-linear Feynman-Kac. The main reason for this, which will be made clearer

in the subsequent sections, is that in order to determine the optimal control at any

time, an ensemble of trajectories of the system dynamics must evolve all the way

forward till the terminal time and thereafter the backward SDE must evolve all the

way back to the current time. Also, the ensemble size may have to be increased

significantly as the problem dimension increases. Since the FBSDEs involve inte-

gration of SDEs, the ensemble size may also have to be increased appropriately as

the time horizon (and/or problem non-linearity) increases, since integrating an SDE
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for a longer time results in an increase in the sampling variance with time due to the

diffusion term. Recall that sampling variance is the variance of the sample means

across multiple simulations, where each simulation has its own sample mean and

sample variance.

It is worth noting that while an SOC may fall in different classes such as L 1,

L 2 (i.e. the cost associated with the control force appears as an L 1 or L 2 norm),

finite time horizon, with a stopping time etc., if a particular class of problems is

solved by a certain method, it may not be too difficult to adapt it to the others.

Presently, we work with the most commonly encountered class of optimal control

problems i.e. the linear-quadratic (LQ) problem over a finite time horizon (defined

more precisely later). As will be seen, while we do not consider the different classes,

the proposed scheme should admit a ready adaptation to a cost functional with a

stopping time and to problems in L 1 control. The same is the case with problems

over an infinite time horizon. Also, we do not discuss the existence and uniqueness

of solutions of an optimal control problem which may be considered a mathematical

field of study in its own right; see [97, 98, 99] for an introduction. We assume

throughout that the necessary and sufficient conditions for a solution to exist are

satisfied. In this context, we may note that the notion of a viscosity solution to

the HJB equation may be exploited in order to considerably relax the continuity

requirements of the fields involved [100].

In recent years, the control of mechanical oscillators has received consider-

able attention. Interesting applications of SOC for system dynamics pertaining to

that of mechanical oscillators are explored in several articles. In [101, 102], for

instance, the control is designed for energy harvesting in order to accomplish max-

imum power generation. Control of mechanical oscillators where the control force

is bounded is investigated in [103, 104]. In [105], a proposal to control a chaotic

Duffing-Holmes oscillator is put forth through an appropriate choice of the external

periodic excitation. A probabilistic approach to determine the control of oscillators

is discussed in [106, 107]. Oscillator based CPG (central pattern generator) models

are also at the core of the theory for controlling joints in robots [108]. In a semi-
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nal article [109], it was shown that identical chaotic systems may be synchronized

via an appropriate coupling. This synchronized coupling of chaotic systems finds

application in the field of communications and signal processing [110]. An adap-

tive control method applied to the synchronization of two oscillators is discussed

in [111]. Synchronization and control of chaos in non-linear oscillators are studied

in fair detail in [112]. Wiercigroch and co-workers have also contributed substan-

tively to the control of smooth and non-smooth mechanical oscillators in the con-

text of various applications such as sea wave energy extraction; see [113, 114, 115].

Incidentally, the importance of the subject of SOC may also be gauged from the

fact that it is intimately connected to non-equilibrium stochastic thermodynamics

of small systems; see [116]. An SOC based interpretation could, in particular, be

beneficial in a more nuanced representation of the second law of thermodynamics,

or of Jarzynski’s equality [117].

Another class of systems whose control could prove quite beneficial, even

though it may appear counter-intuitive, is a chaotic system. Two major articles

that first explored this class of problems are [118, 119]. The basic property of a

chaotic system is that small, even infinitesimal, changes in the initial states lead to

large changes later on. This property, known as the ’butterfly effect’, is what makes

the system dynamics chaotic. This seemingly problematic property is exactly what

could be exploited, at least in principle, to achieve major changes in the system be-

haviour by applying small controls at appropriate times, thereby reducing the total

cost of control. One way to minimize or reduce the cost is to delay the application

of control until the system has reached a point near the desired orbit; this is only

possible in chaotic systems since there are infinitely many unstable periodic orbits

within the strange attractor and the system is bound to reach the desired orbit (or

one nearby) at some point in time. If the application of control is delayed until this

happens, it is possible to reduce the cost dramatically, since thereafter a relatively

small control force might be needed in order to maintain the system in the desired

orbit. A remarkable example that illustrates the importance of controlling a chaotic

system is discussed in [118] – the spacecraft ISEE-3/ICE could be sent more than
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50 million miles across the Solar system to bring about the first cometary encounter

only because the nature of the underlying dynamics was chaotic.

In this work, we propose a numerical scheme based on Monte Carlo simula-

tions for solving an SOC problem. We replace the terminal cost by its Ito expansion

about an initial time; this enables the derivation of a PDE which is subject to an

initial condition unlike the HJB equation which is subject to a terminal condition.

Therefore, it is possible to write a pair of SDEs corresponding to the proposed PDE

such that both of them need to be integrated forward in time. In some sense, which

will be explicated in the subsequent sections, the proposed scheme may be consid-

ered complementary to the FBSDE method of solving an SOC problem. While the

total cost being minimized remains the same and the same control objectives are

fulfilled, pathwise solutions thus obtained may not be the same as the ones via the

HJB equation; this however largely depends on the system dynamics. The resulting

numerical scheme presently derived is essentially the simulation of a pair SDEs plus

a curve fitting at every time step. Therefore it has significant benefits in terms of

computational expedience and scalability over the FBSDE method. It is also much

simpler to implement. The scheme exhibits lower sampling variance and robust-

ness to non-linearity in the system dynamics. We illustrate the advantages of this

approach via several numerical examples, mainly involving non-linear mechanical

oscillators in their chaotic as well as non-chaotic regimes.

The rest of this chapter is organized as follows. Section 4.2 provides a brief re-

view of the SOC, including a derivation of the HJB equation as well as its linearized

version and an outline of an existing scheme based on FBSDEs. Section 4.3 gives

a detailed account of the proposed method, wherein two alternative derivations are

provided to arrive at the same PDE subject to an appropriate initial condition. The

derivation is also specialized for the case of mechanical oscillators since their dy-

namics in the state space are not straightforward SDEs; the associated pair of SDEs

is arrived at using Ito’s formula and finally a pseudo-code is included for clarity.

Next, Section 4.4 illustrates the proposed method with several examples. A simple

1-dimensional problem is first included for a comparison with the theoretical solu-
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tion as well as the basic FBSDE method [93], followed by a 2D Ornstein-Uhlenbeck

process, the Lorenz 1963 oscillator and finally two nonlinear mechanical oscillators,

viz. the hardening Duffing and the Duffing-Holmes. Throughout this chapter, we

use lowercase Roman or Greek letters to denote scalars or scalar valued functions or

realizations of scalar-valued random variables. Scalar-valued random variables are

denoted by uppercase letters. Bold lowercase letters are used for vectors, vector-

valued functions or realizations of vector-valued random variables. We use bold

uppercase letters for vector-valued random variables (or stochastic processes, as ap-

propriate) and uppercase non-italicized (text) letters for matrices or matrix-valued

functions. The distinction between a constant scalar/vector/matrix and a scalar/vec-

tor/matrix valued function is made clear by writing out the dependencies. For in-

stance, c is a scalar, c(xxx) is a scalar valued function of the vector xxx, XXX t := XXX(t) is

a vector-valued stochastic process (whose realization is xxxt) and C is a matrix. The

path of a scalar field ut := u(t) over a time interval [t1, t2] is represented as ut1→t2 .

Whenever there is an ambiguity about the time at which a state is being referred, it

is given with a subscript, i.e. xxxt instead of xxx.

4.2 A brief review of stochastic optimal control
For clarity and completeness of the exposition, we give a brief review of stochastic

optimal control for the LQ case, starting with the problem definition. This is fol-

lowed by a brief derivation of the associated HJB equation, a PDE in the extremal

cost. This should be helpful in contrasting the FBSDE approach to solve the HJB

equation and a purely forward SDE based approach as proposed in the next section.

We also discuss an existing numerical scheme based on FBSDEs. For the existence

and uniqueness of solutions to this class of control problems, we refer to [97].

Let (ΩΩΩ,F ,P) denote a complete probability space supplied with the natural

filtration {Ft}. Here ΩΩΩ is the sample space, F the sigma algebra and P the prob-

ability measure. Note that, for completeness, F contains all the P-null events.

Consider a system whose dynamics is represented by the following SDE

dXXX t = ααα(t,XXX t)dt +Σ(t,XXX t)dBBBt (4.1)
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where XXX t : ΩΩΩ×R+→ Rd is a vector-valued stochastic process, ααα : R+×Rd → Rd

is the drift vector field, Σ : R+×Rd → Rd×d is the diffusion matrix field (presently

assumed to be square) and BBBt ∈Rd is a vector Brownian motion with independently

evolving standard scalar components. We assume the drift and the diffusion fields

above to be Lipschitz continuous and with a sublinear growth in the first argument

to ensure existence and uniqueness of solutions to the SDE. In this work, Σ is taken

as constant; hence in what follows Σ(t,XXX t) is replaced with Σ. Let the linearly

controlled dynamics pertaining to (4.1) be represented as

dXXX t = ααα(t,XXX t)dt +G(t,XXX t)uuutdt +Σ(t,XXX t)dBBBt (4.2)

where G : R+×Rd → Rd×d is a square matrix appearing with uuut ∈ Rd , the control

vector. The objective of the control problem is to find an optimal control trajectory

uuut0→t f = uuu∗t0→t f
such that, starting with xxx0 := xxx(t0), the following cost functional

which is quadratic in uuu is minimized.

c(t0,xxx0,uuut0→t f ) = E
[

g(XXX t f )+
∫ t f

t0
(q(t,XXX t)+ p(uuut))dt

]
(4.3)

Here q(t,XXX t) is the running cost on XXX t , p(uuut) is the running cost on uuut which is

taken as quadratic for this work, i.e. p(uuut) =
1
2uuuT

t Ruuut where R ∈ Rm×m is a known

constant matrix. The form of p(uuut) shows that the total running cost involving the

control term is interpreted as an L 2 integral. To proceed further, one typically

defines the value function as the minimal cost to reach some final state xxxt f , given

that the starting point at time t is fixed at xxx, as follows.

v(t,xxx) = min
uuut→t f

c(t,xxx,uuut0→t f ) (4.4)

A recursion in v – which proves useful in finally writing a PDE in v – may be arrived
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at as follows; see [90] for instance.

v(t,xxx)

= min
uuut→t f

E
[

g(XXX t f )+
∫ t f

t
(q(s,XXX s)+ p(uuus))ds

∣∣∣∣XXX t = xxx
]

= min
uuut→t f

E
[

g(XXX t f )+
∫ t+dt

t
(q(s,XXX s)+ p(uuus))ds+

∫ t f

t+dt
(q(s,XXX s)+ p(uuus))ds

]
= min

uuut→t+dt
E
[(

min
uuut+dt→t f

E
[
g(XXX t f )+

∫ t f

t+dt
(q(s,XXX s)+ p(uuus))ds

∣∣XXX t+dt = xxxt+dt
])

+(q(t,xxx)+ p(uuut))dt
]

; for any xxxt+dt

= min
uuut→t+dt

E
[

v(t +dt,XXX t+dt)+
(
q(t,xxx)+ p(uuut)

)
dt
]

(4.5)

By way of an interesting digression, we may add that an SOC problem also admits

representation as a martingale problem. Specifically, only if a realized path xxxt is

obtained with the optimal control uuu∗, then the following stochastic process is a

martingale.

M
uuu∗t0→t f
t = v(t,xxx)+

∫ t f

t0
(q(s,XXX s)+ p(uuu∗s ))ds (4.6)

Indeed, for uuut0→t f ̸= uuu∗t0→t f
, the process Muuu

t0→t f
is a submartingale; see [120]. Now,

the Ito-Taylor expansion [26] of v(t +dt,xxxt+dt) about (t,xxxt) gives

E[v(t +dt,XXX t+dt)] = E
[

v(t,xxxt)+
∂v(t,xxxt)

∂ t
dt +

(
∂v(t,xxxt)

∂xxx

)T

(ααα(t,xxxt)+Guuu)dt

+
1
2

(
∂ 2v(t,xxxt)

∂xxx2 : ΣΣ
T
)

dt +
(

∂v(t,xxxt)

∂xxx

)T

ΣdBBBt

]
(4.7)

where T denotes transposition and : Frobenius inner product of matrices, i.e. C :

D = ∑i, j Ci jDi j . Since v(t,xxxt) is fixed and the expectation of the last term on the

right hand side above is zero, the last equation becomes

E[v(t +dt,XXX t+dt)] = v(t,xxxt)+
∂v(t,xxxt)

∂ t
dt +

(
∂v(t,xxxt)

∂xxx

)T

(ααα(t,xxxt)+Guuu)dt

+
1
2

(
∂ 2v(t,xxxt)

∂xxx2 : ΣΣ
T
)

dt (4.8)
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Substitution of this in equation (4.5) leads to

v(t,xxx) = min
uuut→t+dt

[
v(t,xxx)+

∂v(t,xxx)
∂ t

dt +
(

∂v(t,xxx)
∂xxx

)T

(ααα(t,xxx)+Guuu)dt

+
1
2

(
∂ 2v(t,xxx)

∂xxx2 : ΣΣ
T
)

dt +
(
q(t,xxx)+ p(uuu)

)
dt
]

(4.9)

− ∂v(t,xxx)
∂ t

= min
uuut→t+dt

[(
∂v(t,xxx)

∂xxx

)T

(ααα(t,xxx)+Guuu)+
1
2

(
∂ 2v(t,xxx)

∂xxx2 : ΣΣ
T
)

+q(t,xxx)+ p(uuu)
]

(4.10)

Since the function on the right hand side is quadratic in uuu, the optimal control strat-

egy can be found in closed form. It may be obtained by setting the derivative of the

right hand side of equation 4.10 with respect to uuu to zero.

∂

∂uuu

[(
∂v(t,xxx)

∂xxx

)T

Guuu+
1
2

uuuT Ruuu
]
= 0 (4.11)

Solving the equation above, the optimal control as a field may be obtained as fol-

lows.

uuu∗(t,xxx) =−R−1GT ∂v(t,xxx)
∂xxx

(4.12)

Finally, the HJB equation may be arrived at upon substituting the optimal control

strategy uuu∗(t,xxx) in equation 4.10.

∂v(t,xxx)
∂ t

+

(
∂v(t,xxx)

∂xxx

)T

ααα(t,xxx)+
1
2

(
∂ 2v(t,xxx)

∂xxx2 : ΣΣ
T
)
+q(t,xxx)

− 1
2

(
∂v(t,xxx)

∂xxx

)T

GR−1GT ∂v(t,xxx)
∂xxx

= 0 ; subject to v(t f ,xxx) = g(xxx) (4.13)

Thus, in order to determine the optimal control for (4.2), the HJB equation (4.13)

must be solved. This problem may be approached in two ways. The first is to

linearize the HJB equation by the following log transformation.

v(t,xxx) =−τ log(φ(t,xxx)) (4.14)
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The result is the following PDE in φ(t,xxx), subject to φ(t f ,xxx) = exp
(
−1

τ
g(xxx)

)
.

∂φ(t,xxx)
∂ t

+

(
∂φ(t,xxx)t

∂xxx

)T

ααα(t,xxx)− 1
2

(
∂φ(t,xxx)

∂xxx

(
∂φ(t,xxx)

∂xxx

)T

: ΣΣ
T
)

+
1
2

(
∂ 2φ(t,xxx)

∂xxx2 : ΣΣ
T
)
− 1

τ
qφ(t,xxx)+

1
2

(
∂φ(t,xxx)

∂xxx

)T

GR−1GT ∂φ(t,xxx)
∂xxx

= 0

(4.15)

It may be readily shown that

∂φ(t,xxx)
∂x

(
∂φ(t,xxx)

∂x

)T

: ΣΣ
T =

∂φ(t,xxx)
∂x

ΣΣ
T
(

∂φ(t,xxx)
∂x

)T

(4.16)

Therefore, in order for the non-linear terms to cancel out, the following relation

between τ,Σ, G, R must hold.

ΣΣ
T = τGR−1GT (4.17)

Finally, a linear PDE of the backward Chapman-Kolmogorov type is obtained in

φ(t,xxx), subject to φ(t f ,xxx) = exp
(
−1

τ
g(xxx)

)
.

−∂φ(t,xxx)
∂ t

=

(
∂φ(t,xxx)

∂xxx

)T

ααα(t,xxx)+
1
2

(
∂ 2φ(t,xxx)

∂xxx2 : ΣΣ
T
)
− 1

τ
qφ(t,xxx) = 0 (4.18)

Thus, a log transformation of the HJB equation in conjunction with the con-

straint (4.17) leads to a backward Chapman-Kolmogorov type PDE. This may be

solved by the Feynman-Kac formula which requires integrating the uncontrolled

SDE and taking appropriate expectations. [90, 121] first proposed methods based

on path integrals to solve the linear HJB equation. Later, [89] presented a more

generalized approach wherein, unlike the original work, G was allowed to be a

function of the state xxx and the scheme was flexible enough to incorporate model-

free problems. Yet another way to interpret and solve the linear HJB equation given

a terminal condition is through a generalized Doob’s h-transform, as discussed in

[122]. In this interpretation, the solution to the HJB equation may be looked upon

as a probability conditioned to reach a specified terminal set. This formalism also
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enables us to write an SDE, now with a suitable addition to the drift (which may be

looked upon as a control term), such that the solution reaches the terminal set with

probability 1. From this perspective, φ is nothing but the conditioned probability to

reach the terminal state whilst minimizing the cost.

The second approach is to solve the HJB equation directly with the nonliner

version of the Feynman-Kac formula [91]. The solution using this approach is based

on a system of FBSDEs. One such scheme based on the nonlinear Feynman-Kac

is described in a recently published article [93]. In the following, we first give a

brief derivation of the nonlinear version of the Feynman-Kac formula, and define

the FBSDEs; the reader is referred to [92] for a more comprehensive exposition.

We then describe in brief the algorithm following the broad framework as in [93].

This facilitates clarity in a relative assessment of the proposed method, which uses

only forward dynamics and is described in the next section.

By Ito’s formula, the total differential of v(t,XXX) may be written as

dv(t,XXX) =
∂v(t,XXX)

∂ t
dt +

(
∂v(t,XXX)

∂xxx

)T

ααα(t,XXX)dt +
1
2

(
∂ 2v(t,XXX)

∂xxx2 : ΣΣ
T
)

dt

+

(
∂v(t,XXX)

∂xxx

)T

ΣdBBBt (4.19)

Define

ZZZ(t,XXX) = Σ
T ∂v(t,XXX)

∂xxx
(4.20)

and substitute for the first three terms from the HJB equation,

dv(t,XXX) =−
(

q(t,XXX)− 1
2

ZZZ(t,XXX)T
Σ
−1GR−1GT

Σ
−T ZZZ(t,XXX)

)
dt

+ZZZ(t,XXX)T dBBBt (4.21)

The SDE (4.21) is subject to the terminal condition v(t f ,XXX t f ) = g(XXX t f ), where XXX t =

xxx. Thus, an estimate of v(t,xxx) may be obtained by the forward integration of the

uncontrolled dynamics for XXX from t to the final time t f , followed by the backward
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integration of v from t f to t, such that Yt f = g(XXX t f ).

For clarity, we provide a psuedo-code for a possible scheme to implement the

FBSDE as per [93], which should allow us to appreciate the benefits of the proposed

scheme (see 4.3) which is based entirely on the simulation of forward SDEs.

Algorithm 2: Pseudo-code for FBSDE based SOC
Result: controlled trajectories of XXX and optimal control strategy uuu
Data: ααα(xxx, t),Σ,q(xxx, t),G,R,J(xxx, t),g(xxx),∆t
Discretize time (assumed uniform);
0 = t0 < t1 < ... < tn = t f ; ∆t = tk− tk−1∀k ∈ [1,n]
Choose an ensemble size m.
for k = 1 : n−1 do

Initialize the forward integration XXX j
k← XXXk ∀ j ∈ [1,m]

for p = k : n do
for j = 1 : m do

XXX j
p+1 = XXX j

p +ααα(XXX j
p, tp)∆t +Σ∆BBB j

p

end
end
Initialize the backward integration
Y j

n ← g(XXX j
n) ∀ j ∈ [1,m]

ZZZ j
n = Σ(tn,XXX

j
n)

T ∂g(XXX j
n)

∂xxx ∀ j ∈ [1,m]

for q = n−1 : k do
θ ∗q =

argminθq
1
m ∑

m
j=1

∥∥∥Φ(XXX j
q)θq−{Y j

q+1 +h(tq+1,XXX
j
q+1,ZZZ

j
q+1)∆t}

∥∥∥2

where h(t,xxx,zzz) =
(
q(t,xxx)− 1

2zzzT Σ−1GR−1GT Σ−T zzz
)

Y j
q = Φ(XXX j

q)θ
∗
q

ZZZ j
q = ΣT ∂Φ(XXX j

q)
∂xxx θ ∗q

end
Φ represents a suitable basis function, e.g Chebyshev polynomials
uuuk =−R−1JT ZZZk where J is such that G= ΣJ
(ZZZ j

k∀ j ∈ [1,m] are copies of the same value, say ZZZk)
XXXk+1 = XXXk +ααα(XXXk, tk)∆t +Guuuk∆t +Σ∆BBBk

end
return [XXXk,Yk,ZZZk,uuuk]

n
k=1

4.3 Proposed method
The basic idea behind the proposed method is to expand g(xxxt f ) using Ito’s formula

about a suitable time t̄ < t f ; for expositional ease we presently consider t̄ = t0, i.e.
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the initial time. We also assume that the function g(xxx) is at least twice differentiable

and define what we refer to as cost-to-reach some xxx at time t unlike the cost-to-go

defined for the HJB equation. This is just one possible way, though not the only

one, to smoothly ’smear’ the Dirac spike g(xxxt)δ (t f − t) at the terminal time over

the entire time interval. While this ensures that the total cost associated with the

SOC problem remains unchanged and the same control objectives are achieved,

pathwise solutions thus obtained may not be the same as those obtained from the

HJB equation pertaining to the original formulation. Of course, such variations in

the path depend on the system dynamics being considered as the Ito expansion of

g(xxxt f ) uses the generator of the stochastic differential equation. The first subsection

herein has the derivation of the PDE associated with the control problem following

the proposed treatment of the terminal cost. The PDE is also explicitly derived for

the case of mechanical oscillators where a part of the system dynamics is not in the

form of an SDE in that it contains no diffusion terms. Conforming with the same

basic principle stated in the last section, for completeness, we also derive the PDE

in cost-to-go in the last subsection and show that the controlled solutions obtained

by both these approaches are exactly the same. This implies that the difference in

the standard HJB equation and the current approach is entirely attributable to the

treatment of the terminal condition via an Ito expansion about the initial time.

