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Short proofs of rainbow matching results

David Munhá Correia∗ Alexey Pokrovskiy† Benny Sudakov∗

Abstract

A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. The

study of rainbow subgraphs goes back to the work of Euler on Latin squares and has been the focus

of extensive research ever since. Many conjectures in this area roughly say that “every edge coloured

graph of a certain type contains a rainbow matching using every colour”. In this paper we introduce

a versatile “sampling trick”, which allows us to obtain short proofs of old results as well as to solve

asymptotically some well known conjectures.

• We give a simple proof of Pokrovskiy’s asymptotic version of the Aharoni-Berger conjecture with

greatly improved error term.

• We give the first asymptotic proof of the “non-bipartite” Aharoni-Berger conjecture, solving two

conjectures of Aharoni, Berger, Chudnovsky and Zerbib.

• We give a very short asymptotic proof of Grinblat’s conjecture (first obtained by Clemens,

Ehrenmüller, and Pokrovskiy). Furthermore, we obtain a new asymptotically tight bound for

Grinblat’s problem as a function of edge multiplicity of the corresponding multigraph.

• We give the first asymptotic proof of a 30 year old conjecture of Alspach.

1 Introduction

Research regarding rainbow matchings in graphs dates back to the work of Euler on various problems

about transversals in Latin squares. A Latin square of order n is an n × n array filled with n different

symbols, where no symbol appears in the same row or column more than once. A transversal in a Latin

square of order n is a set of m entries such that no two entries are in the same row, same column, or

have the same symbol. A transversal is said to be full if m = n and partial otherwise. Despite the fact

that not every Latin square contains a full transversal, it is plausible to ask whether every Latin square

contains a large partial transversal. Indeed, the celebrated conjecture of Ryser, Brualdi and Stein states

that every Latin square contains a transversal which uses all but at most one symbol.

Conjecture 1.1 (Ryser-Brualdi-Stein [10, 28, 29]). Every Latin square of order n contains a transversal

of size n− 1.

There is a bijective correspondence between Latin squares of order n and proper edge-colourings of the

complete bipartite graph Kn,n with n colours. Indeed, let a Latin square S have {1, 2, . . . , n} as its set of

symbols and let Si,j denote the symbol at the entry (i, j). To S we associate an edge-colouring of Kn,n

with the colours {1, 2, . . . , n} by setting V (Kn,n) = {x1, . . . , xn, y1, . . . , yn} and letting the edge between

xi and yj receive colour Si,j. Note that this colouring is proper, and moreover, each colour consists of a

matching of size n. It is now easy to see that transversals of size m in S correspond to rainbow matchings
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of size m in the coloured Kn,n. Therefore, the Ryser-Brualdi-Stein conjecture states - every properly

edge-colouring of Kn,n with n colours has a rainbow matching of size n− 1.

The Ryser-Brualdi-Stein conjecture is just one thread of the research on rainbow matchings and rain-

bow subgraphs more broadly. There are many other interesting conjectures, some of them motivated by

strengthening Ryser-Brualdi-Stein, others motivated by other branches of mathematics. In this paper we

give improved results on a broad range of such conjectures. Very roughly, the prototypical problem that

we study is of the form “every n-edge-coloured graph of a certain type has a rainbow matching using

every colour”. As an example, consider the following conjecture of Aharoni-Berger.

Conjecture 1.2 (Aharoni and Berger, [1]). Let G be a properly edge-coloured bipartite multigraph with

n colours having at least n+ 1 edges of each colour. Then G has a rainbow matching using every colour.

The motivation for this conjecture is the Ryser-Brualdi-Stein conjecture which it strengthens (to see

this, consider a properly coloured Kn,n as in Conjecture 1.2; delete one colour to obtain a graph satisfying

the Aharoni-Berger conjecture). Given the difficulty of the Ryser-Brualdi-Stein conjecture, much of the

effort has been put into proving asymptotic versions of Conjecture 1.2. There are two natural approaches

one can take in proving weakenings of this conjecture, which we will refer to as a weak asymptotic and a

strong asymptotic.

The weak asymptotic asks for rainbow matchings which uses nearly all colours.

Weak asymptotic: Let G be a properly edge-coloured bipartite multigraph with n colours

having at least n+ 1 edges of each colour. Then G has a rainbow matching of size n− o(n).

A weak asymptotic version of the Aharoni-Berger conjecture was proved by Barat-Gyárfás-Sarkozy who

prove the above with error term o(n) =
√
n. Their proof was very short and elegant, using the method

developed by Woolbright for his result (see [31]) on the Ryser-Brualdi-Stein conjecture.

Having obtained the weak asymptotic, we would now like to improve the error term, preferably to

o(n) = 0, at which point the conjecture would be proven. Somewhat surprisingly, there has since been no

improvement to the error term in Barat-Gyárfás-Sarkozy’s result — despite close ties to the Ryser-Bruldi-

Stein conjecture, none of the progress on that conjecture generalises to the Aharoni-Berger multigraph

setting.

Another direction is to prove qualitatively stronger asymptotic results. For us “strong asymptotic”

will mean a result of the following type, which guarantees matchings using all the colours in the graph, at

the cost of having slightly more edges of each colour. We will usually say that rainbow matchings using

all the available colours are full.

Strong asymptotic: Let G be a properly edge-coloured bipartite multigraph with n colours

having at least n + o(n) edges of each colour. Then G has a rainbow matching using every

colour.

The reason we call the above statement as a “strong” asymptotic, is that it implies the previously men-

tioned weak asymptotic. Indeed suppose we have a properly edge-coloured bipartite multigraph G with n

colours having at least n+ 1 edges of each colour. Delete o(n) colours in order to obtain a new graph G′

with n′ = n− o(n) colours and each colour having n′ + o(n) + 1 edges. The strong asymptotic applies to

this to give a rainbow matching using every colour. This gives a rainbow matching of size n′ = n−o(n) in

the original graph. Moreover, note that we can choose which o(n) colours we want to miss. This simple

argument shows that the “strong asymptotic with error term o(n) implies the weak asymptotic with error

term o(n).

It was believed that the strong asymptotic is fundamentally more difficult than the weak one. Indeed,

it took much longer for the strong asymptotic to be proved, and the proof methods involved were consid-

erably more difficult. It is easy to see that if there are 2n edges of each colour has a rainbow matching of
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size n. Indeed, if the largest matching M in such a graph had size ≤ n−1, then one of the 2n edges of the

unused colour would be disjoint from M , and we could get a larger matching by adding it. This simple

bound has been successively improved by many authors. Aharoni, Charbit, and Howard [3] proved first

that matchings of size ⌊7n/4⌋ are sufficient to guarantee a rainbow matching of size n. Kotlar and Ziv [22]

improved this to ⌊5n/3⌋. The third author then proved that φn+o(n) is sufficient, where φ ≈ 1.618 is the

Golden Ratio [25]. Clemens and Ehrenmüller [12] showed that 3n/2 + o(n) is sufficient. Aharoni, Kotlar,

and Ziv [4] showed that having 3n/2 + 1 edges of each colour in an n-edge-coloured bipartite multigraph

guarantees a rainbow matching of size n. Finally, the strong asymptotic, as stated above, was proved by

the third author in [26]. This proof was much longer and more difficult than Barat-Gyárfás-Sarkozy’s

proof of the weak asymptotic. It also gave a considerably weaker error term.

Now, we’ve already seen that “if the strong asymptotic is true, then the weak asymptotic is true”.

The main idea of this paper is a very short trick, that we call “the sampling trick”, which allows one to

prove the converse statement. This trick will allow us to prove results like “suppose the weak asymptotic

is true with o(n) = n/f(n); then the strong asymptotic is true with o(n) = 3n/
√

f(n)”. Combining this

with the Barat-Gyárfás-Sarkozy result, we obtain the strong asymptotic version of the Aharoni-Berger

conjecture with a much improved error term.

Theorem 1.3. Let G be a properly edge-coloured bipartite multigraph with n colours having at least

n+ n3/4 edges of each colour. Then G has a rainbow matching using every colour.

As mentioned before, the original proof of the strong asymptotic was quite involved and the corresponding

paper was more than 40 pages long. Our approach, in addition to giving a polynomial error term, vastly

simplifies it (a full proof will now take less than two pages).

Our “sampling trick” is very versatile and applies to many other problems and conjectures. In all our

applications, it allows us to either prove a strong asymptotic for the first time, or to greatly simplify an

existing proof of the strong asymptotic.

Non-bipartite Aharoni-Berger

Since the result of Pokrovskiy, several recent papers have considered variants and extensions of the

Aharoni-Berger conjecture. Notably, it is natural to ask what happens when we no longer require G

to be bipartite in Conjecture 1.2.

Conjecture 1.4 (Gao et. al, [16]). Let G be an edge-coloured multigraph with n colours such that each

colour class is a matching of size n+ 2. Then, G contains a rainbow matching of size n.

Note that in this more general case, we require n + 2 edges in each colour class. This can be seen

by the simple example of a proper 3-edge-colouring of the disjoint union of two K4’s. Contrary to

Conjecture 1.2, both the strong and weak asymptotics are unsolved here. Despite this, there are several

recent results relating to this problem which place an additional restriction on the edge-multiplicity of

the graph. Keevash and Yepremyan [20] showed that for every function k = ω(1), there is a ε = o(1)

such that if each colour has at least (1 + ε)n edges and G has edge-multiplicity at most n/k, then it

contains a rainbow matching of size n− k (this is a weak asymptotic version of the above conjecture with

an additional multiplicity assumption). Similarly, Gao, Ramadurai, Wanless and Wormald [16] proved

that if the edge-multiplicity is at most
√
n

log2 n
, there is ε = o(1) such that each colour class being of size

at least (1 + ε)n, implies that there is a full rainbow matching (this is a strong asymptotic version of the

conjecture with an additional multiplicity assumption).

Finally, a recent result of Aharoni, Berger, Chudnovsky and Zerbib [2] states that if each colour class

has n edges, there is a rainbow matching of size 2
3n− 1. They also explicitly conjectured both the strong

and weak asymptotic versions of Conjecture 1.4. In this paper we prove both of these.
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Theorem 1.5. For all sufficiently large n, any n-edge-coloured multigraph such that each colour class is

a matching of size at least n+ 20n1−1/16 contains a full rainbow matching.

