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Sar1 is a small GTPase of the ARF family. Upon exchange of GDP for

GTP, Sar1 associates with the endoplasmic reticulum (ER) membrane and

recruits COPII components, orchestrating cargo concentration and membrane

deformation. Many aspects of the role of Sar1 and regulation of its GTP

cycle remain unclear, especially as complexity increases in higher organisms

that secrete a wider range of cargoes. This review focusses on the regulation

of GTP hydrolysis and its role in coat assembly, as well as the mechanism of

Sar1-induced membrane deformation and scission. Finally, we highlight the

additional specialisation in higher eukaryotes and the outstanding questions

on how Sar1 functions are orchestrated.
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Sar1 participates in the first step of the secretory path-

way, the COPII-mediated export of newly synthesised

proteins from the endoplasmic reticulum (ER) to the

Golgi apparatus. Sar1 exists as a cytosolic pool in its

inactive conformation, and associates with the ER

membrane upon activation by Sec12, its cognate

guanine-nucleotide exchange factor (GEF) (Fig. 1) [1].

Activated Sar1-GTP sequentially recruits Sec23-Sec24

and Sec13-Sec31 complexes to assemble the inner and

outer layers of the COPII coat, respectively [2–4]. The
COPII complex coordinates many different events in

ER export, from cargo binding and concentration to

deformation of the membrane into coated vesicular

carriers (Fig. 1). Cargo selection is mediated by the

Sar1-Sec23-Sec24 complex [5], primarily through

cargo-binding sites on Sec24 [6,7], whilst membrane

remodelling is orchestrated by a dynamic and complex

interaction network involving all coat components [8–
10]. GTP hydrolysis leads to the detachment of Sar1

and starts the uncoating process [2]. Whilst Sar1 itself

has negligible GTP hydrolysis activity, this is

significantly accelerated by the binding of Sec23 and

Sec31, which act as GTPase-activating proteins (GAP)

[4,11] (Fig. 1).

SAR1 is an essential gene, initially discovered as a

multicopy suppressor for the temperature-sensitive

mutation in sec12 of Saccharomyces cerevisiae [12], the

model organism for much of the Sar1 research. The

SAR1 gene codes for a 21-kDa protein, which belongs

to the small GTPases superfamily, with conservation

in the active site. Many small GTPases are lipidated to

facilitate membrane association, for example, ADP-

ribosylation factor 1 (Arf1), closely related to Sar1

and involved in intra-Golgi transport, is myristoylated

at its N-terminus [13,14]. By contrast, Sar1 lacks any

post-translational modifications [15], though it shares

with other ARF family proteins an amphipathic N-

terminal helix, which associates with membranes in a

GTP-nucleotide and Mg++-dependent manner [15].

Most ER membrane-associated Sar1 is found near the

juxtanuclear Golgi ribbon in mammals [16,17]. Sar1 is

further concentrated in so-called ER exit sites (ERES)
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to facilitate secretion [18,19]. A cell has typically a dis-

crete number of ERES, depending on the organism

[20]. In vertebrates, the ERES are found in close con-

tact with the ER-Golgi intermediate compartment

(ERGIC), which functions as an acceptor site for the

characteristic centralised Golgi ribbon [21].

The essential role of Sar1 in COPII-mediated mem-

brane traffic has been extensively studied. In vitro

assays using semi-intact/permeabilised cells

[2,11,21,22] have been used to characterise many Sar1

mutations and their effects on COPII secretion

(Table 1). Mutations blocking the GDP to GTP

exchange or GTP hydrolysis both show defects in

secretion, highlighting the need for GTP turnover

[2,22]. From these studies, it is clear that Sar1 plays

important roles in ER membrane deformation, cargo

selection, vesicle formation, vesicle scission and

uncoating, but the specific mechanisms and regulation

remain debated. Here we review current knowledge

on the small GTPase Sar1 with particular focus on

three major aspects: (a) the role of Sar1 and of GTP

hydrolysis in COPII assembly and disassembly; (b)

Sar1 role in membrane remodelling, from curvature

generation to scission; and (c) regulatory mechanisms

that affect the processes above, and their increased

complexity throughout evolution.

Role of Sar1 and GTP hydrolysis in
coat assembly and disassembly

Activation of Sar1 at the ER exit sites

At ERES, Sar1 associates with the membrane upon

GTP exchange induced by Sec12. Sec12 is an ER-

resident integral type II membrane protein [1], which

accelerates nucleotide loading on Sar1 by a billion

times (Box 1 and Table 2, [32]), ensuring site-

specificity of COPII budding. Next to its C-terminal

membrane anchor, Sec12 features a cytosol-facing

seven-bladed beta-propeller, which contains a con-

served potassium-binding ‘K-loop’ crucial for GEF

activity by wedging the Sar1 nucleotide-binding site

open to facilitate exchange [42,43].

Structure of Sar1 and interactions with the COPII

coat

Sar1 contains a nucleotide-binding pocket canonical to

small GTPases and has high structural homology with

other members of the ARF family (Fig. 2A) [28,49].

Two switch regions (Switch I (48–59) and Switch II

(78–94) for hamster Sar1A2) change conformation

upon nucleotide binding and hydrolysis. The

nucleotide-binding site is partly formed by a conserved

GxxxxGKT39 (‘G-1’) motif and incorporates a magne-

sium atom. Upon guanine-nucleotide exchange, Sar1

undergoes conformational change leading to two main

events: the amphipathic N-terminal helix is exposed by

displacement of the ß2-ß3 hairpin mediating mem-

brane binding [8,9,29], and its affinity for the inner

coat increases leading to an extensive interaction inter-

face with Sec23 encompassing both switch I and II

regions and the ß2-ß3 hairpin ([49], Fig. 2B). Finally,

metazoan Sar1 features a unique structural element,

the extended omega loop (156–171 for hamster

Sar1A2, Fig. 2A), which was shown to be indispens-

able for Sar1 self-association [33], a role also attrib-

uted to the apical helix [50]. Self-association of Sar1

might be important in the membrane deformation

mechanisms discussed below.