We specifically consider the case of LQ or L 2− control, where the system

dynamics is linear in the control strategy and the associated cost is quadratic in

it. Also, we deal with a finite time horizon for control. Adapting this work for

L 1−control and/or infinite time horizon or for any suitable stopping time poses no

serious challenge, although we do not explicitly consider these scenarios here. Let

the uncontrolled and controlled system dynamics be defined as in the last section,

i.e. they are respectively given as

dXXX t = ααα(t,XXX t)dt +Σ(t,XXX t ,)dBBBt (4.22)

dXXX t = ααα(t,XXX t)dt +G(t,XXX t)uuut +Σ(t,XXX t)dBBBt
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4.3.1 PDE in cost-to-reach

All functions are assumed to satisfy the smoothness and growth conditions as de-

scribed in the previous section. We also define the total cost as in the previous

section. However, instead of considering it as the function of the initial time, we

now consider it as a function of the final time, given XXX t0 := xxx0.

c(t f ,xxxt f ,uuut0→t f ) = E
[

g(XXX t f )+
∫ t f

t0
(q(t,XXX t)+ p(uuut))dt

]
(4.23)

Applying Ito’s formula to g(XXX t f ), we get

g(XXX t f ) = g(XXX0)+
∫ t f

t0

(
∂g(XXX t)

∂xxx

)T

dXXX t +
1
2

∫ t f

t0

(
∂ 2g(XXX t)

∂xxx2 : ΣΣ
T
)

dt

+Ito integral

= g(XXX0)+
∫ t f

t0

(
Atg(XXX t)+

(
∂g(XXX t)

∂xxx

)T

Guuut

)
dt + Ito integral (4.24)

where At is the generator of the original SDE equation (4.22) as given below

Atξ (xxx) =
d

∑
i=1

ααα(t,xxx)
∂ξ (xxx)

∂xi
+

d

∑
i=1

d

∑
j=1

Σi j
∂ 2ξ (xxx)
∂xi∂x j

(4.25)

Here xi denotes the ith scalar component of the vector xxx. For a vector SDE as

in (4.22), Atξ (xxx) may be considered as the directional derivative of the function

ξ (xxx) averaged over the paths generated by the SDE under the measure P; see [6]

for more details on the generator of an SDE. Also note that, by ∂g(XXX t)
∂xxx , we mean

∂g(xxx)
∂xxx

∣∣
xxx=XXX t

. Indeed, in lieu of the initial time t0, we could have chosen any other

deterministic or any Ft measurable t∗< t f to carry out the expansion above without

affecting the total cost. The cost to reach xxx at time t, i.e. XXX t = xxx for some control

strategy uuu and for a given XXX t0 , may thus be defined as
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c(t,xxx,uuut0→t)

= E
[

g(XXX t0)+
∫ t

t0

(
Asg(XXX s)+

(
∂g(XXX s)

∂xxx

)T

Guuus +q(s,XXX s)+ p(uuus)

)
ds
]

= E
[

g(XXX t0)+
∫ t

t0
r(s,XXX s,uuus)ds

]
(4.26)

where r(s,XXX s,uuus) = Asg(XXX s)+

(
∂g(XXX s)

∂xxx

)T

Guuus +q(s,XXX s)+ p(uuus).

The Ito integral does not appear in the cost since its expectation is zero. Now,

define the minimal cost c∗ to reach some xxx at time t as follows.

c∗(t,xxx) = min
uuut0→t

c(t,xxx,uuut0→t) (4.27)

= min
uuut0→t

E
[

g(XXX t0)+
∫ t ′

t0
r(s,XXX s,uuus)ds+

∫ t

t ′
r(s,XXX s,uuus)ds

]
= min

uuut′→t
E
[

min
uuut0→t′

E
[

g(XXX t0)+
∫ t ′

t0
r(s,XXX s,uuus)dt

]
+
∫ t

t ′
r(s,XXX s,uuus)dt

]
= min

uuut′→t
E
[

c∗(t ′,XXX t ′)+
∫ t

t ′
r(s,XXX s,uuus)dt

]

Let t ′ = t−dt. Upon Ito-Taylor expansion of c∗(t ′,xxx(t ′)) around (t,xxx), we have

E[c∗(t−dt,XXX t−dt)|XXX t = xxx]

= E
[

c∗(t,xxx)− ∂c∗(t,xxx)
∂ t

dt−
(

∂c∗(t,xxx)
∂xxx

)T

dXXX t−
1
2

(
∂ 2c∗(t,xxx)

∂xxx2 : dXXX tdXXXT
t

)]
= c∗(t,xxx)− ∂c∗(t,xxx)

∂ t
dt−

(
∂c∗(t,xxx)

∂xxx

)T

(ααα(t,xxx)+Guuu)dt

− 1
2

(
∂ 2c∗(t,xxx)

∂xxx2 : ΣΣ
T
)

dt(4.28)

Substituting this in equation (4.27), we have

∂c∗(t,xxx)
∂ t

= min
uuut

[
−
(

∂c∗(t,xxx)
∂xxx

)T

(ααα(t,xxx)+Guuut)−
1
2

(
∂ 2c∗(t,xxx)

∂xxx2 : ΣΣ
T
)

+ r(t,xxx,uuut)

]
(4.29)
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∂c∗(t,xxx)
∂ t

= min
uuut

[
−
(

∂c∗(t,xxx)
∂xxx

)T

(ααα(t,xxx)+Guuut)−
1
2

(
∂ 2c∗(t,xxx)

∂xxx2 : ΣΣ
T
)

+Atg(xxx)+
(

∂g(xxx)
∂xxx

)T

Guuut +q(t,xxx)+ p(uuut)

]
(4.30)

Since the quantity to be minimized is quadratic in uuut , an analytical expression for

the optimal uuut = uuu∗t may be obtained as follows.

uuu∗(t,xxx) = R−1GT
(

∂c∗(t,xxx)
∂xxx

− ∂g(xxx)
∂xxx

)
(4.31)

Plugging the above into equation (4.30), and simplifying, we obtain the PDE in

optimal cost-to-reach as follows.

∂c∗(t,xxx)
∂ t

+

(
∂c∗(t,xxx)

∂xxx

)T

ααα(t,xxx)+
1
2

(
∂ 2c∗(t,xxx)

∂xxx2 : ΣΣ
T
)

−
(

∂c∗(t,xxx)
∂xxx

)T

GR−1GT ∂g(xxx)
∂xxx

+
1
2

(
∂c∗(t,xxx)

∂xxx

)T

GR−1GT ∂c∗(t,xxx)
∂xxx

+
1
2

(
∂g(xxx)

∂xxx

)T

GR−1GT ∂g(xxx)
∂xxx
−
(

∂g(xxx)
∂xxx

)T

ααα(t,xxx)− 1
2

(
∂ 2g(xxx)

∂xxx2 : ΣΣ
T
)

−q(t,xxx) = 0 ; subject to c∗(t0,xxx0) = g(xxx0) (4.32)

We now proceed to determine the set of SDEs to solve for c∗. Let us start by

defining the total derivative of c∗ based on Ito’s formula.

dc∗(t,XXX t) =
∂c∗(t,XXX t)

∂ t
dt +

(
∂c∗(t,XXX t)

∂xxx

)T

ααα(t,XXX t)dt

+
1
2

(
∂ 2c∗(t,XXX t)

∂xxx2 : ΣΣ
T
)

dt +
(

∂c∗(t,XXX t)

∂xxx

)T

ΣdBBBt (4.33)

As is conventional in the FBSDE literature, we define

ZZZt = Σ
T ∂c∗(t,XXX t)

∂xxx
(4.34)

Also, to ensure the absolute continuity of measures corresponding to the controlled
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and uncontrolled dynamics, the following relation must hold for some J, presently

assumed to be Lipschitz continuous and with a sublinear growth bound.

G(t,XXX t) = ΣJ(t,XXX t) (4.35)

Using the PDE (4.32), we substitute for the first three terms in the total derivative

in equation (4.33). Finally, making use of equations (4.34) and (4.35), we have an

SDE in c∗ as follows:

dc∗(t,XXX ttt) =−h̃(XXX t ,c∗t ,ZZZt)dt +ZZZT
t dBBBt ; c∗(t0,XXX t0) = g(XXX t0) (4.36)

where

h̃(XXX ttt ,c∗,ZZZt) =−ZZZT
t JR−1GT ∂g(XXX t)

∂xxx
+

1
2

ZZZT
t JR−1JT ZZZt

+
1
2

(
∂g(XXX t)

∂xxx

)T

GR−1GT ∂g(XXX t)

∂xxx
−
(

∂g(XXX t)

∂xxx

)T

α(t,XXX t)

− 1
2

(
∂ 2g(XXX t)

∂xxx2 : ΣΣ
T
)
−q(t,XXX t) (4.37)

Thus, we have a set of SDEs for the uncontrolled dynamics for XXX and the cost-to-

reach function c∗ which is subject to the initial condition g(XXX t0). We can simulate

these two SDEs simultaneously to obtain the optimal control strategy uuu∗t at any

time as per equation (4.31). A pseudo-code is provided below for clarity. In what

follows, we replace c∗ by Y , to be consistent with the typical notation used in the

literature.

4.3.2 Control scheme for mechanical oscillators

For ease of exposition, we present the scheme for a single-degree-of-freedom

(SDOF) system and note that an extension to a multi-degree-of-freedom (MDOF)

system is straightforward. Thus, consider the following general form of an SDOF

mechanical oscillator.

ζ̈ +α(ζ , ζ̇ ) = β (t)+σ(ζ , t)W (4.38)
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Algorithm 3: Pseudo-code for proposed method
Result: controlled trajectories of the state XXX and optimal control uuu
Data: ααα(t,xxx),Σ,q(t,xxx),G,R,J(xxx, t),g(xxx),∆t,s,h
Discretize time (assumed uniform);
0 = t0 < t1 < ... < tn = t f ; ∆t = tk− tk−1∀k ∈ [1,n]
Choose an ensemble size m.
Initialize:

XXX0
YYY 0← g(XXX0)

ZZZ0← ΣT ∂g(xxx)
∂xxx

∣∣
xxx=XXX000

uuu0← R−1GT
(

Σ−T ZZZ0− ∂g(xxx)
∂xxx

∣∣
xxx=XXX000

)
for k = 1 : n do

for j = 1 : m do
XXX j

k = XXXk−1 +ααα(tk−1,XXXk−1)+Guuuk−1∆t +Σ∆BBB j
k−1

Integrate Y implicitly in XXX and expicitly in Y,ZZZ
Y j

k = Yk−1− h̃(XXX j
k,Yk−1,ZZZk−1)∆t +ZZZT

k−1∆BBB j
k−1

where
h̃(XXX j

k,Yk−1,ZZZk−1) =−q(tk−1,XXX
j
k)−ZZZT

k−1JR−1GT ∂g(xxx)
∂xxx

∣∣
xxx=XXX j

k

+1
2ZZZT

k−1JR−1JT ZZZk−1 +
1
2

(
∂g(xxx)

∂xxx

∣∣
xxx=XXX j

k

)T

GR−1GT
(

∂g(xxx)
∂xxx

∣∣
xxx=XXX j

k

)
−
(

∂g(xxx)
∂xxx

∣∣
xxx=XXX j

k

)T

ααα(t,XXX j
k)−

1
2

(
∂ 2g(xxx)

∂xxx2

∣∣
xxx=XXX j

k
: ΣΣT

)
end
XXXk← 1

m ∑
m
j=1 XXX j

k
Fit the ensemble of Yk in terms of Gaussian basis functions η(i) of XXXk

to obtain θθθ
∗
k such that η(i)(xxx) = exp

(
− (xxx−−−xxxi)

T (xxx−−−xxxi)
2s2

)
where

xxxi ∈ {XXXk∪ nodes on the discretization cells (each of size h) around
XXXk } ; s,h are parameters of the Gaussian basis

θθθ
∗
k = argminθθθ

1
m ∑

m
j=1

∥∥∥Y j
k −ηηη(XXXk)

T θθθ

∥∥∥2

(ηηη is a vector valued function with components η(i))
Yk← ηηη(XXXk)

T θθθ
∗
k

ZZZk = ΣT ∂ηηηT (xxx)
∂xxx

∣∣
xxx=XXXkkk

θθθ
∗
k .

uuuk = R−1GT
(

Σ−T ZZZk− ∂g(xxx)
∂xxx

∣∣
xxx=XXXkkk

)
end
return [XXXk,Yk,ZZZk,uuuk]

n
k=1
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We assume α(ζ , ζ̇ ), σ(ζ , t) and β (t) to be C1, C2,1 and C1 in their respective argu-

ments. W = Ḃ in the equation above formally refers to a white noise process and in

order to make the equation more tractable, it may be recast as a system of two first

order equations as follows.dX1

dX2

=

 X2

−α(X1,X2)+β (t)

dt +

0 0

0 σ(X1, t)


 0

dBt

 (4.39)

where X1 := ζ ,X2 := ζ̇ . This system is inherently different from the one studied

earlier wherein the system dynamics was represented by a system of SDEs, each

with a nonzero diffusion term. Presently however, for a d-DOF mechanical oscil-

lator, the state space representation is in a 2d-dimensional space wherein the first d

equations are deterministic (i.e. without diffusion terms) and the remaining d are

stochastic. For the sake of brevity, we continue with the derivation of the PDE for

an SDOF oscillator, i.e. when d = 1, although it may be easily adapted to MDOF

systems. The equation of motion for a linearly controlled SDOF system may be

written asdX1

dX2

=

 X2

−α(X1,X2)+β (t)+Gut

dt +

0 0

0 σ(X1, t)


 0

dBt

 (4.40)

Note that, G here is a scalar. For the system represented by (4.39), the infinitesimal

generator of the original (uncontrolled) system acting on an appropriately smooth

function f (x1,x2)≡ f (xxx) may be written as

At f (xxx) = x2
∂ f (xxx)
∂x1

+(−α(xxx)+β (t))
∂ f (xxx)
∂x2

+
σ2

2
∂ 2 f (xxx)

∂x2
2

(4.41)

where xxx := [x1,x2]
T . As in the previous section, the cost-to-reach some point xxx∈R2

at time t for some control strategy u is

c(t,xxx,ut0→t) = E
[

g(xxx0)+
∫ t

t0
[Asg(xxxs)+

∂g
∂x2

Gut +q(xxxs)+ p(us)]ds
]

(4.42)
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where the definition of At is given by equation (4.41) and p(ut) =
Ru2

t
2 for some

scalar R. From here onwards, proceeding exactly as in the previous subsection, we

arrive at the following PDE and optimal control strategy.

∂c∗(t,xxx)
∂ t

+ x2
∂c∗(t,xxx)

∂x1
+(−α(xxx)+β (t))

∂c∗(t,xxx)
∂x2

+
σ2

2
∂ 2c∗(t,xxx)

∂x2
2

− G2

2R

(
∂c∗(t,xxx)

∂x2
− ∂g(xxx)

∂x2

)2

−q(xxx)− x2
∂g(xxx)
∂x1

− (−α(xxx)+β (t))
∂g(xxx)
∂x2

− σ2

2
∂ 2g(xxx)

∂x2
2

= 0 ; subject to c∗(t0,xxx) = g(xxx) (4.43)

u∗(t,xxx) =
G
R

(
∂c∗(t,xxx)

∂x2
− ∂g(xxx)

∂x2

)
(4.44)

Thus the SDE for c∗(t,xxx) is

dc∗(t,XXX t) := dYt =

(
−Atg(XXX t)−q(XXX t)+

G2

2σ2R

(
Zt−σ

∂g(XXX t)

∂x2

)2)
dt

+ZtdBt (4.45)

where Zt = σ
∂c∗(t,xxx)

∂x2

∣∣∣∣
xxx=XXX t

(4.46)

With the state dynamics given by equation (4.40), and the drift h̃ as defined below

for the SDE in Y , Algorithm 3 may be used for the control of oscillators whose

dynamics are of the form (4.38).

h̃(xxx,z) = x2
∂g(xxx)
∂x1

+

(
−α(xxx)+β (t)

)
∂g(xxx)
∂x2

+
σ2

2
∂ 2g(xxx)

∂x2
2

+q(xxx)

− G2

2σ2R

(
z−σ

∂g(xxx)
∂x2

)2

(4.47)

4.3.3 Derivation in cost-to-go

Following the definition of the total cost from the previous subsection, the cost-to-

go (denoted ĉ) to some final state starting at xxx and at time t may be written as
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ĉ(t,xxx) = min
uuut→t f

E
[∫ t f

t
r(s,XXX s,uuus)ds

∣∣∣∣XXX t = xxx
]

(4.48)

ĉ(t ′,xxx′) = min
uuut′→t f

E
[∫ t f

t ′
r(s,XXX s,uuus)ds

∣∣∣∣XXX t ′ = xxx′
]

(4.49)

r(s,xxxs,uuus) = Asg(xxx)+
(

∂g(xxx)
∂xxx

)T

Guuusss +q(s,xxxs)+ p(uuus)

As : generator of the uncontrolled SDE for XXX

ĉ(t,xxx) = min
uuut→t′

E
[(∫ t ′

t
r(s,XXX s,uuus)ds

+ min
uuut′→t f

E
(∫ t f

t ′
r(s,XXX s,uuus)ds

∣∣∣∣XXX t ′ = xxx′
))∣∣∣∣XXX t = xxx

]
(4.50)

ĉ(t,xxx) = min
uuut→t′

E
[∫ t ′

t
r(s,XXX s,uuus)ds+ ĉ(t ′,xxx′)

∣∣∣∣XXX t = xxx
]

(4.51)

For t ′ = t +dt

ĉ(t,xxx) = min
uuut→t+dt

E
[

r(t,XXX t ,uuut)dt + ĉ(t +dt,XXX t+dt)

∣∣∣∣XXX t = xxx
]

(4.52)

E[ĉ(t +dt,XXX t+dt)|XXX t = xxx] = ĉ(t,xxx)+
∂ ĉ(t,xxx)

∂ t
dt +

(
∂ ĉ(t,xxx)

∂xxx

)T

ααα(t,xxx)dt

+

(
∂ ĉ(t,xxx)

∂xxx

)T

Guuudt +
1
2

(
∂ 2ĉ(t,xxx)

∂xxx2 : ΣΣ
T
)

dt (4.53)

∴−∂ ĉ(t,xxx)
∂ t

= r(t,xxx,uuu)+
(

∂ ĉ(t,xxx)
∂xxx

)T

ααα(t,xxx)+
(

∂ ĉ(t,xxx)
∂xxx

)T

Guuu

+
1
2

(
∂ 2ĉ(t,xxx)

∂xxx2 : ΣΣ
T
)

(4.54)

= At ĉ+
(

∂ ĉ(t,xxx)
∂xxx

)T

Guuu+q(t,xxx)+ p(uuu)+Atg(xxx)

+

(
∂g(xxx)

∂xxx

)T

Guuu (4.55)

uuu∗(t,xxx) = −R−1GT
(

∂ ĉ(t,xxx)
∂xxx

+
∂g(xxx)

∂xxx

)
(4.56)
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Substituting uuu∗ in the PDE in ĉ and simplifying, we obtain, as in the case of the HJB

equation, a PDE in cost-to-go subject to a terminal condition. In this case, however

ĉ(t f ,xxxt f ) = 0 on account of the Ito-expansion of the terminal cost, unlike the HJB

equation where the terminal cost is g(xxxt f ).

∂ ĉ(t,xxx)
∂ t

+At ĉ(t,xxx)+q(t,xxxt)+Atg(xxx)

− 1
2

(
∂ ĉ(t,xxx)

∂xxx
+

∂g(xxx)
∂xxx

)T

GR−1GT
(

∂ ĉ(t,xxx)
∂xxx

+
∂g(xxx)

∂xxx

)
= 0 (4.57)

dĉ(t,XXX) =
∂ ĉ(t,XXX)

∂ t
+At ĉ(t,XXX)+

(
∂ ĉ(t,XXX)

∂XXX

)T

ΣdBBBt (4.58)

dĉ(t,XXX) = −q(t,XXX t)−Atg(XXX)

− 1
2

(
∂ ĉ(t,XXX)

∂xxx
+

∂g(XXX)

∂xxx

)T

GR−1GT
(

∂ ĉ(t,XXX)

∂xxx
+

∂g(XXX)

∂xxx

)
+

(
∂ ĉ(t,XXX)

∂xxx

)T

ΣdBBBt (4.59)

Now, since the optimal cost-to-go and cost-to-reach are complements of each

other, their sum may be considered as constant (i.e. a random variable with time-

independent expectations). Let the total cost be ct f , so that we have ĉ = ct f − c∗.

Performing the change of variable, the previous SDE in ĉ may be re-written as an

SDE in c∗ as follows.

