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ABSTRACT

Context. Weak lensing and clustering statistics beyond two-point functions can capture non-Gaussian information about the matter
density field, thereby improving the constraints on cosmological parameters relative to the mainstream methods based on correlation
functions and power spectra.
Aims. This paper presents a cosmological analysis of the fourth data release of the Kilo Degree Survey based on the density split
statistics, which measures the mean shear profiles around regions classified according to foreground densities. The latter is constructed
from a bright galaxy sample, which we further split into red and blue samples, allowing us to probe their respective connection to the
underlying dark matter density.
Methods. We used the state-of-the-art model of the density splitting statistics and validated its robustness against mock data infused
with known systematic effects such as intrinsic galaxy alignment and baryonic feedback.
Results. After marginalising over the photometric redshift uncertainty and the residual shear calibration bias, we measured for the full
KiDS-bright sample a structure growth parameter of S 8 ≡ σ8

√
Ωm/0.3 = 0.73+0.03

−0.02 that is competitive and consistent with two-point
cosmic shear results, a matter density of Ωm = 0.27 ± 0.02, and a constant galaxy bias of b = 1.37 ± 0.10.

Key words. cosmological parameters – large-scale structure of Universe – gravitational lensing: weak – methods: statistical

1. Introduction

Gravitational lensing, the theory that describes the deflection
of light by massive objects, reveals a wealth of information
about the evolution of matter structure in the Universe (see,
e.g. Hamana et al. 2020; Asgari et al. 2021; Amon et al. 2022,
for recent cosmic shear analyses). Due to the accurate the-
oretical description and control over systematic inaccuracies,
the most commonly used methods focus on two-point statis-
tics, namely the two-point correlation functions and their
Fourier counterparts called power spectra. These statistics are
excellent for capturing the Gaussian information contained
in the data and are complete if the data are Gaussian-
distributed, such as the cosmic microwave background (CMB;

e.g. Planck Collaboration V 2020). In the late Universe, how-
ever, non-linear gravitational instabilities generate a signifi-
cant amount of non-Gaussian features, whose information can
only be accessed with higher-order statistics. Furthermore,
since higher-order statistics scale differently with cosmology
and are affected differently by residual systematic effects, the
constraining power on cosmological parameters increases by
jointly investigating second- and higher-order statistics (see,
e.g. Kilbinger & Schneider 2005; Bergé et al. 2010; Pires et al.
2012; Fu et al. 2014; Pyne & Joachimi 2021).

As the current analysis of the estimation of cosmolog-
ical parameters reaches the per cent level, tensions arise
between observations of the early and late or local Universe.
A famous tension is the one for the Hubble parameter H0
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(Di Valentino et al. 2021a) but it is not the subject of this work.
More interesting for us is the tension in the matter clustering
parameter S 8 = σ8

√
Ωm/0.3, where it seems that the local Uni-

verse is less clustered than observations of the CMB suggest
(Hildebrandt et al. 2017; Joudaki et al. 2020; Heymans et al.
2021; Di Valentino et al. 2021b).

A recent development in analysis methods has enabled
the joint investigation of weak lensing and galaxy clustering
data (van Uitert et al. 2018; Joudaki et al. 2018; Abbott et al.
2018; DES Collaboration 2022), yielding significantly better
constraints, especially along the σ8 −Ωm degeneracy axis. Even
though foreground clustering data introduces largely uncertain
astrophysical parameters, such as the galaxy bias, that compli-
cate the analysis, these joint analyses inform us better about the
correlation between galaxies and the underlying matter distribu-
tion (Sánchez et al. 2017). Here again, two-point statistics have
been favoured so far for the reasons mentioned above, such that
the combination of all measurements (cosmic shear, galaxy clus-
tering, and galaxy-galaxy lensing) are generally referred to as
‘3×2pts’ statistics.

To access the additional information contained in the
non-Gaussian features, a competitive statistic to the 3×2pts
method was recently proposed in Gruen et al. (2016), coined the
‘density-split statistics’ (DSS hereafter). This technique mea-
sures the tangential shear on the full pixelated survey footprint
and bins the resulting shear profiles as a function of the fore-
ground mass density. For example, high galaxy density regions
generally trace large matter over-density regions, in which the
tangential shear is expected to be larger, and this varies with cos-
mology. The DSS, therefore, captures information both from the
shape and amplitude of the shear profiles and from the number of
foreground galaxies in each density bin, with the latter helping
to measure the galaxy bias significantly.

The first ingredient needed is a prediction model to interpret
the measurements and constrain cosmological and astrophysical
parameters. This can be constructed either from simulations
(see, e.g., Harnois-Déraps et al. 2021; Zürcher et al. 2022, for
examples of simulation-based inference using the lensing peak
count) or from analytical calculations, where for instance
Reimberg & Bernardeau (2018) and Barthelemy et al. (2021)
made use of large deviation theory (LDT) to model the reduced-
shear correction to the aperture mass probability distribu-
tion function (PDF). Another approach to access higher-order
moments is discussed in Halder et al. (2021), Halder & Barreira
(2022), and Heydenreich et al. (2022), where third-order cos-
mic shear statistics were modelled directly from the bispec-
trum. Although, the simulation-based approach has advantages
regarding the numerical incorporation of critical systematic
effects such as the intrinsic alignment (IA) of galaxies (see, e.g.
Harnois-Déraps et al. 2022, hereafter HD22) and baryonic pro-
cesses extracted from hydrodynamical simulations. However, it
typically requires large simulation suites that jointly vary all the
parameters under consideration. On the other hand, analytical
modelling of the DSS can better dissect the basic underlying
properties of the LSS, and it can be computed sufficiently fast
enough at any point in the cosmological parameter space. Such
a model was derived in Friedrich et al. (2018, hereafter F18),
based on non-perturbative modelling of the matter density PDF.
For a given cosmology, mean foreground galaxy density, and
redshift distributions of the foreground and background galax-
ies, the F18 model predicts the mean tangential shear profiles
and the PDF of the galaxy counts in each mass density bin. In
Gruen et al. (2018, hereafter G18), the F18 model was used to
constrain cosmological parameters from measurements of the

Dark Energy Survey (DES) First Year and Sloan Digital Sky
Survey (SDSS) data, yielding results competitive with the main
DES 3×2 pt analysis (Abbott et al. 2018).

To date, no cosmological constraints from DSS exist, except
that of G18. However, the methods have been improved sig-
nificantly. In particular, Brouwer et al. (2018) have presented a
contemporary measurement of the DSS extracted from the third
data release of the Kilo-Degree Survey data (KiDS), wherein
the foreground galaxies were selected to mimic the spectro-
scopic Galaxy And Mass Assembly survey (hereafter GAMA;
Driver et al. 2011). They developed an optimal methodology in
their work, notably showing how the resulting signal-to-noise
ratio (S/N) depends on the smoothing scale for the density map
of foreground galaxies.

Burger et al. (2022, hereafter B22) modified the analyti-
cal model by F18 for an application to galaxy density fields
smoothed with general filters. As discussed in Burger et al.
(2020), compensated filter functions outperform the previously
used top-hat filter functions in terms of the overall S/N of
the shear signals and in recovering the correlation between the
galaxy and matter density contrast. B22 mention another advan-
tage of compensated filter functions: they are more compact in
Fourier space and, therefore, can better suppress large-` modes
where baryonic effects play an important role, as studied in
Asgari et al. (2020). On the downside, compensated filters com-
plicate the LDT-like calculations (Barthelemy et al. 2021). Nev-
ertheless, B22 show that the density split statistics with compen-
sated filters can still be accurately modelled in a computationally
tractable manner after calibrating residual inaccuracies at large
and small scales on the simulations of Takahashi et al. (2017).

The current paper presents the first cosmological inference
based on a DSS analysis of the KiDS data. We exploited the
model advances presented in B22, using the dense sample of
bright galaxies presented in Bilicki et al. (2021), to construct our
foreground density maps and compute the tangential shear from
the lensing catalogue constructed from the fourth KiDS data
release. Our inference includes a marginalisation over several
residual systematic uncertainties. We verified with numerical N-
body and hydrodynamical simulations that our measurements
are robust against the IA of galaxies and baryonic feedback.

This work is structured as follows. In Sect. 2 we review the
basics of the DSS and introduce small modifications made to
our model compared to the one from B22. In Sect. 3 we present
the observed data used in our analysis, and then we describe in
Sect. 4 the simulations needed for the validation of our infer-
ence pipeline which is described in Sect. 5. In Sect. 6 we per-
form our validation of the model together with an investigation
on IA and baryonic physics which could potentially contaminate
our results. In Sect. 7 we finally present our main results and
conclude with a discussion and summary in Sect. 8.

2. Theoretical background

The DSS essentially measures the tangential shear around sub-
areas of the sky that are assigned according to the galaxy
foreground density. It is therefore closely related to aperture
statistics, which we introduce here first. Given a convergence
field κ(θ), the aperture mass map is defined as

Map (θ) B
∫

d2θ′ κ(θ + θ′) U(|θ′|), (1)

where θ is the position on the flat sky, and U(ϑ) is a compen-
sated, axisymmetric filter function, such that

∫
ϑU(ϑ) dϑ = 0.
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The aperture mass, Map, can also be expressed in terms of the
tangential shear γt (Schneider 1996) and a second filter function
Q as

Map(θ) =

∫
d2θ′ γt(θ + θ′) Q(|θ′|), (2)

where

Q(ϑ) =
2
ϑ2

ϑ∫
0

dϑ′ ϑ′ U(ϑ′) − U(ϑ). (3)

The above relation between the two filters U and Q can be
inverted,

U(ϑ) = 2

∞∫
ϑ

dϑ′
Q(ϑ′)
ϑ′

− Q(ϑ), (4)

allowing us to work either with convergence maps or shear cat-
alogues. Replacing the convergence by the foreground galaxy
number counts n(θ) in Eq. (1), we define the aperture number
counts, or simply aperture number, as (Schneider 1998)

Nap(θ) B
∫

d2θ′ n(θ + θ′) U(|θ′|). (5)

This definition is equivalent to the ‘Counts-in-Cell’ (CiC) statis-
tics mentioned in Gruen et al. (2016) if the filter U is defined as
a top-hat. In that case, however, U is not compensated; hence,
one can not relate the filters U and Q.

The general idea of the DSS is to divide the survey area into
quantiles Q according to the aperture number Nap and then mea-
sure the mean tangential shear in the corresponding quantiles
〈γt|Q〉. We detail in Sect. 2.1 how we achieve this in the data and
in Sect. 2.2 how we predict it analytically.