GAP activity of the COPII coat is crucial for

vesicle formation

In order to achieve productive COPII budding, coordi-

nated assembly and release of the inner and outer coat

complexes are critical. Membrane-associated Sar1

interacts with Sec23-Sec24 and Sec13-Sec31 in a

sequential fashion, that is, the outer coat cannot bind

Sar1 by itself [4]. Higher order associations within the

coat are orchestrated by a complex network of interac-

tions between and across inner and outer coat

Fig. 1. Sar1 activation and COPII vesicle formation. Sar1 activation at ERES by its cognate GEF Sec12 results in membrane association (left,

zoom on membrane). Multiple Sar1-binding events result in membrane deformation through sequential binding of Sec23-Sec24 inner and

Sec13-Sec31 outer coat subunits. Continued accretion of coat components triggers GTP hydrolysis eventually leading to Sar1 dissociation

and scission, followed by further uncoating and transport to the Golgi apparatus.
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subunits. Lateral assembly between Sec23-Sec24 inner

coat subunits is in turn reinforced through interactions

with the outer coat protein Sec31, whose triple-proline

motifs in the proline-rich domain (PRD) bind across

neighbouring Sec23 molecules ([9,10], Fig. 2B,C).

Importantly, coat assembly is inherently coupled with

disassembly as Sec23 acts as a GAP for Sar1, acceler-

ating GTPase activity 9–15 fold [11,51] and leading to

Sar1 release from the membrane [2]. Sec23 stimulates

GAP activity both by stabilising productive interac-

tions of GTP with switch I and by inserting an argi-

nine finger (R722 in Saccharomyces cerevisiae (Sc)

Sec23) in the active site, coordinating GTP phosphates

and rendering them more susceptible to nucleophilic

attack [49]. Binding of the outer coat further acceler-

ates Sec23 GAP activity 2–10 fold (Box 1 and Table 2,

[4,39,44,45]). This acceleration can be mostly attrib-

uted to a fragment of 35–40 amino acids in the

Table 1. Mutations of Sar1 and associated phenotypes. List of Sar1 mutations correlated with correspondent biochemical effects. Obvious

misfolding mutations, as well as frameshift or deletion variants were not included. Organisms are abbreviated as Ce, Caenorhabditis

elegans; Cg, Cricetulus griseus; Hs, Homo Sapiens; Pp, Pichia pastoris; Sc, Saccharomyces cerevisiae.

–, Not reported; AD, Anderson’s disease; CMRD, chylomicron retention disease; ts, temperature sensitive.

Mutation – effect Organism Membrane interaction defect Secretion defect Growth defect Literature

Nucleotide binding

E112K Sc No binding Moderate ts [11,23]

G37R Hs Sar1B No bindinga Large cargo AD [24]

D137N Hs Sar1B Impaired bindinga Large cargo CMRD [24]

S179R Hs Sar1B No bindinga Large cargo CMRD [24]

S197I – L181P Hs Sar1B No bindinga Large cargo AD/CMRD [24]

Nucleotide exchange – GDP lock

D32G Sc No binding Moderate ts [11,23,25]

T34N Pp No binding Strong Strong [26,27]

T39N Cg No binding Strong – [17,21,28–30]

T54A Sc No binding Strong Strong [11,25]

GTP hydrolysis – GAP irresponsive

H77L Sc Vesicles formed in vitrob Strong Strong [11,25]

H75G Ce No remodelling on artificial

membranes

– – [31]

H79G Cg Sar1A2 beads-on-string morphology—

no scission

Strong – [21,28–30]

Membrane binding

Δ23 – Sar1Δ [1-23] Sc No binding Strong – [8]

Δ9 – Sar1Δ [2-9] Cg Sar1A2 No binding Strong – [28,29]

Δ9 – Sar1Δ [1-9] Sc No binding Strong – [28]

Δ6 – Sar1Δ [1-6] Sc Quasi-normal binding None – [28]

Δ4 – Sar1Δ [1-4] Cg Sar1A2 Quasi-normal binding None – [28]

W4A | IF[6-7]AA | W9A | F10A Sc Impaired binding—impaired

scission (W4A)

Moderate – [8]

D5A | RD[11-12]AA Sc Quasi-normal binding None – [8]

F3A | F3D | F5A Cg Sar1A2 Quasi-normal binding None – [28]

F5D | FIF[345]AAA Cg Sar1A2 No binding Strong – [28]

FPF – Sar1[Y9F G11P S14F] Cg Sar1A2 Quasi-normal binding—impaired

scission

Moderate – [29]

Self-oligomerisation

T158A Cg Sar1A2 Normal Strong – [28]

QTTG[156-159]AAAA Cg Sar1A2 Normal Large cargo – [33]

Other/unknown

N132I Sc Unknown Moderate ts [23,25]

N134I Cg Sar1A2 Unknown Moderate – [17]

G187fsX199c Hs Sar1B Unknown Large cargo CMRD [24]

K36M Sc Unknown Strong Strong [25]

D73V Sc Unknown Strong Strong [25]

aPredicted effect on activity, no direct experimental evidence.; bVesicles are observed with these mutants but are thought to occur due to

trituration based on mammalian work.; cThe mutated allele replaces amino acids 187–198 of Sar1B with the amino acid sequence

LRRRLPLDGTVH.
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Box 1. Experimental methods to measure Sar1-GTP dynamics.

Early studies [11,15] used radioactively labelled GTP (e.g. [32P]GTP) to chart nucleotide exchange and hydrolysis

(combined with thin-layer chromatography (TLC) to directly assess hydrolysed GTP [34,35]). More accessible and

user-friendly approaches have been benchmarked against this method. In a seminal paper, Antonny et al. [4] com-

pared radioactive assays with a dynamic light scattering of COPII binding and followed the tryptophan fluorescence

of Sar1 in these reactions. Due to tryptophan in the switch II region (W84 in S. cerevisiae Sar1, conserved in other

G-proteins and Arf1 [36–38]), Sar1 has a higher fluorescence emission at 340 nm when bound to GTP than GDP [4].