−dc∗(t,XXX) =−1
2

(
− ∂c∗(t,XXX)

∂xxx
+

∂g(XXX)

∂xxx

)T

GR−1GT
(
− ∂c∗(t,XXX)

∂xxx
+

∂g(XXX)

∂xxx

)
−q(t,XXX)−Atg(XXX)−

(
∂c∗(t,XXX)

∂xxx

)T

ΣdBBBt (4.60)

dc∗(t,XXX) =−1
2

(
− ∂c∗(t,XXX)

∂xxx
+

∂g(XXX)

∂xxx

)T

GR−1GT
(
− ∂c∗(t,XXX)

∂xxx
+

∂g(XXX)

∂xxx

)
+q(t,XXX)+Atg(XXX)+

(
∂c∗(t,XXX)

∂xxx

)T

ΣdBBBt (4.61)
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This SDE is exactly the same as that obtained in Section 4.3.1. It was possible to

obtain the SDE in c∗ from that of ĉ without knowing the total cost cT since the

drift and diffusion terms of ĉ were only functions of its derivatives and not of the

function itself.

4.4 Numerical illustrations

In this section, we implement the proposed method for the control of a class of

stochastic dynamical systems with emphasis on mechanical oscillators. There is

no restriction on the model dynamics except that the control term is linear and its

associated cost quadratic. However, before moving on to the examples, a word

about the relative computational costs for the FBSDE based and current methods.

Assuming a uniform step size ∆t, let n be the total number of time steps such that

n =
t f−t0

∆t . Then, in the FBSDE method, the uncontrolled forward dynamics and

the backward dynamics must be integrated n2+n
2 times each. Contrast it with the

present method requiring just n integrations for the SDE in Y and the same for the

controlled SDE in X . The FBSDE method also requires n integration steps of the

controlled dynamics which need not be done explicitly in the present method since

the SDEs move only forward in time. Perhaps the most significant computational

overhead is in the function approximations that must be performed every integration

step for the SDE in Y . For the FBSDE method, this costly evaluation must be

undertaken n2+n
2 times in contrast with just n such evaluations in the present scheme.

Longer integration times for computing the optimal control at every step also imply

substantially higher accumulation of integration errors and hence higher sampling

variance too in the FBSDE method (see Figure 4.1). Controlling this substantial

source of error in the FBSDE would necessitate the use of higher order numerical

integration schemes for the SDEs, which would add to the computational burden.

Unlike the FBSDE, the present approach also affords the freedom to choose (or

even optimize) the initial time t̄ to Ito-expand the terminal cost function g(xxx); see

subsequent remarks during our numerical work on the control of chaos. Finally,

with our proposed scheme, simulations of the SDEs in X and Y could be done in
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parallel and this is not possible with the FBSDE scheme.

We start with the control of a simple 1-dimensional problem which enables

a ready comparison with a closed-form solution. The second example is on a

2-dimensional Ornstein-Uhlenbeck process which is of interest in studying phase

modulations in the oscillatory dynamics encountered in myriad physical, mechani-

cal and biological systems [123]. Next, we study the control of the 3-dimensional

Lorenz 1963 model, where the uncontrolled dynamics is in the chaotic regime. Fi-

nally, we consider the control of a couple of nonlinear mechanical oscillators, viz.

hardening Duffing and Duffing-Holmes, involving chaotic as well as nonchaotic

behaviour.

A 1D system

In our first example, a simple 1D problem is considered. The equation of motion is

given by the following SDE.

dXt = 0.2Xtdt +0.5dBt (4.62)

The terminal cost is given by the function g(x) = wx2. No running cost on X is

assumed while that on u is quadratic and of the form R
2 u2. Hence, the total cost is

c = {wx2
t f
+
∫ t f

0

R
2

u2},w = 10,R = 2 (4.63)

For this example, the optimal control ut may be found analytically by solving a

Riccati type ODE; see [5]. Figure 4.1 shows the mean controlled path over 50

independent simulations of the proposed method as well as that pertaining to the

closed-form solution, each with an ensemble size (m) of 10. Also plotted is the

solution based on an FBSDE scheme for the same ensemble size. As is clear from

the figures, the sampling variance with the proposed method is the least. The total

mean cost determined by numerically integrating the paths (see equation 4.63) along

with its variance across independent simulations is also reported in Table 4.1. Of

particular interest is the comparison between the FBSDE and proposed methods

since closed form solution is rarely available.
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(a) Proposed method
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(b) Theoretical solution
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Figure 4.1: Comparison of results from various methods for the 1D problem. In each figure,
black bold line shows the mean and colored patch represents the variation in
performance over 50 independent simulations; i.e. at any time, the boundary of
the colored patch represents the minimum and maximum displacement at that
time. Time is measured in seconds and displacement in meters.

Method Mean
of total cost

Variance
of total cost

Computational
time (sec)

Proposed method 4.4579 1.5578 30
Closed form solution 4.3422 2.8674 0.028

FBSDE1method 327.5918 4.65 ×105 605

Table 4.1: A comparison of costs and computational time

A 2-D Ornstein-Uhlenbeck oscillator

We now consider the control of a 2D Ornstein-Uhlenbeck process [123], where each

of the two state space variables is noise driven (see equation (4.64) below). As noted

in [123], this system shares a few salient features of mechanical oscillators, e.g. the

existence of a noisy spiral sink system or a noisy limit cycle. The model dynamics

and the expression for the total cost are given below by equations (4.64) and (4.65)

followed by the parameter values used for this problem.

dXXX t = AXXX tdt +BdBBBt ; t ∈ [0,10] (4.64)

cost : xxxT
t f

Wxxxt f +
∫ t f

t0
xxxT

t Qxxxt +
1
2

uuuT
t Ruuut (4.65)

A =

0.47 1.25

0.75 −0.53

B =

 0.4861 −0.1169

−0.1169 0.3692


Q = 50[I]2×2 ; W = 10[I]2×2R = 0.1[I]2×2 ; G = 0.5[I]2×2

1Only those trajectories are chosen that stay within [-2,2]; 11 out of 50 trajectories go outside
this interval for the FBSDE method.
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Figure 4.2: Comparison of controlled paths determined by the proposed method with the
uncontrolled paths of a 2D Ornstein-Uhlenbeck process. Time is measured in
seconds and displacement in meters.

I here denotes an identity matrix with dimension as indicated in the subscript. In

Figure 4.2, we compare the results obtained via the proposed method and the un-

controlled dynamics. The efficacious working of our method is evident.

Lorenz oscillator

A recurrent theme for the problems considered hereafter is chaos. The study of

control of chaos is of interest for two main reasons. The first is that, since these

systems exhibit the ’butterfly effect’, they form useful test problems to study the

efficiency and robustness of any control methodology. Second, due to the same

’butterfly effect’ which implies the presence of infinitely many unstable periodic

orbits in the flow, the behaviour of chaotic systems may vary significantly for a

small change in control. Thus it is possible, at least in principle, to dramatically

reduce the total cost of control. In this section we study the control of the well

known Lorenz 1963 [124] model. The parameter values chosen ensure that the

behaviour of the uncontrolled system is chaotic. The equation of motion for this

3-dimensional model is given by
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Figure 4.3: Comparison of controlled (blue) and uncontrolled (red) paths for the Lorenz
1963 model. Time is measured in seconds and displacement in meters.

dXXX t = fff (XXX t)dt +ΣdBBBt (4.66)

XXX t is the 3-dimensional vector (x,y,z)T co-ordinates and fff is given by

fff (XXX) =


χ(y− x)

ρx− y− xz

xy−bz

 (4.67)

The cost is similar to the previous example, which is so designed that the controlled

system should reach the origin in the phase space and thereafter stay there. The

various parameter values used are

χ = 10 ; ρ = 28 ; b =
8
3

; Σ = 0.3[I]3×3 ; Q = 50[I]3×3 ;

W = 10[I]3×3R = 0.1[I]3×3 ; G = 0.5[I]3×3

Figure 4.3 shows time history plots for all the three states corresponding to both

controlled and uncontrolled cases. Given that the response regime is chaotic, our

choice of the initial time to expand g(xxx), which is presently t0, is far from perfect.
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This is, for instance, evidenced in a nearly immediate realization of the control

objective that involves a high initial control cost. A more appropriate choice of t̄

(to expand g(xxx) about) is perhaps the first entry time of the uncontrolled trajectory

within a ball of ’small’ radius around the origin.

Hardening Duffing oscillator

Next we consider the control of a hardening Duffing oscillator. As mentioned in a

previous subsection, this model may also behave chaotically. However, unlike the

examples considered so far, the equation of motion for this model is not an SDE,

but of the form shown in equation (4.41). Specifically, it is presently given by

ζ̈ + cζ̇ + kζ +αζ
3 = Pcos(2ωt)+σ Ḃ (4.68)

In equation (4.68), c is the viscous damping coefficient, k,α are model stiffness

parameters, P and ω are the forcing amplitude and frequency respectively and σ

is the diffusion coefficient. Ḃ formally represents white noise, and in order to deal

with it, the dynamics are re-written in the state space as follows

dX1 = X2dt (4.69)

dX2 = (−cX2− kX1−αX3
1 +Pcos(2ωt))dt +σdBt (4.70)

where X1 = ζ and X2 = ζ̇ are respectively the displacement and velocity stochastic

processes.The objective of control and hence the form of the cost are similar to

the problems considered before. In this type of system, the control only acts on

the equation for velocity which is an SDE. The expression for the total cost and

the various parameters used for solving the stochastic optimal control problem with

the proposed method are specified below. The results showing a comparison of

controlled and uncontrolled trajectories are in Figure 4.4.
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Figure 4.4: Comparison of controlled (blue) and uncontrolled (red) paths for the hardening
Duffing oscillator; (a) time history plots, (b) phase plots. Time is measured in
seconds and displacement in meters.

cost: w1x2
1,t f

+w2x2
2,t f

+
∫ t f

t0
(q1x2

1,t +q2x2
2,t +

1
2

Ru2
t )dt

P = 4 ; c = 0.1 ; k = 1 ; α = 1 ; ω = 3 ; σ = 0.1

q1 = w1 = 100 ; q2 = w2 = 30 ; R = 1 ; G = 0.5

Initial conditions: [x1,t0,x2,t0] = [1,2]; t0 = 0

Duffing-Holmes oscillator

As a final example, we consider the Duffing-Holmes oscillator [125, 126], where

chaos occurs due to repeated intersections of the stable and unstable manifolds per-

taining to the homoclinic orbit. For this particular example, we consider three cases

in order to test the proposed method of control against different response regimes of

the system depending on different initial conditions in the phase space. Perhaps, the

most difficult to achieve is the control towards the unstable fixed point (the origin

in the phase space), which is considered as the last case. The equation of motion

along with the parameters used (that are common to all the cases) are given below.

The cost and initial conditions specific to each case are described below in the ap-

propriate places. As in the previous example, the control only acts on the second
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equation which is an SDE in velocity.

ζ̈ +2πε1ζ̇ +4π
2
ε2(ζ

2−1)ζ = 4π
2
ε3 cos(2πt)+σ Ḃ (4.71)

dX1 = X2dt (4.72)

dX2 = (−2πε1X2−4π
2
ε2(X2

1 −1)X1 +4π
2
ε3 cos(2πt))dt +σdBt (4.73)

ε1 = 0.25 ; ε2 = 0.5 ; ε3 = 0.5 ; σ = 0.1

Case 1

In this case, for the initial condition chosen, the system behaviour is chaotic as

evidenced by the presence of a strange attractor (or, equivalently, by the positivity

of the highest Lyapunov exponent). The objective is to apply control so that it

exhibits a 1-periodic orbit about one of the stable fixed points (in this case [1,0]) in

the phase space. Note that the fixed point [1,0], as is its counterpart at [−1,0], is

a stable sink when the oscillator is unforced. The cost chosen towards our control

objective is given below along with the initial condition and the parameter values.

The results for this case are shown in Figure 4.5.

Initial conditions: [x1,t0 ,x2,t0] = [1.5,−3] ; t ∈ [t0 = 0, t f = 10]

cost : gt f (.)+
∫ t f

t0
(gt(.)+

1
2

Ru2
t )dt

gt(.) = (w1(x1,t−1)2 +w2x2
2,t− r2)2

w1 = 0.1 ; w2 = 1 ; r = 0.5 ; R = 0.1 ; G = 0.5

It may be noted that, while controlling chaotic orbits, one can do better than Ito

expanding g(Xt f ) about the initial time t0. Specifically, the start time t̄ to expand

g(Xt f ) should be ideally chosen as the first time the chaotic orbit comes closest to

the targeted (periodic) orbit in the phase space. This would substantially reduce the

control cost.
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Figure 4.5: Comparison of controlled (blue) and uncontrolled (red) paths for the Duffing-
Holmes oscillator; (a) time history plots, (b) phase plots. Time is measured in
seconds and displacement in meters. For the parameters and initial condition
chosen, the behaviour of the oscillator is chaotic. Time is measured in seconds
and displacement in meters.

Case 2

This case is similar to Case 1, except that for the initial condition chosen, the system

behaviour is not chaotic, but in the form of a large periodic orbit that encapsulates

the homoclinic orbit, and hence all three fixed points for the unforced oscillator.

The control is designed so as to exhibit a periodic behaviour with a much smaller

amplitude. This, among others, demonstrates that the proposed method for control

is robust irrespective of whether the system behaviour is chaotic, periodic or quasi-

periodic. The results for this case are depicted in Figure 4.6.

Initial conditions: [x1,t0,x2,t0] = [1.5,5] ; t ∈ [t0 = 0, t f = 10]

cost : gt f (.)+
∫ t f

t0
(gt(.)+

1
2

Ru2
t )dt

gt(.) = (w1(x1,t−1)2 +w2x2
2,t− r2)2

w1 = 0.1 ; w2 = 1 ; r = 0.5 ; R = 0.1 ; G = 0.5

Case 3

Finally, we control the Duffing-Holmes oscillator to stay at the unstable fixed point

i.e. [0,0] in the phase space. The initial point is chosen close to the origin in the
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Figure 4.6: Comparison of controlled (blue) and uncontrolled (red) paths for the Duffing-
Holmes oscillator; (a) time history plots, (b) phase plots. Time is measured in
seconds and displacement in meters. For the parameters and initial condition
chosen, the behaviour of the oscillator is non-chaotic. Time is measured in
seconds and displacement in meters.

phase space; the uncontrolled trajectories are naturally repelled from the origin in

this case as can be seen in Figure 4.7(a) and hence they are not easy to control. The

expression for cost, and the various parameters used are given below. Results for

the controlled dynamics are shown in Figure 4.7.

Initial conditions: [x1,t0,x2,t0] = [0.01,0.01] ; t ∈ [t0 = 0, t f = 10]

cost : gt f (.)+
∫ t f

t0
(gt(.)+

1
2

Ru2
t )dt

gt(.) = (w1(x1,t)
2 +w2x2

2,t)
2

w1 = 1 ; w2 = 10 ; R = 0.1 ; G = 0.5

4.5 Concluding remarks

Unlike the well known HJB equation supplied with a terminal condition to charac-

terize a stochastic control problem, we, in this chapter, have derived a PDE with an

initial condition to represent the same control problem. Our proposal to solve the

PDE involves a pair of SDEs both integrated forward in time within a Monte Carlo

setting plus a functional approximation scheme over every time step. This may be



4.5. Concluding remarks 108

0 1 2 3 4 5 6 7 8 9 10

Time

-2

-1

0

1

2

D
is

p
la

c
e
m

e
n
t

0 1 2 3 4 5 6 7 8 9 10

Time

-10

-5

0

5

10

V
e
lo

c
it
y

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Displacement

-8

-6

-4

-2

0

2

4

6

8

V
e

lo
c
it
y

(b)

Figure 4.7: Comparison of controlled (blue) and uncontrolled (red) paths for the Duffing-
Holmes oscillator; (a) time history plots, (b) phase plots. Time is measured
in seconds and displacement in meters. Time is measured in seconds and dis-
placement in meters.

contrasted with the far more tedious route of solving the HJB PDE via a pair of

FBSDEs. In the proposed makeover of the stochastic control problem, while the

total cost to minimize and the control objectives remain the same, the terminal cost

is smeared over the time interval of interest by Ito’s formula to arrive at an initial

cost. This means that the pathwise solutions in our Monte Carlo scheme could be

different from those in the standard FBSDE approach. We arrived at the same PDE

using two complementary approaches, thus confirming that the difference between

the proposed method and the one via the HJB route lies entirely in the Ito expan-

sion of the terminal cost and not on whether the cost-to-go or cost-to-reach is being

minimized. We also give a brief derivation of our approach for the special case of

mechanical oscillators, which constitutes an application of primary interest in this

work.

Although there are no serious restrictions on the process dynamics and the

running cost involving the system states, the control term in the system dynamics

is assumed to be linear and the cost associated with control quadratic; this is also

known as L 2 control. The scheme may be adapted for L 1 control without much

difficulty, although we do not elaborate on those scenarios in this work. Also, we

only considered problems with a finite time horizon, i.e. when the terminal time

is fixed beforehand. Our proposal however admits ready extensions to problems
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involving a stopping time, or an exit time since the SDEs in the method evolve only

forward in time. The ease of implementation, computational expedience, and scal-

ability are a few of the major advantages of our scheme vis-á-vis the ones through

forward-backward stochastic dynamics.

It is known that the SDE-based route to solve PDEs, such as the HJB equa-

tion, may not efficaciously explore the spatial domain over which solutions may

be sought. As with the scheme based on FBSDEs, it is possible to engineer the

drift terms, Girsanov change of measures to wit, towards exploring specific spatial

regions of interest. Several other interesting directions for future exploitation of

the proposed scheme could be suggested. Application to stochastic filtering is one

such possibility, where the control terms could be designed for variance reduced

estimates of states. Parameter estimation within a stochastic filter is yet another

possibility. Here, for instance, the parameter dynamics driven only by Brownian

noise might be enhanced with an additional drift or control to precipitate faster con-

vergence. Design of a control strategy within a Riemannian geometric setting, with

the metric derived through the cost, is also an exciting direction for future research.

The next chapter is about parameter estimation via data assimilation. At first

glance, the methodology of data assimilation, in particular the ensemble Kalman

filter (for either states alone or states and parameters combined), may seem to bear a

remarkable similarity with the solution for the SOC problem considered here. More

specifically, an additional term is derived that is added to the process SDE like the

Gu term in equation 4.23. Indeed, as mentioned in Chapter 1, these two problems

may be looked upon as two sides of the same coin. The key difference in these

two problems lies in their objectives. In SOC, the objective is to reach a desired

terminal state whilst minimizing a certain total cost and the additional drift derived

is a force that needs to be applied to the system in order to achieve that objective. In

data assimilation on the other hand, the objective is to determine the true values of

states (and parameters) of a dynamical system using the available measurements of

a system evolution that has already occured. In this case, therefore, the additional

term is like a pseudo-force that drives the mean of the innovation vector (defined
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in the next chapter) to zero. Although not explicit at first glance, it is also worth

appreciating the connection between the parameter dynamics proposed in the next

chapter and the optimization and Markov chain Monte Carlo methods in Chapters

2 and 3.



Chapter 5

Efficient parameter estimation via

data assimilation: a modified

parameter dynamics

While I have undertaken the theoretical work for this chapter and the numerical

work in Section 5.5.1, the numerical examples in Sections 5.5.2 and 5.5.3 have

also been contributed to by some of my collaborators. The programming work for

Section 5.5.2 has been carried out together with Marcus Lehmann, Dr.-Ing., Ariane

Group GmbH, while the text in that section is produced entirely by him. Except for

some debugging which was undertaken together, the programming work for Section

5.5.3 has been mainly carried out by Dr. Devaraj Gopinathan, Centre for Advanced

Research Computing, UCL, who has also co-drafted the text therein.

5.1 Introduction
Given a system model and a partial set of noisy observations on the system, a data

assimilation (DA) method aims at estimating the states of the dynamical system

whilst acknowledging the modelling and observation uncertainties. A stochastic

filtering method, which adopts a Bayesian probabilistic framework to obtain the es-

timates [127], typically starts with a prior (or proposal), informed by the system

model, which is then updated by observations to obtain the posterior (prior times

the likelihood) and the related estimates of state thereof as new observations become
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available. These estimates are the mean of the system’s states or parameters con-

ditioned on the available observations. They cannot generally be found in closed

form. This is due to the nonlinearities in the process and/or observations models

as well as possible non-Gaussianity in describing the uncertainties. Accordingly,

ensemble methods or those based on Monte Carlo simulations are mostly adopted

wherein posterior distributions are approximated using sampling. Prominent among

the Monte Carlo based DA methods are particle filters, of which the bootstrap filter

is perhaps the oldest [128]. Here, as in most other stochastic filters, the system dyn-

camics is recursively predicted and updated. The prediction step being performed

by integrating the system dynamics to obtain an ensemble of particles thus resulting

in a sampling approximation to the prior. The current observation is then used to

compute the likelihood function and thus assign weights to the predicted particles,

which forms the update step. The sampling approximation to the posterior is then

the ensemble of weighted particles which may be resampled to arrive at particles

with equal weights.

The auxiliary particle filter [129] improves upon the complexity of the boot-

strap filter algorithm by considering the posterior in the product space of states/pa-

rameters at the last and current time instants. Quasi-Monte Carlo filters [130, 131]

improve the convergence of the Monte Carlo simulations that underlie the filtering

scheme by replacing random draws by more regular samples. A major numerical

issue with most particle filters is that of particle degeneracy which is reflected in

all but one weight reducing to zero as time-recursions progress [132]. We refer to

[133] for a recent review on particle filters.