2.1. Measuring the DSS vector

We followed several ordered pipeline steps to extract the DSS
data vector for the cosmological inference. First, we distributed
the foreground (lens) galaxies onto a HEALPix (Górski et al.
2005) grid n(θ) of nside = 4096, which resulted in a pixel
area of AHP ≈ 0.74 arcmin2. Second, we determined the aper-
ture number field Nap with a filter function U, with a finite fil-
ter radius Θ and maximal one transition from positive to nega-
tive values at θtr. This was achieved with the healpy function
smoothing, with a beam window function that is the U-filter in
the spherical harmonic space determined with healpy function
beam2bl. Since Eq. (5) assumes full knowledge of n(θ) on the
sky which has to be modified in the presence of a mask m(θ) as

Nap(θ) =

∫ θtr

0 U(θ′) d2θ′∫ θtr

0 m(θ + θ′)U(θ′) d2θ′

∫ θtr

0
n(θ + θ′)U(θ′) d2θ′

+

∫ Θ

θtr
U(θ′) d2θ′∫ Θ

θtr
m(θ + θ′)U(θ′) d2θ′

∫ Θ

θtr

n(θ + θ′)U(θ′) d2θ′ , (6)

where in this work m(θ) was the KiDS-1000 mask. For exam-
ple, the second part of this equation vanishes for a top-hat fil-
ter. We divided the filter in this way to prevent the masked area
from entering the positive part to decrease Nap systematically
and artificially increase the aperture number when entering the
negative filter region. By separating the compensated filter into

its positive and negative parts, we could correct both individu-
ally. Furthermore, since this correction became less accurate in
heavily masked regions, we included only those pixels where the
number of unmasked pixels within the given filter radius (effec-
tive area) was greater than 50% of the total number of pixels
inside the same circle (maximal area), which we treated as our
‘good’ pixels. This can change from pixel to pixel because our
HEALPix map originated from a flat sky mask. To avoid a pixel
being considered good, yet for more than 50% of pixels to be
missing in the negative part, we included for compensated filters
only those pixels where the effective area for the positive and
the negative part was greater than 50% of their individual maxi-
mal area. With our choice of the 50% threshold, we attempted to
achieve a compromise between statistical power and falsely mea-
sured Nap values. G18 considered only regions with at least 80%
coverage, but since the KiDS footprint is very narrow, we had to
relax that threshold to avoid shot noise-dominated data vectors.
Therefore, we decided to use the highest threshold that yielded
shear profiles that do not deviate significantly from shear profiles
with smaller threshold values. The result is shown in Fig. A.1,
where it is seen that the shear profiles with threshold values of
50% or smaller are quite similar and start to deviate for higher
threshold values. Next, we allocated those good pixels to five
quantiles Q according to their Nap value. The pixels from each
quantile are then correlated with the tangential shear informa-
tion from the source catalogues using the treecorr (Jarvis et al.
2004) software in ten log-spaced bins with angular separation
10 arcmin < ϑ < 120 arcmin. This resulted in measurements of
the five tangential shear profiles 〈γt|Q〉, that is, one per quan-
tile. For all measured profiles, the shear around random points is
subtracted, which ensures that the average overall quantiles van-
ish by definition. Finally, we constructed our data vector, which
consists of the shear profiles from the highest two and lowest
two quantiles, plus the mean of the aperture number values in
the same four quantiles. We must exclude the information of one
quantile Q since the other four quantiles fully determine it by
construction, for the reason explained above. The same is true
for mean aperture number values in those quantiles, whose aver-
age is fixed by the total galaxy number density measured in the
data. This results in ten θ bins, four quantiles and two source bins
in a data vector of 80 + 4 = 84 elements. Although the infor-
mation content is independent of which quantile is removed, we
exclude the middle quantile for the whole analysis since it would
have the least cosmological information, if the quantiles were
analysed separately.

2.2. Modelling the DSS vector

Our modelling of the DSS signal is inspired by the LDT
approach and builds from the original F18 model and the sub-
sequent improvements presented in B22. We refer the reader to
these two references for the complete details of the model cal-
culations and highlight here only the broad principles and the
minor modifications we have made. Briefly, the model consists
of three key ingredients: (i) the PDF of the matter density con-
trast, smoothed with the filter function U, labelled δm,U ; (ii) the
expectation value of the convergence inside a radius ϑ given the
smoothed matter density contrast defined above; (iii) the dis-
tribution of Nap values given δm,U . B22 shows how these are
computed for arbitrary filter functions and quantile counts. We,
however, focus here on the ‘adapted compensated’ filter case,
introduced in B20 and shown in Fig. 3 in B22, and five quantiles.
As in B22, the model was calibrated using the full-sky simula-
tions described in Takahashi et al. (2017) to suppress the residual
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Table 1. Overview of the observational KiDS-1000 data.

Name neff[arcmin−2] δ〈z〉 a s

Full KiDS-bright sample 0.325 0.0 ± 0.01 2.509 0.018
Red KiDS-bright sample 0.131 0.0 ± 0.01 2.630 0.016
Blue KiDS-bright sample 0.165 0.0 ± 0.01 2.619 0.020
Name neff[arcmin−2] δ〈z〉 σε m-bias ×103

Source sample bin 4 1.26 0.011 ± 0.0087 0.25 8 ± 12
Source sample bin 5 1.31 −0.006 ± 0.0097 0.27 12 ± 10

Notes. The upper and lower parts describe the lens and source catalogues, respectively. The a and s parameters enter the Lorentzian fitting
function (see Eq. (10)) and capture the uncertainty on the redshift of our lens sample. The uncertainties on the mean redshift, ∆〈z〉, for the lenses
are motivated by the uncertainty from the sources, although it is probably an upper limit of the error. We show the mean and uncertainty on the
redshift bias for the source samples, taken from H21 and used in Asgari et al. (2021). The rightmost columns display the measured ellipticity
dispersion per component, σε measured in Giblin et al. (2021), and the shear multiplicative m-bias correction updated in van den Busch et al.
(2022).

differences of the modelled and measured data vector. The
KiDS-1000 lens distribution used in the current paper peaks at a
lower redshift than that in B22, and we know that the DSS model
is slightly less accurate in that case, but we subsequently show
that the calibration is accurate enough to yield unbiased results.

Since real galaxies are not expected to be perfectly Poisson-
distributed, we modified the distribution of the aperture number
computed in the B22 model in a way that allows for super-
Poissonian shot noise. Inspired by F18, we achieved this by
scaling the galaxy number density n0 with a free parameter
α > 0, such that n0 α

−1 can be interpreted as an effective num-
ber density of Poissonian tracers. This implies that the quan-
tity p(Nap α

−1|δm,U) follows a log-normal distribution, instead of
p(Nap|δm,U) as in B22. Consequently, the characteristic function
Ψ, determining the parameters of the log-normal distribution,
must be modified to (see Eq. (36) of B22)

Ψ(t) = exp
(
2π

n0

α

∫ ∞

0
dϑ ϑ

(
1 + b 〈wϑ|δm,U〉

) [
eitU(ϑ) − 1

])
, (7)

where wϑ is the mean 2D density contrast on a circle at ϑ (see
Eq. (37) in B22), and b is the linear galaxy bias. Moreover, to
ensure that the mean aperture number remains constant, we fur-
ther modified the calculation of p

(
Nap|δm,U

)
as (see Eq. (A39) of

B22):

p
(
Nap|δm,U

)
→

1
α

p
(
Napα

−1|δm,U

)
. (8)

Since the expectation value 〈Nap|δm,U〉 ∝ α and the variance
〈(Nap − 〈Nap|δm,U〉)2|δm,U〉 ∝ α

2 we see that the ratio of variance
to expectation value is proportional to α as required to describe
deviations from Poissonian samples. Similar to Friedrich et al.
(2018), we require α > 0.1 in our parameter sampling for numer-
ical reasons. We also compared our definition of this α parameter
to the one implemented in Friedrich et al. (2018) and found no
differences in the predictions.

Compared with numerical simulations, this model has been
shown in B22 to be accurate, with residual inaccuracies to be
everywhere significantly smaller than the statistical noise of the
KiDS-1000 data. We, therefore, do not need to include a mod-
elling error in our uncertainty budget. Furthermore, we also
tested a non-linear galaxy bias model, where we exchanged the
constant galaxy bias b with b = b1 + b2δm,U > 0. However, b2
was highly correlated with other parameters such as Ωm which
prevented our parameter estimation from converging and there-
fore had to be excluded for this analysis. We also tested if the

assumption of a linear galaxy bias is satisfied (see Fig. A.2 and
its description), and the results of that test can be summarised
as follows: a linear galaxy bias model is sufficient if an analy-
sis using shear and Nap information gives similar cosmological
results as using only shear information since the shear profiles
are basically insensitive to the galaxy bias model.

3. Observational data

In our analysis, we exploit the fourth data release of the KiDS
(Kuijken et al. 2015, 2019; de Jong et al. 2015, 2017), which is
a public survey carried out at the European Southern Observa-
tory1. KiDS was designed for weak lensing applications, produc-
ing high-quality images with VST-OmegaCAM camera. Thanks
to the infrared data from its overlapping partner survey VIKING
(VISTA Kilo-degree Infrared Galaxy survey, Edge et al. 2013),
galaxies are observed in nine optical and near-infrared bands,
u, g, r, i,Z,Y, J,H,Ks, allowing for better control over redshift
uncertainties (Hildebrandt et al. 2021, hereafter H21) to earlier
releases. The weak lensing data in KiDS DR4 are collectively
called ‘KiDS-1000’ as they cover ∼1000 deg2 of images; this
reduces to 777.4 deg2 of the effective area after masking. These
galaxies are further split into lens and source samples, which we
discuss in more detail in the following sections, with properties
summarised in Table 1.

3.1. Lens catalogues

Our primary lens catalogue is the ‘KiDS-bright’ sample
described in Bilicki et al. (2021, hereafter Bi21), a flux-limited
galaxy catalogue with accurate and precise photometric red-
shifts, zph, derived using the nine photometric bands available
in the KiDS-1000 data. This highly pure and complete2 galaxy
dataset was selected to match the properties of the partly overlap-
ping Galaxy And Mass Assembly (GAMA, Driver et al. 2011)
spectroscopic redshift, zsp, dataset. KiDS-bright is limited to
r < 20 mag, covers ∼1000 deg2 and contains about one million
galaxies after artefact masking. To obtain photometric redshift
estimates, Bi21 took advantage of the large amount of spectro-
scopic calibration data measured by GAMA and trained a super-
vised machine-learning neural network algorithm implemented

1 The KiDS data products are public and available through http://
kids.strw.leidenuniv.nl/DR4
2 By purity, we mean very low fractions of stars and quasars (point
sources) or artefacts. Completeness is evaluated with respect to GAMA.
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Fig. 1. Redshift distributions, n(z), of the galaxy samples. The lens sam-
ple is obtained from the KiDS-bright galaxies described in Bi21. The
blue line shows nsp(z), i.e. the redshift distribution of KiDS galaxies
for which we have spectra from the GAMA survey. The red line shows
nph(z), the distribution of the full KiDS-bright sample as estimated by
ANNz2 with a photometric redshift cut of zph < 0.1. The black line
shows our best-estimated nbe(z): a smoothed version of nph(z) that better
accounts for photometric redshift errors. The cyan, orange, and brown
lines show the third, fourth and fifth redshift bins of the KiDS-1000
data, as estimated in H21. As the third bin strongly overlaps the sources,
it is excluded from the analysis.

in the ANNz2 software (Sadeh et al. 2016) to map an input space
of 9-band magnitudes to an output redshift. The ANNz2 training
sample consists of matched KiDS galaxies with spectroscopic
redshifts from the GAMA equatorial fields, where that survey
is the most complete and provides representative training data.
The trained model was subsequently applied to the entire infer-
ence dataset, the photometrically selected KiDS galaxies with
the same r < 20 cut and magnitudes detected in the same nine
bands. This sample spans the redshift range of 0 < z . 0.6; how-
ever, since our analytical DSS model is less accurate for very
small redshifts, we further exclude all galaxies with zph < 0.1.
This cut only slightly lowers the number of lenses and results in
a projected number density of 0.325 arcmin−2, as summarised in
the first row of Table 1.

The main properties of interest to us are the galaxy bias,
which has not been measured before for the KiDS-bright sample,
the galaxy number density, and the redshift distribution, which
is needed in the modelling. As shown in Bi21, the photometric
redshift distribution of the full KiDS-bright sample is measured
with high precision: jackknife sub-sampling reveals negligible
mean bias, with a small overall scatter of σz ≈ 0.018(1 + z).
However, for our theoretical model, we need to estimate our
newly selected foreground sample’s true n(z) distribution. We
take advantage of the very good match between the GAMA
spectroscopic sample and the KiDS-bright dataset, allowing us
to build an accurate model of the photometric redshift error
distribution, as discussed in Bi21. Following the description
in Peacock & Bilicki (2018), the best-estimated nbe(z) of the
true n(z) can be obtained from a convolution between the nor-
malised photometric redshift distribution of all the galaxies in
our selected sample, nph(z), and a photo-z error model pδz(∆z),

nbe(z) =

∫
nph(zph) pδz

(
zph − z

)
dzph. (9)

Following Bilicki et al. (2014), we adopted a ‘modified
Lorentzian’,

pδz(∆z) ∝
(
1 +

∆z2

2as2

)−a

, (10)

which was shown in Bi21 to reproduce the photo-z errors bet-
ter than a Gaussian error model. To estimate the parameters a

and s, Eq. (10) is fitted to the KiDS-bright galaxies that also
have GAMA spectroscopic redshifts, where ∆z = zph − zsp. The
best-fit a and s values for our selection are provided in the top
row of Table 1, and the resulting nbe(z) is shown in black in
Fig. 1.