Grinblat’s Problem

Another interesting problem involving rainbow matchings which has been studied is the following. Let

an (n, v)-multigraph be an n-edge-coloured multigraph in which the edges of each colour span a disjoint

union of non-trivial cliques that have in total at least v vertices. These can be seen as a generalisation of

the type of edge-coloured multigraphs we mentioned before. In fact, note that Conjecture 1.2 is equivalent

to the statement that every bipartite (n, 2n + 2)-multigraph contains a rainbow matching of size n. The

question raised by Grinblat, which was originally made in the context of his study on algebras of sets but

has recently been considered as a graph-theoretic problem, is to determine the minimal v = v(n) such

that every (n, v)-multigraph contains a rainbow matching of size n. He conjectured the following.

Conjecture 1.6 (Grinblat, [17]). For all n ≥ 4, v(n) = 3n− 2.

Indeed, note that a lower bound of v(n) > 3n − 3 occurs because we can take a disjoint union of n − 1

triangles, each repeated in every one of the n colours. This multigraph has no matching of size n. It is

worth observing here that Conjecture 1.6 differs from the Aharoni-Berger problem in the single fact that

we allow each colour class to be a disjoint union of cliques which can now be larger than just an edge.

In fact, it is easy to note that one can reduce the problem to when each monochromatic clique is either

a K2 or a K3. Conjecture 1.4 states that if each clique is a K2, then 2n+ 4 vertices in each colour class

are sufficient to guarantee a full rainbow matching. As demonstrated by the above example, this changes

substantially when we allow monochromatic triangles.

In terms of results towards Grinblat’s problem, all effort has gone into proving the strong asymptotic

version of it. Much like in the Aharoni and Berger problem, an easy greedy argument gives an upper

bound on v(n), namely of v(n) ≤ 4n. Grinblat [18] showed that v(n) ≤ 10n/3 + o(n). Nivasch and

Omri [24] showed that v(n) ≤ 16
5 n + O(1) and later, Clemens, Ehrenmüller and Pokrovskiy [13] proved

the strong asymptotic version of Conjecture 1.6 by showing that ν(n) = 3n+O (
√
n). For this problem we

give a one-paragraph argument proving the weak asymptotic and use again the sampling trick to establish

the strong asymptotic version of Conjecture 1.6, which despite not improving upon the bound from [13],

will only take a page.

Theorem 1.7. v(n) = 3n +O
(

n3/4
)

.

Clemens, Ehrenmüller and Pokrovskiy [13] further asked the question of what occurs to v(n) when we

restrict our (n, v)-multigraph to be a simple graph. Recently, Munhá Correia and Yepremyan [14] deter-

mined this asymptotically, showing that every (n, 2n + o(n))-multigraph which is simple (and even with

multiplicity at most
√
n/ log2 n) contains a rainbow matching using all the colours. On the other hand,

one can construct a (n, 2n)-multigraph which is simple and does not contain such a rainbow matching by

considering the Cayley table of Zn for even n, which shows that the error term o(n) is indeed needed. This

leads to the following very natural question: given the maximum edge multiplicity of a (n, v)-multigraph,

what is the minimal v ensuring that it contains a rainbow matching of size n? Our next result essentially

answers this for multiplicities εn for some small ε > 0.

Theorem 1.8. Every
(

n, 2n+ 2m+O
(

n/(log n)1/4
))

-multigraph with edge multiplicities at most m con-

tains a rainbow matching using all the colours.

Note first that this greatly generalises the result in [14], showing that whenever multiplicity is o(n),

already the same bound v = 2n + o(n) as for the Aharoni-Berger problem is enough to guarantee the
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desired rainbow matching. Moreover, in Section 4, we will construct
(

n, 2n+ 2εn +O(ε2n)
)

-multigraphs

with edge multiplicity at most εn and no rainbow matching of size n. This shows that the dependence

on m in the above theorem is asymptotically tight for m = εn with small ε > 0.

Alspach’s conjecture

Recall that a 2-factor is a spanning subgraph of a graph in which every vertex has degree 2. Much like

the Ryser-Brualdi-Stein conjecture is about finding rainbow matchings in 1-factorizations, one can look

for them in 2-factorizations too. In 1988, Alspach made the following conjecture.

Conjecture 1.9 (Alspach, [6]). Let G be a 2d-regular graph, edge-coloured so that each colour is a

2-factor. Then, there exists a rainbow matching using every colour.

There are several motivations for this conjecture. Firstly, it implies the Ryser-Brualdi-Stein conjecture

for symmetric Latin squares which have the same symbol on the diagonal. To see this, consider a

symmetric Latin square whose rows/columns are indexed by 1, . . . , n. Suppose that the symbols are

1, . . . , n with the main diagonal consisting of only 1’s. Consider a graph with vertices x−1 , x
+
1 , . . . , x

−
n , x

+
n

where for all i 6= j and s, t ∈ {−,+} we have the edge xsix
t
j and colour it by the (i, j)th entry of the

Latin square. It is fairly easy to see that this is a (n− 1)-edge-coloured, 2-factorized graph in which a full

rainbow matching gives a partial transversal of size n− 1 in the Latin square. The above conjecture also

strengthens problems of Cacetta-Mardiyono [11] and Chung (see [23]) who asked whether Conjecture 1.9

is true when each colour class is a Hamilton cycle, rather than a general 2-factor.

The state of previous research on Alspach’s conjecture closely mirrors that of the problems previously

discussed. The weak asymptotic for Alspach’s conjecture was proved by Anstee and Cacetta [8] who

showed that there is always a rainbow matching of size d − d2/3. In contrast to this, it was not known

that a rainbow matching using every colour exists when we additionally assume that |G| ≥ (1 + o(1))2d.

However, there has been a sequence of results finding full rainbow matchings when |G| is significantly

larger than 2d. A greedy argument proves the conjecture when we assume |G| ≥ 4d − 3. This was

improved to |G| ≥ 4d− 5 by Alspach, Heinrich and Li [7], to |G| ≥ 3.32d by Kouider and Sotteau [23], to

|G| ≥ 3d − 2 by Stong [30], and finally to |G| ≥ 2
√
2d + 4.5 by Qu, Wang, and Yan [27]. Our sampling

trick improves on all these results and establishes the strong asymptotic version of Alspach’s conjecture.

Theorem 1.10. Let G be a 2d-regular graph which is edge-coloured so that every colour class is a 2-factor.

If G has at least 2d + d3/4+o(1) vertices and d is sufficiently large, then it has a rainbow matching using

every colour.

2 The sampling trick and first applications

In this section, we will introduce the sampling trick and give three short applications. Our approach will

allow us to find rainbow matchings using all the colours available when we know the existence of one which

uses almost all the colours. Informally, the idea behind the trick is the following. Given an edge-coloured

multigraph G, such that each colour class has large size and some specific structure, our goal is to find a

full rainbow matching. We will then randomly choose a set S ⊆ V (G) of vertices, by putting each vertex

in S independently with some appropriately chosen small probability p. This will imply that each colour

class has most of its edges in G − S, but still relatively many edges in G[S]. In order to construct a full

rainbow matching, we then find a rainbow matching inside G − S which uses almost all the colours and

then complete it, by greedily finding a rainbow matching inside G[S] which uses the rest of the colours.

In order to use the sampling trick in each application, we will need a standard probabilistic concen-

tration bound, which will always be the following (see, e.g., [15]).
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Lemma 2.1. Let X be the sum of independent random variables X1, . . . ,Xn such that each 0 ≤ Xi ≤ k.

Then, for all 0 < ε < 1,

P (|X − E[X]| > εE[X]) ≤ 2e−ε2E[X]/3k2

2.1 The Grinblat problem

We will first give a short proof of Theorem 1.7. As indicated above, in order to apply our sampling trick,

we first need a result which provides us with a rainbow matching that uses almost all the colours.

Proposition 2.2. Let G be a (n, 3n)-multigraph. Then, it contains a rainbow matching of size at least

n−√
n.

Proof. Let M be a maximal rainbow matching in G and suppose for contradiction sake that |M | = n−k

with k >
√
n. Let C0, |C0| = k denote the set of colours not used in M and V0 := V \ V (M). Then V0

contains no C0-coloured edge, as this would contradict the maximality of M . Moreover, since M covers

2n − 2k vertices, each colour c ∈ C0 has at least n + 2k vertices in V0 belonging to its colour class and

so, there is a c-edge from each such vertex to V (M). Finally, since the colour class of c is a disjoint

union of non-trivial cliques, these edges must be pairwise disjoint, as otherwise, there would be a c-edge

connecting their endpoints in V0. Therefore, for each colour c ∈ C0, there exists a c-coloured matching

Mc ⊆ E[V0, V (M)] of size at least n+ 2k.

Note also that by the maximality of M , there is no edge e ∈ M for which there is a C0-coloured rainbow

matching consisting of two edges from e to V0. Given this, it is easy to check that for each e ∈ M , there

are at most two colours c1, c2 ∈ C0 such that two edges of Mc1 and two edges of Mc2 intersect e. On

the other hand, as every Mc, c ∈ C0 has size at least n + 2k and M has n − k edges, there are at least

3k edges in M which intersect two edges in Mc. This implies that 2n > 2|M | ≥ 3k|C0| = 3k2 > 3n, a

contradiction.

Proof of Theorem 1.7. Let now G be a (n, 3n + 40n3/4)-multigraph. We can assume that each of the

monochromatic cliques in the graph are either a K3 or a K2, since every clique can be partitioned into

disjoint edges and at most one triangle which cover the same set of vertices. For each colour c, let then tc
denote the number of triangles in its colour class and lc the number of edges, so that 3tc+2lc ≥ 3n+40n3/4.

Let S ⊆ V (G) be a random set obtained by choosing each vertex independently with probability

p = 2n−1/4. For each colour c, let c[S], c[G\S] denote the sets of colour c edges contained in S and G\S
respectively. Let |c[S]|, |c[G \ S]| be the number of non-isolated vertices in each graph. Let us calculate

E[|c[S]|]. Each K3 contributes 3p3 + 6p2(1 − p) to this expectation, whereas each K2 contributes 2p2 to

it. Thus E[|c[S]|] = tc(3p
3 + 6p2(1− p)) + 2lcp

2 ≥ p2(3tc + 2lc) ≥ 3p2n = 12
√
n. Similarly,

E[|c[G \ S]|] = tc(3(1− p)3 + 6(1− p)2p) + 2lc(1− p)2 ≥ (3tc + 2lc)(1− p)3 ≥ (3n+ 40n3/4)(1− p)3

≥ (3n + 40n3/4)(1− 3p) = (3n + 40n3/4)(1− 6n−1/4) ≥ 3n+ 20n3/4.

