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Abstract

Bilevel optimization problems are receiving
increasing attention in machine learning as
they provide a natural framework for hyper-
parameter optimization and meta-learning.
A key step to tackle these problems is the
efficient computation of the gradient of the
upper-level objective (hypergradient). In this
work, we study stochastic approximation
schemes for the hypergradient, which are im-
portant when the lower-level problem is em-
pirical risk minimization on a large dataset.
The method that we propose is a stochastic
variant of the approximate implicit differen-
tiation approach in (Pedregosa, 2016). We
provide bounds for the mean square error of
the hypergradient approximation, under the
assumption that the lower-level problem is
accessible only through a stochastic mapping
which is a contraction in expectation. In par-
ticular, our main bound is agnostic to the
choice of the two stochastic solvers employed
by the procedure. We provide numerical ex-
periments to support our theoretical analysis
and to show the advantage of using stochastic
hypergradients in practice.

1 Introduction

In this paper we study the following bilevel problem

min
λ∈Λ

f(λ) := E(w(λ), λ)

subject to w(λ) = Φ(w(λ), λ),
(1)

which at the lower-level incorporates a (parametric)
fixed-point equation. This problem is paramount
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in many applications, especially in machine learn-
ing and statistics, including hyperparameter optimiza-
tion (Maclaurin et al., 2015; Franceschi et al., 2017;
Liu et al., 2018; Lorraine et al., 2019; Elsken et al.,
2019), meta-learning (Andrychowicz et al., 2016; Finn
et al., 2017; Franceschi et al., 2018), and graph and re-
current neural networks (Almeida, 1987; Pineda, 1987;
Scarselli et al., 2008).

In dealing with problem (1), one critical issue is to de-
vise efficient algorithms to compute the (hyper) gra-
dient of the function f , so as to allow using gradi-
ent based approaches to find a solution. The compu-
tation of the hypergradient via approximate implicit
differentiation (AID) (Pedregosa, 2016) requires one
to solve two subproblems: (i) the lower-level prob-
lem in (1) and (ii) a linear system which arises from
the implicit expression for ∇f(λ). However, espe-
cially in large scale scenarios, solving those subprob-
lems exactly might either be impossible or too expen-
sive, hence, iterative approximation methods are often
used. In (Grazzi et al., 2020), under the assumption
that, for every λ ∈ Λ, the mapping Φ(·, λ) in (1) is
a contraction, a comprehensive analysis of the itera-
tion complexity of the hypergradient computation for
several popular deterministic algorithms was provided.
Here, instead, we address such iteration complexity for
stochastic methods. This study is of fundamental im-
portance since in many practical scenarios Φ(w, λ) is
expensive to compute, e.g., when it has a sum struc-
ture with a large number of terms. In this situation
stochastic approaches become the method of choice.
For example, in large scale hyperparameter optimiza-
tion and neural architecture search (Maclaurin et al.,
2015; Lorraine et al., 2019; Liu et al., 2018), solving
the lower-level problem requires minimizing a training
objective over a large dataset, which is usually done
approximately through SGD and its extensions. Our
contributions can be summarized as follows.

• We devise a stochastic estimator ∇̂f(λ) of the true
gradient, based on the AID technique, together
with an explicit bound for the related mean square
error. The bound is agnostic with respect to the
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stochastic methods solving the related subprob-
lems, so that can be applied to several algorithmic
solutions; see Theorem 3.4.

• We study the convergence of a general stochastic
fixed-point iteration method which extends and
improves previous analysis of SGD for strongly
convex functions and can be applied to solve both
subproblems associated to the AID approach.
These results, which are interesting in their own
right, are given in Theorems 4.1 and 4.2.

Proofs of the results presented in the paper can be
found in the supplementary material.

Related Work Pedregosa (2016) introduced an ef-
ficient class of deterministic methods to compute the
hypergradient through AID together with asymptotic
convergence results. Rajeswaran et al. (2019); Grazzi
et al. (2020) extended this analysis providing itera-
tion complexity bounds. AID methods require to it-
eratively evaluate Φ and its derivatives. In this work,
we extend these methods by replacing those exact eval-
uations with unbiased stochastic approximations and
provide iteration complexity bounds in this scenario.
Another class of methods (ITD) computes the hyper-
gradient by differentiating through the inner optimiza-
tion scheme (Maclaurin et al., 2015; Franceschi et al.,
2017, 2018). Iteration complexity results for the deter-
ministic case are given in (Grazzi et al., 2020), while we
are not aware of any convergence results in the stochas-
tic setting. Here, we focus entirely on AID methods,
leaving the investigation of stochastic ITD methods for
future work.
An interesting special case of the bilevel problem (1) is
when f(λ) = minw E(w, λ). This scenario occurs for
example in regularized meta-learning, where the prop-
erties of a simple stochastic hypergradient estimator
have been studied extensively (Denevi et al., 2019a,b;
Zhou et al., 2019). In this setting, Ablin et al. (2020)
analyze, among others, implicit differentiation tech-
niques for approximating the gradient of f , including
stochastic approaches. However, the proposed estima-
tor assumes to solve the related linear system exactly,
which is often impractical. In this work, we focus on
the more general setting of bilevel problem (1), devis-
ing algorithmic solutions that are fully stochastic, in
the sense that also the subproblem involving the linear
system is solved by a stochastic method.
Finally, stochastic algorithms for hypergradient com-
putation in bilevel optimization problems have been
studied in (Couellan and Wang, 2016; Ghadimi and
Wang, 2018). There, the authors provide convergence
rates for a whole bilevel optimization procedure using
stochastic oracles both from the upper-level and the
lower-level objectives. In particular, the method used

by Ghadimi and Wang (2018) to approximate the hy-
pergradient can be seen as a special case of our method
with two particular choices of the stochastic solvers.1