Notable among the ensemble methods are the ensemble Kalman filters with

the popular acronym ‘EnKF’ [134, 135] which employ Gaussian assumptions for

both the prior and the likelihood. Since these are ensemble makeovers of the well

known Kalman filter, the update strategy for the predicted ensemble is not based on

weights, but an additive correction term. The correction term is typically of the form

of a gain matrix multiplying the innovation vector, which measures the error in the

predicted observation. Accordingly, the particle degeneracy problem is not encoun-
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tered in this class of methods. Following the original work in [134], several variants

of this class of filters have been developed, e.g. the ensemble transform Kalman

filter [136], the ensemble adjustment Kalman filter [137], the ensemble square root

filter [138, 139], the maximum likelihood ensemble filter [140], the error subspace

transform Kalman filter [141] and several others. These variants of the EnKF mainly

differ in the details of the update step. These filters clearly cannot account for pos-

sible non-Gaussianity in the model or observation uncertainty. This shortcoming is

overcome in the Kushner-Stratonovich filter [142]. Though computationally more

expensive, it can account for non-Gaussianity via an ensemble-based implementa-

tion of the nonlinear filtering equation – the Kushner-Stratonovich equation [26].

We now turn to the focus of this work, wherein our interest is in estimating

parameters of a given dynamical system within the framework of data assimilation.

Without any loss of generality, which will be made more explicit later on, we work

with the EnKF. When the EnKF is used for estimating parameters, the conventional

approach is to append the vector of parameters to the original state vector [143]. The

state vector is made to evolve as usual according to the process dynamics equation,

with the exception that now the parameter vector is also considered to evolve with

time. Barring a few exceptions viz. [144, 145] the evolution of the parameter vec-

tor is implemented using Brownian motion. This combined evolution of state and

parameters forms the prediction step. The update step is performed as usual, except

the dimension of Kalman matrix update step is now different (larger) than it would

have been had we been interested in only state estimation. Overall, the parameter

prediction, which is taken as Brownian motion in the prediction step, is improved at

the update step, see [146] for an example where the ensemble Kalman filter is used

for combined state-parameter estimation. Although this works well in many practi-

cal applications, the Brownian motion proposal for the prediction of parameters is

quite ad hoc and may cause several issues in general. For instance, if the process is

sensitive to some or all of the desired parameters, Brownian motion proposal tends

to perform poorly. Also, this proposal performs quite poorly when the availability

of data is limited. Limited data may either mean the frequency of data for a given
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time interval is lower or that the total time over which data is collected is itself quite

small. Also, it may become increasingly difficult to achieve convergence of param-

eters as the problem dimension increases. This type of proposal typically exhibits a

large sampling variance as well, i.e. repeated simulations of the same problem may

lead to the convergence of parameters to quite different values.

It is thus clear that Brownian motion alone is inadequate for parameter dy-

namics. In view of this, a novel scheme for estimating parameters of a dynami-

cal system within the framework of data assimilation is proposed in this chapter.

Specifically, this is achieved by constructing a Langevin dynamics for the evolution

of parameters at the prediction step. The main element required in the construc-

tion of Langevin dynamics is an energy-like quantity which is proposed as a convex

function of the innovation term in filtering. As a quick aside, this is not unlike

the approach adopted in [8] for the design of a stochastic Hamiltonian preserving

integration scheme. In the context of filtering, at any given time, the innovation

term may be defined as the difference between the measurement and its predicted

value based on the available information about the predicted states and the measure-

ment model dynamics. The gradient of this energy-like quantity with respect to the

desired parameters forms the drift of the Langevin diffusion equation and gives a

direction to the evolution of the parameters facilitating faster search. This approach

of parameter evolution is in contrast with the conventional one mentioned in the pre-

vious paragraph, wherein the parameter dynamics is simply Brownian motion and

hence has no directional information. We name our method PEDAL for Parameter

Estimation with Data Assimilation using Langevin Dynamics. Moreover, PEDAL

affects only the prediction step of filtering, and is thus suitable to be applied within

both the gain-based filtering methods like the EnKF and the weight-based ones like

the Bootstrap filter. In addition to being generic enough to be applied within any

type of filtering approach, PEDAL is also easy to implement. The superior per-

formance in speed and accuracy of convergence of the proposed approach, when

compared to the conventional approach, is demonstrated through a few numerical

examples. Through further examples, where the frequency of data is lower, we show
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that the conventional approach is unable to match the performance of the proposed

one even with an ensemble size of more than 100 times for the Lorenz oscillator.

We also demonstrate the robustness of the proposed approach through repeated sim-

ulations.

The rest of this chapter is organised as follows. For the sake of complete-

ness, Section 5.2 describes the problem of state estimation in filtering along with a

pseudo-code for state estimation via the EnKF. Building upon Section 5.2, 5.3 de-

scribes the problem of combined state-parameter estimation; again a pseudo-code

is included for the sake of clarity. The methodology is discussed in detail in Section

5.4, which is followed by numerical examples and conclusions in sections 5.5 and

5.6 respectively.

5.2 State estimation via ensemble Kalman filter
Consider a filtering problem with the following equations for process and measure-

ment dynamics.

dXt = f (Xt ,θ)dt +σxdBt (5.1)

Yt = h(Xt)+σzdWt (5.2)

Here Xt is the vector of model states, θ the vector model parameter and Yt , the mea-

surement vector at time t. f (.) and h(.) are process and measurement dynamics,

σ and σz, the process and measurement noise intensities, while dBt and dWt are

independent Brownian noise increments. For simplicity, and without any loss of

generality, we assume that observations are available at every time increment. The

objective of filtering is to incorporate these observations within the available pro-

cess model to estimate the optimal solution whilst acknowledging the uncertainties

in the process dynamics as well as observations. As mentioned in the introduction,

any DA scheme typically consists of two steps - the first being prediction, where the

state variable Xt is passed through the process model to obtain the predicted state at

the next time instant X̃t+1. In the second step, the latest measurement Zt+1 is assim-

ilated to obtain the updated or filtered state estimate X̂t+1. For clarity of exposition,

a pseudo-code for the EnKF for state estimation is provided in Algorithm 4.
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Algorithm 4: Pseudo-code of EnKF for state estimation
Let the states and measurements be dX and dZ dimensional vectors respectively
Discretize time ; 0 = t0 < t1 < ... < tN = T such that tk− tk−1 = ∆t ∀ k ∈ [1,N]
Data: dZ-dimensional measurement vectors {Z}N

k=1 at the discretized time steps
Initialize the ensemble (of size M) of states {X̂ j}k=0 ∀ j ∈ [1,M] at time t0
for k = 0 : N−1 do

Predict
for j = 1 : M do

X̃ j
k+1 = X̂ j

k + f (X̂ j
k ,θ)∆t +σx∆Bk ∀ j ∈ [1,M] ; ∆Bk ∼N (0,∆t)

end
Update
Let X̃k+1 and X̃k+1 represent the state ensemble and its mean respectively
Pk =

1√
N−1

[
X̃k+1− X̃k+1

]
dX×M

Similarly, let h(X̃k+1) and h(X̃k+1) represent the ensemble of predicted
measurements and its mean respectively

Yk =
1√

N−1

[
h(X̃k+1)−h(X̃k+1)

]
dZ×M

Determine the Kalman gain matrix Kk as follows
Kk = PkY T

k [YkY T
k +σzσ

T
z ]
−1 where (.)T represents the matrix transpose

for j = 1 : M do
Determine the updated ensemble of

statesX̂ j
k+1 = X̃ j

k+1 +Kk

{
Zk+1−h

(
X̃ j

k+1

)}
∀ j ∈ [1,M]

end
end
return X̂ j

k+1 ∀ j ∈ [1,M]

5.3 Combined state-parameter estimation via ensem-

ble Kalman filter

The combined state-parameter estimation proceeds very similarly to the state esti-

mation. The only difference is now that the parameter is unknown, it is considered

as a pseudo-state which also evolves with time, thus modifying the equations 5.1

and 5.2 to the following

dXt = f (Xt ,θt)dt +σxdBt (5.3)

dθt =σθ dVt (5.4)

Yt =h(Xt)+σzdWt (5.5)
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where, like dBt and dWT , dVt is also an independent Brownian noise increment.

Thus, in addition to the equation for evolution of states, there is now also an equation

for the evolution of the unknown parameter θ . σθ is the noise intensity for the

evolution of parameters. The EnKF is now applied to the combined state-parameter

vector, unlike only the state vector in the previous section. For clarity, the modified

pseudo-code for is presented below. Note the only differences with the Algorithm 4

are that the prediction happens for both states and parameters and the Kalman gain

matrix is of a larger size.

Algorithm 5: Pseudo-code of EnKF for combined state-parameter esti-
mation: Brownian motion for parameters

Let the states, parameters and measurements be dX , dθ and dZ dimensional
vectors respectively
Discretize time ; 0 = t0 < t1 < ... < tN = T such that tk− tk−1 = ∆t ∀ k ∈ [1,N]
Data: dZ-dimensional measurement vectors {Z}N

k=1 at the discretized time steps
Initialize the ensemble (of size M) of states {X̂ j}k=0 and parameters
{θ̂ j}k=0 ∀ j ∈ [1,M] at time t0

for k = 0 : N−1 do
Predict
for j = 1 : M do

X̃ j
k+1 = X̂ j

k + f (X̂ j
k , θ̂

j
k )∆t +σx∆Bk ∀ j ∈ [1,M] ; ∆Bk ∼N (0,∆t)

θ̃
j

k+1 = θ̂
j

k +σθ ∆Vk ∀ j ∈ [1,M] ; ∆Vk ∼N (0,∆t)
end
Update

Pk =
1√

N−1

[{
X̃k+1
θ̃k+1

}
−
{

X̃k+1
θ̃k+1

}]
(dX+dθ )×M

Yk =
1√

N−1

[
h(X̃k+1)−h(X̃k+1)

]
dZ×M

Determine the Kalman gain matrix Kk as follows
Kk = PkY T

k [YkY T
k +σzσ

T
z ]
−1

for j = 1 : M do
Determine the updated ensemble of states and parameters{

X̂ j
k+1

θ̂
j

k+1

}
=

{
X̃ j

k+1
θ̃

j
k+1

}
+Kk

{
Zk+1−h

(
X̃ j

k+1

)}
∀ j ∈ [1,M]

end
end
return X̂ j

k+1, θ̂
j

k+1 ∀ j ∈ [1,M]
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5.4 Proposed methodology
PEDAL consists of a modified parameter dynamics that replaces equation 5.4, leav-

ing the rest of the filtering procedure exactly the same as in Section 5.3. As men-

tioned earlier, the modified dynamics is a Langevin diffusion equation, specifically,

we use the overdamped Langevin diffusion. The main element required in con-

structing this diffusion is an energy-like quantity. Let the energy-like term at any

time tk be defined as Ek for now, it will be discussed a bit later in this Section. Then

PEDAL (after an integration step as per the Euler-Maruyama method) is given as

follows:

θk+1 = θk−βk∇θ Ek∆t +
√

2βk∆Vk (5.6)

In the equation above, ∇θ Ek is the gradient of the energy-like quantity with respect

to the parameter vector, while ∆t and ∆Vk are increments in time and Brownian

motion respectively. βk is an annealing parameter such that βk > 0 ∀k, βk+1 ≤ βk.

This is a temperature-like quantity; a higher value facilitates more exploration and a

lower one exploitation. In the initial steps, when little data has been assimilated, the

β value is kept high to allow more exploration and gradually reduced when more

and more information becomes available with time. Thus−∇θ Ek is the direction of

descent and βk∆t may be considered analogous to the step length in a deterministic

gradient descent algorithm. The drift term of the SDE (5.6) is proportional to βk

while the diffusion term is proportional to
√

2βk in accordance with the fluctuation-

dissipation theorem [147].

Let us now turn our attention to the energy-like quantity Ek in equation 5.6.

Since it is desired that Ek mimic an energy function, certain considerations must be

kept in mind. First, it must be a non-negative function of the innovation process.

Second, it should preferably be a convex function, with a unique minimum at the

desired solution. Keeping these points in mind, we propose the following expression

for a pseudo-energy as a function of the innovation process at any give time tk.

Ek = exp(λ (Zk−h(X̃k))
T (Zk−h(X̃k)))−1 ; λ > 0 (5.7)
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Here λ is a positive hyperparameter, Zk is the measurement and X̃k, the predicted

state vector at time tk. Intuitively, the exponential function does the job of exagger-

ating the influence of the error or the innovation term on the energy, thus helping in

a faster search. However, sometimes this influence can cause numerical issues, par-

ticularly in the initial time steps of filtering when the innovation is large, leading to

large steps accompanied by large noise (since βk is also relatively large in the initial

time steps) not necessarily in the right directions. Hence, λ is introduced to soften

this influence. Its typical value is much smaller than 1. Its actual value depends

upon the nature of the process dynamics. For example, if the process is highly sen-

sitive to the change in the values of one or more parameters, a larger value may be

more suitable. It is also possible to choose a vector λ , of the same dimension as

Zk, in problems that are relatively more stiff with respect to some parameters than

others.

Once the form of Ek is decided, we can now proceed to determine ∇θ Ek. In

this work, we only work with equation 5.7. Hence, its gradient, upon application of

a simple chain rule, may be written in component form as follows.

{∇θ Ek}i =
∂Ek

∂θ i (5.8)

=−2λEk(Z
p
k −hp(X̃k))

∂hp(X̃k)

∂ X̃ j
k

∂ X̃ j
k

∂θ i

∣∣∣∣
θ=θk

(5.9)

In the equation above, the subscript k represents the time index. A superscript (.)m

is used to represent the mth component of the vector quantity under consideration.

Also, the Einstein summation convention has been made use of, meaning a sum is

implied over any repeated indices (i.e. ’p’ and ’j’ in equation 5.9) in the superscript.

Looking at individual terms appearing in equation 5.9, Ek is determined as per equa-

tion 5.7, (Zp
k −hp(X̃k)) is the pth component of the innovation vector, ∂hp(X̃k)

∂ X̃ j
k

is the

partial derivative of pth the equation in the measurement model with respect to the

jth component of the state vector and ∂ X̃ j
k

∂θ i is the partial derivative of the jth compo-

nent of the state vector with respect to the ith component of the parameter vector.

While the other quantities are straightforward, in order to determine the last partial
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derivative, we make use of the implicit Euler-Maruyama integration of the process

dynamics as follows.

Xk = Xk−1 + f (Xk,θ)∆t +σx∆Bk (5.10)

Based on the equation above, the last term in equation 5.9 can now be determined

as

∂ X̃ j
k

∂θ i =
∂ f j(X̃k,θ)

∂θ i

∣∣∣∣
θ=θk

(5.11)

The explicit Euler-Maruyama method of integration may also have been used in-

stead, we opt to choose the implicit method for convenience. More specifically, we

may have had to keep track of states at two time steps in the past with the explicit

method instead of just one with the implicit one. Note that θ in the numerator in

equation 5.11 represents the vector of parameters.

5.5 Numerical experiments
We demonstrate the performance of PEDAL with the help of three examples. The

first is the Lorenz 63 model [124], which is a well-known benchmark chaotic os-

cillator. The next is a standard material model of linear elastic behaviour. The

last example is of tsunami propagation. This does not naturally fall in the class of

state-parameter estimation, as will be made clearer later, since the parameters we

are trying to infer therein are those of the initial tsunami swell. These parameters

basically define the initial state for the tsunami, and in the data-assimilation set-up,

are simply states. We show in Section 5.5.3 how we use a workaround and treat

the parameters for the initial condition as parameters in the system dynamics. In

all three examples, we compare the results of the filtered states and parameters with

the EnKF between the conventional and proposed approaches.

5.5.1 Lorenz 1963 oscillator

This is a 3-dimensional model, with three parameters σ ,r and b. The process model

evolution, i.e. f (.) in equation (5.3), is given by the following set of coupled ordi-
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Algorithm 6: Pseudo-code of ensemble Kalman filter for combined
state-parameter estimation: proposed method

Let the states, parameters and measurements be dX , dθ and dZ dimensional
vectors respectively
Discretize time ; 0 = t0 < t1 < ... < tN = T such that tk− tk−1 = ∆t ∀ k ∈ [1,N]
Data: dZ-dimensional measurement vectors {Z}N

k=1 at the discretized time steps
Initialize the ensemble of states (of size M) {X̂ j}k=0 and parameters
{θ̂ j}k=0 ∀ j ∈ [1,M] at time t0

for k = 0 : N−1 do
Predict
for j = 1 : M do

X̃ j
k+1 = X̂ j

k + f (X̂ j
k , θ̂

j
k )∆t +σ∆Bk ∀ j ∈ [1,M] ; ∆Bk ∼N (0,∆t)

θ̃
j

k+1 = θ̂
j

k −βk∇θ Ek(θ̂
j

k )∆t +
√

2βk∆Vk ∀ j ∈ [1,M] ; ∆Vk ∼N (0,∆t)
where Ek is defined in equation (5.7) and ∇θ Ek(θ̂

j
k ) is determined using

equations (5.9) and (5.11)
end
Update

Pk =
1√

N−1

[{
X̃k+1
θ̃k+1

}
−
{

X̃k+1
θ̃k+1

}]
(dX+dθ )×M

Yk =
1√

N−1

[
h(X̃k+1)−h(X̃k+1)

]
dZ×M

Determine the Kalman gain matrix Kk as follows
Kk = PkY T

k [YkY T
k +σzσ

T
z ]
−1

for j = 1 : M do
Determine the updated ensemble of states and parameters{

X̂ j
k+1

θ̂
j

k+1

}
=

{
X̃ j

k+1
θ̃

j
k+1

}
+Kk

{
Zk+1−h

(
X̃ j

k+1

)}
∀ j ∈ [1,M]

end
end
return X̂ j

k+1, θ̂
j

k+1 ∀ j ∈ [1,M]

nary differential equations (ODEs).

dx
dt

= σ(y− x)

dy
dt

= rx− y− xz

dz
dt

= xy−bz

The true parameter values are taken as, σ = 10,r = 28,b = 8/3 and the initial

condition for the state used for generating toy measurements is x = 8,y = 0,z = 30.

Parameter noise intensity for the Brownian motion case is taken as σθ = 0.1, pro-
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Figure 5.1: Typical phase plot of the Lorenz 63 model

cess noise intensity σx = 0.001 and the measurement noise intensity is taken as

σz = 2. In general, an explicit Euler-Maruyama method of integrating SDEs works

well for most practical applications. However, since this is a chaotic system, the

stochastic Heun method of integration is used for integrating the process dynamics

in the prediction step of the EnKF. This may be considered as the stochastic coun-

terpart of the second-order Runge-Kutta method of integrating ODEs. Figure 5.1

shows the typical phase plot of the Lorenz 63 model. It is interesting to note that

a linear problem with known parameters may become non-linear when the param-

eters are unknown, as is true for the Lorenz oscillator. In the context of filtering,

particularly the EnKF, this introduces a complexity that is more than just an increase

in the problem dimension.

We perform three types of experiments to test the quality of results. The first

one is a simple comparison of the conventional and proposed methods when data

is assimilated at every time step. The results are shown in Figure 5.2. Of specific

interest are the plots for the parameters, i.e. subfigures (a), (c) and (e). Each of these

subfigures contains results of 4 different instances of the EnKF. The solid lines in

green and pink are the results with the Brownian (original) and Langevin (modified)

parameter dynamics respectively, each for an ensemble size of 10. As is clear from

the subfigures, PEDAL performs much better, particularly for the parameter σ . The

dashed lines in orange and blue are results with Brownian motion for an ensemble
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size of 100 and 1000 respectively. It may be seen that even with an ensemble size

of 1000 (dashed blue line), the Brownian motion cannot outperform the proposed

method with an ensemble size of just 10 (solid line in pink).

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Lorenz 63 model: Comparison of filtered states and parameters between the
two parameter dynamics, i.e. Brownian (original) and Langevin (modified).
Figures (a), (c) and (e) show the convergence of parameters. The numbers
accompanying the labels represent the ensemble size used in the EnKF. Figures
(b), (d) and (f) show the convergence of the three states for an ensemble size of
10. Data is assimilated at every time step.

The second set of experiments is the same as the first one, except now the data

is assimilated only every tenth time step. That is, the availability of data to the filter-

ing algorithm is 10 times lower since the total time of simulation is left unchanged.

The objective is twofold; one, to demonstrate that the requirement of data with the

proposed method is less, thus reducing the computational cost of filtering. Two, the

available data (over which one may have little control) is made better use of with
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Lorenz 63 model: Comparison of filtered states and parameters between the
two parameter dynamics, i.e. Brownian (original) and Langevin (modified).
Figures (a), (c) and (e) show the convergence of parameters. The numbers
accompanying the labels represent the ensemble size used in the EnKF. Figures
(b), (d) and (f) show the convergence of the three states for an ensemble size of
10. Data is assimilated only every tenth time step.

the modified parameter dynamics than with the conventional approach. As can be

seen from Figure 5.3, subfigures (a), (c) and (e), although the performance of both

approaches deteriorates, the Brownian motion suffers more than the proposed dy-

namics. In particular, the parameter σ fails to converge even with an ensemble size

of 1000 (dashed blue line). It may also be observed that the quality of convergence

of the states in subfigures (b), (d) and (e) is also affected due to that of the parame-

ters. This happens because - as also discussed earlier in the chapter - the states and

parameters evolve in a correlated manner. It is worth pointing out that the gradient

term in the Langevin dynamics at any time step is a function of the observations,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Lorenz 63 model: This figure shows sampling variance of filtered parameters
for the two parameter dynamics. Figures (a), (c) and (e) are with the Brownian
dynamics, while figures (b), (d) and (f) are with the Langevin dynamics for
parameters. Each of the grey lines are the results from one independent runs of
the EnKF starting with the same initial condition; there are 100 such indepen-
dent runs. For each of the 100 experiments, the ensemble size used is 25, and
data is assimilated at every time step. The black lines represent the means of
the independent runs. The red lines represent the true parameter values.

and since the observations are available only every tenth time step, the gradient

term is kep t unchanged until a new observation becomes available. Therefore, the

fluctuation in the parameter values is only due to the noise term in the Langevin dy-

namics at time steps when measurements are not available. In real world problems,

it is often not possible to control how much data is available. Through this set of

experiments, we may observe that the proposed approach makes better use of the

data that is available for a given problem. It may also be observed, that simply in-
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creasing the ensemble size with Brownian motion for the parameter dynamics does

little to improve the results.