Notice that these random variables are sums of independent [0, 3]-valued random variables. Therefore, by

Lemma 2.1, we have P(|c[S]| < 10
√
n) ≤ o(n−1) and P(|c[G \ S]| < 3n) ≤ o(n−1). By the union bound,

with positive probability none of these events happen for any of the colours.

Thus there exists a set S with |c[S]| ≥ 10
√
n and |c[G \ S]| ≥ 3n for all colours c. Then, each c[S]

has at least 5
√
n edges and, by Proposition 2.2, there is a rainbow matching M in G− S of size at least

n−√
n. Let C0 denote the set of colours not used in M . Since now each colour class in C0 has maximum

degree two and more than 2·2· |C0| = 4|C0| = 4
√
n edges in G[S], we can greedily find a rainbow matching

N ⊆ G[S] which uses all colours in C0. As a result, M ∪N is a full rainbow matching in G.
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2.2 The Bipartite Aharoni-Berger problem

Next we give a short proof of Theorem 1.3. As the reader might already anticipate, we first need a result

which gives us, in this setting, a rainbow matching using almost all the colours. This was obtained by

Barát, Gyárfás and Sárközy [9], using a short alternating paths argument which dates back to the result

of Woolbright [31] that every Latin square of order n contains a transversal of size n−√
n.

Proposition 2.3. For all sufficiently large n, any n-edge-coloured bipartite multigraph in which each

colour class is a matching of size at least n contains a rainbow matching of size at least n−√
n.

Proof of Theorem 1.3. Let G be an n-edge-coloured bipartite multigraph such that each colour class is

a matching of size n+ 7n3/4. Let S ⊆ V (G) be a subset obtained by choosing each vertex independently

with probability p = 2n−1/4. For each colour c, let c[S], c[G \ S] denote the sets of colour c edges

contained in S and G\S respectively. Letting e(c[S]), e(c[G\S]) denote the number of these edges, we have

E(e(c[S])) = p2(n+7n3/4) ≥ 4
√
n and E(e(c[G\S])) = (1−p)2(n+7n3/4) ≥ (1−2p)(n+7n3/4) ≥ n+2n3/4.

Therefore, by Lemma 2.1 and a union bound over all colours, we have that with positive probability,

colours have e(c[S]) ≥ 3
√
n and e(c[G \ S]) ≥ n. Fix a set S satisfying this.

By Proposition 2.3, there is a rainbow matching M in G − S of size at least n −√
n. Let C0 denote

the set of colours not used in M . Since each colour in C0 is a matching and has more than 2 · |C0| = 2
√
n

edges in G[S], we can greedily find a rainbow matching N ⊆ G[S] which uses all colours in C0. As a

result, M ∪N is a full rainbow matching in G.

2.3 The Alspach problem

The last short application of the sampling trick will be the proof of Theorem 1.10. Here we will use the

well known results, proved by using the so called Rödl-nibble type arguments, which state that nearly

regular uniform hypergraphs with small codegrees have almost perfect matchings. This will allow us to

find in this setting a rainbow matching using almost all the colours and then use the sampling trick to

complete the proof.

Proof of Theorem 1.10. Let α < 0.1 be an arbitrarily small constant and let G be a 2d-regular graph

on n ≥ 2d+ d3/4+α vertices where d is sufficiently large in terms of α. Suppose further that G is d-edge-

coloured so that each colour forms a 2-factor in G. Since every vertex has degree at most 2 in any given

colour, deleting the vertices belonging to some arbitrary edge in the graph can destroy at most 4 edges of

that colour. Since the number of edges of every colour is n, we can assume that n ≤ 4d, since otherwise

we can get a full rainbow matching greedily. Let S ⊆ V (G) be a subset obtained by choosing each vertex

independently with probability p = 1− 2d
n .

For each colour, let c[S], c[G \S] denote the colour c edges contained in S and G \S, respectively. We

have that E(e(c[S])) = p2n = (n − 2d)2n−1 ≥ d3/2+2αn−1 ≥ d1/2+2α/4 and E(e(c[G \ S])) = (1 − p)2n =

4d2/n. For every vertex we have |N(v)\S| = (1−p)2d = 4d2/n. Next we prove concentration of all these

random variables. For |N(v)\S| this is immediate from Lemma 2.1 (since |N(v)\S| is a sum of independent

{0, 1}-valued random variables), so we have that each vertex v has |N(v) \ S| = 4d2/n ± K
√
d log d for

some constant K with probability 1− o(n−1). To prove concentration of c[S], c[G \ S], notice that since

the colour class of c is a 2-factor, we can partition its edges into two sets c1, c2 both having at least n/3

different connected components with each component being either an edge or a path of length two. Then,

e(c[S]) = e(c1[S])+ e(c2[S]) and each e(ci[S]) is the sum of independent {0, 1, 2}-valued random variables

with E[e(ci[S])] ≥ p2n/3 ≥ d1/2+2α/12. Therefore, by Lemma 2.1, each e(ci[S]) = E[e(ci[S])]±K
√
d log d

with probability 1 − e−Ω(K2 log d). By taking K to be large enough, this implies that for each colour

e(c[S]) ≥ d1/2+α with probability 1− o(n−1). The same argument gives e(c[G \ S]) = 4d2/n±K
√
d log d
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with probability 1−o(n−1). By taking a union bound over all vertices/colours, we have that with positive

probability every colour has e(c[S]) ≥ d1/2+α, e(c[G \ S]) = 4d2/n ±K
√
d log d, and every vertex v has

|N(v) \ S| = 4d2/n±K
√
d log d. Fix a set S for which all of these happen.

Define an auxiliary 3-uniform hypergraph H on N ≤ 5d vertices which consists of all edges of the form

(x, y, c), where x, y are vertices in G−S such that the edge xy has colour c. By the choice of p, every vertex

in H has degree D ±K
√
d log d, where D := 4d2/n ≥ d. Moreover, since each colour class in G was a 2-

factor, it is easy to check that H has codegree at most 2. Therefore, by the well-known result of Kostochka

and Rödl [21] (which extended the work of Alon, Kim and Spencer [5]) on nearly-perfect matchings in

hypergraphs, H has a matching covering all but at most O
(

N/D(1−α)/2
)

= O
(

d(1+α)/2
)

many vertices.

Every edge of this matching has a vertex representing a different colour c and all but at most O
(

d(1+α)/2
)

colours are covered. So, deleting the vertices corresponding to colours gives a rainbow matching M in

G− S of size at least d−O
(

d(1+α)/2
)

. Let C0 denote the set of colours not used in M . Since each colour

in C0 has maximum degree at most two and has at least d1/2+α > 2 · 2 · |C0| = 4|C0| = O
(

d(1+α)/2
)

edges

in G[S], we can greedily find a rainbow matching N ⊆ G[S] which uses all colours in C0, so that M ∪N

is a full rainbow matching in G.

3 Non-bipartite Aharoni-Berger

In this section, we will prove Theorem 1.5. As the reader might already anticipate, we will first prove a

weak asymptotic result and then use the sampling trick to finish. We make no serious attempt to optimize

our error terms.

Theorem 3.1. For all sufficiently large n, any n-edge-coloured multigraph in which each colour forms a

matching of size n contains a rainbow matching of size n− 20n7/8.

In order to prove the above proposition, let us first give some definitions and notation. As usual, the

length of a path will be the number of edges in it. Given a matching M , we let V (M) denote the vertices

incident to some edge of the matching and for such a vertex x, we denote by m(x) the vertex such that

xm(x) is an edge of M . Also, suppose X1,X2, . . . ,Xr are sets in an edge-coloured graph, such that every

Xi is either a set of colours or a set of edges. Call a path P = v1v2 . . . vr+1 an X1 −X2 − . . . −Xr path

if for every i, the edge vivi+1 has either a colour in Xi or belongs to the set of edges Xi. Finally, given a

rainbow matching M and a set of colours C ′, a vertex v will be called (C ′, k)-switchable for M if there

are at least 5k2 many C ′ −M − . . .−C ′ −M rainbow paths of length at most k, which start at a vertex

outside M , end at vertex v and are colour and vertex-disjoint aside from the common last edge vm(v).

Proof of Theorem 3.1. Let G be a graph satisfying the assertion of the theorem, M a maximal rainbow

matching in G and suppose it has size at most n− 20n7/8. Let us denote the set of at least 20n7/8 colours

not used in M as C0, V0 the set of vertices not in V (M) and set k = n1/8. Hence |C0| ≥ 20n/k. Define

now pairwise disjoint sets V1, V2, . . . ⊆ V (M) together with submatchings Mj := {xm(x) : x ∈ Vj} ⊆ M in

the following recursive manner. For each j, let Mj be the set of edges in the matching M ′ := M \⋃l<j Ml

that have an endpoint x, which is (C0, k)-switchable for M ′ in the graph G′ := G−⋃1≤l<j m(Vl). Let Vj

be the set of these endpoints (if both endpoints of some edge are switchable we fix one arbitrarily). Note

that by definition, no two vertices in
⋃

Vj are matched in M .

Claim 3.2. If j ≤ k, then there is no C0 −M ′ − . . . −M ′ − C0 rainbow path of length at most k whose

endpoints are in V (G′) \ V (M ′). In particular, there is no C0-edge in G′ contained outside V (M ′).

Proof. Suppose such a path P exists and let u, v be its endpoints so that for some 0 ≤ lu, lv < j, we have

u ∈ Vlu and v ∈ Vlv . Note that by definition of Vlu , there exist at least 5k2 many M −C0 − . . .−M −C0
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rainbow paths of length at most k which start at the edge um(u), end at a vertex in
⋃

l<lu
Vl and are

colour and vertex-disjoint (aside from the first edge um(u)). Since 2|P | ≤ 2k < 5k2, one of these paths,

which we denote by P u
1 , is colour and vertex-disjoint to P (aside from the vertex u). Similarly, since

2|P | + 2|P u
1 | ≤ 4k < 5k2, we can next find a M − C0 − . . . − M − C0 rainbow path, which we denote

P v
1 , of length at most k which starts at the edge vm(v), ends at a vertex in

⋃

l<lv
Vl and is colour and

vertex-disjoint to the path P u
1 P (aside from the vertex v). Note we can continue this process and since

2 · (2j + 1) · k < 5k2, we can ultimately find a path P u
r . . . P u

1 PP v
1 . . . P v

s (for some r, s ≤ j) which is a

C0−M− . . .−M−C0 rainbow path with both endpoints in V0. Note that this contradicts the maximality

of M , as one can substitute the edges of M belonging to this path with the C0-edges in this path in order

to construct a larger rainbow matching.