In order to estimate the uncertainty on our n(z) estimate, we
notice that Eq. (9) has two ingredients: the photometric red-
shift distribution nph(z), which is ‘exact’ in the sense that they
are directly measured, and the photo-z error model pδz. Putting
aside possible systematic effects related to adopting this machine
learning approach in this framework, we only need to quantify
the uncertainty associated with our choice of the error model. To
account for this, we measured how much the output n(z) changes
when the a and s parameters are determined from different sub-
samples on the sky. For this, we split the KiDS-bright × GAMA
matched sample into ten sub-samples along the right ascension,
where each sub-sample has the same number of objects. We
fitted a and s to each sub-sample with Eq. (10) and convolve
the resulting pδz with the full p(zph) of the KiDS-bright sample.
The resulting ten n(z) distributions are almost indistinguishable
from our best estimate, as displayed in Fig. A.3. We, therefore,
conclude that we can safely neglect the error coming from the
Lorentzian fit.

It is difficult to estimate all uncertainties accurately on the
n(z) estimate since, for this, we would need to test the ANN2z
algorithm on another spectroscopic survey with the same selec-
tion. We investigate this further and study the impact of chang-
ing the shape and the mean of the n(z). Therefore, besides
the best-estimated nbe(z), we also consider using the nph(z)
directly, as well as the spectroscopic redshift distribution nsp(z)
itself, coming from the matched KiDS-bright × GAMA galax-
ies; both also shown in Fig. 1. We further allow the n(z) to
shift along the redshift direction to give the analysis some flex-
ibility, where the shift value δ〈z〉 is drawn from a Gaussian
with a standard deviation of 0.01 and vanishing mean, moti-
vated by the uncertainty on the mean of the source redshift
distribution.

In addition to the full lens sample described above, we take
advantage of the colour information contained in the KiDS-
bright data to construct colour-selected sub-samples. This allows
us to constrain the bias of blue and red galaxy populations sep-
arately from the DSS signal. Following Bi21, we use an empir-
ical split between red and blue galaxies based on their location
on the absolute r-band magnitude Mr and the rest-frame u − g
colour diagram. The rest-frame quantities are based on LePhare
(Arnouts et al. 1999) with the derivations presented in Bi21. We
apply a cut through the green valley in the colour-magnitude dia-
gram, which results in a line that delimits the red and blue sam-
ples that satisfy

u − g = 0.825 − 0.025 Mr. (11)

We identify those galaxies that are at least 0.05 mag above
(below ) the cut line as red (blue) galaxies. We estimate their
underlying redshift distributions following the same approach
as for the full sample, and the resulting n(z) are shown in
Fig. B.1. The effective number densities and best-fit parameters
of the modified Lorentzian redshift error model are also listed
in the second and third rows of Table 1. We finally note that,
while these colour-selected sub-samples are particularly inter-
esting from a galaxy formation perspective, our main cosmolog-
ical results are obtained from the full lens sample, which has the
highest signal-to-noise.

A69, page 5 of 18



A&A 669, A69 (2023)

3.2. Source catalogues

The fiducial KiDS-1000 cosmic shear catalogue consists of five
tomographic bins, whose redshifts are calibrated using the self-
organising map (SOM) method3 of Wright et al. (2020) and pre-
sented in Hildebrandt et al. (2021). Although the five bins can be
exploited in a cosmic shear analysis as in Asgari et al. (2021),
for the DSS analyses, one must also be cautious about source-
lens coupling, which arises if sources and lenses belong to the
same gravitational potential. This can significantly affect our sig-
nal and bias our cosmological inference if left unmodelled. A
significant redshift overlap between the source and lens distri-
bution can result in further contamination by the IA of source
galaxies that are tidally connected with the foreground lenses.
We measure this effect in Sect. 4.2 from IA-infused weak lens-
ing simulations and show that, given the KiDS-bright n(z), this
can be avoided by excluding the first three tomographic bins of
the KiDS-1000 sources from the analysis. An additional lens-
source coupling complication is the so-called boost factor, which
arises due to the clustering of sources with over-dense and the
anti-correlation of sources with under-dense regions. This can
be taken into account by modifying the source n(z) depending
on clustering properties (Gruen et al. 2018). Since we exclude
the third bin, we do not need to consider this further compli-
cation. The fourth and fifth redshift bins, shown as the orange
and brown lines in Fig. 1, are separate enough from the lens
n(z) to avoid any appreciable lens-source coupling and are there-
fore used in our cosmological analysis. The uncertainty on the
redshift distribution and the residual systematic offsets are very
small, as listed in the last two rows of Table 1. The galaxy
shear estimates are provided by the lensfit tool (Miller et al.
2013; Fenech Conti et al. 2017) and are described in more detail
in Giblin et al. (2021), where it is shown that shear-related
systematic effects do not cause more than a 0.1σ shift in
S 8 ≡ σ8(Ωm/0.3)0.5 when measured by cosmic shear two-point
functions.

4. Simulated data

Besides the real KiDS-1000 data, we validate our inference
pipeline on several simulated data sets, study the impact of key
systematic uncertainties and carry out the cosmological infer-
ence. We use the publicly available FLASK tool (Full-sky Log-
normal Astro-fields Simulation Kit) described in Xavier et al.
(2016) to estimate the covariance of errors in the DSS data
vector of the KiDS-1000; the cosmo-SLICS+IA simulations,
described in HD22, to quantify the impact of IA on our mea-
surements and to validate the new Nap segment in our pipeline
(see the end of Sect. 2) that was not present in the B22 model;
and the Magneticum lensing simulations, first introduced in
Hirschmann et al. (2014), to investigate the impact of stellar
and AGN feedback. More details are provided in the following
sections.

4.1. FLASK log-normal simulations

Our cosmological inference analysis requires an estimate of
the error covariance of the DSS data vector. Since an analyti-
cal covariance matrix for the DSS is challenging to compute,
we make use instead of an ensemble of log-normal simulations
3 The SOM method organises galaxies into groups based on their
nine-band photometry and finds matches within spectroscopic sam-
ples. Galaxies for which no matches are found are removed from the
catalogue.

produced with the publicly available FLASK tool4 (Xavier et al.
2016). In Hilbert et al. (2011) it is shown that log-normal ran-
dom fields are a good approximation to the 1-point PDF of the
weak lensing convergence and shear field, and Friedrich et al.
(2020) show that they are in fact accurate enough to estimate the
covariance matrix for higher-order statistics in Stage-III lensing
surveys (see their Fig. 4)5. Compared to full N-body simulations,
FLASK log-normal random fields are computationally cheap to
create. The fact that FLASK outputs full-sky maps has the advan-
tage that it can easily be masked to match the footprint of the
data, making area re-scaling unnecessary. For the creation of
our mock catalogues, we use the cosmological parameters that
approximately match current cosmological analyses and fixed
the matter density parameter to Ωm = 0.3, the normalisation
of the matter power spectrum to σ8 = 0.74, the dimensionless
Hubble parameter to h = 0.7, the dark energy equation-of-state
parameter to w0 = −1 and the power spectrum power-law index
to ns = 0.97. Furthermore, we provide FLASK with the angular
power spectrum of the projected matter density field, the conver-
gence power spectrum for both source bins, and the two matter-
lensing cross-spectra. By assuming a flat universe throughout
this paper, given the n(z) shown in Fig. 1, and using the PYCCL
software package6 (Chisari et al. 2019) to get the 3D matter den-
sity contrast power spectrum Pδ(`/χ, χ), we calculate the angular
power spectrum by use of the Limber-approximated projection
(Kaiser 1992) as

Ci, j(`) =

∞∫
0

d χ
Wi(χ)W j(χ)

χ2 Pδ(`/χ, χ) , (12)

where i, j are placeholder for either the galaxy or convergence
projection, such that Wg(χ) = nl(z[χ]) dz(χ)

dχ for the lenses with
redshift distribution nl, while for the source with redshift distri-
bution ns we have instead

Ws(χ) =
3ΩmH2

0

2c2

∫ ∞

χ

dχ′
χ(χ′ − χ)
χ′a(χ)

ns(z[χ′])
dz[χ′]

dχ′
. (13)

Besides these angular power spectra, FLASK needs the log-
normal shift parameters κ0 and δ0, where −κ0 and −δ0 defining
the lower limits of the log-normal random variable of the conver-
gence and matter density fields, respectively. Whereas the shift
parameter κ0 = {0.02, 0.03} for the convergence power spectra
for the two source bins can be determined directly from the
fitting formula Eq. (38) in Hilbert et al. (2011), we estimated
the shift parameter δ0 = {0.57, 0.59, 0.56} for the three lens
samples (full, red, blue), as described in Gruen et al. (2016),
by assuming that it can be approximated by the shift param-
eter of the smoothed density contrast, which in turn is calcu-
lated from our model for a top-hat filter function (see Eq. (23)
in B22). Given this setup, FLASK returns a foreground density
map δm,2D(θ) and two sets of correlated shear and convergence
grids γ1,2(θ), κ(θ), one per tomographic source bin. We populate
our mock KiDS-bright galaxies on the density map by sampling,
for each pixel θ, a Poisson distribution with mean parameter
λ = neff

[
1 + b δm,2D(θ)

]
, where b = 1.4 is the (constant) lin-

ear galaxy bias estimated from preliminary analyses with only

4 FLASK: http://www.astro.iag.usp.br/~flask/
5 We tested that an area-rescaled covariance matrix coming from over
600 fully independent N-body simulations (see Harnois-Déraps et al.
2018, for a description of the SLICS simulation suite) results in similar
constraints.
6 Currently available here: https://github.com/LSSTDESC/CCL
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some realisations7 and neff = 0.325 arcmin−2 is the mean galaxy
density of the KiDS-bright sample. Similarly, we populate the
two source planes by Poisson-sampling for each pixel a number
of source galaxies npix with parameter λ = neffApix, where Apix

is the area of the pixel under consideration8, and the effective
number density neff is taken from Table 1. We finally combine
the two shear components of each object with their convergence
to construct reduced shear components g1,2, and further com-
bine these with a shape noise contribution εs taken from sam-
pling a Gaussian distribution with vanishing mean and deviation
σε also taken from Table 1. This results in catalogues contain-
ing observed ellipticities εobs transformed as (Seitz & Schneider
1997)

εobs =
εs + g

1 + εs,∗g
. (14)

The quantities in bold here are all complex numbers, and
the asterisk ‘∗’ indicates complex conjugation. This procedure
ensures that we match the number of foreground and background
galaxies in the data and the associated shape noise level.

4.2. cosmo-SLICS+IA

As mentioned earlier, the second suite of simulations is used
to validate the inference pipeline and study the impact of IA
on our DSS measurements. We use for this the fiducial suite
of the cosmo-SLICS presented in Harnois-Déraps et al. (2019),
which consists of a set of 50 simulated light cones of 100 deg2

each, run in a ΛCDM universe with Ωm = 0.2905, ΩΛ =
0.7095, Ωb = 0.0473, h = 0.6898, σ8 = 0.836 and ns =
0.969. The mocks follow the non-linear evolution of 15363

particles up to z = 0, computed by the cubep3m N-body
code (Harnois-Déraps et al. 2013). For Fourier modes of comov-
ing wave number k < 2.0 h Mpc−1, the cosmo-SLICS three-
dimensional dark matter power spectrum P(k) agrees within
2% with the predictions from the Extended Cosmic Emulator
(Heitmann et al. 2014), followed by a progressive deviation for
higher k-modes (Harnois-Déraps et al. 2019), offering a suffi-
cient resolution to model Stage-III galaxy surveys. The particle
data were assigned onto mass sheets at 18 redshifts and then
post-processed into 10 × 10 deg2 light cones. Lensing maps
were produced at 18 source redshift planes for each cosmo-
SLICS light cone and used to interpolate lensing information
onto galaxy catalogues.

Similar to B22, we construct cosmo-SLICS mock source
samples that reproduce a number of key data properties, includ-
ing the tomographic n(z), the galaxy number density neff and the
shape noise levels. As for the FLASK simulations, we use Eq. (14)
to add shape noise to the reduced shear signal. Source galaxies
are placed at random positions on the light cones, and the shear
quantities (γ1/2, κ) are interpolated at these positions from the
enclosing lensing maps.

