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ABSTRACT
We propose a model to quantify the effect of parameter uncer-
tainty on the option price in the Heston model. More precisely, we
present a Hamilton–Jacobi–Bellman framework which allows us to
evaluate best and worst-case scenarios under an uncertain market
price of volatility risk. For the numerical approximation, the Hamil-
ton–Jacobi–Bellman equation is reformulated to enable the solution
with a finite element method. A case study with butterfly options
exhibits how the dependence of Delta on the magnitude of the
uncertainty is nonlinear and highly varied across the parameter
regime.
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1. Introduction

One of the main challenges in financial mathematics is to determine the fair pricing of
options. Among the simplifications underlying the original Black–Scholes (BS) model is
the assumption that the volatility of the stock price is constant. Analysis of the real-life data
does not support this statement and so numerous attempts were made to differently model
the behaviour of volatility in time. A widely used approach was proposed in Heston (1993)
which models the volatility through another, correlated stochastic process. However, Hes-
ton (1993) introduces, compared to the BSmodel, additional parameters such as themarket
price of volatility risk.

Generally in option pricing, errors in parameter estimates can lead to inconsistent
results even if the underlying model were to be accurate. This inspired the approach taken
in Avellaneda, Levy, and Parás (1995) where instead of trying to model and predict the
behaviour of parameters, they are assumed to stay within a given tolerance interval. This
allows to manage the risk by considering the worst-case scenario, leading in fact to an
optimal control problem involving nonlinear PDE as shown in Karoui, Peng, and Claire
Quenez (1997). In Cohen and Tegnér (2019) parameter uncertainty of the Heston model
is examined by means of Hamilton–Jacobi–Bellman equations, with uncertainty in the
risk free rate r, long-term mean γ and reversion level κ . María et al. (2018) use stochas-
tic collocation of the Heston model for the uncertainty qualification of the risk-free rate,
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long-term mean, reversion level, initial variance and correlation. We also refer to Ma and
Forsyth (2016) for a related study of two-factor uncertain volatility.

The contribution of this work is to extend the Hamilton–Jacobi–Bellman framework
to quantify the effect of uncertainty in the Heston model specifically in relation to the
market price of volatility risk λ. This parameter is difficult to estimate in practice. For
instance, in Heston (1993) a linear scaling of the market price of volatility risk is assumed
and while there is an evidence of a positive correlation (see Duarte and Jones 2007) there
does not appear to be a consensus on how to estimate the scaling factor (seeWu, Zhou, and
Wang 2018). In fact, some authors (see for example Ikonen and Toivanen 2009; Forsyth,
Vetzal, and Zvan 1998; Kunoth, Schneider, and Wiechers 2012) assume it to be equal to 0.
However, otherworks indicate that this assumptionmay not hold up in various realistic set-
tings such as those discussed for example in Doran (2007) and Bakshi and Kapadia (2003).
The attempts of evaluating the market price of volatility in different financial circum-
stances can be found in Doran and Ronn (2008) andWu, Zhou, andWang (2018) while its
impact on option pricing is investigated in Duarte and Jones (2007) andMielkie and Davi-
son (2013). Moreover, the market price of volatility risk λ is qualitatively different from
those considered in Cohen and Tegnér (2019) andMaría et al. (2018) as λ is not part of the
SDEmodelling the price of the underlying security, and instead arises in the construction of
a hedging portfolio. The main numerical challenge when computing the option price and
Greeks associated with the uncertain Heston model is that one has to solve fully nonlinear
PDEs with mixed boundary conditions. A numerical scheme capable of this is provided in
Jaroszkowski and Jensen (2021) in form of a finite element method. A crucial advantage of
using a finite element method in this context is that it allows us also to ensure convergence
of the gradient (Jensen 2017). This is of particular importance in option pricing where
partial derivatives inform the construction of a hedging portfolio.