Let us now fix i ≤ k − 1 to be such that |Mi+1| ≤ n/k (such i clearly exists since
∑

j |Mj| ≤ n) and set

M ′ := M \⋃l≤iMl as well as the graph G′ := G −⋃1≤l≤i m(Vl). There are then at most 2|Mi+1| many

(C0, k)-switchable vertices for M ′ in this graph. For simplicity, let us refer to these vertices from now on

as just switchable vertices. We first delete from G′ every C0-coloured edge intersecting V (Mi+1) - note

that from this, each colour in C0 loses at most 2|Mi+1| ≤ 2n/k edges. Therefore, each such colour now

has at least n − |G \ G′| − 2n/k ≥ |M ′| + 20n/k − 2n/k ≥ |M ′| + 18n/k edges in the graph G′ (since
|G\G′| = |M \M ′| ≤ n−20n/k−|M ′|). Finally, we also define an edge in G′ to be heavy if it is repeated

in at least t := 5k3 many colours belonging to C0.

Now, let us first trivially note that there cannot be a vertex w ∈ V (M ′) \ V (Mi+1) which has at least

5k2 distinct C0-neighbours outside V (M ′). Indeed, if this were the case, then m(w) would be switchable,

contradicting w /∈ V (Mi+1). Secondly, recall that all the C0-coloured edges touching V (Mi+1) were

previously deleted and moreover, that by Claim 3.2, there is no C0-coloured edge contained outside M ′.
Therefore, since |V (M ′)| ≤ 2n and |C0| ≥ 20n/k, the fact that no such vertex w can exist implies that

there are at most |V (M ′)| · (5k2) · t ≤ 10k2tn ≤ |C0| · (k3t/2) many C0-coloured edges which are not

heavy and have an endpoint outside M ′. Let us delete all these edges. Note then that at least half of the

colours c ∈ C0 are such that at most k3t of their edges were deleted. Call these colours C ′
0, so that we

have |C ′
0| ≥ |C0|/2. Note next the following consequence.

Claim 3.3. For every colour c ∈ C ′
0, there are at least 14n/k many vertex disjoint c−M ′ − . . .− c−M ′

paths in G′ of length at most k − 2, which start outside V (M ′), whose c-edges are heavy and who end at

vertex v which is incident to a c-edge which is not heavy.

Proof. Consider Mc ∪M ′, where Mc is the matching of edges of colour c. This is a union of alternating

paths/cycles between edges of Mc and M ′ such that in each path the number of edges from Mc is at most

one larger then the number of edges from M ′. Because of the previous deletion of C0-coloured edges and

since c ∈ C ′
0, Mc has now size at least |M ′| + 18n/k − k3t ≥ |M ′| + 17n/k, and so there are at least

17n/k many c − M ′ − . . . − M ′ − c vertex disjoint paths with both endpoints outside M ′. Further, by

disjointedness of these paths, at most |M ′|
(k−1)/2−1 = 2|M ′|/(k − 3) < 3|M ′|/k ≤ 3n/k of them have size

larger than k− 2 and so, at least 14n/k of them have size at most k− 2. Let P be such a path. Note that

P cannot be such that all its c-edges are heavy. Indeed, if that were the case, since t > k − 2, we could

pick distinct colours in C0 for those edges in order to produce a rainbow path which contradicts Claim

3.2. Further, note that the first c-edge of P , which has an endpoint outside M ′, must be heavy - since

otherwise, it would have been deleted just before the statement of this claim. Therefore, we are done since

then P must contain a subpath P ′ of the form c −M − . . . − c −M which starts outside V (M ′), whose
c-edges are heavy and which ends at a vertex v which is an endpoint of a c-edge that is not heavy.

Define now for each colour c ∈ C ′
0, the set Vc ⊂ V (M ′) to be the set of at least 14n/k many vertices v

which are produced by the above claim. Our final objective is now to show that there must be a vertex
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w ∈ V (M ′)\V (Mi+1) which has at least 5k2+2 distinct C0-neighbours in one of the sets Vc. Indeed, note

that if this holds, then by the above claim, there are at least 5k2 +2 many c−M ′ − . . .−M ′ alternating
vertex-disjoint paths P1, P2, . . . of length at most k− 2, whose c-edges are heavy, which start outside M ′,
and whose ending vertices v1, v2, . . . are such that each wvl is a C0-coloured edge. Let us remove from

this collection two paths Pi, Pj which possibly intersect {w,m(w)}. Notice that the edges wvl all have

different colours, since they touch w. We can then use that t ≥ 5k2 · k, to pick the C0-colours for the

heavy edges in all the paths, so that the new paths P ′
l := m(w)wvl + Pl are colour-disjoint and of length

at most k, thus implying that m(w) is switchable, and so, contradicting w /∈ V (Mi+1) (notice that each

P ′
l is indeed a path because of the earlier removal of Pi, Pj from the collection).

To finish, suppose no such vertex w exists. For each colour c ∈ C ′
0, Claim 3.3 implies that there are

at least 14n/k many non-heavy c-edges which were not deleted, and thus contained in V (M ′) \ V (Mi+1),

that have an endpoint in Vc. Define H to be the directed multigraph formed by these c-edges for all c ∈ C ′
0

and orienting them towards the vertex which belongs to Vc. For a vertex v ∈ V (M ′), let d+H(v), d−H (v)

denote the out and in-degrees of it in H. Note in particular that by the properties of these edges, d−H(v)

is equal to the number of colours c ∈ C ′
0 such that v ∈ Vc. Therefore,

∑

c∈C′

0

∑

v∈Vc
d−H(v) =

∑

v d
−
H(v)2.

Further, by convexity, we have

∑

v

d−H(v)2 ≥ 1

|V (M ′)|

(

∑

v

d−H(v)

)2

≥ e(H)2/2n ≥ (14n/k · |C ′
0|)2/2n ≥ (900n2/k3) · |C ′

0|

and so, there exists a colour c ∈ C ′
0 such that

∑

v∈Vc
d−H(v) ≥ 900n2/k3, which is then a lower bound

for the number of C0-coloured edges contained in V (M ′) \ V (Mi+1) which are not heavy and have an

endpoint belonging to Vc. At the same time, since no vertex w as described earlier can exist, it must be

that there are at most |V (M ′)| · (5k2 + 2) · t < 12k2tn = 60k5n of these edges, which is a contradiction

since 900n2/k3 = 900nk5 > 60k5n.

We can now use the sampling trick to complete the proof.

Proof of Theorem 1.5. Let G be an n-edge-coloured multigraph such that each colour class is a

matching of size n + 20n15/16. Let S ⊆ V (G) be a subset obtained by choosing each vertex indepen-

dently with probability p = 7n−1/16. For each colour c, let c[S], c[G \ S] denote the sets of colour c

edges contained in S and G \ S respectively. We have E(e(c[S])) = p2(n + 20n15/16) ≥ 49n7/8 and

E(e(c[G \ S])) = (1− p)2(n+20n15/16) ≥ (1− 2p)(n+20n15/16) ≥ n+ 2n15/16. Therefore, by Lemma 2.1

and a union bound over all colours, we have that with positive probability, colours have e(c[S]) ≥ 40n7/8

and e(c[G \ S]) ≥ n. Fix a set S satisfying this.

By Proposition 3.1, there is a rainbow matching M in G−S of size at least n− 20n7/8. Let C0 denote

the set of colours not used in M . Since each colour in C0 is a matching and has more than 2 · |C0| = 40n7/8

edges in G[S], we can greedily find a rainbow matching N ⊆ G[S] which uses all colours in C0. As a

result, M ∪N is a full rainbow matching in G.

4 Bounded multiplicity Grinblat problem

In this section, we will prove Theorem 1.8. As expected, our main focus here will be to prove the

following weak asymptotic result. In order to state it, let us further define now a (n, v,m)-multigraph to

be a (n, v)-multigraph with maximum edge-multiplicity at most m.

Theorem 4.1. For all sufficiently large n, every (n, 2n + 2m + n3/4,m)-multigraph contains a rainbow

matching of size n− 1001n√
logn

.
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The proof of the strong asymptotic result then follows as an application of the sampling trick.

Proof of Theorem 1.8. Let G be a
(

n, 2n+ 2m+ 1500n
(log n)1/4

,m
)

-multigraph. We can assume that each

of its monochromatic cliques are either a K3 or a K2, since every clique can be partitioned into disjoint

edges and at most one triangle which cover the same set of vertices. For each colour c, let then tc denote

the number of triangles in its colour class and lc the number of edges, so that 3tc+2lc ≥ 2n+2m+ 1500n
(logn)1/4

.

Let S ⊆ V (G) be a random set obtained by choosing each vertex independently with probability p =

100(log n)−1/4. For each colour c, let c[S], c[G \ S] denote the sets of colour c edges contained in S and

G\S respectively. Let |c[S]|, |c[G\S]| be the number of non-isolated vertices in each graph. By standard

considerations, much like those done in Section 2.1, it is easy to show that P

(

|c[S]| < 4004n√
logn

)

≤ o(n−1)

and P(|c[G \ S]| < 2n + 2m + n3/4) ≤ o(n−1) for each colour c. By the union bound, with positive

probability none of these events happen for any of the colours.

Thus there exists a set S with |c[S]| ≥ 4004n√
logn

and |c[G \ S]| ≥ 2n + 2m + n3/4 for all colours c. By

Theorem 4.1, there is a rainbow matching M in G−S of size at least n− 1001n√
logn

. Let C0 denote the set of

colours not used in M . Since each colour class in C0 has maximum degree two and more than 4|C0| edges
in G[S], we can greedily find a rainbow matching N ⊆ G[S] which uses all colours in C0. As a result,

M ∪N is a full rainbow matching in G.

4.1 A matching problem

Before going into the proof of Theorem 4.1, we will first need the following simpler result. In this section,

we prove that one can always find a matching of the size n, although it might not be a rainbow one.

Lemma 4.2. Let G be a (n, 2n+ 2m,m)-multigraph. Then, it contains a matching of size n.