The final set of experiments is performed with a view to study the robustness

of the proposed method. This is done by repeating 100 times, the same experiment

as for Figure 5.2, for an ensemble size of 25. Figure 5.4 shows the results for

only the parameters. The subfigures (a), (c) and (e) are the results with Brownian

motion while those in (b), (d) and (f) for the Langevin dynamics. The initial point

is kept the same to preclude its effect on the results. As is clear from the figures, the

proposed method is more robust than the Brownian motion. Also, there is a small

bias in the means of the results (solid black lines) with Brownian motion, which is

absent for the proposed method. Based on all the three experiments, it may not be

unreasonable to envisage this comparison becoming sharper when the frequency of

data is lower.

5.5.2 Elasticity model

We apply the parameter dynamics on the identification of the Young’s modulus

parameter for a linear elastic material model:

σ = εY (5.12)

Hence, the material model mimics purely elastic material behaviour and therefore

comes with only a single parameter Y (the Young’s modulus) to be identified via

filtering procedure. The Young’s modulus Y as stiffness measure links strains ε

(deformation measure) to stresses σ (force measure) via the relation 5.12. Basically,

this linear elastic model behaves like a spring system whereas the spring constant c

is set to fit the behaviour seen in experiments under the presumption F = cu, as F

being the response force of a spring with the spring constant c which is stretched

about u. Returning from this analogy, we seek for the stiffness properties of a solid

material by identifying its Young’s modulus Y from tensile test experiments.

While the identification of the Young’s Modulus is generally a simple task,

we presently wish to demonstrate the capabilities of filtering for this task. It can



5.5. Numerical experiments 127

be further applied to the identification of parameters for plastic hardening or the

evolution of damage in more sophisticated models, which is left for future work.

We also show that this method is robust for parameter identifications against

uncertainties in the starting point by varying the initial stress level. In other words,

test stand based strain shifts of a test data set do not need to be corrected (unlike in

conventional methods) and the filtering algorithm is still able to recover the correct

parameter. This may facilitate test post-processing and test data preparation for a

real world application. For demonstration, we use artificial test data, generated with

a material model following the formulation 5.12. The filtering procedure takes given

values of strain ε and returns the state variable σ (being the only variable within the

vector Xi) based on noisy parameter suggestions for the Young’s modulus Y (then

part of the parameter vector θi).

Figure 5.5 shows the parameter convergence from an arbitrary offset of the

starting point. Here, the stress level is set to σ = 10MPa as initial condition, as

depicted in (b). The quantity being measured is the stress σ . The problem param-

eters used are as follows: ensemble size =5, process noise intensity σx = 0.001,

measurement noise intensity σz = 0.005, parameter noise intensity for Brownian

motion case σθ = 104, whereas for the Langevin case, the initial annealing pa-

rameter β0 = 5 which is decayed with time steps as per the following relation

βk+1 = βk/exp(0.01k). Figure 5.5(a) shows how the algorithm converges the

Young’s modulus Y from an overestimation due to the initial variable offset, towards

the reference value. Figure 5.6 shows results for the same problem as in Figure 5.5,

except now the data is assimilated only every tenth time step. In both diagrams it

can be understood how the original Brownian motion dynamics are outperformed

by PEDAL, the modified Langevin dynamics within filtering.

5.5.3 Tsunami propagation

DA for tsunami has been investigated in [148] wherein the tsunami heights and ve-

locity are estimated by assimilating information only from the tsunami wave height

measurements obtained in real-time and not the seismic source or tsunami source

parameters. In this chapter, we demonstrate that the assimilation of tsunami wave
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(a) (b)

Figure 5.5: Elasticity model: Comparison of filtered states and parameters between the two
parameter dynamics, i.e. Brownian (original) and Langevin (modified). Figure
(a) show the convergence of the Young’s modulus of elasticity (Y). Figure (b)
shows the convergence of the stress (σ ). Data is assimilated at every time step.

(a) (b)

Figure 5.6: Elasticity model: Comparison of filtered states and parameters between the two
parameter dynamics, i.e. Brownian (original) and Langevin (modified). Figure
(a) show the convergence of the Young’s modulus of elasticity (Y). Figure (b)
shows the convergence of the stress (σ ). Data is assimilated only every tenth
time step.

height (i.e. free surface elevation) is greatly aided by joint-estimation of tsunami

source parameters. Here, the tsunami is generated using an initial swell in sea sur-

face. After time t=0, the raised water falls under the influence of gravity and

propagates in the domain. The swell is defined by 5 parameters viz., the amplitude

of the swell (A), the location co-ordinates of the centre of the swell (Xo,Yo), and

the length of its semi-axes (L,W ). A general tsunami source is a combination of

multiple swells/sub-sources, indexed by the superscript i, e.g. Ai amplitude of swell
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i. The initial condition to the tsunami propagation is the linear combination of the

swells from all the sub-sources.

Sensors are placed in the direction of the wave and sample the wave at regular

intervals (i.e. assimilation interval δ ta). The data assimilation is initiated when

the tsunami wave height at any of the sensors reaches a detection threshold. The

number of sensors ns, and their locations
(

x j
s ,y

j
s

)
, where j varies from 1 to ns,

are critical to discriminating between the multiple swells. A judicious positioning

can help in reducing the non-uniqueness of the estimated parameters, by curtailing

regions of the parameter space[149, 150]. We use 4 sensors placed at the corners of

a square, sufficiently separated from each other. At every assimilation instant t= ta
k ,

the states and parameters are jointly updated using the sensor data at that instant.

The model is run from t=0 (unlike the previous examples, wherein the model is run

only from the previous time step, i.e. tk) with new initial conditions corresponding

to the updated parameters till the next assimilation instant at t= ta
k+1. The process

is repeated for each assimilation step.

The 2-D linear long-wave (LLW) model governing tsunami evolution in deep

ocean (that we use for our numerical toy experiments) is defined by the following

equations [148]:

∂η(x,y, t)
∂ t

=−∂M(x,y, t)
∂ t

− ∂N(x,y, t)
∂ t

(5.13)

∂M(x,y, t)
∂ t

=−gD(x,y)
∂η(x,y, t)

∂ t
(5.14)

∂N(x,y, t)
∂ t

=−gD(x,y)
∂η(x,y, t)

∂ t
(5.15)

(5.16)

where η(x,y, t) is the tsunami height at the location (x,y) at time t, M and N are the

two vertically integrated horizontal velocity components in the x and y directions

respectively, g is the constant of acceleration due to gravity and D(x,y) is the spatial

field of sea-depth. The expression for the initial swell, i.e. η(x,y,0) in terms of the
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5 parameters as described earlier is:

η(x,y) = A
(

1+
1
2

cos
(

π(x−X0)

L

))(
1+

1
2

cos
(

π(y−Y0)

W

))
(5.17)

We perform two numerical experiments, results for which are shown in Fig-

ures 5.7 through 5.12. For the first experiment, we consider 5 subsources, with

true parameter values as shown in Table 5.1. See Figure 5.7 for a graphical repre-

sentation of this source (red blobs), along with the location of the 4 sensors (blue

circles). All parameters are kept known except for the swell amplitudes (A), i.e.

there are 5 unknown parameters to be solved for via filtering, results for this are

shown in Figure 5.8 (The negative sign in some of the curves may be ignored, as

only the magnitudes of the swell amplitudes are of relevance). The different colours

represent different parameters and different marker size represent the two methods

(large: Brownian, small: Langevin). The number label at the end of each line plot

refers to the parameter number, i.e. A for subsources 1 through 5. For the second

experiment, we take only one source (see Figure 5.10), but assume the amplitude

(A), length (L) and width (W) as the unknown parameters. We thus solve for 3

unknown parameters in this case, see Figure 5.11. The number labels here are 1 for

A, and 2 and 3 for L and W respectively. Figures 5.9 and 5.12 show a comparison

between the measurements at the sensors and the assimilated tsunami heights via

the two approaches for the first and second examples, respectively. The problem

parameters used for both these experiments are as follows: ensemble size =10, pro-

cess noise intensity σx = 0.001, measurement noise intensity σz = 0.003, parameter

noise intensity for Brownian motion case σθ = 0.1, whereas for the Langevin case,

the initial annealing parameter β0 = 0.01 which is decayed with time steps as per

the following relation βk+1 = βk/exp(0.001k).

This particular tsunami problem is still a work in progress, and perhaps a few

comments are in order. Even though there are 5 unknown parameters in the first

example, it is an easier one compared to the second, since the effect of the unknown

amplitude on the dynamics is linear (see equation 5.17). The little difference in

the performance of the two methods is most probably due to the following reasons.
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First, since the assimilation of parameter means starting from the beginning with

a better initial condition, the problem becomes easier to solve with every iteration

when compared with the two other examples. Second, since the system model is

linear, EnKF is capable of performing well even with Brownian motion, thus not

leaving much scope for improvement. Third, unlike the previous two examples,

the ratio of unknown number of parameters and states is quite different, it being

1 to 5 parameters (for each subsource) and 400 states for the tsunami problem vs

3 parameters and 3 states for the Lorenz oscillator and, 1 parameter and 1 state

for the elasticity example. The proposed approach only affects the dynamics of

the parameters and since that proportion is very small for the tsunami example,

the effect of the proposed parameter dynamics seems negligible. As part of the

future work, we intend to modify the problem so that we invert for the bathymetry

parameters (which can be modelled by the same equation i.e. 5.17) which will now

represent a fixed system parameters instead of ’pseudo-parameters’ representing an

initial state. For this modified problem, it will also be possible to bypass the issue

of starting the prediction step from the very beginning, and hence expect a better

comparison between the Brownian and proposed Langevin dynamics for parameter

evolution.

Subsource # A XXX000 YYY 000 L W
Parameters for the first example

1 5 35 15 10 10
2 10 30 20 10 10
3 5 25 25 10 10
4 10 20 30 10 10
5 5 15 35 10 10

Parameters for the second example
1 5 25 25 10 10

Table 5.1: True values of the tsunami source parameters for both the examples considered.

5.6 Concluding remarks
In this chapter, a novel approach for the evolution of parameters is proposed within

the framework of combined state-parameter estimation via DA. An energy-like term
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Figure 5.7: Tsunami source representation for the first example. The coloured blobs are a
2-dimensional representation of the 3-dimensional initial tsunami surface. The
blue circles represent the locations of the 4 observation sensors.

is proposed as a function of the innovation and the intuition behind this choice dis-

cussed. It is worth mentioning again that the form of energy used in this work might

have been chosen differently. Any convex function of the innovation might be a rea-

sonable choice. Hence, there is flexibility to choose a form of energy that is more

suitable for a given problem. It may be observed that the more chaotic a system is,

the more is the advantage of using this approach. This is not unreasonable because

in a chaotic system, a small change in the initial states may lead to relatively larger

changes later on and hence if Brownian motion is used for parameter dynamics, it

slows the convergence of parameters and implicitly also that of the states since both

states and parameters co-evolve.

The method is demonstrated with the help of three numerical examples. It may

be concluded that when compared with the conventional method of evolving the

parameters as per Brownian motion, the results with the proposed approach exhibit

considerably faster convergence, better accuracy and reduced sampling variance. It

is often difficult to have control over how much data is available. The examples
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Figure 5.8: Comparison of filtered parameters (ignoring the negative signs) between the
two parameter dynamics for the first example. The different colours repre-
sent different parameters. Paths with a smaller marker size are the results via
PEDAL, whereas ones with a larger marker size are those via Brownian mo-
tion. The labels accompanying each path represent the subsource number as
per Table 5.1.
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also show that when the frequency of data is lower, the contrast between the perfor-

mances of the conventional and proposed approaches is more pronounced. Thus,

it may be concluded that the proposed approach is capable of better exploiting the

available data. Overall, in all the examples considered, it can be observed that, with

the proposed method, the convergence of states also improves as a consequence of

improved parameter convergence. It is worth mentioning at this point, that although

there is some increase (about 17 % for the Lorenz 63 model) in the computational

cost owing to the calculation of the gradient term in the Langevin dynamics, it is

more than compensated with the improvement in the results. More specifically, for

the Lorenz oscillator problem, even with an ensemble size of more than 100 times,

the conventional approach performs poorly as compared to the proposed approach.

Moreover, the proposed approach is parallelisable over the ensemble.

The obesrvations above are all based on rigorous experiments with numerical

examples. It would be interesting to study the theoretical convergence properties of

the combined state-parameter estimation via filtering after modifying the dynamics

as proposed in this chapter. This, however, is a major undertaking and outside the

remit of the present work. The [151, 152, 153] offer an analysis of the convergence

properties of the EnKF for a large ensemble limit. This could perhaps be a good

starting point for undertaking a similar study with the proposed approach. One may

also consider other possible variations of this approach. One such possibility is to

use constrained Brownian motion for problems where there are physical constraints

on the parameters, which is not uncommon. For example, one may use the gen-

eralized Langevin dynamics [154], which is not a Markov process, but takes into

account the history of the process which helps with numerical stability of solutions.

It is also possible to use mirrored Langevin dynamics [155] or stochastically devel-

oped Langevin dynamics as in chapter 1 of this thesis with the objective function

replaced by the energy in equation (5.7).
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Figure 5.9: Each subplot represents the tsunami height evolution at each of the 4 sensors
for the first example. Within each subplot, the three paths represent the fol-
lowing: (blue) observations of the tsunami heights at the sensor, (orange) fil-
tered tsunami height via Brownian dynamics for parameters and (purple) fil-
tered tsunami heights via Langevin dynamics.
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Figure 5.10: Tsunami source representation for the second example. The coloured blob is
a 2-dimensional representation of the 3-dimensional initial tsunami surface.
The blue circles represent the locations of the 4 observation sensors.
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Figure 5.11: Comparison of filtered parameters between the two parameter dynamics for
the second example. The different colours represent different parameters.
Paths with a smaller marker size are the results via PEDAL, whereas ones
with a larger marker size are those via Brownian motion. The labels 1 through
3 represent the A (negative signs to be ignored), L and W parameters respec-
tively.
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Figure 5.12: Each subplot represents the tsunami height evolution at each of the 4 sensors
for the second example. Within each subplot, the three paths represent the
following: (blue) observations of the tsunami heights at the sensor, (orange)
filtered tsunami height via Brownian dynamics for parameters and (purple)
filtered tsunami heights via Langevin dynamics.



Chapter 6

Conclusions and future directions

Novel algorithms for non-convex optimization, Markov chain Monte Carlo

(MCMC), stochastic optimal control (SOC) and parameter estimation via data

assimilation are proposed in this thesis. These are largely based on concepts in

stochastics and Riemannian differential geometry. In chapters 2 through 5, each of

these algorithms are derived, discussed and their performances compared with other

competing methods with the help of a few numerical examples. In what follows, a

few remarks reflecting on these methods are made alongside a few possible future

directions of research.

Stochastically developed Langevin dynamics: derivation and ap-

plication to non-convex optimization

In Chapter 2, a global non-convex optimization method for an unconstrained objec-

tive function is proposed. It is based on the stochastically devleoped overdamped

Langevin diffusion equation (with annealing) which is the main result of this chap-

ter. This result is derived via three different approaches. The first is based on the

concept of stochastic development as in Section 2.2.4. The second is for a special

case where a (d−1)-dimensional surface is embedded in a d-dimensional space. As

detailed in Section 2.3, this is done for a deterministic equation and shown equiv-

alent to the deterministic counterpart of the first approach as per equation 2.12.

Finally, in Appendix A, it is proved using Cartan’s structure equations and largely

follows [156]. With this approach, geometric arguments leading to a modified drift
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in the dynamics given by equation A.1 are based purely on deterministic consider-

ations. This chapter also proposes a possible choice of metric for a given objective

function.

This is perhaps the first time a seamless approach to global optimization is pro-

posed to deal with the exploration and exploitation trade-off using both stochastics

and differential geometry simultaneously. It is probably the first time also that a Rie-

mannian manifold (RM) approach is proposed for an unconstrained and non-convex

optimization problem. To the best of our knowledge, RM methods of optimization

are so far constructed as counterparts of deterministic Newton and quasi-Newton

schemes for constrained convex optimization problems, where the constraint sur-

face itself defines the RM .

The performance of the proposed method is compared with the overdamped

Langevin diffusion equation 2.47 as well as the equation existing in the literature

for the Langevin diffusion on RM (equation 2.50). As can be observed from the

figures in Section 2.4, although the results via equation 2.47 converge to the cor-

rect solutions for 2-dimensional Ackley and Rastrigin functions, the method fails

for the 40-dimensional cases for both these functions. Even for the 2-dimensional

problems, the quality of convergence is poorer compared to that of the results ob-

tained by the proposed method. On the other hand, the results via equation 2.50 fail

for both the examples considered for 2-dimensional as well as the 40-dimensional

cases.

One disadvantage of the proposed method is that derivatives are required unlike

most evolutionary optimization methods that are derivative free. Although only

unconstrained non-convex optimization problems are considered in this work, it

is possible to extend this approach to constrained problems with the help of, for

instance, Lagrange multipliers. It is also possible to work with the generalized

Langevin diffusion equation on an RM, which unlike the overdamped Langevin

diffusion consists of an acceleration term, see [154] for a reference to this equation.

Another possible direction for future research is the design of a better metric than

the one used as the choice of the metric is crucial to the performance of the proposed
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scheme.

Stochastically developed Langevin dynamics: application to

Markov chain Monte Carlo

Chapter 3 showcases the application of equation 2.27 in Chapter 2 to MCMC, a

method we refer to as GALA, wherein the Riemannian metric is now the Fisher-

Information matrix (FIM). A pseduo-code for GALA is provided in Section 3.2,

followed by the significance of using FIM as a metric for problems in statistical

parameter estimation. More specifically, given i.i.d. samples from a certain distri-

bution, the class of problems considered consists of estimating parameters of that

distribution. The equation we use in this work is at odds with a reported equation

for MCMC on RM in the literature, viz. equation 2.50.

We discuss a possible flaw in all existing manifold MCMC methods in section

3.4. We also discuss scenarios when proposals for a certain method for a given

problem reduce to proposals for another method for the same problem. Despite the

apparent similarity in the proposal equations of various second order methods for

MCMC, there is a basic difference in the underlying dynamics that is commonly

overlooked. More specifically, the source of second derivative appearing in the pro-

posal equation may be due to one of the following reasons - the Ozaki discretization

scheme, the space dependent volatility of the Langevin diffusion or the change in

the notion of distances in the case of dynamics on a Riemannian manifold. This last

one is the source of the second order derivative in our proposal step of the MCMC.

Through various basic probability distributions, we demonstrate the perfor-

mance of GALA with other competing methods. It can be seen from the results

in Section 4.4 GALA outperforms the other methods considered. We also discuss

the issues arising while using Stan for MCMC simulations in Section 3.6. It is

perhaps worth pointing out that Stan converges to incorrect values for most param-

eters in the multivariate Gaussian and the logistic regression problems. Moreover,

the comparison between GALA and other methods becomes more pronounced as

the dimension of the problem increases, where often GALA is the only successful

method. The value of dt we have used for GALA is often one or two magnitudes
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higher than that used for MALA. The cost of computation for GALA (which is

a second-order method) also scales better with dimension as compared to NUTS

(which is a first-order method), see Figure 3.6.

Time recursive control of stochastic dynamical systems using for-

ward dynamics and applications

Chapter 4 is about SOC for a linear-quadratic problem (see Section 4.2) wherein we

derive a PDE with an initial condition whose solution gives the solution of the con-

trol problem. More importantly, we provide a way to efficiently solve this partial

differential equation (PDE) via two coupled SDEs. This is unlike the Hamilton-

Jacobi-Bellman (HJB) equation (for solving an SOC problem) which is a PDE with

a terminal cost and its solution in terms of SDEs requires solving forward-backward

SDEs (FBSDEs). In the process, while the total cost to be minimized and the con-

trol objectives remain unchanged, the pathwise solutions could be different from

those in the standard FBSDE approaches. This is because the terminal cost in our

approach is, to put it loosely, smeared over the entire time interval of interest in or-

der to do away with the terminal condition for the HJB equation and instead obtain

an appropriate initial condition.

After a thorough review of stochastic optimal control including the approach

based on FBSDEs (see Algorithm 6), we provide a detailed derivation of the solu-

tion of optimal control via two different approaches, viz. via the PDEs in cost-to-

reach and cost-to-go in Sections 4.3.1 and 4.3.3 respectively. A pseudo-code for

the proposed method is also presented for convenience, see Algorithm 3. Also, as

we have a specific interest in the case of chaotic oscillators wherein the equation

of motion is not a straightforward SDE, the derivation for this class of systems is

performed explicitly in Section 4.3.2.

The results with the proposed method are compared with those of an FBSDE

method in Figure 4.1 only for a simple 1-dimensional problem. For all other ex-

amples considered, the cost of computation for the FBSDE method becomes pro-

hibitive. The most important example is perhaps the Duffing-Holmes oscillator, as

the control objective therein is to remain at an unstable fixed point. More specifi-
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cally, due to the chaotic nature of the system, it is very easy to shoot far away from

the fixed point very quickly even when the initial point is very close to the fixed

point, see the uncontrolled trajectory in Figure 4.7. Besides a significant reduction

in the computational cost (from O(n2 +n) to O(n)), the present approach has other

advantages. First is, it can be applied to problems where the terminal time is not

known. Second, it is possible to start the control at an intermediate time after the

system has started evolving. This is particularly beneficial for chaotic systems as

discussed in Chapter 4 and may help significantly reduce the high initial cost as

seen in the figures in Section 4.4.