Notation We denote by ‖·‖ either the Euclidean
norm or the spectral norm (when applied to matri-
ces). The transpose and the inverse of a given ma-
trix A, is denoted by A> and A−1 respectively. For
a real-valued function g : Rn × Rm → R, we denote
by ∇1g(x, y) ∈ Rn and ∇2g(x, y) ∈ Rm, the partial
derivatives w.r.t. the first and second variable respec-
tively. For a vector-valued function h : Rn×Rm → Rk
we denote by ∂1h(x, y) ∈ Rk×n and ∂2h(x, y) ∈ Rk×m
the partial Jacobians w.r.t. the first and second vari-
ables respectively. For a random variable X we de-
note by E[X] and V[X] its expectation and variance
respectively. Finally, given two random variables X
and Y , the conditional variance of X given Y is
V[X | Y ] := E[‖X − E[X | Y ]‖2 | Y ]. In the following,
for the reader’s convenience, we provide a list of the
main functions and constants used in the subsequent
analysis.

Table 1: Table of Notation

Symbol(s) Description

E Upper-level objective
Φ Fixed-point map

Φ̂ Unbiased estimator of Φ
ˆ̀ Estimator of the lower-level objective
qλ Contraction constant of Φ(·, λ)
LE,λ Lipschitz constant of E(·, λ)

ν1,λ, ν2,λ Lipschitz const. of ∂1Φ(·, λ), ∂2Φ(·, λ)
µ1,λ, µ2,λ Lipschitz const. of ∇1E(·, λ),∇2E(·, λ)

LΦ̃,λ Lipschitz const. of Φ̂(·, λ, ζ)
m2,λ Bound on the variance of ∂2Φ̂(w, λ, ζ)

ρλ(t), σλ(k)
Convergence rates for the two
subproblems: t, k are the number of
iterations of the solvers.

2 Stochastic Hypergradient
Approximation

In this section we describe a general method for gen-
erating a stochastic approximation of the (hyper) gra-
dient of f in (1). We assume that Φ is defined by an
expectation of a given function Φ̂, that is, we consider
bilevel problems of type (1) with

Φ(w, λ) = E[Φ̂(w(λ), λ, ζ)], (2)

1Specifically they use SGD with decreasing step sizes for
the lower-level problem (which is a minimization problem)
and, for the linear system, a stochastic routine derived from
the Neumann series approximation of the matrix inverse.
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where ζ is a random variable taking values in a suitable
measurable space. A special case of (1)-(2), which
occurs often in machine learning, is

min
λ∈Λ

f(λ) := E(w(λ), λ)

subject to w(λ) = argminwE[ˆ̀(w, λ, ζ)],
(3)

where w 7→ E[ˆ̀(w, λ, ζ)] is strongly convex and Lips-
chitz smooth, for every λ ∈ Λ. Indeed, (3) follows from

(1) and (2) by choosing Φ̂(w, λ, ζ) = w−αλ∇ˆ̀(w, λ, ζ),
for any αλ > 0.

In the rest of the paper we will consider the following
assumptions2.

Assumption A. The set Λ ⊆ Rm is closed and
convex and the mappings Φ: Rd × Rm → Rd and
E : Rd × Rm → R are differentiable. For every λ ∈ Λ,
we assume

(i) Φ(·, λ) is a contraction, i.e., ‖∂1Φ(w, λ)‖ ≤ qλ for
some qλ < 1 and for all w ∈ Rd.

(ii) ∂1Φ(·, λ) and ∂2Φ(·, λ) are Lipschitz continuous
with constants ν1,λ and ν2,λ respectively.

(iii) ∇1E(·, λ) and ∇2E(·, λ) are Lipschitz continuous
with constants µ1,λ and µ2,λ respectively.

(iv) E(·,λ) is Lipschitz continuous with constant LE,λ.

Under Assumption A, Φ(·, λ) has a unique fixed point
w(λ) and the hypergradient is given by

∇f(λ) = ∇2E(w(λ), λ)

+ ∂2Φ(w(λ), λ)>v(w(λ), λ),
(4)

where,

v(w, λ) :=
(
I − ∂1Φ(w, λ)>

)−1∇1E(w, λ). (5)

This formula follows by differentiating the fixed point
conditions for the lower-level problem and noting that,
because of Assumption A(i), I − ∂1Φ(w, λ)> is invert-
ible (see Lemma B.6).