Proof. For contradiction sake, let M be a maximal matching in G and suppose that |M | ≤ n−1. We will

let V0 denote the set V (G) \ V (M) and will denote the edges in E[V0, V (M)] as external. First, we give

the following claim, which will essentially allow us to forget about the various cliques which can appear

in the colour class of c, and only consider edges.

Claim 4.3. Let c ∈ C be a colour for which there exists a set A ⊆ V (M), such that no two vertices in

A are matched by M and such that there are no c-edges contained in V0 ∪ A. Then, there exist at least

2m+ 2 pairwise disjoint c-edges in E[V (M)\(A ∪m(A)), V0 ∪A].

Proof. Define the set S := V (M)\A and note that there is no c-edge contained outside S. Moreover, the

colour class of c has at least 2|M |+2m+2−|S| = |A|+2m+2 vertices outside S and so, there is a c-edge

from each such vertex to S. Finally, since the colour class of c is a disjoint union of non-trivial cliques,

these edges must be pairwise disjoint, as otherwise, there would be a c-edge connecting their endpoints

outside S. Therefore, there exists a c-coloured matching in E[S, V \S] of size at least |A|+2m+2. Since

at most |A| edges of this matching intersect m(A), we are done.

Note that in particular, the above claim implies a contradiction when |A| = |M |. Therefore, the goal of the
subsequent arguments is to construct such a set A. Let us then first recursively define sets E1, E2, . . . ⊆ M

and V ′
1 , V1, V

′
2 , V2, . . . ⊆ V (M) in the following way.

• E1 is the set of edges in M which have an endpoint incident to at least m+1 edges which go to V0.

We let V ′
1 be the set of those endpoints and V1 = m(V ′

1).

• Having defined the sets E1, . . . , Ei−1 and while
⋃

j<iEj 6= M , we define Ei to be the set of edges in

M \⋃j<iEj which have an endpoint incident to at least m+1 edges which go to
⋃

j<i Vj. We then

let V ′
i be the set of those endpoints and Vi = m(V ′

i ).

11



As a result of the above definitions, note the following claim.

Claim 4.4. For any two vertices u, v ∈ ⋃l≤i Vl, there is a maximal matching M ′ such that u, v /∈ V (M ′)
and V (M∆M ′) ⊆ V0 ∪

⋃

l≤i(Vl ∪ V ′
l ).

Proof. We prove this by induction on i. For i = 0, the statement is trivial by taking M ′ = M . Suppose

then that i ≥ 1 and the statement is true for all smaller values. We can then assume that u ∈ Vi and

v ∈ Vj for some j ≤ i. Now, by assumption, m(u) has at least m+ 1 edges which go to
⋃

j<i Vj . At most

m of these edges go to v and so, there is an edge m(u)u′ with v 6= u′ ∈ ⋃l<i Vl. Now, if j < i, then we

apply the induction hypothesis with the vertices v, u′. This gives a maximal matching M ′ avoiding v, u′

and containing the edge m(u)u. Replacing m(u)u by m(u)u′ gives a new maximal matching satisfying the

claim. If j = i, then with a similar argument as above, there is an edge m(v)v′ with u′ 6= v′ ∈ ⋃l<i Vl. We

now apply the induction hypothesis with the vertices v′, u′. This gives a maximal matching M ′ avoiding
v′, u′ and containing the edges m(u)u,m(v)v. Replacing these two edges by m(u)u′,m(v)v′ gives a new

maximal matching satisfying the claim.

Now, suppose that at some i, we have
⋃

1≤j<iEj 6= M . It is easy to note that the above claim implies that

there is no edge in
⋃

0≤j<i Vl. Indeed, for any such edge e = (u, v) there is a maximal matching M ′ with
u, v 6∈ V (M ′) and therefore M ′ can be extended using e . Thus, letting A =

⋃

1≤j<i Vl, we can apply Claim

4.3 to get that each colour has at least 2(m+1) pairwise disjoint c-edges in E[V (M)\(A∪m(A)), V0 ∪A].

By averaging over the ≤ 2n vertices of V (M)\(A ∪ m(A)), there exists an edge e /∈ ⋃1≤j<iEj with an

endpoint incident to at least m + 1 edges going to A ∪ V0. Therefore, by definition, Ei 6= ∅. To finish,

there must then exist some i, such that
⋃

1≤j<iEj = M , which is a contradiction by Claim 4.3 with

A =
⋃

1≤j<i Vj , so that |A| = |M |.

As a corollary, note the following.

Corollary 4.5. Let G be a (n, 2n+2m+n3/4,m)-multigraph, M be a rainbow matching in G and C0 the

set of colours not used in it. Then, for any N ⊆ M , there are at least n1/4 many edge-disjoint matchings

of size |C0|+ |N | − n3/4 using colours in C0 ∪ C(N) and edges which are not contained in V (M \N).

Proof. Delete all edges contained in V (M \N) and all colours not in C0 ∪C(N) (in this proof when we

delete edge from a triangle of some color we substitute triangle with one of its non-deleted edges so that

every color class is still union of cliques). Note this produces a (|C0∪C(N)|, 2|C0∪C(N)|+2m+n3/4,m)-

multigraph G′. Now, the desired consequence follows by applying the previous lemma to G′ at least n1/4

many times and after each iteration deleting the maximal matching found along with those colours which

appear more than
√
n (of which there are at most

√
n many) many times in that matching.

4.2 Building blocks

One can view Corollary 4.5 as somewhat of a strong indicator for Theorem 4.1 since we might suspect from

the previous section on the non-bipartite Aharoni-Berger problem, that having many large matchings,

despite not being necessarily rainbow, should be favorable in some way. Indeed, this will be the key

observation here. Before diving into that, we will need to make some preliminary considerations first.

In this section, we will give some new definitions, but the reader should keep in mind that some

notation will carry over from Section 3. Throughout this section, we will always be considering an

underlying multigraph G which is edge-coloured with n colours so that it is locally 2-bounded, that is,

there is no vertex incident on more than two edges of the same colour. We also require, for simplicity,

that the edges of each colour form a simple graph. Note in particular, that any (n, v,m)-multigraph is an

example of this. Let us start with a definition.
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Definition 4.6. Given a rainbow matching M and a set of colours C, a (C, t, r)-block for M is a pair

(B,M ′) where B is a set of vertices and M ′ ⊆ M such that the following hold.

1. B contains exactly one vertex v /∈ V (M) and M ′ = {xm(x) : x ∈ B \ {v}}.

2. |M ′| ≤ t.

3. For all vertices x ∈ B, there is a M ′ −C − . . .−M ′ −C path of length at most r, starting at x and

ending at v, whose C-edges are each repeated in at least n1/10 many colours of C.

We will usually refer to the block as just the set B. We define the set of colours of the block to be

C(B) := C(M ′). We also define, M(B) := M ′ and vB := v. Two blocks B,B′ are said to be disjoint if

the sets V (M(B)) ∪ {vB} and V (M(B′)) ∪ {vB′} are disjoint.

Notice that in particular, it follows from the definition that for all vertices v /∈ V (M), the pair (v, ∅) is

a (C, 0, 0)-block for M . We will now introduce two ways of iteratively constructing blocks. The first is

simple to check, and we thus omit its proof.

Lemma 4.7. Let (B,M ′) be a (C, t, r)-block for M and v := vB. Let w1, w2, . . . wk ∈ V (M \ M ′) and

z1, z2, . . . zk ∈ B be distinct vertices such that for each i, there are at least n1/10 many C-colours repeated

in the edge m(wi)zi. Then, (B ∪ {wi : i ≤ k},M ′ ∪ {wim(wi) : i ≤ k}) is a (C, t+ k, r + 2)-block for M .

Lemma 4.8. Let (B,M ′) be a (C, t, r)-block for M and v := vB. Let P1, P2, . . . ⊆ B be vertex disjoint

paths of the form C−M ′−. . .−M ′−C whose endpoints are vertices w with either w = v or w ∈ V (M ′) and
m(w) /∈ B and whose C-edges are each repeated in at least n1/10 many colours of C. Then, for each i, there

is a choice of an endpoint wi of Pi with wi ∈ V (M ′) and m(wi) /∈ B so that (B ∪ {m(w1),m(w2), . . .},M ′)
is a (C, t, r +maxi |Pi|)-block for M .

Proof. Let Pi be one of the paths and for simplicity, first assume that both its endpoints, say u1, u2,

belong to V (M ′) and m(u1),m(u2) /∈ B. Write the path Pi together with the vertices m(u1),m(u2) added

as

P := m(u1)u1x1y1x2 . . . xkyku2m(u2).

To recall, we have that P \ {m(u1),m(u2)} ⊆ B \ {v}, each edge xiyi is in M ′ and each edge yixi+1 is

repeated in at least n1/10 many C-colours (defining y0 = u1 and xk+1 = u2). Now, since u1 ∈ B, by the

definition of a (C, r, t)-block, there is a path Q = u1m(u1)x
′
1y

′
1x

′
2 . . . x

′
ly

′
lv of length at most r such that

each edge x′iy
′
i is in M ′ and each edge y′ix

′
i+1 is repeated in at least n1/10 many C-colours. Let z be the

last vertex (in the direction u1 → v) of Q such that z ∈ Q ∩ P . Notice first that we must have that

z = y′q ∈ Q for some q (we cannot have z = x′q because x′q ∈ Q∩P =⇒ y′q ∈ Q∩P , since x′qy
′
q is an edge

of M and both paths are M -alternating). Further, if z = xs ∈ P for some s, then note that the path

m(u2)u2ykxkyk−1 . . . yszx
′
q+1y

′
q+1 . . . y

′
lv

lets us choose wi := u2. If z = ys ∈ P , then the path

m(u1)u1x1y1x2 . . . xszx
′
q+1y

′
q+1 . . . y

′
lv

gives us the choice of wi := u1. Finally, in the case that one endpoint of Pi is v, we choose wi to be the

other endpoint. It is now simple to check that adding the vertices m(wi) to B ensures that it is still a

(C, t, r +maxi |Pi|)-block for M .
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In the next lemma, we will look at families F of disjoint (C, t, r)-blocks for M . We then define V (F) :=
⋃

B∈F B, M(F) :=
⋃

B∈F M(B), C(F) :=
⋃

B∈F C(B) and say that the size of F , denoted as |F|, is the
sum of the sizes of the blocks in it, that is, |V (F)|. For two such families F1,F2, we write F1 � F2 when

for every block B1 ∈ F1 there exists a block B2 ∈ F2 such that B1 ⊆ B2.