With this assay, controls using nonhydrolysable analogues are warranted to exclude changes in fluorescence that are

due to factors other than GTP hydrolysis (e.g. addition of other components). These controls have been sparse in the

wide literature since their original implementation. Based on our own experience, binding of COPII proteins to Sar1-

GTPcS can also cause a decrease in tryptophan fluorescence of Sar1. As an alternative, fluorescent MANT-GTP can

be used [39], although fluorescence is mostly dependent on the local environment of the GTP product rather than the

nucleotide state, and GTP hydrolysis kinetics of the modified GTP may be altered [40]. Finally, to overcome the

shortcomings of measuring the nucleotide state indirectly, a commercial end-point assay was developed (GTPase-

GLOTM, Promega) converting unreacted GTP to a bioluminescent product in a two-step assay, improving sensitivity

over classical chromogenic malachite green assays [41]. This assay was used to follow concentration-dependent Sar1-

GTP hydrolysis [31], though has not yet found widespread use.

It remains unclear how GTP hydrolysis rates may be influenced by different methodologies or inconsistent activi-

ties of purified protein batches, as significant discrepancies have been reported in the literature (Table 2). In conclu-

sion, whilst using tryptophan or MANT-GTP fluorescence offers the opportunity to follow GTP kinetics in real time,

direct assessment of actual hydrolysis should be considered as a control, especially when studying the effect of other

COPII proteins on Sar1 kinetics. It is noteworthy that methods measuring nucleotide hydrolysis directly in real time

have been extensively used elsewhere (e.g. [46–48]) and these could find implementations in the future especially in

complex setups.

Table 2. Experimental rates of Sar1-GTP turnover. Only including reported experimental rates, not qualitative assessments mostly made

using the tryptophan fluorescence method. Experiments from the same study are indicated with ‘&, ¥, £, $, €’. Note the more pronounced

effect for yeast outer coat (£) binding compared with the mammalian counterpart ($, €). S. cerevisiae: Saccharomyces cerevisiae. FA, Filter

Assay; TLC, thin-layer chromatography; Trp, tryptophan.

GTP exchange On rate (s�1�Mol�1) Organism Method Literatures

Sar1 1.5 9 10�3 S. cerevisiae Radioactive FA [15]

& 5 9 10�3 S. cerevisiae Trp-fluorescence [32]

Sar1-Sec12 & 1.5 9 106 S. cerevisiae Trp-fluorescence [32]

9.5 9 106 S. cerevisiae Trp-fluorescence [42]

10 9 106 S. cerevisiae Trp-fluorescence [43]

GTP hydrolysis Hydrolysis (s�1) Organism Method Literatures

Sar1 1.8 9 10�5 S. cerevisiae Radioactive TLC [15]

¥ 5.8 9 10�5 S. cerevisiae Radioactive TLC [11]

Sar1-Sec23-Sec24 ¥ 5.2 9 10�4a S. cerevisiae Radioactive TLC [11]

£ 1.5 9 10�2 S. cerevisiae Mant-GTP fluorescence [39]

$ 8.5 9 10�4 Human Sar1A Trp-fluorescence [44]

$ 8.4 9 10�4 Human Sar1B Trp-fluorescence [44]

€ 2.4 9 10�3 Human Sar1A Trp-fluorescence [45]

€ 1.6 9 10�3 Human Sar1B Trp-fluorescence [45]

Sar1-Sec23-Sec24-

Sec13-Sec31

£ 6.6–10 9 10�2 S. cerevisiae Mant-GTP fluorescence [39]

$ 4.5 9 10�3 Human Sar1A Trp-fluorescence [44]

$ 3.0 9 10�3 Human Sar1B Trp-fluorescence [44]

€ 4.7 9 10�3 Human Sar1A Trp-fluorescence [45]

€ 3.2 9 10�3 Human Sar1B Trp-fluorescence [45]

aCalculated based on reported acceleration effect (8.99) in the same publication.
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intrinsically disordered PRD of Sec31 (residues 907–
943 in ScSec31). A crystal structure of Sar1/Sec23 co-

crystallised with Sec31 active fragment shows that

most of the involved Sec31 residues (920–942 in

ScSec31) bind to Sec23, but the region between 907

and 922 binds to Sar1 [39]. Acceleration of GAP activ-

ity is caused by the interaction of W922 and N923

with the catalytic H77 residue in the ScSar1 switch II

region, positioning it so that it primes the coordinated

water molecule for the nucleophilic attack [39].

Sec16 as a conserved modulator of GTPase

activity

Sec16 is an essential gene for ER-to-Golgi secretion

[52]. It codes for a large and highly disordered protein,

localising to ERES [26,53–56], capable of binding all

of the COPII components through two conserved

domains (Central conserved domain (CCD) and C-

terminal region (CTR)) and a functionally conserved

region in the N-terminal part [27,52,55–61]. Sec16 pro-

motes COPII assembly on membranes by acting as a

scaffolding factor [59]; in addition, it has been shown

to negatively regulate Sar1-GTP hydrolysis. This effect

has been attributed either to the binding of Sec16

CTR to Sec23 [56] or to the interaction of the CCD

with Sec24, which could couple cargo loading to GTP

hydrolysis control [61]. In both cases, the interaction

of Sec16 with the Sec23-Sec24 complex precludes

recruitment of the outer coat, thus inhibiting Sec31-

mediated acceleration of GTP hydrolysis. Notably,

Sec16 stays associated with the ER membrane and is

not found in coated vesicles [55], possibly stabilising

Sar1-GTP at the base of COPII buds.

Sar1-GTP cycles mediate cargo concentration in

directional transport

Whilst it is well-established that some components of

the COPII coat stimulate GTP hydrolysis by Sar1,

uncoating as a result of this is still poorly understood.