The outline of this chapter is as follows. In Section 2we briefly state the uncertainHeston
model and then show how it can be interpreted as a backward-in-time stochastic optimal
control problem. By combining the methods of stochastic volatility and uncertain param-
eters we obtain a second-order nonlinear PDEmodelling the worst and best case scenarios
when a range of values of the market price of volatility risk is considered. In Section 3 we
present a transformation of the Heston equation to the form required by the numerical
scheme in Jaroszkowski and Jensen (2021). Finally, in Section 4 we present a case study of
a long butterfly option whosemain goal is to investigate the impact of the uncertainmarket
price of volatility risk on the option price and its derivatives.

2. The Uncertain HestonModel

In this section, we derive an extension of the Heston model to price European options in
the presence of uncertain parameters.

Consider a stock with price S and a European option with expiry time T ≥ 0 and value
V. Given a Wiener processW1(t), we model the change of the stock price with

dS(t) = μS(t) dt + σS(t) dW1(t). (1)

While in the classical Black–Scholes model the volatility σ is assumed to be constant, we
follow (Heston 1993) and represent it by yet another, correlated Wiener process W2(t).
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Then, denoting the volatility of volatility as ξ we obtain the second stochastic differential
equation

dv(t) = κ(γ − v(t)) dt + ξ
√
v(t) dW2(t), (2)

where the variance v = σ 2 is a square of the volatility σ and ξ is assumed to be a known
constant. We denote the correlation coefficient betweenW1 and W2 as ρ ∈ (−1, 1). Note
that (2) is a mean-reverting process with a long-termmean equal to γ and a reversion level
equal to κ . We take the drift coefficient μ in (1) to be constant and generally unknown.

At this point, we summarize the underlying assumptions of the model. The dividend
payouts during the lifetime of the option are set to be 0. We assume it is possible to lend
and borrow any amount of a risk-free asset at a known constant interest rate r. Moreover,
we are allowed to trade any amount, possibly fractional, of the stock S or an option of
value V(t, S, v) at any time 0 ≤ t ≤ T. We also say that the market is frictionless, which
means that no such transaction generates fees. Lastly, we assume that there is no arbitrage
opportunity.

It is well known (Heston 1993), also Wilmott (2006, Chapter 51), that in this setting
the existence of hedging portfolios ensures that the option price V admits the parabolic
equation

∂V
∂t

+ 1
2
vS2

∂2V
∂S2

+ Svξρ
∂2V
∂S∂v

+ 1
2
vξ 2

∂2V
∂v2

+ rS
∂V
∂S

+ (κ(γ − v) − ξλ
√
v)

∂V
∂v

= 0,

(3)

for some universal function λ(S, σ , t) which is common to all options. The function λ is
called the market price of volatility risk because it can be interpreted as the value which
market participants assign to the volatility risk. Yet, there is no agreed way to measure this
function frommarket prices. Thus choosing the functionλ(S, σ , t) is extremely challenging
from the theoretical point of view and as a practical task.

Heston (1993) proposes that it can be chosen equal to λ σ with λ ∈ R being a scaling
factor, i.e., in this special case λ has the meaning of a coefficient and not the whole market
price of volatility risk function.

Since there is no agreed method of estimating the market price of volatility, one may
argue that any such estimate will be burdened with inaccuracies. We propose therefore a
new methodology to take this lack of knowledge about the market into account: We will
model themarket price of volatility risk as uncertain, borrowing concepts fromAvellaneda,
Levy, and Parás (1995), where the effect of uncertain volatility is examined.

More concretely, we assume that λ is an unknown parameter contained in some interval
L ⊂ R and consider the set L of all measurable mappings from [0,T] to L. For all λ ∈ L,
we define the linear operators Lλ as

−1
2

(
S2v

∂2V
∂S2

+ 2ρξvS
∂2V
∂S∂v

+ ξ 2v
∂2V
∂v2

)
− rS

∂V
∂S

− [κ(γ − v) − ξλ(t)
√
v ]

∂V
∂v

+ rV .