The main idea of the proof of Theorem 4.1 will be the following. Given a maximal rainbow matching

with some large enough defect, we iteratively construct a family of disjoint blocks whose total size is

growing from step to step. At each iteration, we will apply the lemma given below to the present family

of disjoint blocks. The use of Corollary 4.5 will allow us to avoid the first case of the lemma from

happening and the properties of the blocks will exclude the second option. Thus we will be assured that

one of the last two cases in the lemma below always holds. This, in turn, will allow us to construct a new

family of disjoint blocks whose total size is relatively larger than the old one. This eventually leads to a

contradiction since at some point the total size of the block family becomes larger than the number of

vertices in the graph.

Lemma 4.9. Let t ≤ 62
√
logn, M be a rainbow matching and C a set of colours. Let F be a family

of disjoint (C, t, r)-blocks for M so that V \ V (M) ⊆ V (F) and let C ′ := C ∪ C(F). Then, one of the

following holds.

1. There is no collection of at least n1/5 log n many edge-disjoint matchings of size at least |M(F)| +
1000n/

√
log n using colours in C ′ and without edges contained in V (M \M(F)).

2. There exists an edge e = xy for which there are two distinct blocks B1, B2 ∈ F with x ∈ B1, y ∈ B2

and c(e) ∈ C ′ \ (C(B1) ∪C(B2)).

3. There exist at least 20n/
√
log n many vertices v ∈ V (M \M(F)) with the following property: there

are at least n1/10 many distinct vertices x ∈ V (F) such that the edges m(v)x have distinct colours

in C ′ and further, the colour of each m(v)x does not belong to the block in F which contains x.

4. There is a family F ′ of disjoint (C ′, 3t + 1, r +
√
log n/100)-blocks for M with F � F ′ and |F ′| ≥

|F|+ 10n/
√
log n.

Proof. Let us first define the parameters s := n1/5 log n and k = 1000n√
logn

. Let (Bi,Mi) denote the blocks

in F and let vi := vBi for each i. Suppose that none of the first three options hold. In particular, from

the first option, we are given s edge-disjoint C ′-coloured matchings N1, N2, . . . of size at least |M(F)|+ k

and without edges contained in V (M \M(F)). We will use these to construct the family F ′. Before that,
we will need two edge-deletion processes. First, let us delete, for each block Bi ∈ F and colour c ∈ C(Bi),

the c-coloured edges touching Bi. Since the graph is locally 2-bounded, each block Bi has size at most

|Bi| ≤ 2|Mi| + 1 ≤ 2t + 1 and every color appears in exactly one block (as they are disjoint), we delete

at most 2(2t + 1) edges of each color and in total at most 2(2t + 1)n edges. In particular, then at most

4(2t+1)n/k < s/2 matchings Ni are such that at least k/2 of its edges were deleted. Let us from now on

only consider the other s/2 matchings, implying that each of these has now at least |M(F)|+ k/2 edges.

This first deletion implies the following.

Claim 4.10. There is no C ′-edge between two distinct blocks in F .

Proof. Note that since we are assuming that the second option in the statement does not hold, the

occurrence of a C ′-edge e between two distinct blocks B,B′ can only be possible when c(e) ∈ C(B)∪C(B′).
However, note that this implies that the edge e was deleted in the process described above.
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Next, for each i, let us define M ′
i ⊆ Mi to be those edges with both of its endpoints in Bi. As a

second deletion process, delete all edges which touch vertices in the set V (M(F)) \ V (F), which has size
∑

i |Mi \ M ′
i |. Note then that each matching Nj loses at most

∑

i |Mi \ M ′
i | of its edges, so that it has

now at least k/2 +
∑

i |M ′
i | edges. This in turn implies the following standard claim, very similar to an

earlier consideration done in Section 3.

Claim 4.11. For each j, there are at least k/4 many non-trivial vertex-disjoint Nj−
⋃

iM
′
i−. . .−⋃iM

′
i−

Nj paths of length at most 10n/k and with both endpoints outside
⋃

i M
′
i .

Proof. Fix some j. Consider Nj ∪
⋃

iM
′
i . This is a union of alternating paths/cycles between edges

of Nj and
⋃

i M
′
i such that in each path, the number of edges from Nj is at most one larger then the

number of edges from
⋃

iM
′
i . Since Nj has size at least k/2 +

∑

i |M ′
i |, there are at least k/2 many

Nj −
⋃

iM
′
i − . . . − ⋃iM

′
i − Nj vertex disjoint paths with both endpoints outside

⋃

iM
′
i . Further, by

disjointedness of these paths and since |⋃iM
′
i | ≤ |M | ≤ n, at most n

5n/k < k/4 of them have size larger

than 10n/k (since each such path contains at least 5n/k edges of
⋃

i M
′
i) and so, at least k/4 of them

have size at most 10n/k.

Furthermore, notice that the second deletion process implies, together with Claim 4.10, that every edge in

each Ni is now either completely contained in some block in F or has one endpoint in V (M \M(F)) and

the other in V (F). Indeed, recall first that by assumption, no edge in Ni is contained in V (M \M(F)).

Recall also that every vertex outside M is contained in some block in F and so, the set of vertices outside

M \M(F) which do not belong to any block is precisely equal to V (M(F)) \ V (F). Therefore, since we

deleted all edges touching V (M(F))\V (F), if an edge of Ni has one endpoint in V (M \M(F)), the other

must be in V (F); if the edge is entirely outside M \M(F), then both its endpoints belong to blocks in

F and so, Claim 4.10 implies that it is completely contained in some block. Finally, note that then, each

path given by Claim 4.11, depending on whether or not its endpoints are contained in V (M \M(F)), is

either completely contained in some block in F or such that one of its extremal edges, i.e., its first or last

edge, has one endpoint in V (M \M(F)) and the other in V (F).

We can now describe the procedure which constructs the family F ′. First, we look at the case that for

at least half of the j’s (and thus, at least s/4 of them), at least half of the paths (and thus, at least k/8

of them) given by Claim 4.11 are completely contained in some block in F . We claim that then there is

some j such that at least k/16 of these paths are such that their Nj-edges are repeated in at least n1/10

colours in C ′. Indeed, note that there are at most 2n · (maxj |Bj |)10n/k ≤ 2n · (2t+ 1)10n/k < k
16 · s

4/n
1/10

non-trivial sequences of vertices entirely contained in some block of F and of length at most 10n/k.

Therefore, it must be that for some j, at least k/16 of the paths given by Claim 4.11 are such that their

implicit sequence of vertices is used for more than n1/10 other values of j. In turn, since our graph is such

that the edges of each colour form a simple graph, notice that this gives us the desired consequence. Now,

let then j be such that there are at least k/16 paths P1, P2 . . . given by Claim 4.11 which are each entirely

contained in some block of F and whose C ′-edges are repeated in at least n1/10 colours in C ′. Take some

i and suppose P
(i)
1 , P

(i)
2 , . . . are those which are contained in the block Bi. Precisely, the properties of

these paths (i.e., their endpoints are outside ∪iM
′
i) ensure that we can apply Lemma 4.8 (to the block

(Bi,Mi)) and add an endpoint of each of these paths to Bi so that it becomes a (C ′, t, r + 10n/k)-block

for M . Since all the paths are disjoint, we can do this to every block and therefore, construct the desired

family F ′ - note indeed, that we end up adding at least k/16 vertices and so, |F ′| ≥ |F|+ k/16.

Secondly, suppose that for at least s/4 of the j’s, at least k/8 of the paths given by Claim 4.11 are

such that one of its extremal edges, i.e., its first or last edge, has one endpoint in V (M \M(F)) and the

other in V (F). In particular, there are at least k/8 edges of Nj with one endpoint in V (M \M(F)) and

the other in V (F). Define first the set R to consist of those vertices x ∈ V (M \ M(F)) with at least
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n1/10 many distinct C ′-neighbours in V (F) - this will be a set of forbidden vertices and we will increase

it throughout the process. At the moment, the fact that Option 3 does not hold along with the first

deletion process done at the start of the proof, gives that |R| < k/32. We also define first a set B′
j := ∅

for each j. Now, while |R| < k/16, we repeat the following operation. For each of the at least s/4 j’s,

at least k/8 − |R| > k/16 of the edges given are disjoint to R. Therefore, by averaging, there exists a

vertex x ∈ V (M \ M(F)) \ R such that m(x) /∈ R is incident on at least s/4 · k/16 · 1/2n = sk/128n

edges of
⋃

j Nj which are disjoint to R. Note further that since m(x) /∈ R, it must have at most n1/10

many distinct C ′-neighbours in V (F). Therefore, recalling that our underlying edge-coloured multigraph

is locally 2-bounded and the edges of each colour form a simple graph, there exists some vertex y ∈ V (F)

such that the pair m(x)y is repeated in at least sk/256n · 1/n1/10 > n1/10 many C ′-colours. Let j be such

that y ∈ Bj and add the vertex x to the set B′
j. Also, insert the vertices x,m(x), y into R in order to

repeat the operation. Note that at the end of the process, we have sets B′
j such that

∑ |B′
j | ≥ k/96, since

at each iteration, three vertices are added to R and one is added to
⋃

B′
j. Furthermore, notice that for

each j, if at some iteration we add a vertex x to B′
j , we also take a vertex y ∈ Bj which was not in R

and insert it into R - this implies that the number of vertices of Bj contained in R increases. Therefore,

we cannot add more than |Bj | vertices into B′
j throughout the whole process, that is, |B′

j | ≤ |Bj | and
so, by construction, Lemma 4.7 ensures that Bj ∪B′

j is a (C ′, t+ (2t+ 1), r + 2)-block for M . Note also

that the family F ′ consisting of the blocks Bj ∪B′
j is indeed a family of disjoint (C ′, 3t+ 1, r + 2)-blocks

for M . This is the case since at each iteration of the process, whenever a vertex x ∈ V (M \ M(F))

is inserted into R, the vertex m(x) is also inserted. Therefore, in the end, there will never be an edge

xm(x) ∈ M such that the vertices x,m(x) belong to different sets B′
j and so, the resulting blocks Bj ∪B′

j

will precisely be disjoint blocks because the matchings M(Bj ∪B′
j) are disjoint. Note finally that we also

have |F ′| ≥ |F|+∑ |B′
j| ≥ |F|+ k/96.

4.3 Proof of Theorem 4.1

We are now ready to prove our weak asymptotic result. Let G be a (n, 2n+2m+n3/4,m)-multigraph, M

be a maximal rainbow matching in G and suppose, for contradiction sake, that |M | < n− 1001n/
√
log n.