We also consider the following properties for Φ̂.

Assumption B. The random variable ζ takes values
in measurable space Z and Φ̂ : Rd×Rm×Z 7→ Rd is a
measurable function, differentiable w.r.t. the first two
arguments, and such that, for all w ∈ Rd and λ ∈ Λ

(i) E[Φ̂(w, λ, ζ)]=Φ(w, λ) and E[‖Φ̂(w, λ, ζ)‖2]<∞.

(ii) For j ∈ {1, 2}, E[∂jΦ̂(w, λ, ζ)] = ∂jE[Φ̂(w, λ, ζ)]

and E[‖∂jΦ̂(w, λ, ζ)‖2] < +∞.

2Similar assumptions, except for Assumption A(iv), are
also considered in Grazzi et al. (2020).

Algorithm 1: Stochastic Implicit Differentiation
(SID)

1. Let t ∈ N and compute wt(λ) by t steps of a
stochastic algorithm that approximates w(λ).

2. Let k ∈ N and Compute vk(wt(λ), λ) by k steps
of a stochastic solver for the linear system

(I − ∂1Φ(wt(λ), λ)>)v = ∇1E(wt(λ), λ). (6)

3. Compute the approximate gradient as

∇̂f(λ) :=∇2E(wt(λ), λ)

+ ∂2Φ̂(wt(λ), λ, ζ)>vk(wt(λ), λ).

(iii) For every z ∈ Z, ‖∂1Φ̂(w, λ, z)‖ ≤ LΦ̃,λ for some
constant LΦ̃,λ ≥ 0 (which does not depend on w).

(iv) V[∂2Φ̂(w, λ, ζ)] ≤ m2,λ, for some m2,λ ≥ 0 (which
does not depend on w).

Motivated by (4)-(5), we consider to have at our dis-
posal two stochastic solvers which exploit Φ̂: one
for the lower-level problem in (1) which generates a
stochastic process wt(λ) estimating w(λ) and another
for the linear system

(I − ∂1Φ(w, λ)>)v = ∇1E(w, λ), with w ∈ Rd, (7)

generating a stochastic process vk(w, λ) approximat-
ing the solution v(w, λ) of (7). Then, the stochastic
approximation to the hypergradient is defined as

∇̂f(λ) :=∇2E(wt(λ), λ)

+ ∂2Φ̂(wt(λ), λ, ζ)>vk(wt(λ), λ).
(8)

We also suppose that, for every w ∈ Rd, wt(λ),
vk(w, λ), and ζ are mutually independent. The proce-
dure, which we call SID, is summarized in Algorithm 1.
In Section 5 we will give a way to generate the stochas-
tic processes (wt(λ))t∈N and (vk(w, λ)λ)k∈N.

3 Mean Square Error Bound for SID

In this section, we derive a bound for the mean square
error of the SID estimator, i.e.,

MSE∇̂f := E[‖∇̂f(λ)−∇f(λ)‖2]. (9)

To that purpose, we require the stochastic procedures
at point 1 and 2 of Algorithm 1 to have non-asymptotic
convergence rates in mean square. This is the content
of the following assumption.



Convergence Properties of Stochastic Hypergradients

Assumption C. For every λ ∈ Λ, t, k ≥ 1 and w ∈
Rd, the random variables vk(w, λ), wt(λ) and ζ are
mutually independent and

E[‖wt(λ)− w(λ)‖2] ≤ ρλ(t)

E[‖vk(w, λ)− v(w, λ)‖2] ≤ σλ(k),

where ρλ : N 7→ R+ and σλ : N 7→ R+.

This assumption is often satisfied in applications, e.g.,
in problems of type (3), when the lower-level objective
is strongly convex and Lipschitz smooth. In Section 4
we describe a general stochastic fixed-point method
from which, in Section 5, we will derive a stochastic
implicit differentiation method featuring the rates re-
quired in Assumption C.

In order to analyze the quantity in (9), we start
with the standard bias-variance decomposition (see
Lemma B.2) as follows

MSE∇̂f = ‖E[∇̂f(λ)]−∇f(λ)‖2︸ ︷︷ ︸
bias

+V[∇̂f(λ)]︸ ︷︷ ︸
variance

.
(10)

Then, using the law of total variance (see Lemma B.4),
we write the mean square error as below

MSE∇̂f = ‖E[∇̂f(λ)]−∇f(λ)‖2︸ ︷︷ ︸
bias

+ E[V[∇̂f(λ) | wt(λ)]] + V[E[∇̂f(λ) | wt(λ)]]︸ ︷︷ ︸
variance

.
(11)

In the following we will bound each term on the right-
hand side of (11) individually. The next result serves
to control the bias term.

Theorem 3.1. Suppose that Assumptions A,B, and
C are satisfied. Let λ ∈ Λ, t, k ∈ N and set

∆̂w := ‖wt(λ)− w(λ)‖, LΦ,λ := ‖∂2Φ(w(λ), λ)‖,

c1,λ = µ2,λ +
µ1,λLΦ,λ + ν2,λLE,λ

1− qλ
+
ν1,λLE,λLΦ,λ

(1− qλ)2
.