(4)

We define the Heston equation associated with the control λ ∈ L to be

− ∂tV + LλV = 0. (5)
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Let us momentarily assume that λ is known and given. Then, in order to obtain a
well-posed problem, we need to also enforce boundary and the final time conditions.
Throughout this chapter, given maturity T, we will use the following conditions

V(S, v,T) = 	(S), (6a)

V(0, v, t) = 	(0), (6b)

lim
S→∞

∂V
∂S

(S, v, t) = lim
S→∞

∂	

∂S
(S), (6c)

−rS
∂V
∂S

(S, 0, t) − κγ
∂V
∂v

(S, 0, t) + rV(S, 0, t) − ∂tV(S, 0, t) = 0, (6d)

lim
v→∞

∂V
∂v

(S, v, t) = 0, (6e)

where the given function 	 is the pay-off profile of the option.
The boundary condition (6d) for a vanishing variance can be thought of as taking limit

v → 0 in the Black–Scholes equation and it is adapted directly fromHeston (1993). Notice
on the other hand how compared to Heston (1993) the Dirichlet condition for a large
volatility was replaced by the Neumann condition (6e), which is more favourably from
the numerical point of view. Wemotivate these Neumann conditions with the observation
that as the volatility approaches extremely large values, the influence of its oscillations on
the option price is negligible. Thus we impose that the rate of change of V in v-direction
at this asymptotic boundary to be 0. In the literature, such approach was adopted for the
pricing of American options in Clarke and Parrott (1999) and Ikonen and Toivanen (2008),
see also Zhu and Chen (2011).

Remark 2.1: Recall that for a call option with the strike price K one would choose 	 as
	(S) = max(0, S − K). In order to calculate the value of a long butterfly position of width
2a and the strike price K the choice would be

	(S) = max (0, S − (K − a)) − 2max (0, S − K) + max (0, S − (K + a)) .

Similarly, to consider the value of a long straddle with the strike price K one would require
	(S) = max(0, S − K)) − max(0, S − K). �

In practice, the implementation of the numerical scheme will require us to truncate
the domain. Generally, we choose a rectangular domain
 = [Smin, Smax] × [0, vmax] as in
Figure 1 with

∂
Rt = [Smin, Smax] × {0},
∂
R1 = [Smin, Smax] × {vmax},
∂
R2 = {Smax} × [0, vmax],

∂
D = {Smin} × [0, vmax].
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Figure 1. Truncated domain
 = [Smin, Smax] × [0, vmax].

For the sake of brevity, we will also define �λ which we call the Heston operator:

�λV(t, S, v) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tV(t, S, v) + Lλ(t)V(t, S, v) if (t, S, v) ∈ [0,T) × 
,
V(t, S, v) − 	(0) if (t, S, v) ∈ [0,T) × ∂
D,
(0, 1) · ∇V(t, S, v) if (t, S, v) ∈ [0,T) × ∂
R1 ,

(1, 0) · ∇V(t, S, v) − lim
S→∞

∂	

∂S
(S) if (t, S, v) ∈ [0,T) × ∂
R2 ,

−∂tV(t, S, v) − (rS, κγ ) · ∇V(t, S, v) + rV(t, S, v) if (t, S, v) ∈ [0,T) × ∂
Rt ,
V(t, S, v) − 	(S) if (t, S, v) ∈ {T} × 
.