Let V0 denote the set of vertices not used in M and C0 denote the set of colours not in C(M). We will

describe a process which will allow us to essentially cover the whole vertex set with small blocks and

achieve a contradiction. The process goes as follows.

To start, let us set M0 := M , G0 := G and F0 to be the collection of all singleton sets {v} with v ∈ V0,

which is a family of disjoint (∅, 0, 0)-blocks for M0 in G0 and has |F0| = |V0|. We will refer to this as

step 0. In general, the situation will be as follows after step i ≥ 0 is completed. In our current graph

Gi, we have a rainbow matching Mi ⊆ M , a set of colours C0 ⊆ Ci−1 along with a family Fi of disjoint

(Ci−1, 4
i, i

√
log n/100)-blocks for Mi in Gi, with V (Gi) \ V (Mi) ⊆ V (Fi) and |Fi| ≥ 10in√

logn
+ |V0|. We

will later show that provided that i ≤ √
log n, we can apply Lemma 4.9 to the graph Gi and the rainbow

matching Mi, the family Fi and the set of colours Ci−1, and be assured that none of the first two options

hold. This being the case, step i+ 1 will go as described next, depending on which option of the lemma

holds.

If Option 3 holds - then there exist at least 20n√
logn

vertices v ∈ V (Mi \ Mi(Fi)) with the property

that there are at least n1/10 many distinct x ∈ V (Fi) such that the edges m(v)x have distinct colours

in Ci−1 ∪ C(Fi) and the colour of each m(v)x does not belong to the block in Fi containing x. Let us

take a subset V ′
i+1 of these vertices so that m(V ′

i+1) ∩ V ′
i+1 = ∅ and |V ′

i+1| ≥ 10n√
logn

. We then delete

the vertices m(V ′
i+1) to form the new graph Gi+1 := Gi − m(V ′

i+1). We also then take a new matching

Mi+1 := Mi \ {vm(v) : v ∈ V ′
i+1}, define Ci := Ci−1 ∪ C(Fi) and define Fi+1 := Fi ∪

⋃

v∈V ′

i+1
{v}. Note

16



that Fi+1 is a family of (Ci−1, 4
i, i

√
log n/100)-blocks for Mi+1 in Gi+1 (in particular, it is a family of

(Ci, 4
i+1, (i + 1)

√
log n/100)-blocks) and has V (Gi+1) \ V (Mi+1) ⊆ V (Fi+1) and |Fi+1| ≥ |Fi|+ |V ′

i+1| ≥
10(i+1)n√

logn
+ |V0|.

If Option 4 holds - then we let Ci := Ci−1∪C(Fi) and take a family Fi � Fi+1 of disjoint (Ci, 4
i+1, (i+

1)
√
log n/100)-blocks for Mi in Gi such that |Fi+1| ≥ |Fi| + 10n√

logn
≥ 10(i+1)n√

logn
+ |V0|. We then take

Mi+1 := Mi, Gi+1 := Gi and note that V (Gi+1) \ V (Mi+1) ⊆ V (Fi+1).

Now that the process is fully described, let us explain why showing that it is successful while i ≤ √
log n

constitutes a contradiction, and thus, a proof of Theorem 4.1. Indeed, note that if we are able to achieve

step i = ⌊√log n⌋ and complete it, we have, as described above, that |Fi| ≥ 10in√
logn

+ |V0| > |V (M)|+ |V0|.
In turn, the total number of vertices in G is precisely |V (M)|+ |V0|, so we get a contradiction to V (Fi) ⊆
V (G). Let us now define the following property in the original graph G.

Property Pi - Let U ⊆ V (Fi) and R ⊆ Ci−1 ∪ C(Fi) be sets of size at most n1/10/(log n)2i such that

no two members of U ∪R belong to the same block in Fi. Let also B1, B2, . . . ∈ Fi be a collection of at

most n1/10/(log n)2i many blocks such that U ∪ R is disjoint to
⋃

j V (Mi(Bj)) ∪
⋃

j C(Bj). Then, there

is a maximal rainbow matching M ′ in G which avoids vertices in U and colours in R, and such that

(Mi \Mi(Fi)) ∪
⋃

j Mi(Bj) ⊆ M ′.

To finish the proof, we will use this property to show that for each i ≤ √
log n, if property Pi holds after

step i is completed, then this implies that step i + 1 can be successfully done and after it is completed,

property Pi+1 holds. Note trivially that property P0 holds after step 0 (taking M ′ = M always). Take

now some i ≤ √
log n and assume that property Pi holds after step i is completed. Recall from the

description of step i+1, that all that is needed to ensure that it can be done, is that the first two options

of Lemma 4.9 do not hold for the graph Gi, the rainbow matching Mi, the family Fi and the colours Ci−1.

The first option not holding follows from Corollary 4.5. Indeed, note that in the graph Gi, each colour

is a disjoint union of non-trivial cliques with at least 2n + 2m + n3/4 − 2|M \Mi| vertices. This follows

since precisely by construction, at most |M \Mi| vertices of G have been deleted up to step i. Hence, Gi

is a (n, 2(|Mi| + |C0|) + 2m + n3/4,m)-multigraph and so, we can apply Corollary 4.5 to the matchings

Mi(Fi) ⊆ Mi in order to ensure that there are at least |C0|1/4 > n1/5 log n many edge-disjoint matchings

of size |Mi(Fi)| + |C0| − n3/4 ≥ |Mi(Fi)| + 1000n√
logn

using colours in C0 ∪ C(Fi) ⊆ Ci−1 ∪ C(Fi) and edges

not contained in V (Mi \ Mi(Fi)). For the second option of Lemma 4.9, suppose there is such an edge

e = xy of some colour c such that x, y belong to two distinct blocks in Fi and c ∈ Ci−1 ∪C(Fi) does not

belong to any of the blocks containing x, y. Then, applying property Pi with U = {x, y}, R = {c} implies

that there is a maximal rainbow matching M ′ in G avoiding the vertices x, y and the colour c. But then

M ′ ∪ {e} contradicts the maximality of M ′. Concluding we now know that step i + 1 can be done and

goes as described earlier. To finish, we now show the following.

Lemma. Property Pi+1 holds after step i+ 1 is completed.

Proof. Naturally, we divide the proof into two cases. First, let us suppose that after step i, when

Lemma 4.9 was applied, Option 3 held. The reader might want to refer back to the description of our

process in order to recall how step i + 1 goes in this case. Let then U ⊆ V (Fi+1) = V ′
i+1 ∪ V (Fi) and

R ⊆ Ci∪C(Fi+1) = Ci−1∪C(Fi) be of size at most n1/10/(log n)2i+2 and such that no two members of U∪R
belong to the same block in Fi+1. Let also B1, B2, . . . ∈ Fi+1 be a collection of at most n1/10/(log n)2i+2

many blocks such that U ∪R is disjoint to
⋃

j V (Mi+1(Bj))∪
⋃

j C(Bj) =
⋃

j V (Mi(Bj))∪
⋃

j C(Bj). We

now check that we can find a maximal rainbow matching M ′ which ensures the validity of property Pi+1.

In order to do so, let us first repeat here the important characteristics of the vertices in V ′
i+1 - these

are vertices v for which there are at least n1/10 many distinct x ∈ V (Fi) such that the edges m(v)x have
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distinct colours in Ci−1 ∪C(Fi); moreover, for each x, that colour of m(v)x does not belong to the block

in Fi which contains x. Now, since i ≤ √
log n, we have

n1/10 > 10 · (|U |+ |R|) · (2 · 4i + 1) ≥ 10 · (|U |+ |R|) · max
B∈Fi

|B| (1)

and thus, notice that these characteristics allow us to find a collection of distinct vertices {wu : u ∈
U ∩ V ′

i+1} ⊆ V (Fi) \ U and distinct colours {cu : u ∈ U ∩ V ′
i+1} ⊆ (Ci−1 ∪ C(Fi)) \R with the following

properties:

1. Each edge m(u)wu is cu-coloured.

2. No two members of {wu : u ∈ U ∩ V ′
i+1} ∪ {cu : u ∈ U ∩ V ′

i+1} belong to the same block in Fi.

3. No colour cu or vertex wu belongs to the same block in Fi that a member of (U \ V ′
i+1)∪R belongs

to.

Indeed, since each block in Fi is small enough so that (1) occurs, we can choose the elements cu, wu greedily.

Moreover, we are able to ensure the second property in its full generality since the characteristics of the

vertices in V ′
i+1 allow us to have, for each u, that wu and cu do not belong to the same block.

Let then U ′ := (U\V ′
i+1)∪{wu : u ∈ U∩V ′

i+1} ⊆ V (Fi) andR′ := R∪{cu : u ∈ U∩V ′
i+1} ⊆ Ci−1∪C(Fi).

Note that from the properties listed above, these are such that no two members of U ′ ∪R′ belong to the

same block in Fi. Moreover, both these sets have size at most 2(|U | + |R|) < n1/10/(log n)2i, and so,

property Pi holding after step i ensures that there exists a maximal rainbow matching M ′′ in G which

avoids U ′, R′ and with

(Mi \Mi(Fi)) ∪
⋃

j:Bj∈Fi

Mi(Bj) ⊆ M ′′.

Now define the rainbow matching M ′ := (M ′′ \ {um(u) : u ∈ U ∩ V ′
i+1})∪ {m(u)wu : u ∈ U ∩ V ′

i+1}, with
naturally, each edge m(u)wu being assigned the colour cu. We check that it in fact ensures the validity of

property Pi+1. First, note indeed that it is a matching since M ′′ avoids all vertices wu and moreover, each

edge um(u) with u ∈ V ′
i+1 belongs to Mi \Mi(Fi) and thus, to M ′′. It is also clearly rainbow because of

the previous choice of distinct colours cu, which M ′′ avoids. Further, we trivially have |M ′| ≥ |M ′′| and
so it is maximal. Recall also that the vertices wu do not belong to U and the colours cu do not belong to

R. Therefore, since M ′′ avoids U ′ ∪R′, this implies that M ′ indeed avoids U ∪R. Finally, we check that

Mi+1 \Mi+1(Fi+1) ⊆ M ′ and Mi+1(Bj) ⊆ M ′ for each j. The former holds because Mi+1 \Mi+1(Fi+1) is

contained in Mi \Mi(Fi) ⊆ M ′′ and does not contain any edge vm(v) with v ∈ V ′
i+1, which are precisely

the only type of edges we remove from M ′′ to form M ′. For the latter, note that in this case of Option

3 holding, for each j with Bj ∈ Fi we have that Mi+1(Bj) is equal to Mi(Bj), which in turn is contained

in M ′′. Since Bj ∈ Fi means that no edge vm(v) with v ∈ V ′
i+1 belongs to Mi(Bj), we must also have

that Mi(Bj) is contained in M ′. On the other hand, if Bj /∈ Fi then Bj consists of a singleton set {v} for

some vertex v ∈ V ′
i+1 which is then outside Mi+1 and so, Mi+1(Bj) = ∅.