Then the following hold.

(i)
∥∥E[∇̂f(λ) | wt(λ)]−∇f(λ)

∥∥
≤ c1,λ∆̂w + LΦ,λ

√
σλ(k) + ν2,λ∆̂w

√
σλ(k).

(ii) ‖E[∇̂f(λ)]−∇f(λ)‖
≤ c1,λ

√
ρλ(t)+LΦ,λ

√
σλ(k)+ν2,λ

√
ρλ(t)

√
σλ(k).

The following two theorems provide bounds for the two
components of the variance in (11).

Theorem 3.2. Suppose that Assumptions A,B, and
C are satisfied. Let λ ∈ Λ, t, k ∈ N and set LΦ,λ :=

‖∂2Φ(w(λ), λ)‖. Then

E
[
V[∇̂f(λ)|wt(λ)]

]
≤ 2

m2,λL
2
E,λ

(1− qλ)2

+ 2(L2
Φ,λ +m2,λ)σλ(k)

+ 2ν2
2,λρλ(t)σλ(k).

(12)

Theorem 3.3. Suppose that Assumptions A,B, and
C are satisfied. Let λ ∈ Λ, and t, k ∈ N. Then

V[E[∇̂f(λ) | wt(λ)]] ≤ 3
(
c21,λρλ(t) + L2

Φ,λσλ(k)

+ ν2
2,λρλ(t)σλ(k)

)
,

where c1,λ and LΦ,λ are defined as in Theorem 3.1.

Finally, combining the above three results, we give the
promised bound on the mean square error for the es-
timator of the hypergradient.

Theorem 3.4 (MSE bound for SID). Suppose that
Assumptions A,B, and C are satisfied. Let λ ∈ Λ, and
t, k ∈ N. Then

MSE∇̂f ≤ 2
m2,λL

2
E,λ

(1− qλ)2
+ 6c21,λρλ(t)

+ 2(4L2
Φ,λ +m2,λ)σλ(k)

+ 8ν2
2,λρλ(t)σλ(k).

(13)

where c1,λ is defined as in Theorem 3.1. In particular,
if limt→∞ ρλ(t) = 0 and limk→∞ σλ(k) = 0, then

lim
t,k→∞

MSE∇̂f ≤ 2
m2,λL

2
E,λ

(1− qλ)2
. (14)

Proof. The statement follows from the decomposition
(11) and Theorems 3.1, 3.2, and 3.3.

In the following we make few comments related to the
above results. First, it follows from (ii) in Theorem 3.1
that, if limt→∞ ρλ(t) = 0 and limk→∞ σλ(k) = 0,
the estimator ∇̂f(λ) is asymptotically unbiased as
t, k → +∞. Next, the bound (13) in Theorem 3.4
provides the iteration complexity of the SID method
(Algorithm 1). This result is a stochastic version of
what was obtained by Grazzi et al. (2020) concern-
ing approximate implicit differentiation methods. Fi-
nally, note that it follows from (14) that the mean
square error cannot be made arbitrarily small unless
the variance term V[∂2Φ̂(w, λ, ζ)] (controlled by m2,λ)
is zero. This may seem a limitation of the method.
However, since SID uses ∂2Φ̂(w, λ, ζ) only once at the
end of the procedure, one could modify the algorithm
by sampling ζ several times so to reduce the vari-
ance of ∂2Φ̂(w, λ, ζ) or, when possible, even compute
∂2Φ(w, λ) exactly, with little increase on the overall
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cost. Additionally, we stress that in several applica-
tions that variance term is zero. Indeed, this occurs
each time Φ̂ is of the form

Φ̂(w, λ, ζ) = Φ̂1(w, ζ) + Φ̂2(w, λ), (15)

meaning that, Φ̂ depends on the random variable ζ and
on the hyperparameter λ in a separate manner. For
instance, this is the case when we want to optimize
the regularization hyperparameters in regularized em-
pirical risk minimization problems, where usually, the
random variable ζ affects only the data term.

4 Stochastic fixed-point iterations

In this section we address the convergence of stochas-
tic fixed-point iteration methods which can be applied
in a similar manner to solve both subproblems in Al-
gorithm 1 (see Section 5). We consider the general
situation of computing the fixed point of a contraction
mapping which is accessible only through a stochas-
tic oracle. The results are inspired by the analysis of
the SGD algorithm for strongly convex and Lipschitz
smooth functions given in (Bottou et al., 2018), but ex-
tended to our more general setting. Indeed, by a more
accurate computation of the contraction constant of
the gradient descent mapping, we are able to improve
the convergence rates and increase the stepsizes given
in the above cited paper. See Corollary 4.1 and the
subsequent remark. We stress that the significance of
the results presented in this section goes beyond the
bilevel setting (1)-(2) and may be of interest per se.

We start with the assumption below.