(7)

2.1. Extremal Behaviour Under Uncertainty

Of particular interest are the highest and lowest option price which can occur with market
prices of volatility risk λ ∈ L. For (t, S, v) ∈ [0,T] × 
 we set

Vsup(t, S, v) := inf
λ∈L

{Vλ(t, S, v) : �λVλ = 0on[0,T] × 
}, (8a)

Vinf (t, S, v) := sup
λ∈L

{Vλ(t, S, v) : �λVλ = 0on[0,T] × 
}. (8b)

We seek an alternative characterization of the functionsVsup andVinf as solution of a PDE,
more precisely of a Hamilton–Jacobi–Bellman (HJB) equation in combination with final
time and boundary conditions. We shall focus here on the argument for Vsup; the corre-
sponding analysis for Vinf follows analogously. Notice also that the sup in the notation of
Vsup refers to the sup in the belowHJB Equation (10), not to the sup on the right-hand side
of (8).
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Suppose there is a minimizer of the right-hand side of (8), which we denote λ̂. Then, for
(t, S, v) ∈ [0,T) × 
) and Vsup sufficiently smooth,

Vsup(t, S, v) = lim
h→0

[
Vsup(t + h, S, v) −

∫ t+h

t
∂tVsup(τ , S, v) dτ

]
(9a)

= lim
h→0

[
Vsup(t + h, S, v) −

∫ t+h

t
Lλ̂(t)Vsup(τ , S, v) dτ

]
(9b)

= lim
h→0

[
Vsup(t + h, S, v) −

∫ t+h

t
Lλ̂(t)Vsup(τ , S, v) dτ

]
(9c)

= lim
h→0

[
Vsup(t + h, S, v) −

∫ t+h

t
Lλ̂(t)Vsup(t + h, S, v) dτ

]
(9d)

= lim
h→0

[
Vsup(t + h, S, v) −

∫ t+h

t
sup
λ∈L

LλVsup(t + h, S, v) dτ

]
, (9e)

where (9e) follows from (8). After multiplication with 1/h we find that

lim
h→0

1
h

∫ t+h

t
sup
λ∈L

LλVsup(τ , S, v) dτ = lim
h→0

Vsup(t + h, S, v) − Vsup(t, S, v)
h

= ∂tVsup(T, S, v).

Assuming that Vsup is a classical solution so that

lim
h→0

1
h

∫ t+h

t
sup
λ∈L

LλVsup(τ , S, v) dτ = sup
λ∈L

LλVsup(t, S, v)

we arrive at

− ∂tVsup(t, S,V) + sup
λ∈L

LλVsup(t, S, v) = 0. (10)

Because the boundary conditions (6a) do not depend on λ, alsoVsup satisfies them. Hence,
in summary, Vsup solves Equation (10) subject to the boundary conditions (6a).

3. Transformation of the Uncertain HestonModel

We propose to use the finite element method of Jaroszkowski and Jensen (2021) for the
numerical approximation of Vsup. It is shown here that this method can capture the fully
nonlinear structure of (10) as well as the mixed (and thus discontinuous) boundary con-
ditions (6a) and that it will converge under mesh refinement to the viscosity solution of
the final time boundary value problem. Importantly, this finite element approach has been
shown (Jensen 2017) to guarantee strong convergence in the gradient of the value function,
even for a degenerately elliptic HJB operator, as is the case here.

This section will now perform the transformation of the elliptic operators Lλ to their
isotropic form in order to be consistent with the framework of the numerical method
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formulated in Chapter (Jaroszkowski and Jensen 2021). Our first goal is to remove the
S dependence of the coefficients. In order to do that we let S = ex. Then

∂Vsup

∂x
= S

∂Vsup

∂S
,

∂2Vsup

∂x2
= S2

∂2Vsup

∂S2
+ ∂Vsup

∂x
,

∂2Vsup

∂S∂v
= ∂2Vsup

∂x∂v

where the transformed domain for x is denoted 
′, see Figure 2. Substituting into (4) we
get

Lλ
1Vsup(x, v, t) := −1

2
v

(
∂2Vsup

∂x2
+ 2ρξ

∂2Vsup

∂x∂v
+ ξ 2

∂2Vsup

∂v2

)

−
(
r − 1

2
v
)

∂Vsup

∂x
− [κ(γ − v) − ξλ

√
v ]

∂Vsup

∂v
+ rVsup. (11)