Other factors might stabilise the coat after GTP

hydrolysis, resulting in an apparent uncoupling of

GTP hydrolysis and uncoating. For instance, the pres-

ence of cargo can increase the number of Sec12-

mediated Sar1-GTP-loading cycles occurring without

the disassembly of the inner and outer coats [62,63].

These data are supported by FRAP experiments of

ERES in cells, where Sar1 is less long-lived compared

with Sec23-Sec24 in a cargo-load-dependent manner

[64]. In this scenario, coat subunits are kept in place

through cargo-Sec24 interactions whilst Sar1 is actively

being exchanged, and this has been proposed to facili-

tate the concentration of cargo in vesicles. Sar1-Sec23-

Sec24 complexes can actively discern cargo from non-

cargo in a delicately tuned mechanism, dubbed the

Fig. 2. Structure of Sar1 and interactions with COPII coat. (A) Atomic model of Saccharomyces cerevisiae Sar1 bound to GMP-PNP (non-

hydrolysable GTP analogue) in rainbow representation (blue-red, N-C-terminus, PDB: 6ZGA). Superimposed in grey is Cricetulus griseus

Sar1A2 complexed with GDP (PDB: 1F6B). The switch regions of C. griseus Sar1A2 (dashed lines) and extended omega loop are highly flex-

ible. Comparison reveals the displacement of the b2-b3 hairpin in response to the nucleotide state, with the hairpin closing off the cavity for

N-terminal helix binding in the GTP state. (B) Left: 90-degree rotated view of Sar1 as in (A) corresponding to its orientation in the Sar1-

Sec23-Sec24 inner coat complex (right). Sar1 in purple, Sec23 in yellow and Sec24 in orange surface representation. Sec31 activating frag-

ment (superimposed from PDB: 2QTV) is mapped in red, with triple-proline motive (PPP) positioned to bridge inner coat lattice subunits.

One of the cargo-binding sites on Sec24 is depicted in black (cargo peptide in ‘B’-site from PDB: 1PD1). (C) Reconstruction of an in vitro

assembled tubule from subtomogram averaging [10]. Outer coat subunits (Sec13-Sec31, red) roughly span 2 inner coat lattice subunits

(orange) but are flexibly tethered.
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kinetic proofreading model [63]. In vivo, this appears

dependent on cargo crowding, as the active recruit-

ment of cognate cargo precludes ER-resident proteins

to enter vesicles [65,66]. Note that both Sar1-

dependent and -independent cargo exist, suggesting

that different avenues of cargo concentration in secre-

tory membranes exist [67]. On vesicles, the coat is

thought to be maintained even after Sar1 has dissoci-

ated [2] and at least for yeast, only disassembles upon

phosphorylation by the Hrr25p kinase prior to cargo

delivery at the Golgi [68]. In metazoa, Turk-fused gene

(TFG) is found to promote uncoating by outcompet-

ing Sec31 for Sec23 post-budding [69]. TFG is depen-

dent on Ca++ and forms oligomeric assemblies

stabilising the ER-ERGIC interface [70,71].

Sar1-membrane interaction and role in
remodelling

Mechanisms of membrane deformation by Sar1

In order to form COPII vesicles, the membrane at

ERES needs to be actively remodelled and Sar1 bind-

ing is believed to be one of the drivers of increased

membrane curvature. A number of mechanisms for

Sar1-mediated membrane deformation have been pro-

posed, which can be grouped into three major modali-

ties: amphipathic helix insertion, membrane crowding

and scaffolding. Each of these modalities is supported

by experimental and simulated data in ways that can

be complementary but are sometimes difficult to rec-

oncile. In this section, we attempt to summarise the

proposed models (Fig. 3A–C).

Amphipathic helix insertion

Upon GTP-loading by Sec12, a conformational change

exposes the N-terminal 20 residues of Sar1. These form

an amphipathic helix that is stabilised by insertion in

the membrane [8,29]. Deletion of the helix abolishes

interaction with the membrane, whilst increasing [29] or

decreasing [8,28] the hydrophobic character of the helix

leads to a decrease in vesicle budding efficiency in part

due to reduced membrane binding. A conserved STAR

motif, consisting of bulky hydrophobic residues, seems

especially important for Sar1 activation and membrane

association [28]. Conversely, fusing the helix to a nonre-

lated protein (e.g. GST) can result in binding of the

fusion protein to membranes and their destabilisation,

yet without formation of tubes or vesicles [29]. Direct

evidence of Sar1 helix insertion comes from cryo-

electron tomography studies of reconstituted COPII-

coated tubules [9]. High-resolution subtomogram aver-

aging of the membrane-assembled coat revealed that

Sar1 inserts its kinked N-terminal helix into the mem-

brane outer leaflet to a depth of about 10–12 �A

(Fig. 3D), confirming earlier models based on its amphi-

pathic nature [8]. Together with its shallow insertion,

that is just below the lipid head groups, the large num-

ber of hydrophobic residues increases the ‘footprint’ of

Fig. 3. Mechanisms of curvature induction by Sar1. Sar1-GTP (purple) inserts into the membrane and deforms it according to three main

mechanisms. (A) Insertion of the amphipathic helix introduces changes in the membrane properties causing it to curve according to a

bilayer-couple global model or a local spontaneous curvature model, which can be combined into the ADE model. Alternatively, amphipathic

helix insertion can cause membranes to become more readily deformable (softening). (B) Repulsion of Sar1 molecules to compensate for

unfavourable protein clashes leads to membrane curvature due to the difference in pressure between inner and outer leaflets (membrane

crowding). (C) Membrane curvature obtained through protein scaffolding (Sar1 oligomerisation, COPII coat binding). Sequential Sec23-Sec24

and Sec13-Sec31 binding events reinforce COPII lattice formation. (D) Slice through a side view of a subtomogram averaging map of

membrane-assembled COPII coat [9]. Electron density is white on black background, with N-terminal helix showing a kink and penetrating

only the outer leaflet of the membrane.
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the helix leading to distortion of the head groups of the

lipids, pushing open the outer leaflet of the membrane

[8].