As mentioned earlier, a possible future direction is to employ the stochastically

developed SDE derived in Chapter 2. The Riemannian metric may be defined by

treating the total cost functional as a pseudo-energy as was done for optimization in

Chapter 2 and then taking its derivatives with respect to the instantaneous control

ut . Although not straightforward in terms of implementation, this should lead to a

method of SOC using just one SDE instead of two.

Efficient parameter estimation via data assimilation: a modified

parameter dynamics

Finally, in Chapter 5 we proposed a stochastic data assimilation scheme with a

novel parameter dynamics (which we refer to as PEDAL) that may be used instead

of the Brownian motion. For clarity, we first discuss state estimation as well as

combined state and parameter estimation via ensemble Kalman filter (EnKF) in

Sections 5.2 and 5.3 respectively. In Section 5.3, the Brownian motion is used for

parameter dynamics, which we replace by a stochastic differential equation (SDE)

with a non-trivial drift in Section 5.4. More specifically, we propose a Langevin

diffusion equation based on a pseudo-energy function. We also suggest a possible

choice for this pseudo-energy in equation 5.7, which is by no means unique. Any

convex function of the innovation vector would perhaps be a reasonable choice.

We demonstrate the performance of this approach with three examples. The

first is Lorenz 63 oscillator, which is a chaotic system with 3 states and 3 param-

eters. We observed that PEDAL is faster and more accurate for the states as well
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as parameters. It may be observed from Figure 5.2, that even with an ensemble

size two orders of magnitude higher, the performance of EnKF is not on a par with

PEDAL. On the other hand, when the frequency of assimilation is lower, EnKF may

not even converge for all states and parameters, see Figure 5.3. We also demonstrate

the robustness of PEDAL by repeated experiments in Figure 5.4. The second ex-

ample is of a simple linear elasticity model that relates stress and strain. This is a

1-state 1-parameter system. Note that even a linear process model may become a

non-linear problem of filtering when the parameters are also unknown. Observa-

tions for this case are similar to the previous example. The final example is estimat-

ing source parameters of a tsunami. Again, we compare the performance of EnKF

with PEDAL. It may be observed from the equations of tsunami evolution, that the

first tsunami example is similar in nature to the linear elasticity model, and hence

it would not be unreasonable to expect a similar comparison between PEDAL and

EnKF. However, this example does not naturally fall in the class of problems for

combined state and parameter estimation via data assimilation. The reason being,

the parameters we are interested in only define the initial tsunami surface, i.e. the

initial state vector, and are not parameters that appear in the tsunami evolution. We

discuss the results and possible reasons there is little difference between the perfor-

mance of the two approaches for this particular example towards the end of Section

5.5.3. It may be noted that the contrast in performance between the PEDAL and

EnKF is perhaps the most stark in the case of chaotic systems and/or systems where

the dynamics is sensitive to changes in parameter values.

It is worth re-emphasizing, that although the EnKF is used in the present work,

it is possible to use any filtering approach since the proposal for parameter dynam-

ics only affects the posing of the filtering problem. This may still be considered

a work-in-progress as there are various ways a pseudo-energy may be constructed

and also several ways in which the dynamics itself maybe chosen. For instance, the

stochastically developed Langevin diffusion equation as derived in Chapter 2 could

be a natural choice for better performance. The metric may be defined as the Hes-

sian of the pseudo-energy function chosen. Indeed, this has already been tested for
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the Lorenz model. However, since the Langevin diffusion itself converges very fast

for this example, there is little scope left for improvement and hence little noticeable

difference in the performance with the Hessian as the metric. The tsunami problem

presently uses a linear model which in our future work, we intend to replace with

the non-linear shallow water model, preferably perhaps with a physics-informed

neural network [157] trained to solve the non-linear model to avoid the cumulative

time integration error.

Although a mere possibility at this stage, it should be possible to use the

stochastically developed SDE for the design of a data assimilation method itself.

After all, it is also a problem in sampling from the posterior. The challenge is that

the posterior probability in a data assimilation problem evolves with time while in

a conventional sampling problem, the posterior probability from which samples are

desired remains frozen. The evolution of probability however has a structure. It de-

pends on the dynamics of the system and of the measurement. Indeed, the Kusher-

Stratonovich equation (see Chapter 6 in [26]) represents precisely that. There are

difficulties in solving this equation due to the presence of a certain circularity. How-

ever, if it were possible to solve it iteratively so that the error in distributions, for

instance the Kullback-Leibler divergence, between the estimated evolution of prob-

ability and the true one was minimized over time, it would perhaps lead to a new

perspective with a data assimilation problem. With the help of physics-informed

neural networks, stochastic neural networks and the power of differential geometry

in stochastics, it seems possible, at least in principle, to develop a data assimilation

method for the most general case, i.e. non-linear process and measurement dynam-

ics as well as the presence of non-Gausssian noises in both, which remains to this

day an open problem.

Possible future directions

I would like to conclude this thesis by stating a few, perhaps a little far-fetched

at this time, directions for future research. Although this thesis has used concepts

from Riemannian differential geometry, stochastics and physics, it is merely a start.
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Beginning perhaps with the work of Einstein, it is well-known that the physical

theories have an umbilical connection with differential geometry. The emergence

of gauge theory and its momentous applications in physics are perhaps a case in

point. It thus seems worthwhile to use concepts from advanced physics and exploit

new symmetries to derive novel forms of Lagrangian and Hamiltonian dynamics

towards a more advanced suite of algorithms for problems in optimization or statis-

tical inference. For instance, one may include the Riemannian scalar curvature as

an additional term in the Hamiltonian to arrive at a new family of dynamical sys-

tems to be integrated for Hamiltonian Monte Carlo simulation. Langevin dynam-

ics may similarly be enhanced with the Ricci curvature flow. Such modifications,

generally aimed at certain computational benefits in the search process, introduce

certain geometric incompatibilities (homological structures) in the time-continuous

setting. Integrating the underlying differential equations in time using the machin-

ery of discrete exterior calculus and thus naturally satisfying these homologies in

the time-discrete setting also appears to be an interesting study for the future.



Appendix A

An Appendix for Chapter 2

A.1 Stochastic development with Cartan’s structure

equations

In what follows, we discuss a method for intrinsically developing a stochastic differ-

ential equation from a d-dimensional Euclidean space to a Riemannian manifold M

of the same dimension. This approach exploits the notion of an orthonormal frame

bundle F(M) on M. Here, every point x in M is furnished with an orthonormal

frame Q that serves as an isomorphism between the Euclidean space Rd and TxM,

the d-dimensional tangent space to M at the point x. The procedure that we adopt

largely follows the article by [156] and may be considered both an alternative and

extension of the procedure explored in [8] to reach the same result. To start with

consider the following SDE in Rd

dWt = α(Wt)dt +dBt (A.1)

where Wt is an Rd-valued stochastic process with α and β being the drift and dif-

fusion fields respectively. Bt is an Rd-valued Brownian motion with independently

evolving scalar components. Before we proceed further, let us also recall from [23]

the standard equation for the Brownian motion Bt on a Riemannian manifold M in
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terms of the standard Euclidean Brownian motion B̄t which is given by

dBi
t =
(√

G−1
)

i j
dB̄ j

t −
1
2

G−1
jk γ

i
jkdt (A.2)

We now need a representation for the vector field α developed on M and this

is what we do next, based on the original work by [158] extended later by [159] and

[156]. This approach makes use of the Cartan’s structure equations to arrive at an

appropriate representation of an Euclidean vector field on M. Towards this, let us

define a smooth path x := xt0:t on M and let α be a vector field in Rd . The directional

derivative at the point x(t) along α defined as Dα(x(t)) is given by Dα(x(t)) =

Q(x(t))α . By yx
α(s) we define the integral curve (flow) of the vector field Dα(x(t))),

i.e.∂yx(t)
α (s)
∂ s

∣∣∣∣
s=0

=Dα(x(t)) , where yx(t)
α (0)= x(t) . Since we are interested in parallel

representations of curves in Rd and M, we also use the symbol I to relate the two

representations. In other words, x̄ = I −1x is the representation in Rd of the curve

x in M. Accordingly, we have

ȳx̄(t)
α (s) = I −1 ◦ yx(t)

α (s)◦I (A.3)

This defines a corresponding pushforward map

∂ ȳx̄(t)
α (s)
∂ s

∣∣∣∣
s=0

= (I −1
∗ Dα)(x̄(t)) = Eα(x̄(t)) (A.4)

The RHS of the last equation is clearly a vector field in Rd along x̄ which we refer

to as Eα(x̄) and for which we wish to arrive at a representation. Towards this, define

a canonical 1-form φ in T ∗O(M) such that for any vector field Z in T (O(M)), we

have φ(Z)=Q−1π∗(Z), where π∗ is the push-forward of the canonical projection π :

O(M)→M. To proceed further, we now make use of Cartan’s structure equations

given as follows.

dφ = −ω ∧φ +Θ (A.5)

dω = −ω ∧ω +Ω (A.6)
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In the equations above, ∧ is the skew wedge product of differential forms and ω

denotes the o(d)-valued connection 1-forms, i.e. a d× d skew-symmetric matrix

with each element being a 1-form. Θ is an Rd-valued torsion 2-form which is

identically zero for a Riemannian manifold. Ω is the o(d)-valued curvature 2-form.

Since we are dealing with both the curves x(t) which is parametrized in t and yx(t)
α (s)

parametrized in s and starting at x(t), we may consider a frame Q to be a function

of both t and s, i.e. Q≡ Q(t,s). This enables us to write the following velocities

T =
∂Q(t,s)

∂ t
, S =

∂Q(t,s)
∂ s

, N =
∂ ȳx̄(t)

α (s)
∂ t

(A.7)

which yields the following identification

Eα(x̄(t)) =
∫ t

0

(
∂N(τ,s)

∂ s

∣∣∣∣
s=0

)
dτ (A.8)

Clearly, Q(t,s) for a fixed t is the horizontal lift of ȳx̄(t)
α (s) on O(M), so that we have

T = HN, where H is a horizontal vector field. This is also equivalent to N = φ(T )

which leads to the following upon differentiation with respect to s.

∂N
∂ s

= Sφ(T ) (A.9)

At this stage we invoke the following formula for exterior differentiation. For two

vector fields T and S , and the closed 2-form dφ , we have

dφ(T,S) = T φ(S)−Sφ(T )−φ([T,S]) (A.10)

where, the Lie bracket [T,S] is presently zero since the time like co-ordinates s and

t are chosen independently. Hence, we have

Sφ(T ) = T φ(S)−dφ(T,S) (A.11)

Moreover, by observing that π(Q(t,0)) = yx(t)
α (0) = x(t) , we directly have π∗(S) =

Q(t,0)α . In other words, from this we retrieve the horizontal component of S as
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Hα , which is equivalent to the following

φ(S) = α (A.12)

This yields
∂N(t,s)

∂ s

∣∣∣∣
s=0

=
.

α−dφ(T,S) (A.13)

where overdot denotes derivative with respect to ’t’. We need to simplify dφ(T,S)

in the equation above using the two structure equations of Cartan. Using the first

one, we immediately have

dφ(T,S) = ω(S)N (A.14)

Note that, S is not necessarily a purely horizontal vector field unlike T , i.e. we have

ω(T ) = 0 since the connection ω is a purely vertical 1-form. Now, using the second

structure equation (A.6) and the formula for exterior differentiation [160], we get

dω(T,S) = T ω(S) = Ω(T,S) (A.15)

Integrating the last equation over t, we arrive at the required expression for the

connection 1-form ω(S)

ωQ(t,0)(S) =
∫ t

0
ΩQ(τ,0)(T,S)dτ (A.16)

Note that the curvature 2-form Ω is strictly horizontal. This, along with the fact that

T = H ∂ ȳx̄(t)
α (s)
∂ t

∣∣∣∣
s=0

:= H
.
ȳ

x̄(t)
α (0) leads to

ωQ(t,0)(S) =
∫ t

0
ΩQ(τ,0)(H

.
ȳ

x̄(t)
α (0),Hα)dτ :=

∫ t

0
Kα(τ)dτ (A.17)

Substituting (A.17) in (A.14) and putting this back in (A.13), we have

∂N(t,s)
∂ s

∣∣∣∣
s=0

=
.

α−
(∫ t

0
Kα(τ)dτ

)
.
ȳ

x̄(t)
α (0) (A.18)

See the Appendix A.1.1 for the expression for Kα . Integrating once more with
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respect to t, we get

E (x̄(t)) = α−
∫ t

0

∫ t

0
Kα(τ)dτdȳx̄(τ)

α (0) = α−
∫ t

0

∫ t

0
Kα(τ)dτdx̄(τ) (A.19)

Kα is clearly a matrix with scalar entries which are functions of τ . Therefore,

restricting the double integral in (A.19) to [t, t +∆t], we observe that the integral

is of the order (∆t)
3
2 , provided x̄(t) is a Brownian motion in Rd . Hence, from

the perspective of numerical integration, it constitutes a higher order term which

is ignored in this work. With this approximation in place, we may transfer the

developed vector field E (x̄(t)) from Rd to TxM to get Q(t,0)α , which is the modified

drift in the stochastically developed SDE that we shall make use of in this work.

This additional drift, when added to the equation for Brownian motion on an RM

(A.2), should lead to the equation for a general SDE on the RM. At this stage, we

need a representation of Q in terms of the Riemannian metric tensor g, which is

given by Q =
√

g−1, see chapter 3 of [23]. The developed SDE corresponding to

(A.1) thus takes the form

dxi
t =

[√
g−1(xt)

]
i j

α
j(xt)dt− 1

2
[
g−1(xt)

]
kl γ

i
kl(xt)dt +

[√
g−1(xt)

]
im

dBm
t

(A.20)

A.1.1 Expression for Kα

H in equation (A.17) is the horizontal vector field given by

Hi = Q j
i X j−Q j

i Ql
mγ

k
jlXkm i ∈ [1,d] (A.21)

where Xi =
∂

∂xi and Xkm = ∂

∂Qk
m

are the basis of the tangent space of the frame bundle

F(M). Therefore, each vector in equation (A.17) of the form Hv where v lies in Rd

may be written as

Hv = viQ j
i X j− viQ j

i Ql
mγ

k
jlXkm (A.22)
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For convenience, let
.

ȳx̄(t)
α (0) = η , then the integrand in equation (A.17) may be

simplified in terms of the curvature (3,1)-tensor Ri
jkl as

(Kα)
c
d =

1
2

Rc
dabdxa∧dxb(Hη ,Hα) (A.23)

=
1
2

Rc
dabdxa∧dxb(η iQ j

i X j−η
iQ j

i Ql
mγ

k
jlXkm ,α pQq

pXq−α
pQq

pQs
t γ

k
qs(x)Xrt)

=
1
2

Rc
dab(η

iQ j
i δ

a
j α

pQq
pδ

b
q −η

iQ j
i δ

b
j α

pQq
pδ

a
q )

=
1
2

Rc
dab(η

iQa
i α

pQb
p−η

iQb
i α

pQa
p)

=
1
2

Rc
dab(η

iQa
i α

pQb
p−η

iQb
i α

pQa
p)

A.2 Derivatives of Ackley function

f (x)= f (x1, ...,xd)=−aexp

−b

√√√√1
d

d

∑
i=1

x2
i

−exp

(
1
d

d

∑
i=1

cos(cxi)

)
+a+exp(1)

Treat f (x) as an energy-like function to determine g and γ . The Langevin SDE to

be developed is given by:

dXt =−βt∇ f (Xt)dt +
√

2βtdBt

where β is an annealing like parameter. The developed SDE is:

dXt =−
√

g−1βt∇ f (Xt)dt +
√

g−1βtdBt−
1
2

g−1
γdt

where

gi j =
1
2

∂ 2 f (x)
∂xi∂x j

+ϒδi j (A.24)

Let

T1(x) = exp

−b

√√√√1
d

d

∑
i=1

x2
i


T2(x) = exp

(
1
d

d

∑
i=1

cos(cxi)

)
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Therefore, g and its derivatives can be written as

gi j =−
a
2

∂ 2T1(x)
∂x j∂xk

− 1
2

∂ 2T2(x)
∂x j∂xk

and
∂gi j

∂xm
=−a

2
∂ 3T1(x)

∂x j∂xk∂xk
− 1

2
∂ 3T2(x)

∂x j∂xk∂xk

We need the first, second and third order derivatives of T1,T2.

First derivative of T1

∂T1(x)
∂x j

=
∂ exp(− b√

d
(xixi)

1
2 )

∂x j

= − b√
d
(xixi)

− 1
2 x jT1(x)

Second derivative of T1

∂ 2T1(x)
∂x j∂xk

=
∂

∂xk

(
− b√

d
(xixi)

− 1
2 x jT1(x)

)
=

b√
d

x jxk(xixi)
− 3

2 T1(x)−
b√
d
(xixi)

− 1
2 δ jkT1(x)−

b√
d
(xixi)

− 1
2 x j

∂ (T1(x))
∂xk
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Third derivative of T1

∂ 3T1(x)
∂x j∂xk∂xm

=
b√
d

∂

∂xm

(
x jxk(xixi)

− 3
2 T1(x)

)
− b√

d
∂

∂xm

(
(xixi)

− 1
2 δ jkT1(x)

)
− b√

d
∂

∂xm

(
(xixi)

− 1
2 x j

∂ (T1(x))
∂xk

)

=
b√
d

xk(xixi)
− 3

2 T1(x)δ jm +
b√
d

x j(xixi)
− 3

2 T1(x)δkm

−3
b√
d

x jxkxm(xixi)
− 5

2 T1(x)+
b√
d

x jxk(xixi)
− 3

2
∂T1(x)

∂xm

b√
d

δ jkxm(xixi)
− 3

2 T1(x)−
b√
d
(xixi)

− 1
2 δ jk

∂T1(x)
∂xm

+
b√
d

x jxm(xixi)
− 3

2
∂T1(x)

∂xk
− b√

d
(xixi)

− 1
2

∂T1(x)
∂xk

δ jm−
b√
d

x j(xixi)
− 1

2
∂ 2T1(x)
∂xk∂xm

First derivative of T2

∂T2(x)
∂x j

=
∂

∂x j

(
exp

(
1
d

d

∑
i=1

cos(cxi)

))
(A.25)

= − c
d

sin(cx j)T2(x) (A.26)

Second derivative of T2

∂ 2T2(x)
∂x j∂xk

= − c
d

∂ (sin(cx j)T2(x))
∂xk

= −c2

d
δ jk cos(cx j)T2(x)−

c
d

sin(cx j)
∂T2(x)

∂xk

Third derivative of T2

∂ 3T2(x)
∂xm∂x j∂xk

=
∂

∂xm

(
−c2

d
δ jk cos(cx j)T2(x)−

c
d

sin(cx j)
∂T2(x)

∂xk

)
=

c3

d
δkmT2(x)sin(cx j)−

c
d

sin(cx j)
∂ 2T2(x)
∂xk∂xm

−c2

d
δ jk cos(cx j)

∂T2(x)
∂xm

− c2

d
δ jm

∂T2(x)
∂xk

(cos(cx j)) (A.27)
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A.3 Derivatives of Rastrigin function

f (x) = f (x1, ...,xd) =
d

∑
i=1

[b(xi)
2−acos(2πxi)]+a×d (A.28)

∂ f
∂xk

= 2bxk +2πasin(2πxk) (A.29)

∂ 2 f
∂xkxn

= δkn[2b+4π
2acos(2πxk)] (A.30)

∂ 3 f
∂xkxnxr

= −a×8π
3
δknδnr sin(2πxk)[15pt] (A.31)

Thus g and its derivatives may be written as

gi j =
1
2

∂ 2 f (x)
∂xi∂x j

+ϒδi j (A.32)

∂gi j

∂xk
=

1
2

∂ 3 f (x)
∂xi∂x j∂xk

(A.33)



Appendix B

An Appendix for Chapter 3

B.1 Invariant distribution of simplified MMALA
The proposal SDE for simplified MMALA is

dXt =
1
2

G−1(Xt)∇ log(π(Xt))dt +
√

G−1(Xt)dBt (B.1)

The Fokker-Planck equation [26] for this SDE is

∂ p(x, t)
∂ t

=− ∂

∂x

(
1
2

G−1(x)∇ log(π(x))p(x, t)
)
+

∂ 2

∂x2

(
G−1(x)

2
p(x, t)

)
(B.2)

Let π(x) be its stationary solution so that the LHS of B.2 vanishes. Accord-

ingly, substituting p(x, t) = π(x) on the RHS, we have

− ∂

∂x

(
1
2

G−1(x)∇ log(π(x))π(x)
)
+

∂ 2

∂x2

(
G−1(x)

2
π(x)

)
= −1

2
∂

∂x

(
G−1(x)

∂π(x)
∂x

)
+

π(x)
2

∂ 2G−1(x)
∂x2 +

G−1(x)
2

∂ 2π(x)
∂x2

= −1
2

∂G−1(x)
∂x

∂π(x)
∂x

− 1
2

G−1(x)
∂ 2π(x)

∂x2 +
π(x)

2
∂ 2G−1(x)

∂x2 +
G−1(x)

2
∂ 2π(x)

∂x2

= −1
2

∂G−1(x)
∂x

∂π(x)
∂x

+
π(x)

2
∂ 2G−1(x)

∂x2 (B.3)

The RHS does not vanish, meaning the assumption of π(x) being the invariant

distribution of the simplified MMALA SDE is incorrect.
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B.2 Invariant distribution of MMALA

For the SDE in equation B.4, the Fokker-Planck equation on Riemannian manifold

is given by equation B.5 [73]

dxi = aidt +σ
i jdB j (B.4)

∂ p
∂ t

=
1

2
√

g
∂

∂xi

(
√

ggi j ∂ p
∂x j

)
− 1
√

g
∂

∂xi

(
p
√

g
[

ai +
1
2

g jk
γ

i
jk

])
(B.5)

The equation above assumes σ im(σT )m j = gi j .The drift term in MMALA is ai =

gi j

p
∂ p
∂x j − 1

2g jkΓi
jk, substituting in B.5, we have

∂ p
∂ t

=
1
√

g
∂

∂xi

{
1
2
√

ggi j ∂ p
∂x j − p

√
g
[

gi j

p
∂ p
∂x j −

1
2

g jk
Γ

i
jk +

1
2

g jk
γ

i
jk

]}
(B.6)

= 0

Thus, the MMALA method converges to the stationary distribution of the Fokker-

Planck equation on Riemannian manifolds.