Similarly, with

∂Vsup

∂S
= ∂Vsup

∂x
∂x
∂S

= e−x ∂Vsup

∂x
,

∂	

∂S
= ∂	

∂x
∂x
∂S

= e−x ∂	

∂x

the transformed Neumann boundary condition (6c) is

∂Vsup(x, v, t)
∂x

∣∣∣∣
(x,v)∈∂
′

R2

= lim
x→∞

∂	(S(x))
∂x

. (12)

The boundary conditions on ∂
′
D and ∂
′

R1 remain as in (6b) and (6e), in the final time
condition one substitutes ex for S and the Robin condition on ∂
Rt is obtained by sub-
stituting v = 0 into (11). The Heston operator �1 in the new coordinates is then defined
by

�λ
1V(t, x, v)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tV(t, x, v) + Lλ(t)
1 V(t, x, v) if (t, x, v) ∈ [0,T) × 
′,

V(t, x, v) − 	(0) if (t, x, v) ∈ [0,T) × ∂
′
D,

(0, 1) · ∇V(t, x, v) if (t, x, v) ∈ [0,T) × ∂
′
R1 ,

(1, 0) · ∇V(t, x, v) − lim
x→∞

∂	(S(x))
∂x

if (t, x, v) ∈ [0,T) × ∂
′
R2 ,

−∂tV(t, x, v) − (r, κγ ) · ∇V(t, x, v) + rV(t, x, v) if (t, x, v) ∈ [0,T) × ∂
′
Rt ,

V(t, x, v) − 	(S(x)) if (t, x, v) ∈ {T} × 
′.
(13)

In order to remove the second-order mixed derivative from Lλ
1 we consider the

following change of variables:

y = x − ρ

ξ
v, z =

√
1 − ρ2

ξ
v,

where y ∈ R and z ≥ 0. The domain 
′ is transformed into 
′′ whose shape, in general,
depends on the parameters of the numerical experiment. It is depicted in Figure 2 with the
numerical values of the case study in Section 4.
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Figure 2. Domain
′ after the transformation S = ex .

For w(y, z, t) := Vsup(x(y, z), v(y, z), t) we have that

∂Vsup

∂x
= ∂w

∂y
,

∂Vsup

∂v
= −ρ

ξ

∂w
∂y

+
√
1 − ρ2

ξ

∂w
∂z

,

∂2Vsup

∂x2
= ∂2w

∂y2
.

∂2Vsup

∂v2
= ρ2

ξ 2
∂2w
∂y2

− 2ρ
√
1 − ρ2

ξ 2
∂2w
∂y∂z

+ 1 − ρ2

ξ 2
∂2w
∂z2

,

∂2Vsup

∂x∂v
= −ρ

ξ

∂2w
∂y2

+
√
1 − ρ2

ξ

∂2w
∂y∂z

,

Combining those results with (11) we obtain the canonical formulation of everyLλ, λ ∈ L,
from (5) as required:

Lλ
2w := −ξ

√
1 − ρ2

2
z
w +

(
−r + κγρ

ξ
+

1
2ξ − κρ√
1 − ρ2

z − λρ

√
ξz√
1 − ρ2

)
∂w
∂y

+
(

−κγ
√
1 − ρ2

ξ
+ κz + λ

√
ξz
√
1 − ρ2

)
∂w
∂z

+ rw. (14)

Now we reformulate (6a)–(6e) accordingly. Since ∂Vsup
∂x = ∂w

∂y , the Neumann boundary
condition (6c) for large stock prices is obtained by simply substituting y and z into (13)
on [0,T) × ∂
′

R2 which results in

∂w
∂y

∣∣∣∣
(y,z)∈∂
′′

R2

= lim
y→∞

∂	(S(x(y, z)))
∂y

(15)

Under the aforementioned change of variables the Dirichlet boundary condition (6b)
noticing that limS→0 y = −∞ converts to

w(y, z, t)
∣∣
(y,z)∈∂
′′

D
= 	(0),
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while for theNeumann condition (6e) we use the fact that ∂Vsup
∂v = −ρ

ξ
∂w
∂y +

√
1−ρ2

ξ
∂w
∂z and

limv→∞ z = ∞ to obtain (
−ρ

ξ
,

√
1 − ρ2

ξ

)
· ∇w = 0.