But how does the insertion of a helix induce curva-

ture? In the ‘bilayer-couple’ model [72], large numbers

of inserted helices that only penetrate the outer leaflet

create a global area difference between the leaflets

leading to positive curvature to compensate for the

area asymmetry, relaxing the elastic energy over the

membrane system (Fig. 3A, left panel). Alternatively,

individual insertions of the amphipathic helices shape

membranes through a local spontaneous curvature

mechanism (Fig. 3A, middle panel), where the global

effect is reduced to a simple local wedge mechanism

comparable to the one created by lysophospholipids

[73].

Local and global effects of the amphipathic helix

insertion mechanism are brought together in the area-

difference-elasticity (ADE) model. Here, the local

membrane bending energy and the elastic stretching

energy of the individual monolayers are minimised

[74]. Interestingly, the ADE model predicts that an

outer monolayer expansion as low as 0.1% can be

enough to induce curvature in small lipid systems, such

as GUVs [74,75]. This model predicts that the induced

stress should result in the formation of beads-on-a-

string [74], which are indeed experimentally observed

when Sar1 is kept in an active state [33,76,77], also

reminiscent of the deformations induced with nonhy-

drolysable GTP analogues in permeabilised cells [21].

However, considering the elastic energy of larger

membranes, it is unlikely that curvature can be

explained solely by area asymmetry induced by amphi-

pathic helix insertion [73]. Based on computational

models [78], Stachowiak et al. [79] posit that the

inserted mass required to induce curvature should

reach > 10% of the membrane surface for highly

curved membranes (tubes of only 35 nm diameter). By

contrast, the ENTH domain of epsin, a similar sized

GTPase to Sar1, can efficiently induce membrane cur-

vature at 20–50% surface coverage, with an inserted

mass footprint as low as 2% [79]. When factoring in

the size of the Sar1 cytoplasmic domain as part of the

Sar1-Sec23-Sec24 heterotrimer [9], the Sar1 helix

would occupy only 1–2% of the membrane area, even

assuming 100% coverage. A study [77] has shown

hamster Sar1 alone at concentrations > 7 lM can gen-

erate tubules, which are coated with Sar1 dimers.

Whilst it is unknown whether Sar1 polymerisation is

relevant in vivo, this mechanism would lead to helix

insertion of up to 25% of the membrane area, satisfy-

ing the requirements for membrane deformation [77].

Interestingly, for the similar Arf1 GTPase of the COPI

system, local concentrations on the membrane equiva-

lent to 2 mM have been proposed [80], indicating this

is at least a possibility.

At lower concentrations, thought to be more repre-

sentative of typical Sar1 steady-state levels, it has been

suggested that Sar1 merely softens the membrane

(Fig. 3A, right panel), rather than imposing curvature

itself [81,82]. This would make membranes more read-

ily deformable through the different mechanisms

described below.

Membrane crowding

Stachowiak et al. [79] proposed curvature is driven by

‘membrane crowding’ where the increasing lateral pres-

sure created by colliding cytosolic domains of Sar1 at

high concentrations is released by increasing mem-

brane surface upon curvature (Fig. 3B). This effect can

be mimicked by artificially associating the Sar1 N-

terminal deletion mutant (Δ23, Table 1) to membranes

(e.g. through his-tag binding to Ni-NTA lipids), as

well as by binding of unrelated proteins (e.g. GFP)

[79]. Whilst the amount of Sar1 diffusing on the ER

membrane is unknown, crowding might make a rele-

vant contribution to membrane deformation if local

concentrations at ERES are sufficiently high.

Scaffolding

At high concentrations, mammalian Sar1 has been

proposed to form regular arrays, with long-range Sar1

interactions not necessarily confined to dimers, which

were posited to induce curvature via scaffolding

(Fig. 3C, left panel) [33,77]. However, Sar1 scaffolding

action is thought to be delivered mainly as a member

of the assembled COPII coat.

The association of the COPII coat to membranes is

Sar1-dependent and is enhanced by the presence of

acidic and lysophospholipids [3,83]. Similar to proteins

of the Bar family [84], the inner coat complex Sec23-

Sec24 can act as a scaffold and aid membrane bending

through its intrinsic curvature (Fig. 3C, right panel).

X-ray crystallographic studies of the Sec23-Sec24 het-

erodimer (Fig. 2B) revealed a biconcave structure

enriched in basic residues whose shape corresponds to

the curvature of a canonical COPII vesicle [49,85].

The outer coat formed by Sec13-Sec31 is thought to

also contribute to membrane deformation, as the rod-

shaped Sec13-Sec31 heterotetramers self-assemble into

polyhedral cages through interactions of their N-

terminal b-propeller domains to form vertices [86].

These cages can exhibit different curvatures because of

flexibility at hinges along the rods and of variations of
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angles at the vertices [87]. Interestingly, Sec31 lacking

the N-terminal b-propeller domains can support the

formation of COPII-coated tubules from GUVs

in vitro, indicating that inner coat assembly drives

tubular curvature without the need for Sec13-Sec31

cages [10]. However, when the inner coat lattice inter-

actions are weakened, the presence of the Sec31 b-
propeller domain causes a switch from tubular to

spherical curvature, indicating that both layers contrib-

ute to determining the overall membrane shape [10].

Moreover, in in vitro systems, the COPII coat can

induce spherical structures when Sar1 lacks its N-

terminal helix (Δ23, Table 1) and is artificially associ-

ated with the membrane, in a Sec13-Sec31-dependent

manner [8]. Collectively, these data point to a model

where Sar1 by itself can drive membrane deformation

via amphipathic helix insertion and molecular crowd-

ing, but interaction with other coat proteins and the

multiple interactions between coat subunits are needed

to determine the various curvatures seen in cargo-

transporting vesicles.