B.3 Rayleigh distribution

Probability density function: p(x;σ) = x
σ2 exp

(
− x2

2σ2

)
Mean: σ

√
π

2

Variance: (4−π)σ2

2

Log-likelihood: L = log(p(x;σ)) = log(x)−2log(σ)− x2

2σ2

Gradient of log-likelihood: ∂L
∂σ

=− 2
σ
+ x2

σ3
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Fisher-Information matrix:

G = E
(

∂L
∂σ

∂L
∂σ

)
(B.7)

= E

((
− 2

σ
+

x2

σ3

)2
)

= E
(

4
σ2 +

x4

σ6 −
4x2

σ4

)
where: E(x2) =

∫
∞

0
(x2)

( x
σ2

)
exp
(
− x2

2σ2

)
= 2σ

2 (B.8)

E(x4) =
∫

∞

0
(x4)

( x
σ2

)
exp
(
− x2

2σ2

)
= 8σ

4 (B.9)

Therefore, G = E
(

4
σ2 +

8σ4

σ6 − 4×2σ2

σ4

)
= 4

σ2

Derivative of Fisher-Information matrix:∂G
∂σ

=− 8
σ3

Connection: γ = G−1 ∂G
∂σ

=−σ2

4
8

σ3 =− 2
σ

B.4 Banana-shaped distribution

Probability density function:p(z1,z2;B) ∝ exp
(
− z2

1
200 −

1
2(z2 +Bz2

1−100B)2
)

In the above equation z1 and z2 are distributed as ∼N (0,Σ), where

Σ =

100 0

0 1

 (B.10)

Log-likelihood: L = log(p(z1,z2;B)) =− z2
1

200 −
1
2(z2 +Bz2

1−100B)2

Gradient of log-likelihood: ∂L
∂B =−(z2 +Bz2

1−100B)(z2
1−100) Fisher-Information
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matrix:

G = E
[

∂L
∂B

∂L
∂B

]
(B.11)

= E
[
(z2 +Bz2

1−100B)2(z2
1−100)2]

= E
[
(z2

2 +B2z4
1 +10000B2 +2Bz2

1z2−200Bz2−200B2z2
1)(z

4
1 +10000−200z2

1)
]

= E[(z4
1z2

2 +B2z8
1 +10000B2z4

1 +2Bz6
1z2−200Bz2z4

1−200B2z6
1)

+10000(z2
2 +B2z4

1 +10000B2 +2Bz2
1z2−200Bz2−200B2z2

1)]

−200(z2
1z2

2 +B2z6
1 +10000B2z2

1 +2Bz4
1z2−200Bz2

1z2−200B2z4
1)

= E[(z4
1z2

2 +B2z8
1 +10000B2z4

1−200B2z6
1)+10000(z2

2 +B2z4
1 +10000B2−200B2z2

1)

−200(z2
1z2

2 +B2z6
1 +10000B2z2

1−200B2z4
1)]

= 3σ
4
1 σ

2
2 +7B2

σ
8
1 +3×10000B2

σ
4
1 −200×5B2

σ
6
1

+10000(σ2
2 +3B2

σ
4
1 +10000B2−200B2

σ
2
1 )

−200(σ2
1 σ

2
2 +5B2

σ
6
1 +10000B2

σ
2
1 −200×3B2

σ
4
1 )

= 3×104 +7×108B2 +3×108B2−109B2 +104 +3×108B2 +108B2−2×108B2

−200(100+5×106B2 +106B2−6×106B2)

= 3×104 +104 +2×108B2−2×104

= 2×104 +2×108B2 (B.12)

G for the product of likelihoods over N observations is N×G Therefore, Derivative

of Fisher-Information matrix: N×4×108B

Connection:

γ = G−1 ∂G
∂B

= [N× (2×104 +2×108B2)]−1(N×4×108B)

=
4×108B

(2×104 +2×108B2)

=
4×104B

(2+2×104B2)

(B.13)
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B.5 Weibull distribution

Probability density function:

p(x;λ ,k) =
k
λ

( x
λ

)k−1
exp−(

x
λ
)

k

;x≥ 0

= 0 ; x < 0

Log-likelihood:

L = log(p(x;λ ,k)) = log(k)− log(λ )+(k−1) log(x)− (k−1) log(λ )−
( x

λ

)k

= log(k)− k log(λ )+(k−1) log(x)−
( x

λ

)k

Gradient of log-likelihood:

∂L
∂λ

= − k
λ
− k
( x

λ

)k−1 (−x)
λ 2

= − k
λ
+

k
λ

( x
λ

)k

=

[( x
λ

)k
−1
]

k
λ

∂L
∂k

=
1
k
− log(λ )+ log(x)−

( x
λ

)k
log
( x

λ

)
(B.14)

Therefore

∇L =

 [( x
λ

)k−1
]

k
λ

1
k − log(λ )+ log(x)−

( x
λ

)k log
( x

λ

)
 (B.15)

Fisher-Information matrix:

G = E




∂L
∂λ

∂L
∂λ

∂L
∂λ

∂L
∂k

∂L
∂k

∂L
∂λ

∂L
∂k

∂L
∂k


 (B.16)

=

E
(

∂L
∂λ

∂L
∂λ

)
E
(

∂L
∂λ

∂L
∂k

)
E
(

∂L
∂k

∂L
∂λ

)
E
(

∂L
∂k

∂L
∂k

)
=

G11 G12

G21 G22


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Where

G11 = E

([( x
λ

)k
−1
]2

(
k
λ
)2

)
(B.17)

=

(
k
λ

)2

E

([( x
λ

)k
−1
]2
)

G12 = E
([( x

λ

)k
−1
]

k
λ

[
1
k
− log(λ )+ log(x)−

( x
λ

)k
log
( x

λ

)])
(B.18)

= E
([( x

λ

)k
−1
]

k
λ

(
1
k
− log(λ )

))
+E
([( x

λ

)k
−1
]

k
λ

(
log(x)−

( x
λ

)k
log
( x

λ

)))
=

k
λ

(
1
k
− log(λ )

)
E
([( x

λ

)k
−1
])

+
k
λ

E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])
= G21

G22 = E

({
1
k
− log(λ )+ log(x)−

( x
λ

)k
log
( x

λ

)}2
)

(B.19)

Derivative of the Fisher-Information matrix

Derivative w.r.t λ :

∂G
∂λ

=


∂G11
∂λ

∂G12
∂λ

∂G21
∂λ

∂G22
∂λ

 (B.20)
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∂G11

∂λ
=

∂

{( k
λ

)2
E
([( x

λ

)k−1
]2
)}

∂λ
(B.21)

=
∂
( k

λ

)2

∂λ
E

([( x
λ

)k
−1
]2
)
+

(
k
λ

)2 ∂E
([( x

λ

)k−1
]2
)

∂λ

=
∂
( k

λ

)2

∂λ
E

([( x
λ

)k
−1
]2
)
+

(
k
λ

)2

E

∂

[( x
λ

)k−1
]2

∂λ


= −2k2

λ 3 E

([( x
λ

)k
−1
]2
)
−
(

k
λ

)2

E
(

2k
(( x

λ

)k
−1
)

xk

λ k+1

)

= −2k2

λ 3 E

([( x
λ

)k
−1
]2
)
− 2k3

λ k+3 E
[( x

λ

)k
−1
]

∂G12

∂λ
=

∂
{ k

λ
(1

k − log(λ ))E
(
[( x

λ
)k−1]

)
+ k

λ
E
([
( x

λ
)k−1

][
log(x)− ( x

λ
)k log( x

λ
)
])}

∂λ
(B.22)

=
∂
{ k

λ

(1
k − log(λ )

)
E([( x

λ
)k−1]

}
∂λ

+
∂
{ k

λ
E([( x

λ
)k−1][log(x)− ( x

λ
)k log( x

λ
)])
}

∂λ

= − k
λ 2

(
1
k
− log(λ )

)
E
[( x

λ

)k
−1
]
− k

λ

1
λ

E
[( x

λ

)k
−1
]

+
k
λ

(
1
k
− log(λ )

)
E

(
∂ [( x

λ
)k−1]

∂λ

)
− k

λ 2 E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])

+
k
λ

E

(
∂ [( x

λ
)k−1]

∂λ

[
log(x)−

( x
λ

)k
log
( x

λ

)])

+
k
λ

E

[( x
λ

)k
−1
]

∂

[
log(x)−

( x
λ

)k log( x
λ
)
]

∂λ


= − k

λ 2

(
1
k
− log(λ )

)
E
[( x

λ

)k
−1
]
− k

λ

1
λ

E
[( x

λ

)k
−1
]

+
k
λ

(
1
k
− log(λ )

)
E

(
∂ [( x

λ
)k]

∂λ

)
− k

λ 2 E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])

+
k
λ

E

(
∂ [
( x

λ

)k
]

∂λ

[
log(x)−

( x
λ

)k
log
( x

λ

)])
− k

λ
E

([( x
λ

)k
−1
]

∂ [( x
λ
)k log( x

λ
)]

∂λ

)

= − k
λ 2

(
1
k
− log(λ )

)
E
[( x

λ

)k
−1
]
− k

λ

1
λ

E
[( x

λ

)k
−1
]
− k

λ

(
1
k
− log(λ )

)
E
(

kxk

λ k+1

)
− k

λ 2 E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])
− k

λ
E
(

kxk

λ k+1

[
log(x)−

( x
λ

)k
log
( x

λ

)])
− k

λ
E
([( x

λ

)k
−1
][
− k

λ

( x
λ

)k
log
( x

λ

)
−
( x

λ

)k 1
λ

])
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∂G22

∂λ
=

∂ [E({1
k − log(λ )+ log(x)− ( x

λ
)k log( x

λ
)}2)]

∂λ
(B.23)

= E[
∂ ({1

k − log(λ )+ log(x)− ( x
λ
)k log( x

λ
)}2)

∂λ
]

= 2E
[{

1
k
− log(λ )+ log(x)−

( x
λ

)k
log
( x

λ

)}{−1
λ

+

[
k
λ

( x
λ

)k
log
( x

λ

)
+

xk

λ k+1

]}]

Derivative w.r.t k:

∂G
∂k

=


∂G11

∂k
∂G12

∂k

∂G21
∂k

∂G22
∂k

 (B.24)

∂G11

∂k
=

∂{( k
λ
)2E([( x

λ
)k−1]2)}

∂k
(B.25)

=
∂ ( k

λ
)2

∂k
E
[( x

λ

)k
−1
]2

+

(
k
λ

)2
∂
{

E([( x
λ
)k−1]2)

}
∂k

=
2k
λ 2 E

[( x
λ

)k
−1
]2

+

(
k
λ

)2

E
∂ ([( x

λ
)k−1]2)
∂k

=
2k
λ 2 E

[( x
λ

)k
−1
]2

+2
(

k
λ

)2

E
([( x

λ

)k
−1
]

log
( x

λ

)( x
λ

)k
)
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∂G12

∂k
=

∂{ k
λ
(1

k − log(λ ))E([( x
λ
)k−1])}

∂k
(B.26)

+
∂{ k

λ
E([( x

λ
)k−1][log(x)− ( x

λ
)k log( x

λ
)])}

∂k

=
∂ ( 1

λ
− k log(λ )

λ
)

∂k
E
[( x

λ

)k
−1
]
+

(
1
λ
− k log(λ )

λ

)
∂{E([( x

λ
)k−1])}

∂k

+
1
λ

E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])
+

k
λ

E

(
∂ ([( x

λ
)k−1][log(x)− ( x

λ
)k log( x

λ
)])

∂k

)

= − log(λ )
λ

E
[( x

λ

)k
−1
]
+

(
1
λ
− k log(λ )

λ

)
E
[( x

λ

)k
log
( x

λ

)]
+

1
λ

E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])
+

k
λ

E
(( x

λ

)k
log
( x

λ

)[
log(x)−

( x
λ

)k
log
( x

λ

)]
−
[( x

λ

)k
−1
][( x

λ

)k
log(

x
λ
) log

( x
λ

)])
= − log(λ )

λ
E
[( x

λ

)k
−1
]
+

(
1
λ
− k log(λ )

λ

)
E
[( x

λ

)k
log
( x

λ

)]
+

1
λ

E
([( x

λ

)k
−1
][

log(x)−
( x

λ

)k
log
( x

λ

)])
+

k
λ

E
(( x

λ

)k
log
( x

λ

)[
log(x)−2

( x
λ

)k
log
( x

λ

)
+ log

( x
λ

)])
∂G22

∂k
=

∂ [E({1
k − log(λ )+ log(x)− ( x

λ
)k log(k)}2)]

∂k
(B.27)

= E
∂ ({1

k − log(λ )+ log(x)− ( x
λ
)k log( x

λ
)}2)

∂k

= 2E
[{

1
k
− log(λ )+ log(x)−

( x
λ

)k
log
( x

λ

)}{
− 1

k2 −
( x

λ

)k
log
( x

λ

)
log
( x

λ

)}]

The expectations for this distribution appearing in the expressions for G and deriva-

tives of G are evaluated numerically at every step of the Markov chain (for GALA

and MMALA) by sampling from the Weibull distribution with parameters equal to

k and λ at each step. Connection: γk
i j = Gkl(∂ig jl +∂ jgil−∂lgi j)
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B.6 Multivariate Gaussian distribution

Probability density function: p(y; µ,Σ) = 1
2π
|Σ|

−1
2 exp(−1

2(y−µ)T Σ−1(y−µ))

Two major derivations are required. Namely, the derivation of gradient and the

Hessian of log-likelihood with respect to the square root of covariance matrix.

Log - Likelihood: log(p(y; µ,Σ)) = L=− log(2π)− 1
2 log(|Σ|)− 1

2(y−µ)T Σ−1(y−

µ)

For a d-dimensional distribution, let

θ = (θ1,θ2, ...,θD) , where D =
d2 +3d

2
(B.28)

= (µ1,µ2, ...µd,Σ11,Σ21,Σ22,Σ31,Σ32, ...,Σd(d−1),Σdd)

Gradient of Log-likelihood:

Gradient of Log-likelihood with respect to µ

∂L
∂ µ

=
1
2
[Σ−1 +(Σ−1)T ](y−µ) (B.29)

i.e.
∂L
∂θi

=
1
2
{[Σ−1 +(Σ−1)T ](y−µ)}i , i ∈ [1,d]

Gradient of log-likelihood with respect to Σ

∂L
∂Σ

=−1
2

∂ (log(|Σ|))
∂Σ

− 1
2

∂ [(y−µ)T Σ−1(y−µ)]

∂Σ
(B.30)

where
∂ (log(|Σ|))

∂Σ
= (Σ−1)T [161] (B.31)

Let P(Σ) = [(y−µ)T
Σ
−1(y−µ)] (B.32)

Re-writing in indicial notation as follows

P(Σ) = (y−µ)p{Σ−1(y−µ)}p

= (y−µ)pΣ
−1
pq (y−µ)q

Therefore
∂L
∂Σ

= = −1
2
(Σ−1)T − 1

2
∂P(Σ)

∂Σ
(B.33)
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Now,
∂P(Σ)
∂Σi j

=
∂ [(y−µ)pΣ−1

pq (y−µ)q]

∂Σi j
(B.34)

= (y−µ)p
∂Σ−1

pq

∂Σi j
(y−µ)q

= −(y−µ)pΣ
−1
pi Σ

−1
jq (y−µ)q

= −(Σ−1)T
ip(y−µ)p(y−µ)q(Σ

−1)T
q j

= −(Σ−1)T
ip[(y−µ)(y−µ)T ]pq(Σ

−1)T
q j

= −[(Σ−1)T [(y−µ)(y−µ)T ](Σ−1)T ]i j

Thus B.33 can be written in matrix form again as follows

∂L
∂Σ

=−1
2
(Σ−1)T +

1
2
[(Σ−1)T (y−µ)(y−µ)T (Σ−1)T ] (B.35)

Thus, we can evaluate the partial derivatives with respect to θd+1 through θD using

B.35 together with B.28.

Fisher Information Matrix: G = E[ (∂i log p(x;θ)) (∂ j log p(x;θ))T ]

From equations B.29 andB.35, we have

∂ log p(y;θ)

∂θ
= [

∂L
∂ µ1

,
∂L
∂ µ2

, ...
∂L
∂ µd

,
∂L

∂Σp1q1

,
∂L

∂Σp2q2

....
∂L

∂ΣpD−dqD−d

]T (B.36)

where (p1q1), (p2q2), ..(pD−dqD−d) correspond to the pairs of indices of the lower

triangular part of the covariance matrix (including diagonals). Thus ∂ log p(y;θ)
∂θ

is of

the form [a⃗1 a⃗2] where a⃗1 = { ∂L
∂ µ
}d×1 and a⃗2 = vec{ ∂L

∂Σ
}(D−d)×1 Hence,

Gi j = E[ (∂i log p(x;θ)) (∂ j log p(x;θ)) ] (B.37)

Consider the following cases

1. i, j < d

2. i > d, j < d

3. i < d, j > d

4. i, j > d
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Gi j has to be evaluated separately for each of the above cases.

Case 1. i, j < d

Gi j = E[
∂L
∂ µi
× ∂L

∂ µ j
] (B.38)

=
1
4

E[{[Σ−1 +(Σ−1)T ](y−µ)}i×{[Σ−1 +(Σ−1)T ](y−µ)} j]

= E[{Σ−1(y−µ)}i×{Σ−1(y−µ)} j]

= E[[{Σ−1(y−µ)}{Σ−1(y−µ)}T ]i j]

= E[Σ−1(y−µ)}(y−µ)T
Σ
−1]i j

= [Σ−1E[(y−µ)}(y−µ)T ]Σ−1]i j

= [Σ−1
ΣΣ
−1]i j

= Σ
−1
i j

Case 2. i > d, j < d For brevity of notation, let p(i−d) = p̃i, q(i−d) = q̃i. Thus,

Gi j = E[
∂L

∂Σ p̃i,q̃i

× ∂L
∂ µ j

] (B.39)

=
1
2

E[{−Σ
−1 +[Σ−1(y−µ)(y−µ)T

Σ
−1]} p̃i,q̃i{Σ

−1(y−µ)} j]

=
1
2

E[{−Σ
−1]}p̃i,q̃i{Σ

−1(y−µ)} j]+
1
2

E[{[Σ−1(y−µ)(y−µ)T
Σ
−1]}p̃iq̃i{Σ

−1(y−µ)} j]

= 0+
1
2

E[{[Σ−1(y−µ)(y−µ)T
Σ
−1]}p̃iq̃i{Σ

−1(y−µ)} j]

=
1
2

E[Σ−1
p̃ir(y−µ)r(y−µ)sΣ

−1
sq̃i

Σ
−1
jk (y−µ)k]

=
1
2

Σ
−1
p̃irΣ

−1
sq̃i

Σ
−1
jk E[(y−µ)r(y−µ)s(y−µ)k]
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Case 3. i < d, j > d

Again, let p j−d = p̃ j , q j−d = q̃ j

Gi j = E[
∂L
∂ µi
× ∂L

∂Σ p̃ jq̃ j

] (B.40)

=
1
2

E[{Σ−1(y−µ)}i{−Σ
−1 +[Σ−1(y−µ)(y−µ)T

Σ
−1]}p̃ jq̃ j ]

=
1
2

E[{−Σ
−1]}p̃ jq̃ j{Σ

−1(y−µ)}i]+
1
2

E[{[Σ−1(y−µ)(y−µ)T
Σ
−1]}p̃ jq̃ j{Σ

−1(y−µ)}i]

= 0+
1
2

E[{[Σ−1(y−µ)(y−µ)T
Σ
−1]}p̃ jq̃ j{Σ

−1(y−µ)}i]

= 0

Case 4. i, j > d

Gi j = E[
∂L

∂Σ p̃iq̃i

× ∂L
∂Σ p̃ jq̃ j

] (B.41)

=
1
4

E[{−Σ
−1 +[Σ−1(y−µ)(y−µ)T

Σ
−1]}p̃iq̃i{−Σ

−1 +[Σ−1(y−µ)(y−µ)T
Σ
−1]}p̃ jq̃ j ]

=
1
4

E[Σ−1
p̃iq̃i

Σ
−1
p̃ jq̃ j

]− 1
4

E[Σ−1
p̃i,q̃i

[Σ−1(y−µ)(y−µ)T
Σ
−1]p̃ j,q̃ j ]

−1
4

E[Σ−1(y−µ)(y−µ)T
Σ
−1]p̃iq̃iΣ

−1
p̃ jq̃ j

]

+
1
4

E{[Σ−1(y−µ)(y−µ)T
Σ
−1]p̃iq̃i[Σ

−1(y−µ)(y−µ)T
Σ
−1]p̃ jq̃ j}

= −1
4

Σ
−1
p̃iq̃i

Σ
−1
p̃ jq̃ j

+
1
4

Σ
−1
p̃imΣ

−1
nq̃i

Σ
−1
p̃ jrΣ

−1
sq̃ j

E{(y−µ)m(y−µ)n(y−µ)r(y−µ)s}

The central k-order moments of the variable X are gives as follows; see [162]:

(a) If k is odd, µ1,...,k(X−ξ ) = 0

(b) If k is even with k = 2λ , then it is µ1,2,...,2λ (X − ξ ) = ∑ci jckl...cxz, where the

sum is taken over all permutations of {1,2, ...2λ} giving (2λ−1)!/2(λ−1)(λ−1)!