We also construct mock KiDS-bright samples by populating
the light cone mass maps with galaxies that trace the underly-
ing dark matter field linearly, following the method presented in
Harnois-Déraps et al. (2018). We here again fix the galaxy bias
to 1.4 and an effective number density of neff = 0.325 arcmin−2.

7 Also different values would not affect the posteriors as we discuss in
Sect. 7.2.
8 The public KiDS-1000 mask is provided on a flat sky with a resolu-
tion of 0.01 arcmin2. This results in a HEALPix mask that varies from
pixel to pixel given the fact that the pixelation is different and has a size
of 0.74 arcmin2.

IA infusion

The impact of galaxy IA is a known secondary signal to the cos-
mic shear measurements that have been neglected in past DSS
studies. In this paper, we verify the validity of this assumption by
measuring our statistics in simulated source data that are infused
with IA. We find that IA influences our data vector only if the
lenses’ n(z) overlap with that of the sources. Following the meth-
ods described in HD22, the IA properties of these galaxies are
computed as

εIA
1 = −

AIAC̄1ρ̄(z)
D+(z)

(sxx − syy), εIA
2 = −

2AIAC̄1ρ̄(z)
D+(z)

sxy, (15)

where si j = ∂i jφ are the Cartesian components of the projected
tidal field tensors interpolated at their positions, with φ being the
gravitational potential. In the above expression, AIA captures the
strength of the coupling between the ellipticities and the tidal
field, ρ̄(z) is the matter density, D+(z) is the linear growth fac-
tor, C̄1 = 5 × 10−14M−1

� h−2 Mpc3, as calibrated in Brown et al.
(2002). These intrinsic ellipticity components εIA

1/2 are then com-
bined with the cosmic shear signal by Eq. (14), resulting in an
IA-contaminated weak lensing sample that is consistent with the
NLA model of Bridle & King (2007). We refer the reader to
HD22 for full details about the IA infusion method. We test sev-
eral values of AIA, more precisely, we infused AIA = {1, 1.5, 2},
and inspect in each case the impact on the DSS data vector.

4.3. Magneticum

Baryon feedback is also known to affect the distribution of the
large-scale structure significantly, as the sustained outflows of
energy arising from stellar winds, supernovae and AGN reduce
the clustering on intra-cluster scales by up to tens of per cent
(van Daalen et al. 2011). The exact strength of this suppression
is still largely uncertain, with different hydro-dynamical simu-
lations predicting different redshift and scale dependencies (see,
e.g. Chisari et al. 2015, for a review of recent results). Without
consensus, we opted to measure the DSS in one of these hydro-
dynamical simulations for which the impact is quite high and
inspect how an extreme baryon impact would affect our data
vector.

The Magneticum lensing simulations were first introduced
in Hirschmann et al. (2014) and used to mock up KiDS-450 and
Stage-IV cosmic shear data (Martinet et al. 2021), and subse-
quently in Harnois-Déraps et al. (2021) to study the impact of
baryons in the peak count analysis of the Dark Energy Survey
Y1 data. The underlying matter field is constructed from the
Magneticum Pathfinder simulations9, more specifically by the
Run-2 and Run-2b data described in Hirschmann et al. (2014)
and Ragagnin et al. (2017). These are based on the Gadget3
smoothed particle hydrodynamical code (Springel 2005) and
are able to reproduce a large number of observations (see
Castro et al. 2021, for more details). These both co-evolve dark
matter particles of mass 6.9 × 108h−1 M� and gas particles with
mass 1.4 × 108h−1 M�, in comoving volumes of side 352 and
640 h−1 Mpc, respectively. Included key mechanisms are radia-
tive cooling, star formation, supernovae, AGN, and their asso-
ciated feedback on the matter density field. From sequences of
projected mass planes, we use the procedure outlined above for
the cosmo-SLICS simulations to generate KiDS-1000 sources
and KiDS-bright lenses for ten pseudo-independent light cones,
each covering 100 deg2. We repeat the same procedure on dark

9 www.magneticum.org

A69, page 7 of 18

www.magneticum.org


A&A 669, A69 (2023)

Table 2. All varied parameters and their prior knowledge.

Parameter Prior

Ωm U(0.20, 0.50)
σ8 U(0.45, 1.00)
Bias b U(0.5, 2.5)
α U(0.1, 8)
δ〈z〉 full KiDS-bright sample N(0.0, 0.01)
δ〈z〉 red KiDS-bright sample N(0.0, 0.01)
δ〈z〉 blue KiDS-bright sample N(0.0, 0.01)
δ〈z〉 source bin 4,5 N([0.011,−0.006],Cδ〈z〉)
m-bias source bin 4 N(0.002, 0.012)
m-bias source bin 5 N(0.007, 0.010)

Notes. UniformlyU and normally distributed N priors on the parame-
ters used in our cosmological inferences. The normally distributed pri-
ors on the multiplicative shear m-bias and photometric redshift errors
δ〈z〉 are used only for the real data analysis, not for the simulations
where we set them to zero. The δ〈z〉 for the sources follow a joint
normal distribution with covariance matrix Cδ〈z〉 shown in Fig. 6 of
H21.

matter-only light cones, such that any difference is caused by the
presence of baryons.

The cosmo-SLICS+IA and Magneticum light cones are
square-shaped, a geometry that accentuates the edge effects
when the aperture filter overlaps with the light cone bound-
aries. One could, in principle, weight the outer rims for each
Nap map, such that the whole map can be used; although this
would increase our statistical power, it could also introduce a
systematic offset. We opted instead to exclude the outer rim for
each realisation, resulting in an effective area of 36 deg2, where
a 2 deg band has been removed, matching the size of the adapted
filter. This procedure also ensures that roughly the same number
of background galaxies are used to calculate the shear profile
around each pixel.

5. Cosmological parameter inference

Before performing several Markov chain Monte Carlo (MCMC)
samplings in the following two sections, we describe here the
pipeline of our Monte-Carlo sampler. In our different MCMC
runs, the model vector, the data vector and the covariance matrix
are varied, but the overall pipeline stays the same.

Our statistical analysis has the following two free cosmolog-
ical parameters that we fitted for: the matter density parameter
Ωm and the normalisation of the power spectrum σ8. We addi-
tionally vary the galaxy bias term b and the super-Poisonnian
shot-noise parameter α (see Eq. (7)). We detail the prior ranges
of all parameters in Table 2, where we also show the Gaussian
priors for the nuisance parameters used in the data analysis (but
not in the simulation-based validation runs).

For the estimated covariance matrix C̃, which itself is a ran-
dom variable, Percival et al. (2022) suggested a procedure that
uses a more general joint prior of the mean and covariance matrix
as the Jeffreys prior proposed in Eq. (6) in Sellentin & Heavens
(2016). The method by Percival et al. (2022) leads to credible
intervals that can also be interpreted as confidence intervals with
approximately the same coverage probability. From a data vector
d and a covariance matrix C̃ measured from nr simulated survey
realisations, the posterior distribution of a model vector m that

depends on nθ parameters Θ is

P
(
m(Θ)|d, C̃

)
∝ |C̃|−

1
2

(
1 +

χ2

nr − 1

)−m/2

, (16)

where

χ2 = [m(Θ) − d]T C̃−1 [m(Θ) − d] . (17)

The power-law index m is

m = nθ + 2 +
nr − 1 + B(nd − nθ)

1 + B(nd − nθ)
(18)

with nd being the number of data points and

B =
nr − nd − 2

(nr − nd − 1)(nr − nd − 4)
. (19)

By setting m = nr the formalism of Sellentin & Heavens (2016)
is recovered.

Finally, since the model prediction is too slow for our
MCMC, we use the emulation tool contained in CosmoPower
(Spurio Mancini et al. 2022), which was first developed to emu-
late power spectra but can easily be adapted for arbitrary vectors.
We trained the emulator on 4000 model points in the parameter
space {Ωm, σ8, b, α} distributed in a Latin hypercube, where we
also included δ〈z〉 Gaussian distributed values with the mean as
shown in Table 2 but twice the standard deviation10. To quan-
tify the accuracy of the emulator, we calculated the model at 500
independent points in the same parameter space, as determined
with the emulator or directly with the model and show the model
vector accuracy in Fig. A.4. The fractional error is better than 2%
(95% confidence level).

Reporting parameter constraints and goodness of fit

In this work, we followed the approach of Joachimi et al. (2021)
to report our parameter constraints. In particular, we seek to
report the global best fit to the data, that is the set of parameter
values that provide the maximum a posteriori (MAP) distribu-
tion, computed as

ΘMAP = argmax
Θ

[
P(m(Θ)|d, C̃)

]
, (20)

where we found the maximum by running several minimisa-
tion processes. To estimate the resulting uncertainties around the
MAP, we use the suggested projected-joint-highest-posterior-
density (PJ-HPD) method, which calculates the parameter
ranges that encompass the 68% and 95% credible intervals.

Furthermore, with the degrees of freedom (d.o.f.), we also
report the reduced χ2/d.o.f. to quantify the goodness of fit,
where the χ2 results from the point in the high-dimensional
parameter space that has the highest posterior probability. To
unbias the covariance matrix C̃, which is used to estimate the
χ2-values, we instead of inverting C̃ h with the known Hartlap
factor (Hartlap et al. 2007) defined as h = (nr − 1)/(nr − nd − 2),
but rather use

C̃′ =
(nr − 1) [1 + B(nd − nθ)]

nr − nd + nθ − 1
C̃. (21)

To estimate the d.o.f. we measure for 1000 mock data vectors
the best χ2 and fit a χ2 distribution to it. The 1000 mock data vec-
tors are drawn from a multivariate Gaussian distribution, where
10 For the validation analysis we used only 2000 nodes as for that anal-
ysis the nuisance parameters were not modelled.
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Fig. 2. Shear profiles measured with the adapted filter for the KiDS-
bright-like lenses and sources from the cosmo-SLICS+IA simulations
for two different IA amplitudes (see the legend). The orange regions are
estimated from the covariance matrix, while the black dashed lines are
obtained from our IA-free analytical predictions at the input cosmology
and using the n(z) shown in Fig. 1. As the differences between the shear
profiles with varying IA amplitude can barely be seen, we display the
relative difference between them in the bottom panels for the highest
and lowest two quantiles.

the mean is the model prediction at the MAP values, and the
covariance is the corresponding covariance matrix for that par-
ticular model. As we have only four free parameters and the rest
are fixed by prior knowledge, we expect that the resulting d.o.f.
is only slightly less than the raw number of elements in the data
vector. Lastly, we report the p-value in each case, which provides
the probability of finding a χ2 that is more extreme for the given
d.o.f., and therefore indicates the goodness of fit. For our anal-
ysis, we choose a significance level of 0.01 to be a reliable fit.
We have verified with some selected cosmo-SLICS nodes that
the theoretical model for the KiDS-bright sample is valid and
accurate for σ8 < 1.0, with indications that it loses accuracy for
larger values of σ8. This does not affect our results, given that
the preferred values of σ8 are well below this limit.

6. Validating the model on simulations

In this section, we validate our model on simulated measure-
ments, several of which are infused with known and controlled
systematic effects. The first (fiducial) test establishes that our
model is unbiased in the simplest setup, where lens galaxies
linearly trace the pure dark matter density maps, while source
galaxies are given by the noise-free pure gravitational shear. The
second test verifies that our results are unchanged in the pres-
ence of IA, as described in Sect. 4.2, while, lastly, we investigate
the impact of baryonic physics on our statistics. The fiducial and
the IA tests use 20 light cones, which have an unmasked area
close to that of the KiDS-1000 footprint11. The measurements
on the Magneticum mocks use the ten available light cones. Fur-
thermore, we measured the shear profiles from KiDS-like mocks
with shape noise to validate our model on a realistic data vector.

6.1. Validation on intrinsic alignment

To quantify the influence of IA on our results, we performed an
MCMC analysis on the mock infused with a strong IA amplitude
(AIA = 2.0) and compared it to our fiducial model (AIA = 0).
For this, we used the mocks described in Sect. 4.2, excluding
the third source tomographic bin due to the lens-source cou-

11 After removing the outer strip, each light cone has an effective area of
36 deg2, which roughly matches the unmasked area of the KiDS-1000
data if 20 light cones are added.

