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The dynamics of glacial sliding over water-saturated
tills are poorly constrained and difficult to capture
realistically in large-scale models. Experiments
characterize till as a plastic material with a pressure-
dependent yield stress, but the subglacial water
pressure may fluctuate on annual to daily timescales,
leading to transient adjustment of the till. We construct
a continuum two-phase model of coupled fluid and
solid deformation, describing the movement of water
through the pore space of a till that is itself dilating
and deforming. By forcing the model with time-
dependent effective pressure at the ice–till interface,
we infer the resulting relationships between basal
traction, solid fraction and rate of deformation. We
find that shear dilation introduces internal pressure
variations and transient dilatant strengthening
emerges, leading to hysteretic behaviour in low-
permeability materials. The result is a time-dependent
effective sliding law, with permeability-dependent lag
between changes in effective pressure and the sliding
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speed. This deviation from traditional steady-state sliding laws may play an important role in
a wide range of transient ice-sheet phenomena, from glacier surges to the tidal response of ice
streams.

1. Introduction
The fast-flowing ice streams and outlet glaciers of the Antarctic and Greenland ice sheets flow at
rates several orders of magnitude faster than the slowly moving ice around them [1]. The majority
of this speed difference is due to the much larger basal velocity of the ice in these regions, sliding
over and inducing deformation in the weaker sediment below, known as subglacial till [2,3].
Since these ice streams control the majority of ice flow out of the ice sheets, understanding and
modelling the processes occurring at the ice–till interface are of key importance in predicting the
future dynamics of the Antarctic and Greenland ice sheets [4].

Compared with the bedrock below slower-flowing regions, till is a weaker material,
comprising water-saturated, clay-rich sand or pebbly mud. Water-pressure variations in the pore
space between grains strongly affect the bulk strength of the till and the resistance it provides
to the flow of the ice above. A key quantity for determining the ice dynamics is the effective
pressure N, i.e. the difference between the ice overburden pressure and the pore water pressure.
Many experiments have shown that till is well-described as a plastic material whose yield stress
τb depends linearly on N through a roughly constant friction coefficient μ = τb/N [3,5–7].

However, water pressure in the subglacial environment is not constant over time; it fluctuates
on timescales from hourly (tidal forcing, daily surface melt) to yearly (summer melt season)
to multi-decadal, accompanied by a response in the glacier surface speed [8–11]. Nor are these
pressure changes necessarily spatially uniform [12,13]. Increasingly, observations [9], simulations
[14,15] and experiments [16] have shown the potential for transient adjustment of basal dynamics
to introduce hysteresis and lag between changes in effective pressure and changes in sliding
speed, in settings dominated by either hard-bedded or soft-bedded sliding.

Sliding laws, which link traction at the ice–bed interface τb, subglacial effective pressure N
and the sliding speed of the ice ub, are usually formulated in terms of steady-state values of
these parameters [4,17,18]. Thus, when these laws are incorporated into large-scale models, an
instantaneous relationship is assumed between changes in effective pressure and sliding speed.
But when the changes in basal conditions occur on a timescale comparable to the transient
adjustment of the till, we would also expect this transient drag to play an important role in setting
the dynamics of ice flow [14,16].

It has long been noted [3,5] that acceleration after a decrease in effective pressure can lead
to shear-driven dilation of the till. The consequent increase in pore space, transient change
in pore pressure and the accompanying increase in yield stress have been proposed as self-
regulatory mechanisms that limit the impact of varying subglacial conditions on sliding speed.
These ‘dilatant-strengthening’ phenomena are not observed in dry till but are a transient feature in
wet till, which suggests that pore-pressure variations and the associated flow of water play a key
role in determining the till response [19]. The processes occurring in the till—grain rearrangement
[20], induced water flow and pressure diffusion—take time, setting natural timescales for the
transient response of the subglacial environment.

In this paper, we construct a coupled model of till deformation, shear dilation and the water
flow through this changing environment. In the time-dependent case, we track the flow of water
into and out of the pore space, and calculate the pressure gradients needed to drive this flow.
We construct our model of the subglacial till from the simplest possible set of physically based
equations, describing mass conservation and force balance to construct a general framework.
For even simple forcing we show that complex behaviour emerges, without the need to resort
to any ad hoc parametrization. Within this setup we make use of newly derived continuum
models of water-saturated granular rheology to model the response of subglacial till to transient
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Figure 1. A diagram showing steady shear, indicating the notation used. Note z is depth from the ice–till interface
(downwards).

forcing [14,21–23]. Similarly to Damsgaard et al. [14], we observe diffusion of pressure fluctuations
through the depth of the till in response to surface conditions, but we interpret this response in
terms of changes in porosity and analytically predict the resultant sliding law. Recently, models
for the transient evolution of basal traction based on a rate-and-state friction (RSF) framework
have been applied to the dynamics of glacier beds [16,24,25]; we discuss this transient friction in
terms of the pore-scale physics, to understand the link between the RSF parameter values and the
characteristics of the subglacial till.

We verify that the steady-state deformation of the till predicted by our model is consistent with
experimental results and field observations. We then use the time-dependent model to explore
the impact of shear dilation on transient water-pressure gradients within subglacial till, and the
resulting relationship between basal traction, effective pressure, till solid fraction and deformation
rate at the ice–till interface. We predict the amplitude and lag of the deformation in response to a
range of frequencies of pressure forcing, allowing us to derive a time-dependent sliding law for a
water-saturated deformable bed.