Now, let us suppose that Option 4 held and let U ⊆ V (Fi+1) and R ⊆ Ci ∪ C(Fi+1) be of size

at most n1/10/(log n)2i+2 and such that no two members in U ∪ R belong to the same block in Fi+1.

Let also B1, B2, . . . ∈ Fi+1 be a collection of at most n1/10/(log n)2i+2 many blocks such that U ∪ R

is disjoint to
⋃

j V (Mi+1(Bj)) ∪
⋃

j C(Bj) =
⋃

j V (Mi(Bj)) ∪
⋃

j C(Bj). First, recalling what occurs

in this case, our graph and rainbow matching remain the same, i.e., Mi+1 = Mi and Gi+1 = Gi, and

we only add some vertices to the present family of blocks resulting in a family Fi+1 � Fi of disjoint

(Ci, 4
i+1, (i+1)

√
log n/100)-blocks. Furthermore, notice that since every vertex outsideMi already belongs

to a block in Fi (and so, it has the maximal number of blocks possible, because each block must contain

a unique vertex outside Mi), we can say that the family Fi consists of blocks B
′ ⊆ B for each B ∈ Fi+1.
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Next, each u ∈ U\V (Fi) belongs to a unique block in Fi+1, which we denote as Bu. By definition of this

block, there then exists a Mi+1(Bu)−Ci−. . .−Mi+1(Bu)−Ci path Pu of length at most (i+1)
√
log n/100,

starting at u and ending at vu := vBu = vB′

u
(recall this is the vertex of the block which is contained

outside Mi), whose Ci-edges are each repeated in at least n1/10 many colours of Ci. Similarly, for each

colour c ∈ R \ Ci, belonging to a unique block Bc ∈ Fi+1, there exists a mc − Ci − . . . −Mi+1(Bc) − Ci

path Pc of length at most (i+1)
√
log n/100 starting at the edge of Mi+1 of colour c, which we denote by

mc, ending at vc := vBc = vB′

c
, and whose Ci-edges are each repeated in at least n1/10 many colours of

Ci. Recall also that one of the original assumptions is that no two members of U ∪R belong to the same

block in Fi+1. Therefore, this is preserved to the family Fi in the following sense: the blocks B′
u, B

′
c ∈ Fi

are all distinct and distinct to the blocks in Fi that the vertices in U ∩ V (Fi) and the colours in R ∩ Ci

belong to. Now, since i ≤ √
log n and thus

n1/10 > 2(|U | + |R|) · (i+ 1)
√

log n/100 · 4i ≥
(

2|U |+ 2|R|+
∑

u

|Pu|+
∑

c

|Pc|
)

· max
B∈Fi

|C(B)|, (2)

we can then greedily pick distinct Ci-colours for the Ci-edges in the paths Pu, Pc so that the set composed

by these colours, which we denote as C∗ ⊆ Ci, is rainbow and has the following properties:

1. No two members of the set C∗ belong to the same block in Fi.

2. No member of C∗ belongs to a block B′
u with u ∈ U or a block B′

c with c ∈ R.

3. No member of C∗ belongs to one of the blocks B′
1, B

′
2, . . ..

Given these, let now U ′ := (U ∩V (Fi))∪{vc : c ∈ R \Ci}∪ {vu : u ∈ U \V (Fi)} and R′ := (R∩Ci)∪C∗.
Notice that by the three properties above, no two members of U ′ ∪ R′ belong to the same block in Fi.

Also, since the vertices vu = vBu , vc = vBc with u ∈ U \V (Fi) and c ∈ R\Ci are all contained outside Mi,

they are disjoint to the sets V (Mi(B
′
u)), V (Mi(B

′
c)), V (Mi(B

′
j)). Therefore, U ′ ∪ R′ is disjoint to these

sets as well as to the sets C(B′
u), C(B′

c), C(B′
j) (because of the properties of C∗ above). Therefore, we

can apply property Pi since further, U ′ and R′ are both of size at most 2|U |+2|R|+∑u |Pu|+
∑

c |Pc| ≤
(|U |+ |R|)(2 + (i+ 1)

√
log n/100) ≤ n1/10/(log n)2i.

Then, property Pi holding after step i ensures that there exists a maximal rainbow matching M ′′ in
G which avoids U ′, R′ and with

(Mi \Mi(Fi)) ∪
⋃

j

Mi(B
′
j) ∪

⋃

u

Mi(B
′
u) ∪

⋃

c

Mi(B
′
c) ⊆ M ′′.

We claim that we can now use all the disjoint paths Pu, Pc to form a maximal rainbow matching M ′

with the desired properties ensuring the validity of property Pi+1. Indeed, note first that for each u ∈
U \ V (Fi), the matching M ′′ avoids the vertex vu and uses all the edges in Mi+1(Bu) since Mi+1(Bu) ⊆
(Mi \Mi(Fi)) ∪ Mi(B

′
u). The equivalent happens for the colours c ∈ R \ Ci. Therefore, since also M ′′

avoids the colours in C∗, we can form a maximal rainbow matching M ′ by substituting the edges of M ′′

used in the paths Pu, Pc by the rest of the edges in these paths (which we have already picked distinct

colours for when constructing the set C∗). Note now that because of this construction, M ′ avoids all

the vertices u ∈ U \ V (Fi) and all the colours c ∈ R \ Ci, as well as the vertices in U ∩ V (Fi) and

colours in R∩Ci. Further, all the edges in Mi+1 \Mi+1(Fi+1) belong to M ′ since this set is contained in

Mi \Mi(Fi) ⊆ M ′′ and is disjoint to the paths Pu, Pc. Also, to conclude, all the edges in the matchings

Mi+1(B1),Mi+1(B2), . . . are in M ′ since each set Mi+1(Bj) is contained in (Mi \Mi(Fi)) ∪Mi(B
′
j) and

is disjoint to the paths Pu, Pc. The latter indeed occurs because by the initial assumption, no member of

U ∪R belongs to V (Mi(B
′
j)).
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4.4 A lower bound

As we indicated in the introduction, to finish our study of the Grinblat multiplicity problem, we give the

following construction.

Proposition 4.12. Let d be an integer and n > 10d3 log d such that d|n − 1. Then, there exists a

(n, (2 + 1/d) (n − 1), n/2d +O
(

n/d2
)

)-multigraph with no matching of size n.

Proof. Let H be a n-edge-coloured multigraph on the vertex set {1, . . . , 2d + 1} constructed by doing

the following: independently for each colour c, pick uniformly at random a spanning subgraph Hc ⊆ H

consisting of a disjoint union of d−1 edges and one triangle; set the edges of colour c to be the edges of Hc.

Note that the multiplicity of each edge e ∈ H behaves like a Bin(n, p) random variable with p := d+2
d(2d+1) .

Therefore, since there are O(d2) edges, whp the multiplicity of H is at most n/2d+O
(

n/d2
)

. Now, let G

be the disjoint union of n−1
d copies of H. Since |H| = 2d+1, it has no matching of size d+1 and thus, G

has no matching of size n. Moreover, by construction of H, each colour has at least n−1
d · (2d+1) vertices

in its colour class.

Note that for multiplicity m = εn with ε > n−1/3+o(1), this gives an example of (n, 2n+2εn−O(ε2n), εn)-

multigraphs without the desired rainbow matching. This shows that the error term 2m in Theorem 1.8

is asymptotically tight.

5 Concluding remarks

In this paper we obtained improved bounds for a wide variety of rainbow matching problems, resolving

several conjectures. For this, we introduced an effective method for proving strong asymptotic results

when their weak versions are known. The most natural open problem is to obtain even better error terms

in all the problems considered here.

For the Aharoni-Berger conjecture(s), we now have polynomial bounds on the error term in both the

strong and weak asymptotic versions. This is quite far from the best bounds in Ryser’s conjecture, the

main problem motivating the Aharoni-Berger conjecture, where we know (see [19]) how to find rainbow

matchings of size n − O(log n/ log log n). It would then be interesting to prove sub-polynomial bounds

for the Aharoni-Berger conjecture(s) as well as for the other problems considered in this paper. Note

that our sampling trick currently requires error terms to be polynomial. Thus, having a weak asymptotic

result with sub-polynomial error term will not immediately imply a sub-polynomial error term for the

corresponding strong asymptotic version.

For Alspach’s conjecture, we can actually prove a sub-polynomial bound in the weak asymptotic.

Proposition 5.1. Let G be a 2-factorized graph with n colours. Then there is a rainbow matching of size

n−O(log n/ log log n).

Proof sketch. By Theorem 1.10, we can assume that N := |G| ≤ 2n(1 + n−0.24). This means that G

is essentially a complete graph. Let the vertices of G be v1, . . . , vN . Randomly orient the graph so that

each colour is a union of directed cycles (for each cycle choosing its direction independently). Randomly

partition V (G) into two sets X,Y with each vertex ending up in each set with probability 1/2. For each

colour c we delete all edges which aren’t directed from X to Y . Call the resulting graph H.

Using standard probabilistic arguments, one can show that for some ε > 0, with positive probability

n ≤ |X|, |Y | ≤ n + n1−ε, all vertices have dH(v) = n/2 ± n1−ε, dH(u, v) ≤ n/4 + n1−ε, and all colours

c, c′ have eH(c) = n/2 ± n1−ε and aH(c, c′), bH(c, c′) = n/4 + n1−ε (where aH(c, c′)/bH(c, c′) denote the
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number of vertices in A/B incident to edges of both colours c and c′ in H). Next we apply Corollary 4.6

from [19] which essentially says that graphs with these properties contain a rainbow matching of size

n−O(log n/ log log n) (actually Corollary 4.6 has the slightly stronger assumption dH(u, v) = n/4±n1−ε

on the graph; however it can be checked that this assumption is never fully used in the proof, and just

the upper bound suffices on these quantities).
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