Assumption D. Let ζ be a random variable with val-
ues in a measurable space Z. Let T : Rd 7→ Rd and
T̂ : Rd ×Z 7→ Rd be such that

(i) ∀w1, w2 ∈ Rd, ‖T (w1)− T (w2)‖ ≤ q‖w1 − w2‖,
with q < 1.

(ii) ∀w ∈ Rd, E[T̂ (w, ζ)] = T (w)

(iii) ∀w ∈ Rd, V[T̂ (w, ζ)] ≤ σ1 + σ2‖T (w)− w‖2.

The above assumptions are in line with those made
by Bottou et al. (2018) for the case of stochastic min-
imization of a strongly convex and Lipschitz smooth
function.

Since T is a contraction, there exists a unique w∗ ∈ Rd
such that

w∗ = T (w∗). (16)

We consider the following random process which cor-
responds to a stochastic version of the Krasnoselskii-
Mann iteration for contractive operators. Let (ζt)t∈N

be a sequence of independent copies of ζ. Then, start-
ing from w0 ∈ Rd we set

(∀ t ∈ N) wt+1 = wt + ηt(T̂ (wt, ζt)− wt). (17)

The following two results provide non-asymptotic con-
vergence rates for the procedure (17) for two different
strategies about the step-sizes ηt.

Theorem 4.1 (Constant step-size). Let Assump-
tion D hold and suppose that ηt = η ∈ R++, for every
t ∈ N, and that

η ≤ 1

1 + σ2
.

Let (wt)t∈N be generated according to algorithm (17)
and set MSEwt := E[‖wt − w∗‖2]. Then, for all t ∈ N,

MSEwt ≤ (1− η(1− q2))t
(

MSEw0 −
ησ1

1− q2

)
+

ησ1

1− q2
.

(18)

In particular, limt→∞MSEwt ≤ ησ1/(1− q2).

Theorem 4.2 (Decreasing step-sizes). Let As-
sumption D hold and suppose that for every t ∈ N

ηt ≤
1

1 + σ2
,

∞∑
t=1

ηt =∞,
∞∑
t=1

η2
t <∞. (19)

Let (wt)t∈N be generated according to Algorithm (17).
Then

wt → w∗ P-a.s.

Moreover, if ηt = β/(γ + t), with β > 1/(1 − q2) and
γ ≥ β(1 + σ2), then we have

E[‖wt − w∗‖2] ≤ c

γ + t
, (20)

where

c := max

{
γE[‖w0 − w∗‖2],

β2σ1

β(1− q2)− 1

}
.

We will now comment on the choice of the stepsizes
in algorithm (17). Theorem 4.1 and 4.2 suggest that
it may be convenient to start the algorithm with a
constant stepsize. Then, once reached a mean square
error approximately less than ησ1/(1 − q2), the step-
sizes should change regime and start decreasing ac-
cording to Theorem 4.2. More precisely, in the first
phase it is recommended to set η = 1/(1 + σ2) in
order to maximize the stepsize. Then, the second
phase should be initialized with w0 such that MSEw0 ≤
σ1/[(1 + σ2)(1− q2)] and γ = β(1 + σ2) so that

γE[‖w0 − w∗‖2] ≤ β2σ1

β(1− q2)− 1
.
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In this situation, c will be dominated by its second
term, which is minimized when β = 2/(1−q2). Similar
suggestions are made in (Bottou et al., 2018).

In the following, partly inspired by the analysis of
Nguyen et al. (2019), we show that, with an additional
Lipschitz assumption on T̂ , which is commonly verified
in practice, Assumption D(iii) on the variance of the
estimator is satisfied. The following Assumption E is
an extension of Assumption 2 in (Nguyen et al., 2019).

Assumption E. There exists LT̂ ≥ 0 such that, for
every w1, w2 ∈ Rd and for every z ∈ Z

‖T̂ (w1, z)− T̂ (w2, z)‖ ≤ LT̂ ‖w1 − w2‖.

Theorem 4.3. Suppose that Assumption E and As-
sumption D(i)(ii) hold. Then Assumption D(iii) holds.
In particular, for every w ∈ Rd,

V[T̂ (w, ζ)] ≤ 2V[T̂ (w∗, ζ)]︸ ︷︷ ︸
σ1

+ 2
L2
T̂

+ q2

(1− q)2︸ ︷︷ ︸
σ2

‖T (w)− w‖2.

We now discuss the popular case of SGD and make a
comparison with the related results by Bottou et al.
(2018). We assume that T̂ (w, ζ) = w − α∇ˆ̀(w, ζ), for
a suitable α > 0. With this choice, algorithm (17)
becomes

(∀ t ∈ N) wt+1 = wt − ηtα∇1`(wt, ζt), (21)

which is exactly stochastic gradient descent. We have
the following assumption on ˆ̀.

Assumption F. ˆ̀ : Rd × Z → R is twice con-
tinuously differentiable w.r.t. the first variable. Let
`(w) := E[ˆ̀(w, ζ)].

(i) `(w) is τ strongly convex and L-smooth

(ii) ∀w ∈ Rd, V[∇ˆ̀(w, ζ)] ≤ σ′1 + σ′2‖∇`(w)‖2.