Vesicle scission and its relation to GTP

hydrolysis

Once a coated membrane bud is formed, it needs to

detach from the ER to become a vesicle and trans-

port cargo towards the Golgi. Early observations

reported the formation of small spherical vesicles in

the presence of nonhydrolysable guanine-nucleotide

analogues such as GTPcS and GMP-PNP, suggesting

GTP hydrolysis was not needed for membrane scis-

sion [2,3,8,15,22,88,89]. However, it was later realised

that this was most likely an artefact of the experimen-

tal procedures involving centrifugation steps. Using

permeabilised cells [21,29] and in in vitro systems with

minimal trituration [9,10,76,90], tubules or beads-on-

a-string were obtained, indicating that COPII can

bind and deform membranes, but the scission of vesi-

cles does not occur in the absence of GTP hydrolysis.

Sar1 point mutants altering the amphipathic character

(Table 1) of the N-terminal helix show reduced scis-

sion, indicating the importance of the helix in this

step of membrane remodelling [8,29]. Using AFM,

Sar1 was shown to remodel membranes efficiently

only in the presence of GTP [31]. The question thus

arises how scission is orchestrated and why GTP

hydrolysis would be required. A number of models

have been proposed, which we briefly summarise

below.

In one model, Sec12-mediated GTP exchange and

COPII-induced GTP hydrolysis would maintain a high

density of dynamically cycling Sar1 at the base of the

bud, leading to destabilisation of the bilayer to pro-

mote scission. Sar1 has a higher affinity for mem-

branes of increasing curvature [31], which further

concentrates Sar1 at regions of high curvature such as

the neck of a budding vesicle.

Because Sar1 can self-oligomerise to form narrow

tubules [33,77], it has also been proposed that an

increase in self-interactions might be responsible for

Sar1 concentration localised at the base of the budding

vesicle, progressively constricting the neck through

continued GTP-loading and hydrolysis cycles, in a

manner not dissimilar to dynamin [33,91,92]. Alterna-

tively, Hariri et al. posited that Sar1 preferentially self-

associates on low-curvature membranes and propaga-

tion of the Sar1 lattice at the base of the bud could

lead to scission [77]. In the latter model, the timing of

bud formation and cargo loading would still be depen-

dent on GTP turnover, but scission itself would not.

Finally, the local high concentrations of Sar1 at the

neck might drive vesicle scission through crowding

where steric repulsion of the cytoplasmic domains

increases curvature to the extent that scission becomes

favourable [93].

Lipid composition might also contribute significantly

to Sar1 role in scission. Sar1 prefers membranes with

distinct rigidity characteristics, localising to the disor-

dered phase [33,83]. At the same time, certain lipid

compositions leading to more ordered phases are

shown to be more prone to stress and packing rearran-

gements leading to scission [74,94]. This perceived con-

tradiction could be explained if Sar1 itself, possibly

together with other COPII proteins, induces the raft-

like ordered lipid phase needed for scission at the neck

of a budding vesicle, but this remains to be investi-

gated. Furthermore, Sar1 can also activate lipid-

modifying enzymes (e.g. phospholipase D) that might

change local lipid composition [95], and blocking lipid

turnover inhibits COPII vesicle formation [96]. How-

ever, data on the interactions between Sar1 and spe-

cific lipids, and its importance in remodelling are

currently incomplete and hard to interpret.

Regulation of Sar1 across species

Evolutionary specialisation of the Sar1-GTPase

The increased complexity in organisms throughout

evolution brings additional challenges in cargo secre-

tion. The higher demand to regulate secretion is

reflected in the increased number of paralogues of the

COPII proteins and in the presence of additional mod-

ulatory factors (Fig. 4). Yeast [12], C. elegans [31] and

D. melanogaster have a single Sar1 gene, but most
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vertebrates have two paralogues (Sar1A, Sar1B

[17,50]) and plants have up to four (for a review, see

[97]). This specialisation is also found in the other

COPII components, with mammals having two Sec23,

four Sec24 and two Sec31 paralogues. Based on tran-

scriptome and proteome data in the Ensembl database

[98], in humans, there is little tissue specificity for Sar1

expression, though Sar1A tends to be more broadly

and highly expressed compared with Sar1B. Sar1A

and Sar1B are 90% identical in sequence, with 8 out

of 20 divergent residues located near the GTP-binding

site and the Sec23-Sec31 interaction site [50]. As a

result, Sar1B is found to have lower nucleotide

exchange rates compared with Sar1A [50]. Further-

more, Sar1A and Sar1B show subtle differences in

binding affinities for Sec23 and the Sec31 activating

fragment [50].

Clues for the specialised functions of Sar1 paralo-

gues come from disease data. Data in the literature

point to Sar1B being specifically involved in secretion

of large cargoes. Mutations in Sar1B result in the

inability to secrete large lipoprotein particles and are

linked to Andersons’s and chylomicron retention dis-

ease (CMRD) [24]. In addition, two mutations in the

inner coat subunit Sec23A near the Sec31-binding site

(F382L, M702V) cause defects in the secretion of the

large procollagen molecule, resulting in cranio-

lenticulo-sutural dysplasia (CLSD). These Sec23A

mutants show a defective behaviour in in vitro assays

when used in conjunction with Sar1B, rather than

Sar1A [44,45]. For both mutants, the ability to acceler-

ate Sar1B GTPase activity is affected whilst remaining

unchanged for Sar1A. In line with this, impairing

Sar1B expression results in the retention of lipids and

lipoproteins in fish and human cell lines [50,99].

The two Sar1 paralogues have also been implicated

in COPII secretion-independent processes, such

as fatty acid-binding protein 1 (FABP1)-mediated chy-

lomicron secretion [100] and autophagy [101–103],
although these roles of Sar1 are poorly understood

and require further research.