Analogously to the result in Heston (1993), the Robin boundary condition for v → 0 is
obtained simply by substituting z = 0 into (14) which gives

− ∂tw +
(

−r + κγρ

ξ

)
∂w
∂y

+
(

−κγ
√
1 − ρ2

ξ

)
∂w
∂z

+ rw = 0. (16)

We summarize the above results by introducing the transformed Heston operator �2
defined as follows

�λ
2w(t, y, z)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tw(t, y, z) + Lλ(t)
2 w(t, y, z) if (t, y, z) ∈ [0,T) × 
′′,

w(t, y, z) − 	(0) if (t, y, z) ∈ [0,T) × ∂
′′
D,(

−ρ

ξ
,

√
1 − ρ2

ξ

)
· ∇w(t, y, z) if (t, y, z) ∈ [0,T) × ∂
′′

R1 ,

(1, 0) · ∇w(t, y, z) − lim
y→∞

∂	(S(x(y, z)))
∂y

if (t, y, z) ∈ [0,T) × ∂
′′
R2 ,

−∂tw(t, y, z) −
(
r + κγρ

ξ
,
−κγ

√
1 − ρ2

ξ

)

·∇Vsup + rw(t, y, z) if (t, y, z) ∈ [0,T) × ∂
′′
Rt ,

w(t, y, z) − 	(S(x(y, z))) if (t, y, z) ∈ {T} × 
′′.

(17)

By replacing the Heston operator �λ from (4) with its transformed version from (17)
and following the same argument as in the previous section we obtain an optimal control
problem

sup
λ∈L

�λ
2w(t, y, z) = 0 ∀ (t, y, z) ∈ [0,T] × 
′′ (18)

analogous to (6a) and (10) with the structure conforming to the setting of Jaroszkowski
and Jensen (2021). Note that it resembles the ‘worst-case scenario’ described inAvellaneda,
Levy, and Parás (1995) but with λ instead of σ taking the role of the uncertain parameter.
Having completed the transformation, this allows us to treat the market price of volatility
risk as a control in an isotropic HJB problem.

4. Case Study

We now investigate the qualitative and quantitative effects of the market price of volatil-
ity risk on the price of an option. The computations use the finite element discretisation
of Jaroszkowski and Jensen (2021). The code is available from the public repository
(Jaroszkowski 2021) under the GNU Lesser General Public License.
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Figure 3. Domain
′′ with parameter values ρ = 0.5, ξ = 0.7

As a benchmark problem, we consider the parameters of the experiment described
in Doran (2004, Table 11). Following this setting we choose the final time T = 0.5, the
strike price K = 50, the volatility of volatility ξ = 0.7, the long-term volatility mean
γ = 0.3, the mean reversion rate κ = 7 and the correlation parameter ρ = 0.5. Since the
risk-free rate r is not stated explicitly, we made a choice of r = 0.03. The domain is trun-
cated with v ∈ [0, 3] and S ∈ [1, 100], which results in the transformed domain seen in
Figure 3. In the source (Doran 2004) a simple call option is studied, which for example
with L = [−2.4,−1.6] has the constant optimal control λ̂ ≡ −2.4. Instead, we turn our
attention here to a long butterfly position of width 40 which, as mentioned in Remark 2.1,
is equivalent to choosing

	(S) = max (0, S − 30) − 2max (0, S − 50) + max (0, S − 70) .