terms in the sum, each being the product of λ covariance. Therefore, the 4-order

moments are given by
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E(X4
i ) = 3cii (B.42)

E(X3
i X j) = 3ciic j j

E(X2
i X2

j ) = ciic j j +2c2
i j

E(X2
i X jXp) = ciic jp +2ci jcip

E(XiX jXpXq) = ci jcpq + cipc jq + ciqc jp

Now, consider the last term on the RHS of equation B.41,

φ(p̃i, p̃ j, q̃i, q̃ j) = Σ
−1
p̃imΣ

−1
np̃ j

Σ
−1
q̃ir Σ

−1
sq̃ j

E{(y−µ)m(y−µ)n(y−µ)r(y−µ)s} (B.43)

From the last equation in B.42, we have

φ(p̃i, p̃ j, q̃i, q̃ j) = Σ
−1
p̃imΣ

−1
nq̃i

Σ
−1
p̃ jrΣ

−1
sq̃ j

(ΣmnΣrs +ΣmrΣns +ΣmsΣnr) (B.44)

= Σ
−1
p̃imΣ

−1
nq̃i

Σ
−1
p̃ jrΣ

−1
sq̃ j

ΣmnΣrs +Σ
−1
p̃imΣ

−1
nq̃i

Σ
−1
p̃ jrΣ

−1
sq̃ j

ΣmrΣns +Σ
−1
p̃imΣ

−1
nq̃i

Σ
−1
p̃ jrΣ

−1
sq̃ j

ΣmsΣnr

= Σ
−1
p̃imΣmnΣ

−1
nq̃i

Σ
−1
p̃ jrΣrsΣ

−1
sq̃ j

+Σ
−1
p̃imΣmrΣ

−1
nq̃i

Σ
−1
p̃ jrΣnsΣ

−1
sq̃ j

+Σ
−1
p̃imΣmsΣ

−1
nq̃i

Σ
−1
p̃ jrΣ

−1
sq̃ j

Σnr

= δp̃inΣ
−1
nq̃i

δp̃ jsΣ
−1
sq̃ j

+δp̃irΣ
−1
p̃ jrΣ

−1
nq̃i

δnq̃ j +δ p̃isΣ
−1
sq̃ j

Σ
−1
nq̃i

δp̃ jn

= Σ
−1
p̃iq̃i

Σ
−1
p̃ jq̃ j

+Σ
−1
p̃ j p̃i

Σ
−1
q̃ jq̃i

+Σ
−1
p̃iq̃ j

Σ
−1
p̃ jq̃i

Note, the assumption that sigma is symmetric has been used in the above equa-

tion. Substituting the result above in equation B.41, we get

Gi j =
1
4
[Σ−1

p̃ j p̃i
Σ
−1
q̃ jq̃i

+Σ
−1
p̃iq̃ j

Σ
−1
p̃ jq̃i

] (B.45)
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Derivative of G:

From equation B.38 we have

Gi j = E[
∂L
∂ µi
× ∂L

∂ µ j
] (B.46)

=
1
4

E[{[Σ−1 +(Σ−1)T ](y−µ)}i×{[Σ−1 +(Σ−1)T ](y−µ)} j]

=
1
4

E[{[Σ−1 +(Σ−1)T ]im(y−µ)m}×{[Σ−1 +(Σ−1)T ] jn(y−µ)n}]

=
1
4

E[(y−µ)m(y−µ)n][Σ
−1 +(Σ−1)T ]im[Σ

−1 +(Σ−1)T ] jn

=
1
4

Σmn[Σ
−1 +(Σ−1)T ]im[Σ

−1 +(Σ−1)T ] jn

=
1
4
[Σ−1 +(Σ−1)T ]imΣmn[Σ

−1 +(Σ−1)T ]Tn j

=
1
4
[Σ−1 +(Σ−1)T ]imΣmn[Σ

−1 +(Σ−1)T ]n j

=
1
4
{[Σ−1 +(Σ−1)T ]Σ[Σ−1 +(Σ−1)T ]}i j

=
1
4
[Σ−1

ΣΣ
−1 +Σ

−1
Σ(Σ−1)T +(Σ−1)T

ΣΣ
−1 +(Σ−1)T

Σ(Σ−1)T ]i j

=
1
4
[Σ−1 +2(Σ−1)T +(Σ−1)T

Σ(Σ−1)T ]i j

Since, we have shown earlier, G is a block diagonal matrix. Let us refer to the upper

and lower blocks as Gupper and Glower Thus,

Gupper =
1
4
{Σ−1 +2(Σ−1)T +(Σ−1)T

Σ(Σ−1)T} (B.47)
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∂ (Gupper)i j

∂Σkl
=

1
4

∂ [Σ−1 +2(Σ−1)T +(Σ−1)T Σ(Σ−1)T ]i j

∂Σkl
(B.48)

=
1
4

∂ [Σ−1 +2(Σ−1)T ]i j

∂Σkl
+

1
4

∂ [(Σ−1)T Σ(Σ−1)T ]i j

∂Σkl

= −1
4
[Σ−1

ik Σ
−1
l j +2Σ

−1
jk Σ
−1
li ]+

1
4

∂ [(Σ−1)T
imΣmn(Σ

−1)T
n j]

∂Σkl

= −1
4
[Σ−1

ik Σ
−1
l j +2Σ

−1
jk Σ
−1
li ]+

1
4

∂ (Σ−1)T
im

∂Σkl
Σmn(Σ

−1)T
n j]

+
1
4
(Σ−1)T

im
∂Σmn

∂Σkl
(Σ−1)T

n j +
1
4
(Σ−1)T

imΣmn
∂ (Σ−1)T

n j

∂Σkl

= −1
4
[Σ−1

ik Σ
−1
l j +2Σ

−1
jk Σ
−1
li ]− 1

4
Σ
−1
mk Σ

−1
li Σmn(Σ

−1)T
n j

+
1
4
(Σ−1)T

imδmkδnl(Σ
−1)T

n j−
1
4
(Σ−1)T

imΣmnΣ
−1
jk Σ
−1
ln

= −1
4
[Σ−1

ik Σ
−1
l j +2Σ

−1
jk Σ
−1
li ]− 1

4
(Σ−1)T

kmΣmn(Σ
−1)T

n jΣ
−1
li

+
1
4
(Σ−1)T

ik(Σ
−1)T

l j−
1
4
(Σ−1)T

imΣmn(Σ
−1)T

nlΣ
−1
jk

= −1
4
[Σ−1

ik Σ
−1
l j +2Σ

−1
jk Σ
−1
li ]− 1

4
[(Σ−1)T

Σ(Σ−1)T ]k jΣ
−1
li

+
1
4
(Σ−1)T

ik(Σ
−1)T

l j−
1
4
[(Σ−1)T

Σ(Σ−1)T ]ilΣ
−1
jk

= −1
2

Σ
−1
jk Σ
−1
li −

1
4

Σ
−1
ik Σ

−1
l j +

1
4
(Σ−1)T

ik(Σ
−1)T

l j

−1
4
[(Σ−1)T

Σ(Σ−1)T ]k jΣ
−1
li −

1
4
[(Σ−1)T

Σ(Σ−1)T ]ilΣ
−1
jk

Now, assuming Σ is symmetric, we have

∂ (Gupper)i j

∂Σkl
=−Σ

−1
jk Σ
−1
li (B.49)

From equation B.45,and without assuming Σ to be symmetric, we have

Gi j =
1
4
[Σ−1

p̃ j p̃i
Σ
−1
q̃ jq̃i

+Σ
−1
p̃iq̃ j
{(Σ−1)T

Σ(Σ−1)T}q̃i p̃ j ] (B.50)
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Therefore, for (k, l) pairs of indices of lower triangular matrix, we have

∂ (Glower)i j

∂Σkl
=

1
4

∂{[Σ−1
p̃ j p̃i

Σ
−1
q̃ jq̃i

+Σ
−1
p̃iq̃ j
{(Σ−1)T Σ(Σ−1)T}q̃i p̃ j ]}

∂Σkl
(B.51)

=
1
4

∂ [Σ−1
p̃ j p̃i

Σ
−1
q̃ jq̃i

]

∂Σkl
+

1
4

∂ [Σ−1
p̃iq̃ j
{(Σ−1)T Σ(Σ−1)T}q̃i p̃ j ]

∂Σkl

=
1
4

∂Σ
−1
p̃ j p̃i

∂Σkl
Σ
−1
q̃ j q̃i

+
1
4

Σ
−1
p̃ j p̃i

∂Σ
−1
q̃ jq̃i

∂Σkl
+

1
4

∂Σ
−1
p̃iq̃ j

∂Σkl
{(Σ−1)T

Σ(Σ−1)T}q̃i p̃ j

+
1
4

Σ
−1
p̃iq̃ j

∂{(Σ−1)T Σ(Σ−1)T}q̃i p̃ j

∂Σkl

= −1
4

Σ
−1
p̃ jkΣ

−1
l p̃i

Σ
−1
q̃ jq̃i
− 1

4
Σ
−1
p̃ j p̃i

Σ
−1
q̃ jkΣ

−1
lq̃i
− 1

4
Σ
−1
p̃ikΣ

−1
lq̃ j
{(Σ−1)T

Σ(Σ−1)T}q̃i p̃ j

+
1
4

Σ
−1
p̃iq̃ j
{−[(Σ−1)T

Σ(Σ−1)T ]kp̃ jΣ
−1
lq̃i

+(Σ−1)T
q̃ik(Σ

−1)T
l p̃ j
− [(Σ−1)T

Σ(Σ−1)T ]q̃ilΣ
−1
p̃ jk}

= −1
4

Σ
−1
p̃ jkΣ

−1
l p̃i

Σ
−1
q̃ jq̃i
− 1

4
Σ
−1
p̃ j p̃i

Σ
−1
q̃ jkΣ

−1
lq̃i
− 1

4
Σ
−1
p̃ikΣ

−1
lq̃ j

Σ
−1
q̃i p̃ j

+
1
4

Σ
−1
p̃iq̃ j
{−Σ

−1
kp̃ j

Σ
−1
lq̃i

+(Σ−1)T
q̃ik(Σ

−1)T
l p̃ j
−Σ

−1
q̃il Σ

−1
p̃ jk}

= −1
4

Σ
−1
p̃ jkΣ

−1
l p̃i

Σ
−1
q̃ jq̃i
− 1

4
Σ
−1
p̃ j p̃i

Σ
−1
q̃ jkΣ

−1
lq̃i
− 1

4
Σ
−1
p̃ikΣ

−1
lq̃ j

Σ
−1
q̃i p̃ j

−1
4

Σ
−1
p̃iq̃ j

Σ
−1
kp̃ j

Σ
−1
lq̃i

+
1
4

Σ
−1
p̃iq̃ j

Σ
−1
kq̃i

Σ
−1
p̃ jl−

1
4

Σ
−1
p̃iq̃ j

Σ
−1
q̃il Σ

−1
p̃ jk

Connection:

γ
r
pq =

1
2

grl
(

∂gql

∂θp
+

∂gpl

∂θq
−

∂gpq

∂θl

)
, p,q,r, l ∈ [1,D]

Assuming the dimension of the problem is d, the total number of parameters is as

follows:

(a) µi for i ∈ [1...d]

(b) Σi j for (i,j) pairs of lower triangular part of the covariance matrix

Now, since G is a function of Σ alone, and the first d parameters in θ correspond to

µ ,
∂G
∂θi

= 0, i ∈ [1...d]

For i > d, we have the following possibilities

1. q, l ∈ [1...d]
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∂gql
∂θi

= (from the equation for ∂Gupper
∂Σ

)

2. one of q,l ∈ [1...d] and the other is > d
∂gql
∂θi

= 0

3. both q and l are > d
∂gql
∂θi

= (from the equation for for ∂Glower
∂Σ

)

B.7 Logistic regression problem

ln( p
1−p) = β0 +∑

D
i=1 βiXi where p is the success probability. Therefore

Probability (t = 1) = p(X) = 1
1+exp[−(β0+(β T X))]

For a data set X consisting of N points and the corresponding values of t, the likeli-

hood of the given vector t for some β is

p(t|X ,β ) = ∏
N
i=1(

1
1+exp[−(β0+β T X (i))]

)ti× (1− 1
1+exp[−(β0+β T X (i))]

)(1−ti)

Log-likelihood: L = log(p(t|X ,β )) = ∑
N
i=1[ti log( 1

1+exp[−(β0+β T X (i))]
) + (1 −

ti) log(1− 1
1+exp[−(β0+β T X (i))]

)]

Append an extra element (= 1) at the beginning of every vector X (i) for conve-

nience, call it X̄ such that X̄ (i) is now D+1 dimensional, hence we have

L =
N

∑
i=1

[ti log(
1

1+ exp[−β T X̄ (i)]
)+(1− ti) log(1− 1

1+ exp[−β T X̄ (i)]
)] (B.52)
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Gradient of log-likelihood:

∂L
∂βp

=
N

∑
i=1

[ti
∂ (log( 1

1+exp[−β T X̄ (i)]
))

∂βp
+(1− ti)

∂ (log(1− 1
1+exp[−β T X̄ (i)]

)])

∂βp
] (B.53)

=
N

∑
i=1

[−ti
∂ (log(1+ exp[−β T X̄ (i)]))

∂βp
+(1− ti)

∂ (log(exp[−β T X̄ (i))])

∂βp

−(1− ti)
∂ (log(1+ exp[−β T X̄ (i))])

∂βp
]

=
N

∑
i=1

[−ti
∂ (log(1+ exp[−β T X̄ (i)]))

∂βp
+(1− ti)

∂ ([−β T X̄ (i))])

∂βp

−(1− ti)
∂ (log(1+ exp[−β T X̄ (i))])

∂βp
]

=
N

∑
i=1

[−∂ (log(1+ exp[−β T X̄ (i)]))

∂βp
− (1− ti)

∂ (β T X̄ (i))

∂βp
]

=
N

∑
i=1

[

(
− 1

1+ exp(−β T X̄ (i))

)
∂ (1+ exp(−β T X̄ (i)))

∂βp
− (1− ti)

∂ (β T X̄ (i))

∂βp
]

Now,

∂{1+ exp(−β T X̄ ( j))}
∂βp

=
∂ [exp(−β T X̄ ( j))]

∂βp

=
∂ [exp(−βiX̄

( j)
i )]

∂βp

= [exp(−βiX̄
( j)
i )]

∂ (−βiX̄
( j)
i )

∂βp

= −[exp(−βiX̄
( j)
i )]X̄ ( j)

p

= −exp(−β
T X̄ ( j))X̄ ( j)

p

Substituting in B.53, we get

∂L
∂βp

=
N

∑
i=1

[
exp(−β T X̄ (i))X̄ (i)

p

1+ exp(−β T X̄ (i))
− (1− ti)X̄

(i)
p ] (B.54)
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Fisher-Information matrix:

For a given {X i, t} pair, we have

G = E
(

∂L
∂βp

∂L
∂βq

)
(B.55)

= E

(
[
exp(−β T X̄ (i))X̄ (i)

p

1+ exp(−β T X̄ (i))
− (1− ti)X̄

(i)
p ][

exp(−β T X̄ (i))X̄ (i)
q

1+ exp(−β T X̄ (i))
− (1− ti)X̄

(i)
q ]

)

=
(exp(−β T X̄ (i)))2X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ (i)))2
−

2exp(−β T X̄ (i))X̄ (i)
p X̄ (i)

q

(1+ exp(−β T X̄ (i)))
E(1− t)

+X̄ (i)
p X̄ (i)

q E[1−2t + t2]

t is a Bernoulli random variable, therefore

E(t) = 1× p(t = 1)+0× p(t = 0)

= p(t = 1)

=
1

1+ exp(−β T X̄ i)

E(t2) = 12× p(t = 1)+0× p(t = 0)

= p(t = 1)

=
1

1+ exp(−β T X̄ i)

Substituting in equation (B.55), we have

G(barX (i),β ) =
(exp(−β T X̄ (i)))2X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ (i)))2
−

2exp(−β T X̄ (i))X̄ (i)
p X̄ (i)

q

(1+ exp(−β T X̄ (i)))

(
1− 1

1+ exp(−β T X̄ i)

)
+X̄ (i)

p X̄ (i)
q

(
1− 2

1+ exp(−β T X̄ i)
+

1
1+ exp(−β T X̄ i)

)
=

(exp(−β T X̄ (i)))2X̄ (i)
p X̄ (i)

q

(1+ exp(−β T X̄ (i)))2
−

2(exp(−β T X̄ (i)))2X̄ (i)
p X̄ (i)

q

(1+ exp(−β T X̄ (i)))2

+X̄ (i)
p X̄ (i)

q
exp(−β T X̄ i)

1+ exp(−β T X̄ i)

= −
(exp(−β T X̄ (i)))2X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ (i)))2
+

exp(−β T X̄ i)(1+ exp(−β T X̄ i))X̄ (i)
p X̄ (i)

q

(1+ exp(−β T X̄ i))2

=
exp(−β T X̄ i)X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ i))2
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Therefore, G for the product of likelihoods is, G(X̄) = ∑
N
i=1 G(X̄ (i),β )

Derivative of Fisher-Information matrix:

∂G(X̄ ,β )pq

∂βr
=

N

∑
i=1

∂

∂βr

(
exp(−β T X̄ (i))X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ i))2

)
(B.56)

=
N

∑
i=1

∂ exp(−β T X̄ (i))

∂βr

(
X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ i))2

)

+
N

∑
i=1

∂

∂βr

(
1

(1+ exp(−β T X̄ i))2

)
exp(−β

T X̄ i)X̄ (i)
p X̄ (i)

q

(B.57)

Now

∂ [exp(−β T X̄ (i))]

∂βr
= −exp(−β

T X̄ (i))X (i)
r

and
∂

∂βr

1
{1+ exp(−β T X ( j))}2

= − 2
{1+ exp(−β T X̄ (i))}3

∂{1+ exp(−β T X̄ (i))}
∂βr

= − 2
{1+ exp(−β T X̄ (i))}3

(−exp(−β
T X̄ (i))X̄ (i)

r )

= 2
exp(−β T X̄ (i))X̄ (i)

r

{1+ exp(−β T X̄ (i))}3
(B.58)

Substituting in equation (B.56), we have

∂Gpq

∂βr
= −

N

∑
i=1

exp(−β
T X̄ (i))X (i)

r

(
X̄ (i)

p X̄ (i)
q

(1+ exp(−β T X̄ i))2

)

+
N

∑
i=1

2
exp(−β T X̄ (i))X̄ (i)

r

{1+ exp(−β T X̄ (i))}3
exp(−β

T X̄ i)X̄ (i)
p X̄ (i)

q

= −
N

∑
i=1

exp(−β T X̄ (i))X̄ (i)
p X̄ (i)

q X (i)
r

(1+ exp(−β T X̄ i))2 +
N

∑
i=1

2
(exp(−β T X̄ (i)))2X̄ (i)

p X̄ (i)
q X̄ (i)

r

{1+ exp(−β T X̄ (i))}3

Connection: γk
i j =

1
2gkl(∂ig jl +∂ jgil−∂lgi j)
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[28] Ke Tang, Xın Yáo, Ponnuthurai Nagaratnam Suganthan, Cara MacNish,

Ying-Ping Chen, Chih-Ming Chen, and Zhenyu Yang. Benchmark functions

for the CEC’2008 special session and competition on large scale global op-

timization. Nature inspired computation and applications laboratory, USTC,

China, 24:1–18, 2007.

[29] Pierre Del Moral and Spiridon Penev. Stochastic Processes: From

Applications to Theory. Chapman and Hall/CRC, 2017.



Bibliography 180

[30] John Kent. Time-reversible diffusions. Advances in Applied Probability,

10(4):819–835, 1978.

[31] Kai Lai Chung. Lectures from Markov processes to Brownian motion, vol-

ume 249. Springer Science & Business Media, 2013.

[32] Gareth O. Roberts and Osnat Stramer. Langevin diffusions and Metropolis-

Hastings algorithms. Methodology And Computing In Applied Probability,

4(4):337–357, Dec 2002.

[33] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and

Hamiltonian Monte Carlo methods. Journal Of The Royal Statistical Society

Series B-Statistical Methodology, 73(2):123–214, 2011.

[34] Saikat Sarkar, Debasish Roy, and Ram Mohan Vasu. A global optimiza-

tion paradigm based on change of measures. Royal Society open science,

2(7):150123, 2015.

[35] Harold Kushner and George Yin. Stochastic approximation and recursive

algorithms and applications, volume 35. Springer Science & Business Media,

2003.

[36] Mariya Mamajiwala, Debasish Roy, and Serge Guillas. Geometrically

adapted Langevin dynamics for Markov chain Monte Carlo simulations.

arXiv:2201.08072, 2022.
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[47] Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-

concave distribution with projected Langevin Monte Carlo. Discrete &

Computational Geometry, 59(4):757–783, 2018.

[48] Marcelo Pereyra. Proximal Markov chain Monte Carlo algorithms. Statistics

and Computing, 26(4):745–760, 2016.



Bibliography 182

[49] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan.

Underdamped Langevin MCMC: A non-asymptotic analysis. In Conference

on Learning Theory, pages 300–323, 2018.

[50] Alain Durmus, Eric Moulines, and Marcelo Pereyra. Efficient Bayesian com-

putation by proximal Markov chain Monte Carlo: when Langevin meets

Moreau. SIAM Journal on Imaging Sciences, 11(1):473–506, 2018.

[51] Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling of discrete ap-

proximations to Langevin diffusions. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 60(1):255–268, 1998.

[52] Laird Arnault Breyer, Mauro Piccioni, Sergio Scarlatti, et al. Optimal scal-

ing of MALA for nonlinear regression. The Annals of Applied Probability,

14(3):1479–1505, 2004.

[53] Natesh S. Pillai, Andrew M. Stuart, Alexandre H. Thiéry, et al. Optimal
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