Sar1 regulation mechanisms differ across species

In addition to the COPII coat components, other fac-

tors known to modulate Sar1-GTP activity and ERES

organisation also have evolved specialised roles

(Fig. 4). In Saccharomyces cerevisiae, Sed4p is an ER-

resident homologue of Sec12 that has been implicated

in COPII modulation [104], additionally interacting

with Sec16 [57]. Sed4p does not act as GEF for Sar1

[104,105], instead, based on genetic evidence, it is

Fig. 4. Network of COPII interactions at ERES in yeast and metazoa. Central COPII machinery in grey circles with Sec12 activating Sar1

through its GEF activity, and Sec23-Sec24 and Sec13-Sec31 stimulating Sar1-GTP hydrolysis. Different sets of interactions have been shown

for yeast (blue) and metazoa (red). Sec16 interaction with Sec12 has only been proven for P. pastoris. Metazoan interactions have been

mostly described in humans and might deviate for other organisms, for example Drosophila, which has a pre-cis-Golgi rather than an ERGIC

compartment and has no cTAGE5 as part of the TANGO1 complex.
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thought to increase the available Sar1 pool in a pro-

cess also involving Sec16 [57,105]. Sed4p can bind

cargo-free Sar1 and accelerate its GAP activity [104],

possibly inducing dissociation of coat subunits not

bound to cargo and thereby ensuring cargo

concentration.

In human cell lines, recent research established the

small GTPase Rac1 as a Sar1 interactor involved in

the response to mechanical stress: through the forma-

tion of a Rac1-Sar1-Sec12 tripartite complex, ERES

numbers transiently increase [106]. Finally, the mam-

malian protein p125, later dubbed Sec23IP (for Sec23

interacting protein) has also been shown to be

involved in ERES organisation and cargo transport

[107,108]. Sec23IP shows homology to phospholipase

type A1 enzymes [109] and is capable of binding both

Sec23 and Sec31 [108]. Sec23IP binds PI4P and

recruits COPII proteins at the ERES downstream of

Sec16 and in a Sec16-segregated process [110]. It is yet

unclear how Sec23IP binding to COPII affects GTPase

activity of Sar1. It is possible that by recruiting outer

and inner coats, it could accelerate GTPase activity of

Sar1 distally from the neck and favour uncoating.

Regulation in metazoa: the large cargo

conundrum and the role of Sar1

In addition to the increased diversity of cargo through-

out evolution, multicellular organisms bring additional

challenges to the secretory machineries to sustain the

build-up of the extracellular matrix and bulk lipid

transport. As exemplified by the specialisation of A

and B Sar1 paralogues, mechanisms have been devel-

oped to cope with these requirements, with additional

factors modulating the COPII coat identified in meta-

zoa (Fig. 4). The best-studied modulator of COPII

transport is TANGO1, first discovered in Drosophila

[111,112]. TANGO1 is a large transmembrane protein

involved in the secretion of bulky cargo and the orga-

nisation of ERES [112–115]. Mammals have additional

TANGO1-like regulators linked to large cargo trans-

port such as cTAGE5 [116], TALI [117] and a short

isoform of TANGO1, named TANGO1S [118]. Nota-

bly, the human genome codes for 7 more cTAGE vari-

ants, which might further expand functionalities [119].

The role of the cTAGE5-TANGO1 complex in the

secretion of procollagen VII has been extensively char-

acterised [112,116–118,120,121]. Both cTAGE5 and

TANGO1 localise to the ERES [112,116] where

TANGO1 interacts with Sec16 to act as a scaffold

[114]. Furthermore, cTAGE5 binds and recruits Sec12

to efficiently activate Sar1 [122,123]. On the luminal

side of the ER, TANGO1 binds procollagens via

interaction of its SH3-like domain with procollagen

chaperone HSP47 [124]. Different from most other

cargo receptors, TANGO1 stays at ERES and is not

transported towards the Golgi [112]. Interestingly,

both TANGO1 and cTAGE5 bind Sec23 through

triple-proline motifs in their cytosolic proline-rich

domains (PRD) [112,116,125]. The binding site for the

PRD [125] was later shown to correspond to the bind-

ing of the PRD of Sec31 to the inner coat [10], where

it bridges between neighbouring coat subunits to stabi-

lise the coat lattice. Therefore, TANGO1/cTAGE5

binding could compete with Sec31, leading to stabilisa-

tion of the inner coat by blocking Sec31 acceleration

of GTP hydrolysis on Sar1 whilst promoting lattice

assembly [9,10,125]. Despite a well-established depen-

dence on COPII [119,126], the mechanisms of procol-

lagen ER export remain debated. Studies using super-

resolution light- and electron microscopy (EM) have

suggested the existence of larger COPII-coated carriers

capable of procollagen transport in human cell lines

[127–129] and established their dependence on Sec31-

ubiquitylation [128], TANGO1 and Sec12 [130]. In

addition, carriers for procollagen IV independent of

TANGO1 and ubiquitylation have also been observed

[131]. Nevertheless, rapidly mounting evidence using

multiscale approaches spanning state-of-the-art correl-

ative light electron microscopy and focussed ion beam

scanning electron microscopy (FIB-SEM) suggest that

large cargo secretion of procollagens and lipoprotein

particles happens in the absence of large COPII-coated

carriers [67,132]. Instead, COPII is found confined to

the base of buds in ERES, resembling a ‘collar’, and

has been proposed to act as a general cargo sorting

platform [67,133], with transport occurring either

through short-loop carriers to the ERGIC [134], short-

range ERES-ERGIC tunnelling [132,135] or via

COPII-negative tubules [67,136] (Box 2). Interestingly,

it has been suggested that the previously observed car-

riers [128–130] are instead degradation compartments,

as ascorbate-induction of procollagen transport trig-

gers autophagy [143]. The TANGO1-cTAGE5 com-

plex seems the ideal candidate to scaffold a COPII

collar. TANGO1-cTAGE5 complexes form ring-like

structures [121,142,144,145] and can recruit ERGIC

membranes through the binding of the NRZ-tethering

complex [117,121]. Moreover, computational models

support TANGO1 to act as a linactant, capping

COPII lattices at the base of ER buds, allowing for

stable neck regions and thus prolonged cargo loading,

this as the result of a transient reduction in membrane

tension [146]. Finally, by virtue of its peculiar trans-

membrane topology, the TANGO1-cTAGE5 complex

is shown to act as a fence and limit lipid diffusion,

874 FEBS Letters 597 (2023) 865–882 � 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Role of the Sar1 GTPase in COPII trafficking S. E. Van der Verren, and G. Zanetti

 18733468, 2023, 6, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14595 by T

est, W
iley O

nline L
ibrary on [06/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Box 2. Alternative COPII trafficking models in metazoa.