Fig. 3. Relative difference between the mean 〈Nap〉 measured in the
cosmo-SLICS+IA bright mocks for four quantiles, and the value of
〈Nap〉 predicted by the model at the same cosmology. The blue error
bars show the KiDS-1000 statistical uncertainty measured from FLASK.

pling. The resulting profiles and mean relative number counts
that are used for our pipeline validation are shown in Figs. 2
and 3, respectively. Although the aperture number is not affected
by IA, it has a slight effect on the profiles, and hence we verify
how it impacts the full data analysis. Although the fourth quan-
tile in Nap has 2σ deviation, the p-value is approximately 0.2,
which shows that this is consistent with being a statistical fluc-
tuation. We performed this validation test for the adapted and
top-hat filters but show the resulting shear signals, and the cor-
responding mean aperture number values only for the adapted
filter since those of the top-hat filter are very similar and would
not yield more insights.

To quantify our decision to discard the third source tomo-
graphic bin from our analysis, we show in Fig. A.5 the same
shear profiles as in Fig. 2 but also the ones resulting from the
third redshift bin, where we clearly see the third tomographic bin
is heavily affected by IA, due to a significant overlap in redshift
between the lens and source populations, and therefore would
need additional modelling of IA, which we disregard for this
work, and thus we exclude the third bin.

The MCMC results for the two IA amplitudes (no IA and
IA = 2.0) are shown in Fig. 4. First, it is clearly shown that
changing the IA amplitude does not affect the posterior at all.
Second, and very importantly, the input cosmology is recov-
ered. We observe a small offset on the parameter α, but the
other parameters are all recovered within the 1σ region. This
confirms that the <6% deviations seen on the aperture number
count presented in Fig. 4 do not impact our cosmological infer-
ence. Finally, we observe an anti-correlation between the S 8 or
σ8 parameter and the galaxy bias b parameter, which is expected
since all three parameters are directly correlated with the ampli-
tude of the shear signal. This correlation and the correlation of S 8
andσ8 to the α parameter could potentially impair the robustness
of the later constrained parameters. However, these parameters
are particularly important for our model and, therefore, cannot
be ignored. The same validation is done for the top-hat filter in
Appendix C.

6.2. Validation on baryonic feedback

As a last important verification, we investigate for the first time
the impact of baryons on the DSS with the Magneticum simula-
tions described in Sect. 4.3. By combining the different DM-only
and Hydro mock data for the lenses and sources, we end up with
four scenarios (lens-source = DM-DM, DM-Hydro, Hydro-DM
and Hydro-Hydro). Figure 5 shows the residuals between the
shear profiles measured from dark matter-only mocks (DM-DM)
to the other three combinations for each quantile. Clearly, the
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Fig. 4. Pipeline validation: cosmological inference with the adapted fil-
ter using the cosmo-SLICS simulations with and without IA infusion,
analysed with our model that ignores IA. The posteriors are almost
indistinguishable from each other.

deviations are well inside the expected KiDS-1000 uncertainty.
The biggest differences are seen if baryonic feedback processes
are included in the lens mocks: some pixels, close to the Nap
threshold between two quantiles, are shifted to another quantile
by the presence of baryons. This is in concordance with the mean
aperture numbers reported in Fig. 6, which shows that the mean
aperture numbers with baryons are slightly lower. Different to
our studies of baryonic feedback such as Heydenreich et al.
(2022) or Harnois-Déraps et al. (2021), the inclusion of baryons
in the sources has only a minor impact on the DSS, but as
expected, becoming more important at small scales. In light of
this, we can safely neglect the impact of baryons in our real data
analysis.

7. Results and discussion

After validating our model to simulations in B22 and our addi-
tional testing on the impact of IA and baryonic physics, we
are well equipped to analyse real lensing data accurately. As
described in Sect. 3, we use the KiDS-bright sample as our fore-
ground lenses and the fourth and fifth KiDS-1000 tomographic
bins as our cosmic shear data.

To recap, in our fiducial analysis, we used the n(z) shown
as the black solid line in Fig. 1, we varied the two cosmo-
logical parameters Ωm and σ8 as well as the two astrophysi-
cal parameters b and α. We marginalised over the systematic
effects parameters describing the δ〈z〉 and m-bias uncertainty. In
Figs. 7 and 8 we display the resulting shear profiles and mean
aperture number. The model shown in these figures is com-
puted at the best-fit MAP values, listed in the first column of
Table 3. In that table, the p-values indicate that the data are
well fitted by the model, being all well above our threshold
value fixed at p = 0.01. The d.o.f. are estimated as described
in Sect. 5, where we show in Fig. A.6 the distribution of χ2 val-

Fig. 5. Absolute differences between the mean shear profiles for all
quantiles using either dark matter-only or full hydrodynamical Mag-
neticum simulations. The residuals are with respect to the dark matter-
only mocks for the lenses and sources and are always within the
expected statistical uncertainty shown as the orange bands.

Fig. 6. Relative difference between the mean 〈Nap〉 to compare mea-
surements from the hydro and dark matter-only Magneticum simula-
tions. The relative difference is always well inside the expected statisti-
cal uncertainty of KiDS-1000.

Fig. 7. Shear profiles measured in the data, compared to the best-fit pre-
dictions (MAP) obtained with values listed in Table 3, for the adapted
filter. The shaded region shows the statistical uncertainty estimated from
1000 FLASK realisations.

ues and for which a χ2-distribution with 81 d.o.f. fits well. As
expected, the resulting d.o.f. is slightly lower than the raw num-
ber of elements. The reduced χ2 values are slightly below the
expectation of 1.0, potentially indicating that the uncertainties
could be slightly overestimated, although they are well inside
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Fig. 8. Relative difference between the mean 〈Nap〉 to compare mea-
surements from the KiDS-bright sample and our model, evaluated at
the MAP values shown in Table 3. The measured 〈Nap〉 are all greater
than the predicted 〈Nap〉 at MAP just indicating that the measured p(Nap)
is broader than the predicted one.

the expected reduced χ2 scatter of ±
√

2, hence do not warrant
further investigation.

Using the approach described in Sect. 5 to estimate the
uncertainty around the MAP, we find

S DSS
8 = 0.731+0.030

−0.018, (22)

which is consistent with and competitive to the KiDS-1000 cos-
mic shear constraints from Asgari et al. (2021),

S COSEBIs
8 = 0.759+0.024

−0.021. (23)

We present the posterior of these two analyses in Fig. 9, where
the consistency between the two probes is obvious. The DSS has
a slightly lower constraining power on S 8; however, the Ωm–
σ8 degeneracy is broken, thanks to the additional information
provided by the foreground data. But even for the shear-only
case shown in green in Fig. 9, the DSS has better constraining
power for the Ωm and σ8 parameters, although the lower bound
should be taken with caution as we excluded all Ωm < 0.2, as
the model does not agree with the cosmo-SLICS for smaller Ωm
values. Furthermore, although the results of Fig. A.2 show that
the inferred S 8 might be smaller compared to the truth if a lin-
ear galaxy bias model is not sufficient, the consistency between
the shear-only DSS analysis to the complete DSS analysis sup-
ports the robustness of our inferred parameters with respect to
the galaxy bias model (see the discussion at the end of Sect. 2.2).
The comparison to the COSEBIs analysis reveals competitive
S/N for the S 8 parameter while using only a fraction of the lens-
ing sources (tomographic bins four and five). Caution should
be taken when comparing their respective constraining power,
as the COSEBIs analysis marginalises over more cosmological
parameters and samples the parameter space differently. Never-
theless, it seems that a joint COSEBIs-DSS analysis could fur-
ther improve the constraints, which we leave for future work.
Lastly, as the DSS estimates of S 8 are slightly lower but with
higher uncertainty, we measure a similar tension to the CMB
results as the COSEBIs analysis.

In the next section, we investigate the robustness of our
results with respect to the lens redshift distribution n(z), of vary-
ing the covariance matrix. We further present our galaxy colour-
split analysis and additionally discuss the galaxy bias b and α
results.

7.1. Impact of lens redshift distribution

To estimate the impact of the shape of the lens galaxy redshift
distribution (on top of shifting the mean by δ〈z〉 in the sampling),
we repeat the analysis for the three n(z) shown in Fig. 1. These

Table 3. Marginalised MAP values and their 68% confidence intervals
for the different lens n(z) of the full sample.

nbe(z) nph(z) nsp(z)

Ωm 0.27+0.02
−0.02 0.30+0.03

−0.02 0.32+0.03
−0.02

σ8 0.77+0.04
−0.03 0.75+0.04

−0.03 0.74+0.04
−0.04

S 8 0.73+0.03
−0.02 0.75+0.03

−0.02 0.76+0.03
−0.02

b 1.37+0.10
−0.10 1.36+0.10

−0.11 1.32+0.13
−0.09

α 0.75+0.95
−0.44 0.83+0.79

−0.66 1.39+0.71
−0.95

χ2/d.o.f. 0.81 0.81 0.83
p-value 0.90 0.90 0.87

Notes. The 68% confidence intervals result from the MCMC chains
shown in Fig. 10. Here Ωm, σ8, α, and the linear galaxy bias param-
eter are varied. We fixed h = 0.6898, w0 = −1 and ns = 0.969 but
marginalised over the δ〈z〉 and m-bias uncertainties.

are the smoothed version of the photometric redshift distribution
nbe(z), the photometric redshift distribution nph(z) itself with-
out any smoothing, and the spectroscopic redshift nsp(z) from
those GAMA galaxies that are also in the KiDS-bright sample.
Although Bi21 showed that GAMA is representative and that
mismatches should be rare, the results from the GAMA spectro-
scopic nsp(z) should be taken with caution because the equatorial
fields have a relatively small sky coverage, leading to features
in the nsp(z) that are caused by the large-scale structure present
in these fields. For this investigation, we use the same setup as
for the fiducial analysis, varying the two cosmological parame-
ters Ωm and σ8 together with the α and the linear galaxy bias
b parameter. We also marginalised over the nuisance parameters
shown bottom half of Table 2. In Fig. 10 we display the different
posteriors following from the three alternatives n(z). It is clearly
seen that the posteriors are shifted along the Ωm−σ8 degeneracy
axis, whereas these shifts partially cancel out for S 8. Due to the
different lens n(z), the amplitude and the slope of the shear signal
predictions are slightly different. In particular, higher amplitude
and steeper slope of the shear profiles result in larger σ8 and
smaller Ωm, and vice-versa. Furthermore, we notice that the lin-
ear galaxy bias b and the noise α are stable against changes in
the n(z).

Lastly, in order to investigate the impact of our photomet-
ric redshift cut at zph = 0.1 (see Sect. 3.1), we perform two
additional analyses, this time modifying the photometric redshift
threshold to zph > 0.15 and zph > 0.2. We find that the posteriors
shifts are smaller than the 68% credibility region, indicating that
removing low-redshift galaxies does not result in systematically
different Ωm or σ8.

7.2. Cosmology scaling of the covariance matrix

The covariance matrix used in the main analysis is determined
at a specific point in the parameter space (see Sect. 4.1), which
is not identical to the MAP. However, assuming the MAP val-
ues are the true parameters, the most robust likelihood analysis
would be achieved with a data covariance matrix estimated at
the MAP values. This section, therefore, explores the impact of
considering a cosmology-dependent covariance matrix.

In the related literature, there are two common approaches on
whether the cosmology should be kept fixed in the covariance
matrix (van Uitert et al. 2018) or varied at each point sampled
by the MCMC, as in Eifler et al. (2009). It is argued in Carron
(2013) that the latter could result in over-constraints, whereas
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Fig. 9. Cosmological posteriors for the adapted filter for the best-
estimated nbe(z) in black using the full data vector and in green using
only shear information compared to the COSEBIs posteriors in orange
presented in Asgari et al. (2021) and to the (TT, TE, EE+lowE) results
of Planck Collaboration V (2020) in red. The sharp cut of the green pos-
terior is due to the conservative prior of Ωm > 0.2, as the model does
not agree with the cosmo-SLICS for smaller Ωm values. The shear-only
posterior is shown in this figure to support the assumption of using a
linear galaxy bias model.

Kodwani et al. (2019) argues that the effect is small. We, there-
fore, explore both methods here.