4.1. Result 1: Value Function

We let L = [−2.4,−1.6]. Note how interval L is centred around the market price of volatil-
ity risk equal to −2 used in Doran (2004). The numerical approximation of the solution
to the HJB problem is performed on the transformed domain 
′′ and then the resulting
function is cast back to original domain
. The outcome is depicted in Figure 4. Moreover,
one can see in Figure 5(a) that the numerical method in fact selects different controls as
optimal in different areas of the domain. The difference between the solution of the non-
linear problem compared to the solution of the linear evolution problem associated with
one of the controls can be seen in Figure 5(b). This highlights the importance of using a
nonlinear model.

4.2. Result 2: λ Interval Testing

We now assess the impact of different choices of control sets L on the option value esti-
mate. Indeed, we consider control sets of increasing diameter and measure the difference
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Figure 4. Value of a long butterfly position at t = 0 with T = 0.5, K = 50 and control set L =
[−2.4,−1.6].

Figure 5. Measurement of the effect of nonlinearity for a long butterfly position at t ≈ 0.39 with
T = 0.5, K = 50 and control set L = [−2.4,−1.6]. (a) Selected optimal control; which are throughout at
the extreme points of the control set, (b) difference between solutions of a nonlinear problem and linear
evolution problem with a fixed control λ = −2.4.

between the value function Vinf of the worst-case scenario and the value function Vsup of
the best case scenario. The results are shown in Figure 6. The computations show the sig-
nificant effect of the uncertainty in the market price of volatility risk on the option price.
As indicated by Figure 6(a) the option value of worse and best case scenario can differ up
to 16%. Note that in this case, the control set contains values ranging between 0 and −2.5,
which were found to be used in the literature. Given the evidence (see for example find-
ings in Bakshi and Kapadia (2003)) that the market price of volatility takes negative values,
the simplification of taking λ = 0 may lead to erroneous estimates. On the other hand, the
experiments indicate a linear correlation and in general, more negative market prices of
volatility risk lead to higher option values.
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Figure 6. Measurement of effect of a diameter of a control set on the value function and its derivative.
Control sets are symmetrical andcentredat−1.25,measurementsweremadeat t = 0. (a) Comparisonof
Vsup and Vinf at (S, v) = (2.11, 2.06), (b) comparison of ∂Vsup/∂S and ∂Vinf/∂S at (S, v) = (53.12, 0.75),
(c) comparison of ∂Vsup/∂S and ∂Vinf/∂S at (S, v) = (51.76, 2.84), (d) comparison of ∂Vsup/∂S and
∂Vinf/∂S at (S, v) = (51.43, 0.23).

We now direct our attention to the partial derivatives of option value V since they are
used to create hedging portfolios. We investigate the effect of λ on the partial derivative
of the option value with respect to S. As seen in Figure 6(b–d) the impact of the value of
λ on Delta ∂V/∂S is strongly nonlinear in the vicinity of the strike price K. We remark at
this point that numerical methods which do not guarantee gradient convergence may in
general fail to capture this kind of behaviour.

Figure 6 provides a visual portrayal of the sensitivity of the price and Delta on the
magnitude of the uncertainty.

4.3. Result 3: Delta Plots

In line with the results of the previous experiment, we continue to investigate the worst and
the best case scenarios for the control set L = [−2.5, 0.0] at time t = 0.We plot differences
between the Deltas ∂Vsup/∂S and ∂Vinf/∂S for all points in
 at time t = 0. The results for
a call option are shown in Figure 7(a) and for a long butterfly option in Figure 7(b). Note
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Figure 7. Comparison of plots of δ(Vsup − Vinf)/δS at time t = 0 with control set [−2.5, 0.0]. (a) Call
option, (b) butterfly option.

that since ∂Vinf/∂S and ∂Vsup/∂S are both of order 1, the graphs represent a relative as well
as an absolute error. We conclude that the impact of the market price of volatility risk on
the delta values is significant. In the covered examples, one can expect up to 6% difference
between the scenario where λ is neglected and the one where the HJB approach is used.
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