Sar1 gets activated by Sec12 [1] at the membrane and sequentially recruits the COPII coat components Sec23-Sec24

and Sec13-31 [2–4] (Fig. 1). According to the canonical model for anterograde trafficking, assembled COPII vesicles

sized 60–100 nm detach from the membrane, sequentially uncoat and travel to the cis-Golgi compartment [2,68]

(Fig. 1). The ERES and cis-Golgi are in close proximity in yeast and plants [20,137], though contact sites are only

transient in Saccharomyces cerevisiae [138]. COPII-coated vesicles have indeed been clearly visualised in these organ-

isms, providing direct evidence for the mainstream model [139–141]. It is instead unclear whether vesicular transport

also occurs in metazoa and/or if it is the sole mode of transport. Recent developments have suggested COPII to act

merely as a sorting collar regulating cargo entry in a fused ERES-ERGIC compartment [67,133]. Next, a tubular net-

work of Rab1-dependent and COPI-positive membranes would transport cargo across the cell to the cis-Golgi ribbon

[67,136]. Here, COPI-dependent scission might further help in sorting and delivering cargo [133]. For large cargo such

as procollagen and lipoprotein particles, other secretion models have been proposed. Here, stabilisation of the inner

COPII coat (Sar1-Sec23-Sec24) by large receptor complexes (depicted in green), such as those made by the cTAGE5-

TANGO1 complex in the transport of procollagen VII, leads to the outgrowth of larger carriers [121,125]. These car-

riers are either released as full-blown COPII carriers [127–129] or recruit ERGIC membranes to form a short-range

transport bridge [121,134]. The latter transport could be completed by short-loop delivery to the Golgi, where a car-

rier matures, and a COPII-negative or COPII-depleted carrier pinches off and travels a short way to the cis-Golgi

[134]. Alternatively, fusion with the ERGIC-derived membranes could deliver cargo in a kiss-and-run mechanism

directly yielding cargo to the Golgi in a short-range tunnelling mechanism [121,135,142]. These tunnels have also been

imaged between the ERES and pre-cis-Golgi (functionally equivalent to ERGIC) in Drosophila, though their nature

is unclear [132].
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thus preventing membrane mixing from these two dif-

ferent compartments of the cell [147], possibly helping

to concentrate Sar1 molecules.

In addition to the TANGO1-like family of proteins,

other Sar1 modulators have been described that affect

large cargo secretion. Sedlin, part of the TRAPP com-

plex, is recruited to COPII budding sites by interaction

with TANGO1 and preferentially binds to Sar1-GTP

molecules [148]. Sedlin depletion inhibits procollagen

export, and it might act by sequestering Sar1-GTP

from the budding carrier, precluding constriction and

eventual scission [148]. Fatty acid-binding protein 5

(FABP5), involved in the binding and transport of

fatty acids, has also been implicated in lipoprotein and

collagen secretion [149]. FABP5 binds Sec12 increasing

Sar1-GTP-loading, and bridges between Sar1 and

Sec31, possibly precluding inner coat binding, thus sta-

bilising Sar1-GTP at the COPII collar to form large

vesicles [149].

Finally, post-translational modifications of Sar1 inter-

acting proteins have also been found to alter secretion

patterns, such as ubiquitylation of Sec31 [128,150],

phosphorylation of Sec23-Sec24 [68,151], deglycosyla-

tion of human Sec24 [151] and dephosphorylation of

Sec31 [152], showcasing the importance of PTMs in tun-

ing COPII transport. Given the difficulty in analysing

PTMs in this complex process it is likely we have only

scratched the surface of the mechanisms at play.

Conclusions and perspectives

Sar1 has a well-established role in the COPII-mediated

export of newly synthesised proteins from the ER.

However, aspects of its mechanism during membrane

budding and scission are still poorly understood. Sar1

binds a plethora of factors that contribute to its func-

tion and regulation in unclear ways. Even less is

known about the potential roles of Sar1 in other pro-

cesses such as autophagy and growth regulation and

their relationship with the early secretory pathway.

Here we have reviewed the literature on Sar1, focus-

sing on three main aspects:

1 The role of Sar1 and GTP hydrolysis in coat assem-

bly and disassembly. Whilst the GAP activity of

Sec23-Sec24 and Sec13-31 have been well charac-

terised, the effects of cargo, additional proteins and

their modifications on Sar1-GTPase activity and the

resulting effect on COPII-mediated secretion are still

poorly understood, as testified by the plethora of

models that have been proposed (Box 2).

2 The mechanisms of membrane deformation have

been extensively studied using biophysical,

biochemical and cellular approaches, and several

models have been proposed. Whilst we have

reviewed these models individually as they were

introduced in the literature, all these mechanisms

could act together or at different stages of the mem-

brane remodelling process. A recurring theme in

these models is that Sec12 is key in the activation of

Sar1 at ERES to orchestrate secretion in a spatio-

temporal manner. As such, localised activation of

Sar1 plays an important role in membrane budding

and scission events, though the requirement of GTP

turnover in these processes is still unclear.

3 The complexity of Sar1 regulation increases signifi-

cantly throughout evolution, as more proteins are

found to interact with the known components and

influence their activities. We reviewed a number of

factors that have evolved specialised roles and are

crucial in secretion in multicellular organisms. It is

clear that more work will be needed to understand

the full complexity of Sar1 role in ER export, both

for standard and bulky cargo, especially in multicel-

lular organisms. Exploiting cutting-edge technologi-

cal advancements in fluorescence and electron

microscopy imaging, we will likely be making signifi-

cant steps forward in understanding how metazoan

transport is regulated in the coming years.
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