We achieve our cosmology rescaling by assuming that the
covariance matrix scales quadratically with the signal. This is
only strictly true in the Gaussian regime; nevertheless, it is a
good first approximation, even though the impact on the non-
linear mode coupling is neglected in this approach.

To achieve the rescaling, we compute at a new cosmology
Θ the ratio between the predicted model m(Θ) and the model
predicted at the FLASK cosmology m

(
ΘF

)
,

ri(Θ) =
mi(Θ)

mi

(
ΘF

) . (24)

We then multiply each element of the fiducial covariance matrix,
CF

i j, by the scaling factors,

Ci j(Θ) = CF
i j ri(Θ) r j(Θ) , (25)

and obtain a cosmology-rescaled covariance matrix.
As explained in Eifler et al. (2009), this method is only valid

for a noise-free covariance matrix since it wrongly rescales the
shape-noise component and possibly over-estimates the cosmol-
ogy changes. Finally, we note that in Eq. (16) the determinant of
the covariance matrix changes with cosmology as well and needs
to be recalculated.

Using our fiducial setup, we determine the posterior distribu-
tion in two distinct ways: first, by varying the covariance matrix
alongside the model vector at each step of the MCMC, and sec-
ond, by scaling the covariance matrix to the MAP value. For the

Fig. 10. Posteriors of the full DSS vector resulting from using the differ-
ent lens n(z) shown in Fig. 1. The n(zphot) and n(z) have, by construction,
the same mean redshift, while the mean redshift of the spectroscopic
redshift estimate is ∼ 0.015 lower. The main DSS results include a
marginalisation over our uncertainty in the mean redshifts of both the
lens and source samples, which partially compensates for some of these
differences. The posterior obtained using the GAMA spectroscopic
n(z), shown in blue, should be taken with caution as it is estimated
from a smaller sky coverage and, as such, contains larger statistical
fluctuations.

latter approach, we use an iterative process, where we first esti-
mate the MAP with the fiducial covariance matrix, then use the
MAP parameters to scale the covariance matrix and find new
MAP parameters; we repeated that process 100 times. As seen
in Fig. A.7 after approximately 20 iterations the MAP values
converged. The results are shown in Fig. 11, where the red pos-
teriors used a covariance rescaled to the converged MAP value;
the blue posteriors are for a full parameter-dependent covariance
matrix varied in the MCMC; the black posteriors show the fidu-
cial covariance. The red and black posteriors are almost identi-
cal, which is not surprising given the fact that the MAP values
are very close to the parameters used to determine the covariance
matrix. However, the blue contours slightly differ from the other
two but are still within half 1σ; we are therefore not concerned
about the impact on our constraints of this analysis choice. In
Stage IV surveys, this is even less important due to the tighter
posterior and the, therefore, smaller cosmology variation.

7.3. Red and blue split

In this section, we present our final investigation, dividing the
KiDS-bright sample into red and blue galaxies according to their
colour as described in Sect. 3.1, and carry out a joint analysis.
The motivation for this is to learn more about the behaviour of
different galaxy types and as a cosmological robustness check.
As for the main analysis, we use the best-estimated nbe(z), result-
ing from smoothing the photometric redshifts after applying a
zph > 0.1 cut. In this setup, our data vector has 168 elements. But
given the likelihood modelling described in Sect. 5, we are still
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Fig. 11. Comparison between the posteriors obtained from our fiducial
setup (with the covariance matrix calculated at the initial cosmology,
see the black contours), with those obtained after scaling the covariance
at the best-fit parameters (red) and to those obtained by varying the
covariance with the parameters (blue).

Table 4. Marginalised MAP values and their 68% confidence intervals
for the different lens samples.

Full Red + blue

Ωm 0.27+0.02
−0.02 0.27+0.02

−0.02
σ8 0.77+0.04

−0.03 0.79+0.04
−0.02

S 8 0.73+0.03
−0.02 0.75+0.03

−0.02
b 1.37+0.10

−0.10 1.83+0.08
−0.14 1.02+0.04

−0.10
α 0.75+0.95

−0.44 0.10+0.62 2.25+0.33
−0.12

χ2/d.o.f. 0.81 1.01
p-value 0.89 0.44

Notes. The 68% confidence intervals result from the MCMC chains
shown in the right panel of Fig. 12. The first column is the same as in
Table 3. We fixed h = 0.6898, w0 = −1 and ns = 0.969 but marginalised
over the δ〈z〉 and m-bias uncertainties. If limits are not given they are
dominated by priors.

confident in our results with respect to the remaining noise in the
covariance matrix. As shown in Table 4, the reduced χ2/d.o.f. =
1.00 indicates a valid fit. The resulting posteriors are shown in
Fig. 12 and the MAP values are stated in Table 4.

First, we notice that the cosmological parameters of the full
KiDS-bright sample analysis and the joint red and blue analy-
sis are consistent and within 0.48σ in σ8 and almost identical
in Ωm. Of particular interest in this investigation are the results
obtained for the two astrophysical parameters, where we see that,
as expected, the blue (red) sample prefers a smaller (larger) lin-
ear galaxy bias b compared to the full sample. This is in line with
the fact that red galaxies are known to be more strongly clus-
tered than blue galaxies and therefore have a larger galaxy bias
(Mo et al. 2010). Furthermore, we find that the α parameter for
the blue sample is significantly larger than unity, whereas the red

Fig. 12. Posterior for the full KiDS-bright sample shown in green, while
the joint red+blue posteriors represent the results of the colour-selected
samples. In the latter case, the red and blue samples share the same
cosmology (the dark blue contours) by construction. The resulting mea-
sured and best-fit predicted shear profiles for the red and blue samples
are displayed in Fig. B.2 and the corresponding mean aperture number
values are seen in Fig. B.3.

sample tends to be below one. This shows that blue galaxies fol-
low a super-Poisson distribution and red galaxies a sub-Poisson
distribution. Following the results of Friedrich et al. (2022) who
found that a higher satellite fraction leads to a higher α value,
the blue sample has more satellites. The full sample overlaps
with the blue and red posteriors and is consistent with a normal-
Poisson distribution (α = 1.0).

8. Summary and conclusions

In this work, we present an unblinded density split statistic anal-
ysis of the fourth data release of the Kilo-Degree survey (KiDS-
1000). The analytical model used to infer cosmological and
astrophysical parameters was first developed in Friedrich et al.
(2018) and then modified in Burger et al. (2022), and we fur-
ther validated it on realistic simulated data. The lenses used to
construct the foreground density map are taken from the KiDS-
bright sample described in Bi21, while for our sources, we used
the fourth and fifth tomographic redshift bins of the KiDS-1000
data described in H21.

We investigated for the first time the impact of baryons and
IA on the DSS. While the effect of the former is suppressed
due to the implied smoothing of the density map, IA can have
an important role if the redshift distributions of the lenses and
sources overlap. We carried out a full analysis on contaminated
mock data without overlapping redshift distributions and found
that for our selected data, we are immune to both of the system-
atic effects at the level of the inferred posteriors.

We explored the uncertainty of the redshift distribution of
the lenses by investigating the impact on the posterior of chang-
ing the mean and the shape of the nph(z). In particular, for
this, we used the photometric redshift distribution nph(z) with
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and without smoothing, as well as the distribution obtained
directly from the overlapping spectroscopic GAMA galaxies.
We found that the posteriors vary by less than ∼0.5σ. Notably,
we observed that of all parameters, Ωm is the most affected and is
generally lower for broader n(z); in contrast, σ8 increased, leav-
ing S 8 values changed by ∼ 0.5σ. We assigned an extra error
term to this uncertainty, resulting in S 8 = 0.73+0.03

−0.02±0.01 for the
n(z) shape after marginalising over the other systematic effects.
These constraints are competitive and consistent with the KiDS-
1000 cosmic shear constraints from Asgari et al. (2021).

Furthermore, we investigated the impact of varying the
covariance matrix with cosmological parameters, where we used
an iterative process once to scale the covariance matrix to the
MAP best-fit parameters, and we varied them alongside the
parameters in the MCMC process once as well; for all cases,
we recorded no significant deviations.

As our final result, we divided the full KiDS-bright sam-
ple into red and blue galaxies as a cosmology robustness check
and to learn more about different galaxy types. For this, we
performed a joint analysis of the red and blue samples with
a joint covariance matrix with the smoothed version of nph(z)
as our best redshift estimate. The resulting posteriors of the
full and joint red+blue analyses agree as to the cosmological
parameters within 0.35σ. Furthermore, this shows the expected
behaviour of the linear galaxy bias, where blue (red) galaxies
have a lower (higher) bias than the full sample. The α parame-
ter, which accounts for super-Poisson or sub-Poisson shot noise,
also revealed interesting results. Whereas red galaxies have an
α value that tends to be smaller than one (≈2σ), blue galaxies
have an α value significantly larger than one (≈6σ), meaning
that blue galaxies are super-Poisson distributed and red galaxies
are sub-Poisson distributed. According to Friedrich et al. (2020),
this reveals information about the halo occupation distribution,
with samples with a larger fraction of satellite galaxies tending
to have larger α values.

We conclude from our results that the density split statistic
is a valuable tool with a major advantage in the Ωm-σ8 degen-
eracy breaking. In addition to this, it also yields a new way to
measure the galaxy bias on linear scales and the Poissanity of
different galaxy types. We save the inference of the dark-energy-
equation of state w for future analysis; this can be achieved by
a tomographic analysis of high-precision lensing and clustering
data. Other aspects for future analysis include the modelling of
a more complex galaxy bias model, and lastly, the impact of the
filter size, where we expect smaller filter sizes to be more con-
straining yet also more sensitive to non-linear scales and bary-
onic analysis.

Acknowledgements. We thank the anonymous referee for the very construc-
tive and fruitful comments. This paper went through the KiDS review pro-
cess, where we especially want to thank the KiDS-internal referee Benjamin
Joachimi for his fruitful comments to improve this work. Further, we would
like to thank Mike Jarvis for maintaining treecorr, and Alessio Mancini to
develop the CosmoPower emulator, which improved our work significantly.
Lastly, we thank Sven Heydenreich, Laila Linke, Patrick Simon and Jan Luca
van den Busch for very valuable discussions. PAB acknowledges support by the
German Academic Scholarship Foundation. JHD acknowledges support from
an STFC Ernest Rutherford Fellowship (project reference ST/S004858/1). OF
gratefully acknowledges support by the Kavli Foundation and the International
Newton Trust through a Newton-Kavli-Junior Fellowship and by Churchill Col-
lege Cambridge through a postdoctoral By-Fellowship. MB is supported by
the Polish National Science Center through grants no. 2020/38/E/ST9/00395,
2018/30/E/ST9/00698, 2018/31/G/ST9/03388 and 2020/39/B/ST9/03494, and
by the Polish Ministry of Science and Higher Education through grant
DIR/WK/2018/12. HH is supported by a Heisenberg grant of the Deutsche
Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant
(No. 770935). AHW is supported by a European Research Council Consolidator

Grant (No. 770935). TC is supported by the INFN INDARK PD51 grant and
the FARE MIUR grant ‘ClustersXEuclid’ R165SBKTMA. KD acknowledges
support by the COMPLEX project from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program
grant agreement ERC-2019-AdG 882679 and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC-2094 – 390783311. The calculations for the Magneticum sim-
ulations were carried out at the Leibniz Supercomputer Center (LRZ) under
the project pr83li and with the support by M. Petkova through the Computa-
tional Center for Particle and Astrophysics (C2PAP). CH acknowledges sup-
port from the European Research Council under grant number 647112, and sup-
port from the Max Planck Society and the Alexander von Humboldt Founda-
tion in the framework of the Max Planck-Humboldt Research Award endowed
by the Federal Ministry of Education and Research. BJ acknowledges sup-
port by STFC Consolidated Grant ST/V000780/1. KK acknowledges support
from the Royal Society, and Imperial College. NM acknowledges support from
the Centre National d’Études Spatiales (CNES) fellowship. HYS acknowledges
the support from CMS-CSST-2021-A01 and CMS-CSST-2021-B01, NSFC of
China under grant 11973070, the Shanghai Committee of Science and Technol-
ogy grant No.19ZR1466600 and Key Research Program of Frontier Sciences,
CAS, Grant No. ZDBS-LY-7013. TT acknowledges support from the Lever-
hulme Trust. Author contributions: all authors contributed to the development
and writing of this paper. The authorship list is given in three groups: the lead
authors (PAB, OF, JHD, PS), where we ordered (OF, JHD, PS) alphabetically.
PAB led the paper, JHD provided all necessary simulations, OF and PS con-
tributed to the modelling, and all four helped in the development of the analysis.
The first author group is followed by two further alphabetical groups. The first
alphabetical group includes those who are key contributors to both the scientific
analysis and the data products. The second group covers those who have either
made a significant contribution to the data products or to the scientific analysis.