Corollary 4.1. Let Assumption F hold and let
(wt)t∈N be generated according to algorithm (21) with
ηt = η ≤ 1/(1 + σ′2). Then

E[‖wt − w∗‖2] ≤ rt1
(
E[‖w0 − w∗‖2]− r2

)
+ r2, (22)

where

r1 :=


1− ητ

L

(
2− τ

L

)
if α = 1/L

1− 4
ητL

(L+ τ)2
if α = 2/(L+ τ).

r2 :=


=

ησ′1
τ(2L− τ)

if α = 1/L

ησ′1
τL

if α = 2/(L+ τ).

Moreover, let ηt = β/(γ + t), where

β >


L2

τ(2L− τ)
if α = 1/L

(L+ τ)2

4τL
if α = 2/(L+ τ)

(23)

and γ ≥ β(1 + σ′2). Then, for all t ∈ N, we have

E[‖wt − w∗‖2] ≤ max{γE[‖w0 − w∗‖2], r3}
γ + t

, (24)

where

r3 :=


β2σ′1

βτ(2L− τ)− L2
if α = 1/L

4β2σ′1
4βτL− (L+ τ)2

if α = 2/(L+ τ).

Remark 4.1. In (Bottou et al., 2018), under As-
sumption F a rate equal to (22) is obtained, but with
α = 1/L and

r1 = 1− η τ
L

and r2 =
ησ′1
2τ

. (25)

We see then, that Corollary 4.1 provides better rates.
Also, our analysis allows choosing the larger (and op-
timal) stepsize 2/(L+ τ).

Remark 4.2. In Assumption F, suppose that ζ takes
values in Z = {1, . . . , n} with uniform distribution and

that for every i ∈ {1, . . . , n}, ˆ̀(·, i) is strongly convex
with modulus τ . This is, for instance, the case of the
regularized empirical risk functional,

ˆ̀(w, i) = ψ(yiw
>xi) +

τ

2
‖w‖2, (26)

where (xi, yi)1≤i≤n ∈ (Rd×{1, 2})n is the training set.
Then, if the loss function ψ is Lipschitz continuous, as
is the case, e.g., of the logistic loss, we have

V[∇ˆ̀(w, i)] = Vi∼U [Z][ψ
′(yiw

>xi)yixi]

≤ Lip(ψ)2Ei∼U [Z][‖xi‖2], (27)

so that Assumption F(ii) is satisfied with σ′2 = 0.

5 Solving the Subproblems in SID

We are now ready to show how to generate the se-
quences wt(λ) and vk(wt(λ), λ) required by Algo-
rithm 1. Let ζ ′ be a random variable with values in Z
satisfying Assumption B(i). Let (ζi)i∈N and (ζ̂i)i∈N be
independent copies of ζ ′ and independent from each
other, and let (ηλ,i)i∈N be a sequence of stepsizes such
that

∑∞
i=0 ηλ,i = +∞ and

∑∞
i=0 η

2
λ,i < +∞. For every

w ∈ Rd we let w0(λ) = v0(w, λ) = 0, and, for k, t ∈ N,

wt+1(λ) := wt(λ) + ηλ,t(Φ̂(wt(λ), λ, ζt)−wt(λ)) (28)
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and

vk+1(w, λ) :=vk(w, λ)

+ ηλ,k(Ψ̂w(vk(w, λ), λ, ζ̂k)− vk(w, λ)),
(29)

where Ψ̂w(v, λ, z) := ∂1Φ̂(w, λ, z)>v +∇1E(w, λ).

We note that if the Jacobian-vector product above is
computed using reverse mode automatic differentia-
tion, the costs of evaluating Ψ̂w and Φ̂ are of the same
order of magnitude. Furthermore, thanks to the def-
inition of Ψ̂, we can solve both subproblems in Algo-
rithm 1 using the procedure described in Section 4. In
particular, if we set ηλ,t = ηλ,k, we can obtain similar
convergence guarantees for both (28) and (29). The
case of decreasing step sizes is treated in the following
result, which is a direct consequence of Theorem 4.2.

Theorem 5.1. Let Assumption A(i) and B hold. Let
λ ∈ Λ and let wt(λ) and vk(w, λ) be defined as in (28)
and (29). Then, for every w ∈ Rd, we have

lim
t→∞

wt(λ) = w(λ), lim
k→∞

vk(w, λ) = v(w, λ) P-a.s.

Moreover, let σλ,2 := 2(L2
Φ̃,λ

+q2
λ)/(1−qλ)2 and ηλ,i :=

βλ/(γλ+i) with βλ > 1/(1−q2
λ) and γλ ≥ βλ(1+σλ,2).

Then for every w ∈ Rd

E[‖wt(λ)− w(λ)‖2] ≤ dw,λ
γλ + t

(30)

E[‖vk(w, λ)− v(w, λ)‖2] ≤ dv,λ
γλ + k

(31)

where

dw,λ := max

{
γλ‖w(λ)‖2, β2

λσλ,1
βλ(1− q2

λ)− 1

}
,

dv,λ :=
‖∇1E(w, λ)‖2

(1− qλ)2
max

{
γλ,

2β2
λL

2
Φ̃,λ

βλ(1− q2
λ)− 1

}
σλ,1 := 2V[Φ̂(w(λ), λ, ζ)].