References
Abbott, T. M. C., Abdalla, F. B., Alarcon, A., et al. 2018, Phys. Rev. D, 98,

043526
Amon, A., Gruen, D., Troxel, M. A., et al. 2022, Phys. Rev. D, 105, 023514
Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRAS, 310, 540
Asgari, M., Tröster, T., Heymans, C., et al. 2020, A&A, 634, A127
Asgari, M., Lin, C.-A., Joachimi, B., et al. 2021, A&A, 645, A104
Barthelemy, A., Codis, S., & Bernardeau, F. 2021, MNRAS, 503, 5204
Bergé, J., Amara, A., & Réfrégier, A. 2010, ApJ, 712, 992
Bilicki, M., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014,

ApJS, 210, 9
Bilicki, M., Dvornik, A., Hoekstra, H., et al. 2021, A&A, 653, A82
Bridle, S., & King, L. 2007, New J. Phys., 9, 444
Brouwer, M. M., Demchenko, V., Harnois-Déraps, J., et al. 2018, MNRAS, 481,

5189
Brown, M. L., Taylor, A. N., Hambly, N. C., & Dye, S. 2002, MNRAS, 333, 501
Burger, P., Schneider, P., Demchenko, V., et al. 2020, A&A, 642, A161
Burger, P., Friedrich, O., Harnois-Déraps, J., & Schneider, P. 2022, A&A, 661,

A137
Carron, J. 2013, A&A, 551, A88
Castro, T., Borgani, S., Dolag, K., et al. 2021, MNRAS, 500, 2316
Chisari, N., Codis, S., Laigle, C., et al. 2015, MNRAS, 454, 2736
Chisari, N. E., Alonso, D., Krause, E., et al. 2019, ApJS, 242, 2
de Jong, J. T. A., Verdoes Kleijn, G. A., Boxhoorn, D. R., et al. 2015, A&A, 582,

A62
de Jong, J. T. A., Verdoes Kleijn, G. A., Erben, T., et al. 2017, A&A, 604,

A134
DES Collaboration (Abbott, T. M. C., et al.) 2022, Phys. Rev. D, 105, 023520
Di Valentino, E., Anchordoqui, L. A., Akarsu, Ö., et al. 2021a, Astropart. Phys.,

131, 102605
Di Valentino, E., Anchordoqui, L. A., Akarsu, Ö., et al. 2021b, Astropart. Phys.,

131, 102604
Driver, S. P., Hill, D. T., Kelvin, L. S., et al. 2011, MNRAS, 413, 971
Edge, A., Sutherland, W., Kuijken, K., et al. 2013, The Messenger, 154, 32
Eifler, T., Schneider, P., & Hartlap, J. 2009, A&A, 502, 721
Fenech Conti, I., Herbonnet, R., Hoekstra, H., et al. 2017, MNRAS, 467, 1627
Friedrich, O., Gruen, D., DeRose, J., et al. 2018, Phys. Rev. D, 98, 023508
Friedrich, O., Uhlemann, C., Villaescusa-Navarro, F., et al. 2020, MNRAS, 498,

464
Friedrich, O., Halder, A., Boyle, A., et al. 2022, MNRAS, 510, 5069
Fu, L., Kilbinger, M., Erben, T., et al. 2014, MNRAS, 441, 2725
Giblin, B., Heymans, C., Asgari, M., et al. 2021, A&A, 645, A105
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Gruen, D., Friedrich, O., Amara, A., et al. 2016, MNRAS, 455, 3367
Gruen, D., Friedrich, O., Krause, E., et al. 2018, Phys. Rev. D, 98, 023507

A69, page 14 of 18

http://linker.aanda.org/10.1051/0004-6361/202244673/1
http://linker.aanda.org/10.1051/0004-6361/202244673/1
http://linker.aanda.org/10.1051/0004-6361/202244673/2
http://linker.aanda.org/10.1051/0004-6361/202244673/3
http://linker.aanda.org/10.1051/0004-6361/202244673/4
http://linker.aanda.org/10.1051/0004-6361/202244673/5
http://linker.aanda.org/10.1051/0004-6361/202244673/6
http://linker.aanda.org/10.1051/0004-6361/202244673/7
http://linker.aanda.org/10.1051/0004-6361/202244673/8
http://linker.aanda.org/10.1051/0004-6361/202244673/9
http://linker.aanda.org/10.1051/0004-6361/202244673/10
http://linker.aanda.org/10.1051/0004-6361/202244673/11
http://linker.aanda.org/10.1051/0004-6361/202244673/11
http://linker.aanda.org/10.1051/0004-6361/202244673/12
http://linker.aanda.org/10.1051/0004-6361/202244673/13
http://linker.aanda.org/10.1051/0004-6361/202244673/14
http://linker.aanda.org/10.1051/0004-6361/202244673/14
http://linker.aanda.org/10.1051/0004-6361/202244673/15
http://linker.aanda.org/10.1051/0004-6361/202244673/16
http://linker.aanda.org/10.1051/0004-6361/202244673/17
http://linker.aanda.org/10.1051/0004-6361/202244673/18
http://linker.aanda.org/10.1051/0004-6361/202244673/19
http://linker.aanda.org/10.1051/0004-6361/202244673/19
http://linker.aanda.org/10.1051/0004-6361/202244673/20
http://linker.aanda.org/10.1051/0004-6361/202244673/20
http://linker.aanda.org/10.1051/0004-6361/202244673/21
http://linker.aanda.org/10.1051/0004-6361/202244673/22
http://linker.aanda.org/10.1051/0004-6361/202244673/22
http://linker.aanda.org/10.1051/0004-6361/202244673/23
http://linker.aanda.org/10.1051/0004-6361/202244673/23
http://linker.aanda.org/10.1051/0004-6361/202244673/24
http://linker.aanda.org/10.1051/0004-6361/202244673/25
http://linker.aanda.org/10.1051/0004-6361/202244673/26
http://linker.aanda.org/10.1051/0004-6361/202244673/27
http://linker.aanda.org/10.1051/0004-6361/202244673/28
http://linker.aanda.org/10.1051/0004-6361/202244673/29
http://linker.aanda.org/10.1051/0004-6361/202244673/29
http://linker.aanda.org/10.1051/0004-6361/202244673/30
http://linker.aanda.org/10.1051/0004-6361/202244673/31
http://linker.aanda.org/10.1051/0004-6361/202244673/32
http://linker.aanda.org/10.1051/0004-6361/202244673/33
http://linker.aanda.org/10.1051/0004-6361/202244673/34
http://linker.aanda.org/10.1051/0004-6361/202244673/35


P. A. Burger et al.: KiDS-1000 cosmology: Constraints from density split statistics

Halder, A., & Barreira, A. 2022, MNRAS, 515, 4639
Halder, A., Friedrich, O., Seitz, S., & Varga, T. N. 2021, MNRAS, 506, 2780
Hamana, T., Shirasaki, M., Miyazaki, S., et al. 2020, PASJ, 72, 16
Harnois-Déraps, J., Pen, U.-L., Iliev, I. T., et al. 2013, MNRAS, 436, 540
Harnois-Déraps, J., Amon, A., Choi, A., et al. 2018, MNRAS, 481, 1337
Harnois-Déraps, J., Giblin, B., & Joachimi, B. 2019, A&A, 631, A160
Harnois-Déraps, J., Martinet, N., Castro, T., et al. 2021, MNRAS, 506, 1623
Harnois-Déraps, J., Martinet, N., & Reischke, R. 2022, MNRAS, 509, 3868
Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399
Heitmann, K., Lawrence, E., Kwan, J., Habib, S., & Higdon, D. 2014, ApJ, 780,

111
Heydenreich, S., Brück, B., Burger, P., et al. 2022, A&A, 667, A125
Heymans, C., Tröster, T., Asgari, M., et al. 2021, A&A, 646, A140
Hilbert, S., Hartlap, J., & Schneider, P. 2011, A&A, 536, A85
Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454
Hildebrandt, H., van den Busch, J. L., Wright, A. H., et al. 2021, A&A, 647,

A124
Hirschmann, M., Dolag, K., Saro, A., et al. 2014, MNRAS, 442, 2304
Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
Joachimi, B., Lin, C. A., Asgari, M., et al. 2021, A&A, 646, A129
Joudaki, S., Blake, C., Johnson, A., et al. 2018, MNRAS, 474, 4894
Joudaki, S., Hildebrandt, H., Traykova, D., et al. 2020, A&A, 638, L1
Kaiser, N. 1992, ApJ, 388, 272
Kilbinger, M., & Schneider, P. 2005, A&A, 442, 69
Kodwani, D., Alonso, D., & Ferreira, P. 2019, Open J. Astrophys., 2, 3
Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, MNRAS, 454, 3500
Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2
Martinet, N., Castro, T., Harnois-Déraps, J., et al. 2021, A&A, 648, A115
Miller, L., Heymans, C., Kitching, T. D., et al. 2013, MNRAS, 429, 2858

Mo, H., van den Bosch, F. C., & White, S. 2010, Galaxy Formation and
Evolution, (Cambridge, UK: Cambridge University Press)

Peacock, J. A., & Bilicki, M. 2018, MNRAS, 481, 1133
Percival, W. J., Friedrich, O., Sellentin, E., & Heavens, A. 2022, MNRAS, 510,

3207
Pires, S., Leonard, A., & Starck, J.-L. 2012, MNRAS, 423, 983
Planck Collaboration V. 2020, A&A, 641, A5
Pyne, S., & Joachimi, B. 2021, MNRAS, 503, 2300
Ragagnin, A., Dolag, K., Biffi, V., et al. 2017, Astron. Comput., 20, 52
Reimberg, P., & Bernardeau, F. 2018, Phys. Rev. D, 97, 023524
Sadeh, I., Abdalla, F. B., & Lahav, O. 2016, PASP, 128, 104502
Sánchez, A. G., Scoccimarro, R., Crocce, M., et al. 2017, MNRAS, 464, 1640
Schneider, P. 1996, MNRAS, 283, 837
Schneider, P. 1998, ApJ, 498, 43
Seitz, C., & Schneider, P. 1997, A&A, 318, 687
Sellentin, E., & Heavens, A. F. 2016, MNRAS, 456, L132
Smith, A., Cole, S., Baugh, C., et al. 2017, MNRAS, 470, 4646
Springel, V. 2005, MNRAS, 364, 1105
Spurio Mancini, A., Piras, D., Alsing, J., Joachimi, B., & Hobson, M. P. 2022,

MNRAS, 511, 1771
Takahashi, R., Hamana, T., Shirasaki, M., et al. 2017, ApJ, 850, 24
van Daalen, M. P., Schaye, J., Booth, C. M., & Dalla Vecchia, C. 2011, MNRAS,

415, 3649
van den Busch, J. L., Wright, A. H., Hildebrandt, H., et al. 2022, A&A, 664,

A170
van Uitert, E., Joachimi, B., Joudaki, S., et al. 2018, MNRAS, 476, 4662
Wright, A. H., Hildebrandt, H., van den Busch, J. L., et al. 2020, A&A, 640, L14
Xavier, H. S., Abdalla, F. B., & Joachimi, B. 2016, MNRAS, 459, 3693
Zürcher, D., Fluri, J., Sgier, R., et al. 2022, MNRAS, 511, 2075

A69, page 15 of 18

http://linker.aanda.org/10.1051/0004-6361/202244673/36
http://linker.aanda.org/10.1051/0004-6361/202244673/37
http://linker.aanda.org/10.1051/0004-6361/202244673/38
http://linker.aanda.org/10.1051/0004-6361/202244673/39
http://linker.aanda.org/10.1051/0004-6361/202244673/40
http://linker.aanda.org/10.1051/0004-6361/202244673/41
http://linker.aanda.org/10.1051/0004-6361/202244673/42
http://linker.aanda.org/10.1051/0004-6361/202244673/43
http://linker.aanda.org/10.1051/0004-6361/202244673/44
http://linker.aanda.org/10.1051/0004-6361/202244673/45
http://linker.aanda.org/10.1051/0004-6361/202244673/45
http://linker.aanda.org/10.1051/0004-6361/202244673/46
http://linker.aanda.org/10.1051/0004-6361/202244673/47
http://linker.aanda.org/10.1051/0004-6361/202244673/48
http://linker.aanda.org/10.1051/0004-6361/202244673/49
http://linker.aanda.org/10.1051/0004-6361/202244673/50
http://linker.aanda.org/10.1051/0004-6361/202244673/50
http://linker.aanda.org/10.1051/0004-6361/202244673/51
http://linker.aanda.org/10.1051/0004-6361/202244673/52
http://linker.aanda.org/10.1051/0004-6361/202244673/53
http://linker.aanda.org/10.1051/0004-6361/202244673/54
http://linker.aanda.org/10.1051/0004-6361/202244673/55
http://linker.aanda.org/10.1051/0004-6361/202244673/56
http://linker.aanda.org/10.1051/0004-6361/202244673/57
http://linker.aanda.org/10.1051/0004-6361/202244673/58
http://linker.aanda.org/10.1051/0004-6361/202244673/59
http://linker.aanda.org/10.1051/0004-6361/202244673/60
http://linker.aanda.org/10.1051/0004-6361/202244673/61
http://linker.aanda.org/10.1051/0004-6361/202244673/62
http://linker.aanda.org/10.1051/0004-6361/202244673/63
http://linker.aanda.org/10.1051/0004-6361/202244673/63
http://linker.aanda.org/10.1051/0004-6361/202244673/64
http://linker.aanda.org/10.1051/0004-6361/202244673/65
http://linker.aanda.org/10.1051/0004-6361/202244673/65
http://linker.aanda.org/10.1051/0004-6361/202244673/66
http://linker.aanda.org/10.1051/0004-6361/202244673/67
http://linker.aanda.org/10.1051/0004-6361/202244673/68
http://linker.aanda.org/10.1051/0004-6361/202244673/69
http://linker.aanda.org/10.1051/0004-6361/202244673/70
http://linker.aanda.org/10.1051/0004-6361/202244673/71
http://linker.aanda.org/10.1051/0004-6361/202244673/72
http://linker.aanda.org/10.1051/0004-6361/202244673/73
http://linker.aanda.org/10.1051/0004-6361/202244673/74
http://linker.aanda.org/10.1051/0004-6361/202244673/75
http://linker.aanda.org/10.1051/0004-6361/202244673/76
http://linker.aanda.org/10.1051/0004-6361/202244673/77
http://linker.aanda.org/10.1051/0004-6361/202244673/78
http://linker.aanda.org/10.1051/0004-6361/202244673/79
http://linker.aanda.org/10.1051/0004-6361/202244673/80
http://linker.aanda.org/10.1051/0004-6361/202244673/81
http://linker.aanda.org/10.1051/0004-6361/202244673/81
http://linker.aanda.org/10.1051/0004-6361/202244673/82
http://linker.aanda.org/10.1051/0004-6361/202244673/82
http://linker.aanda.org/10.1051/0004-6361/202244673/83
http://linker.aanda.org/10.1051/0004-6361/202244673/84
http://linker.aanda.org/10.1051/0004-6361/202244673/85
http://linker.aanda.org/10.1051/0004-6361/202244673/86


A&A 669, A69 (2023)

Appendix A: Additional plots

Fig. A.1. Residual shear profiles of the highest quantile filter for dif-
ferent threshold values that the effective area must exceed to be used
with respect to the shear profiles with a 0.5 threshold. It is seen that
for threshold values above 0.6 the shear profiles deviate more than one
standard deviation (grey band) due to decreasing remaining area.

Fig. A.2. Posterior distributions, using different b2 values to distribute
galaxies to the same density contrast, from which a data vector is mea-
sured. The lower right panel shows the posterior results from simula-
tions, where galaxies are distributed with a HOD. The model vector
uses for all four cases a linear galaxy bias model.

In this section, we show additional plots which belong to the
main text. We start by visualising the shear profiles that result
in different threshold values for the effective area above which
pixels are used for the analysis in Fig. A.1.

In Fig. A.2 we show different posterior distributions, to test
whether our analytical model with a linear galaxy bias model
gives robust cosmological results even if galaxies are placed
with a Poisson process with mean λ = neff

[
1 + b1 δm,2D(θ) +

b2 (δ2
m,2D(θ)−〈δ2

m,2D)〉
]
, where δm,2D is the projected density con-

trast or with a halo occupation distribution (HOD) description
(Smith et al. 2017). For the Poisson process test, we use the
simulation of Takahashi et al. (2017) with sources that mimic
the fourth and fifth KiDS-1000 bins and lenses that mimic the
KiDS-bright sample. For the HOD analysis, we measure the

Fig. A.3. Redshift distribution of the full KiDS-bright sample resulting
from Lorentzian fitting parameters (a and s), which in turn are deter-
mined from different patches on the sky. In the bottom panel, the abso-
lute differences to the best-estimated nbe(z) are shown.

Fig. A.4. Difference between the true and emulated model data vector
m(Θ) scaled by the standard deviation of the measured data estimated
with the FLASK.

Fig. A.5. Shear profiles of the cosmo-SLICS for the bright lens and all
three source mocks with the n(z) shown in Fig. 1 for two different IA
amplitudes for the adapted filter. The third source tomographic bin is
strongly contaminated by IA due to the significant overlap with the lens
n(z) and is therefore excluded from this analysis.

data vector, and the covariance from 614 SLICS realisations
with noisy KiDS-1000 sources and GAMA lens mocks (see
Harnois-Déraps et al. 2018, for a detailed description), where
the covariance is scaled to approximately match the KIDS-1000
footprint. It is clearly seen that the posterior for b2 > 0 is strongly
biased if shear and Nap information are used. In contrast, using
only shear information, the posterior is unbiased as they are
almost insensitive to the galaxy bias model. Although the HOD
analysis already shows that the linear galaxy bias assumption
is sufficient, if the posterior using shear and Nap information is
consistent with the posterior using only shear information gives
additional confidence that b2 ≈ 0.

In Fig. A.3 we show the negligible difference of the lens n(z)
if the Lorentzian fitting parameters (a and s) are estimated from
different patches of the sky. In Fig. A.4 we display the accuracy
of the emulator, and in Fig. A.5, that the third tomographic bin
is indeed contaminated by IA, in Fig. A.6 the χ2 distribution of
mock data vectors around the MAP for the adapted filter with the
best-estimated nbe(z), and lastly in Fig. A.7 the iterative process
to find the optimal MAP values by scaling the covariance matrix
to the previously found MAP.
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Fig. A.6. Distribution of χ2 values of mock data vectors that follow
from multivariate Gaussian distributions, where the mean is the model
prediction at MAP and the covariance is the corresponding covariance
for that particular model. The red line shows the χ2 values using the real
data vector. The orange line is a χ2 distribution with d.o.f. = 81, which
is slightly smaller than the 84 elements of the data vector.

Fig. A.7. Change of MAP values due to scaling of the covariance to
the previously measured MAP values. Roughly after ten iterations, the
process converged, where the occasional outliers happened if the min-
imisation process stopped to early by coincidence.

Appendix B: Additional material for the red and
blue analysis

Here in this chapter, we show the complementary plots for the
joint red+blue analysis. In Fig. B.1 the redshift distribution for
the red and blue samples is shown, resulting from the smoothing
method described in Sect. 3.1. In Fig. B.2 we show the shear
profiles; in Fig. B.3 the mean aperture number values for both
samples which are used as the model and data vectors.

Fig. B.1. Best estimated redshift distributions of the red and blue KiDS-
bright samples in red and blue, with the full KiDS-bright sample in
green.

Fig. B.2. Measured and predicted shear profiles at the MAP values for
the adapted filter for the red and blue samples. The shaded region is
the expected KiDS-1000 uncertainty estimated from the 1000 FLASK
realisations with shape noise.

Fig. B.3. Mean aperture number of the red and blue sample, where the
predictions follow from a joint minimisation process. Different to the
full bright sample the measured p(Nap) is smaller than the predicted
Map, resulting in the measured 〈Nap〉 being smaller.
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Appendix C: Top-hat filter analysis

Fig. C.1. MCMC results for the top-hat filter using the model and simu-
lations where we infused the pure shear signal with different amplitudes
of IA.

Table C.1. Marginalised MAP values and their 68% confidence inter-
vals for the different lens n(z) of the full sample.

nbe(z) nph(z) nsp(z)

Ωm 0.30+0.04
−0.04 0.33+0.05

−0.04 0.36+0.05
−0.04

σ8 0.68+0.06
−0.05 0.65+0.06

−0.05 0.62+0.06
−0.04

S 8 0.68+0.04
−0.02 0.68+0.04

−0.02 0.68+0.04
−0.02

b 1.66+0.11
−0.23 1.68+0.11

−0.24 1.72+0.11
−0.27

α 0.10+2.25 0.10+2.25 0.10+2.47

χ2/d.o.f. 1.03 1.03 1.05
p-value 0.39 0.40 0.35

Notes. The 68% confidence intervals result from MCMC chains. Here
Ωm, σ8, the α and the linear galaxy bias parameter are varied. We fixed
h = 0.6898, w0 = −1 and ns = 0.969 but marginalised over the δ〈z〉
and m-bias uncertainties. If limits are not given, they are dominated by
priors.

This section shows the corresponding plots that belong to the
analysis with the top-hat filter. We start by showing in Fig. C.1
the validation for the top-hat with the cosmo-SLICS, which
shows that the true parameters are always inside 1σ. The dis-
cussion from Sect. 7.1 about the impact of different redshifts
distributions is summarised for the top-hat filter in Table C.1,
which shows with the given reduced χ2 and corresponding p-
value that the model is well fitted to the data given the covari-
ance matrix, and result in parameters that are consistent to the
ones constrained with the adapted filter.

Finally we show in Fig. C.2 and Table C.2 the analogous
results for the top-hat filter to the adapted filter as shown in

Fig. C.2. Posterior for the full KiDS-bright sample shown in green, and
the joint red+blue posteriors that represent the results of the individual
colour-selected samples. In the latter case, by construction, the red and
blue samples share the same cosmology (the dark blue contours).

Table C.2. Marginalised MAP values and their 68% confidence inter-
vals for the different lens samples.

full red + blue

Ωm 0.30+0.04
−0.04 0.28+0.03

−0.02
σ8 0.68+0.06

−0.05 0.79+0.06
−0.03

S 8 0.68+0.04
−0.02 0.77+0.03

−0.01
b 1.66+0.11

−0.23 1.78+0.11
−0.18 0.94+0.06

−0.12
α 0.10+2.25 0.10+1.21 3.40+0.42

−0.20
χ2/d.o.f. 1.03 1.37
p-value 0.39 0.001

Notes. The 68% confidence intervals result from the MCMC chains
shown in Fig. C.2. We fixed h = 0.6898, w0 = −1 and ns = 0.969
but marginalised over the δ〈z〉 and m-bias uncertainties. If limits are not
given, they are dominated by priors.

Fig. 12 and Table 4. The p-value for the joint red+blue indi-
cates that the given d.o.f. has a significant tension between the
measured data and the best fit model. Although this reduced χ2

is not ideal for the given d.o.f., we still perform the analysis, but
the posteriors should be taken with caution, which is already true
because we are uncertain about the true n(z) of the sub-samples.
Overall the results show the same trends as for the adapted fil-
ter, where the blue galaxies result in smaller bias b and larger α
than the red galaxies. The reason for the top-hat filter performing
worse than the adapted filter is unclear. Nevertheless, besides the
fact that the n(z) of the red and blue sample is quite uncertain,
both filters are probing on fundamentally different scales so that
different behaviours are not surprising.
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