In a similar manner, using Theorem 4.1, one can have
rates of convergence also using a constant stepsize, al-
though in that case, we do not have asymptotic con-
vergence of the iterates.

Remark 5.1. For the setting considered in Theo-
rem 5.1 the bound given in Theorem 3.4 yields

MSE∇̂f ≤ 2
m2,λL

2
E,λ

(1− qλ)2
+O

(
1

γλ + t
+

1

γλ + k

)
. (32)

where MSE∇̂f = E
[
‖∇̂f(λ)−∇f(λ)‖2

]
Crucially, typical bilevel problems in machine learning
come in the form of (3), where the lower-level objec-

tive `(w, λ) := E[ˆ̀(w, λ, ζ)] is Lipschitz smooth and

strongly convex w.r.t. w. In this scenario, there is a
vast amount of stochastic methods in literature (see
e.g. Bottou et al. (2018) for a survey) achieving con-
vergence rates in expectations of the kind provided in
Theorem 5.1 or even better. For example, when `(w, λ)
has a finite sum structure, as in the case of the reg-
ularized empirical risk, exploiting variance reduction
techniques makes the convergence rate ρλ(t) linear. In
this situation the following assumption is made.

Assumption G. ˆ̀ is twice differentiable w.r.t. the
first two arguments and such that, for every w ∈ Rd,
λ ∈ Λ, j ∈ {1, 2}

E[∇1
ˆ̀(w, λ, ζ)] = ∇`(w, λ),

E[∇2
1j

ˆ̀(w, λ, ζ)] = ∇2
1j`(w, λ).

Moreover, for every w ∈ Rd, λ ∈ Λ and x ∈ Z there
exists L`,m` ≥ 0 such that:

‖∇2
11

ˆ̀(w, λ, ζ)‖ ≤ L` V[∇2
12

ˆ̀(w, λ, ζ)] ≤ m`.

If ˆ̀ satisfies Assumption G, then Φ̂(w, λ) = w −
αλ∇1

ˆ̀(w, λ) satisfies Assumption B. In addition, since
I−∂1Φ(w, λ) = αλ∇2

1`(w, λ) is a positive definite ma-
trix, we have that the solution to the linear system (5)
can be written as

v(w, λ) = arg min
v
g(v;w, λ)

g(v;w, λ) :=
αλ
2
v>∇2

1`(w, λ)v − v>∇1E(w, λ),

and g(v;w, λ) = E[ĝ(v;w, λ, ζ)], where

ĝ(v;w, λ, ζ) =
αλ
2
v>∇2

1
ˆ̀(w, λ, ζ)v − v>∇1E(w, λ).

We can easily see that g(·;w, λ) is a strongly convex
quadratic function with Lipschitz smooth constant and
modulus of strong convexity at least as good as the
ones of αλ`(·, λ). Thus, we can solve both subproblems
in Algorithm 1 using the same stochastic optimization
algorithm, achieving the same theoretical performance
for both rates ρλ(t) and σλ(k).

We finally observe that the methods in (28)-(29) can
be rewritten as

wt+1(λ) := wt(λ)− ηλ,tαλ∇1
ˆ̀(wt(λ), λ, ζt)

vk+1(w, λ) := vk(w, λ)− ηλ,k∇1ĝ(v;w, λ, ζ̂k)

which correspond to SGD on αλ`(w, λ) and on
g(v;w, λ) respectively.

6 Experiments

In this section we present preliminary experiments
evaluating the effectiveness of the SID method for esti-
mating the hypergradient of f in a real data scenario.
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Figure 1: Experiment with a single regularization parameter. Convergence of three variants of SID for 4 choices of the
regularization hyperparameter λ ∈ R++. Here, 2 epochs refer, in the Batch version, to one iteration on the lower-level
problem plus one iteration on the linear system, whereas, in the Stochastic versions, they refer to 100 iterations on the
lower-level problem plus 100 iterations on the linear system. The plot shows mean (solid lines) and std (shaded regions)
over 5 runs, which vary the train/validation splits and, for the stochastic methods, the order and composition of the
minibatches.
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Figure 2: Experiment with multiple regularization param-
eters. Convergence of three variants of SID for several
choices of the regularization hyperparameter λ ∈ Rd++.
The plot shows mean (solid lines) and std (shaded regions)
over 10 runs. For each run, λi = eεi , where εi ∼ U [−2, 2]
for every i ∈ {1, . . . , d}. Epochs are defined as in Figure 1.

In Appendix C.1 we provide additional experiments
on more realistc scenarios and with additional SID
variants. We focus on a hyperparameter optimization
problem where we want to optimize the regularization
parameter(s) in regularized logistic regression. Specif-
ically, we consider a binary classification problem with
the aim to distinguish between odd and even numbers
in the MNIST dataset. Referring to problem (3), we
set

f(λ) =

ntr+nval∑
i=ntr+1

ψ(yix
>
i w(λ)),

w(λ) = arg min
w∈Rd

ntr∑
i=1

ψ(yix
>
i w) +R(w, λ),

where ψ(u) = log(1 + e−u) is the logistic loss,
(xi, yi)1≤i≤ntr+nval

∈ (Rp × {0, 1})ntr+nval are training
and validation examples, and R(w, λ) is set according
to either of the two situations below

• one regularization parameter :

R(w, λ) = λ
2 ‖w‖

2, λ ∈ R++

• multiple regularization parameters:

R(w, λ) = 1
2w
>diag(λ)w where diag(λ) is the di-

agonal matrix formed by the elements of λ ∈ Rd++.

We set ntr = nval = 5000, i.e., we pick 10000 examples
from the MNIST training set and we group them into
a training and a validation set of equal size. We set
Φ to be the full gradient descent map on the lower-
level objective, with optimal choice for the stepsize3.
This map is a contraction because the lower objective
is strongly convex and Lipschitz-smooth. We test the
following three variants of SID (Algorithm 1), where
we always solve the lower-level problem with t itera-
tions of the procedure (28) and the linear system with
k = t iterations of the algorithm (29). However, we
make different choices for ηλ,t and the estimator Φ̂.

Batch. This variant of Algorithm 1 corresponds to the
(deterministic) gradient descent algorithm with con-
stant stepsize. We set tBatch = kBatch = 30 and,
for every t = 0, . . . , tBatch, ηλ,t = ηλ,k = 1 and

Φ̂(w, λ, ζ) = Φ(w, λ).

Stoch const. For this variant, Φ̂(w, λ, ζ) corresponds
to one step of stochastic gradient descent on a ran-
domly sampled minibatch of 50 examples. Thus,
tStoch const = tBatch × 100, kStoch const = kBatch × 100,
and we pick ηλ,t = ηλ,k = 1, for t = 0, . . . , tStoch const.

3We set the stepsize equal to two divided by the sum of
the Lipschitz and strong convexity constants of the lower-
level objective. This gives the optimal contraction rate qλ.
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Stoch dec. For this variant the estimator Φ̂ is the
same as for the Stoch const strategy, but we use de-
creasing stepsizes. More precisely, ηλ,t = ηλ,k =
βλ/(γλ + t) with βλ = 2/(1− q2

λ) and γλ = βλ. More-
over, as before, tStoch dec = tBatch × 100, kStoch dec =
kBatch × 100.

We note that the Batch strategy is exactly the
fixed point method described by Grazzi et al. (2020),
which converges linearly to the true hypergradient.
Moreover, for the stochastic versions, we can write
Φ̂(w, λ, ζ) = Φ1(w, ζ) + Φ2(w, λ), so that we are in
the case discussed in Remark 4.2 and hence, σ2 =
m2,λ = 0. In this situation, it follows from Remark 5.1
that the Stoch dec version of Algorithm 1 converges
in expectation to the true hypergradient with a rate
O(1/(γλ+ t)), whereas, according to Corollary 4.1 and
Theorem 3.4, the Stoch const version can possibly ap-
proach the true hypergradient in a first phase (at linear
rate), but ultimately might not converge to it.

In Figures 1 and 2 we show the squared error be-
tween the approximate and the true hypergradient
(∇̂f(λ) and ∇f(λ) respectively) for the two regular-
ization choices described above4. In both figures we
can see the effectiveness of the proposed SID method
(and especially the Stoch dec variant) against its de-
terministic version (AID) previously studied in (Grazzi
et al., 2020).

7 Conclusions and Future Work

In this paper we studied a stochastic method for the
approximation of the hypergradient in bilevel prob-
lems defined through a fixed-point equation of a con-
traction mapping. Specifically, we presented a stochas-
tic version of the approximate implicit differentiation
technique (AID), which is one of the most effective
solutions for hypergradient computation as recently
shown in (Grazzi et al., 2020). Our strategy (SID) es-
timates the hypergradient with the aid of two stochas-
tic solvers in place of the deterministic solvers used in
AID. We presented a formal description and a theo-
retical analysis of SID, ultimately providing a bound
for the mean square error of the corresponding hyper-
gradient estimator. As a byproduct of the analysis,
we provided an extension of the SGD algorithm for
stochastic fixed-point equations. We have also con-
ducted numerical experiments which confirm that us-
ing stochastic instead of deterministic solvers in SID
can indeed yield a more accurate hypergradient ap-
proximation.

4Since for regularized logistic regression, the hypergra-
dient is not available in closed form, we compute it by using
the Batch version with t = k = 2000 (4000 epochs in total).

We believe that our analysis of stochastic fixed-point
algorithms can be further extended to include vari-
ance reduction strategies and other advances com-
monly used for SGD. A good starting point for this
extension can be the work by Gorbunov et al. (2020),
which provides a unified theory for SGD methods in
the strongly convex setting. Another promising direc-
tion would be the analysis of an overall bilevel op-
timization procedure using SID to approximate the
hypergradient, which we have not addressed in the
present work.
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