2. Governing equations and general set-up
In this study, we model the dynamic response of a deep layer of till to an imposed (possibly
time-dependent) normal stress and shear stress applied at its surface. We assume that there is no
variation of the system in the horizontal direction (thus neglecting larger-scale effects, such as
ploughing of clasts), and that the solid fraction of the till, being denser than water, is the primary
reason for vertical variation in till properties and dynamics.

We start by considering the equations for mass conservation and force balance within a one-
dimensional slice of till. We take coordinate axes such that shear is applied in the x-direction, with
the z-axis in the direction of gravity (figure 1). The subglacial till comprises a solid granular matrix
with density ρs and solid volume fraction φ, and which deforms continuously with velocity vs =
(us(z, t), 0, vs(z, t)), along with the water in the pore space, which correspondingly has density ρw

and velocity vw = (uw, 0, vw).
Tracking the movement of the grains, and hence the local solid mass, the solid fraction φ

evolves as
∂φ

∂t
+ ∂

∂z
(vsφ) = 0, (2.1)

assuming that individual grains are incompressible. Conservation of water in the pore space,
taking the water as incompressible, is given by

∂(1 − φ)
∂t

+ ∂

∂z
[vw(1 − φ)] = 0, (2.2)
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and so total mass conservation is

∂

∂z
(vsφ + vw(1 − φ)) = 0. (2.3)

Assuming that the till is sufficiently deep that there is a region where the grains are stationary,
with no vertical water flow, this can be integrated to give

vw = − φ

1 − φ
vs, (2.4)

although if there is a background vertical drainage of water through the full depth of the till,
equation (2.4) could be modified by the inclusion of an additional flux.

Any flow of water through the pore space must be driven by a non-hydrostatic gradient in the
pore water pressure pw, here described by Darcy’s law for the flux of water,

− k
η

(
∂pw

∂z
− ρwg

)
= (1 − φ)(vw − vs). (2.5)

Here, η is the viscosity of water and k(φ) is the permeability of the till, which in general is a
function of the solid fraction. Using equations (2.4) in (2.5), we have the simpler expression for
the solid vertical velocity

k
η

(
∂pw

∂z
− ρwg

)
= vs. (2.6)

Within the till, force-balance requires that gravity be balanced by gradients in stress. Hence,
the divergence of the total stress tensor σ of the till is given by

∇ · σ = −[ρsφ + ρw(1 − φ)]g. (2.7)

The pore water pressure supports a portion of the stress on the till, and the effective stress
tensor, σ e = σ + pwI, is the remaining stress experienced by the granular matrix, which may cause
deformation if exceeding the yield stress. From the force-balance equation (2.7), it is apparent that
the normal stress increases with depth (increasing z) and is modulated by the pore water pressure,

∂pw

∂z
− ∂σ e

zz
∂z

= ρwg + �ρgφ, (2.8)

where �ρg = ρs − ρw. The horizontal shear stress is constant and the shear stress τb exerted at the
ice–bed interface is transmitted uniformly down through the till,

∂σ e
xz

∂z
= 0 ⇒ σ e

xz = τb. (2.9)

Combining equations (2.8) and (2.6), we see that vertical effective stress gradients in excess of
the background hydrostatic pressure gradient drive compaction and vertical motion of the solid
phase,

η

k
vs = ∂σ e

zz
∂z

+ �ρgφ. (2.10)

Thus, to find the vertical solid velocity vs that drives the evolution of the solid fraction via
equation (2.1), we need to calculate the distribution of effective stress felt by the till, σ e, as a
function of the stress applied at its surface and the instantaneous solid fraction φ. We anticipate
that we must describe the rheology of the till, linking stress to velocity gradients and thus forming
a differential equation for vs, as well as the constitutive law for φ which determines its propensity
to compact and create anisotropy in the stress field.
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We define two useful quantities by decomposing the effective stress into an effective pressure
N = − 1

3 (σ e
xx + σ e

yy + σ e
zz) and the deviatoric stress σ̂ according to σ e = −NI + σ̂ , with

σ̂ =

⎛
⎜⎜⎜⎝

σ e
xx + N 0 τb

0 σ e
yy + N 0

τb 0 σ e
zz + N

⎞
⎟⎟⎟⎠ . (2.11)

Similarly, we can decompose the shear rate S into a compaction (or dilation) rate ∂vs/∂z, and a
deviatoric shear rate γ̇ via

S =

⎛
⎜⎜⎜⎜⎜⎝

0 0
∂us

∂z

0 0 0

∂us

∂z
0 2

∂vs

∂z

⎞
⎟⎟⎟⎟⎟⎠= 2

3
∂vs

∂z
I + γ̇ (2.12)

and

γ̇ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2
3

∂vs

∂z
0

∂us

∂z

0 −2
3

∂vs

∂z
0

∂us

∂z
0

4
3

∂vs

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.13)

In this paper, we restrict ourselves to considering isotropic materials for which the deviatoric
stress and deviatoric shear rate are parallel, that is,

γ̇

γ̇
= σ̂

σ̂
, (2.14)

where non-bold symbols denote the magnitude of a tensor, M = |M| =
√

1
2 (MijMij). By comparing

terms, we see that σ e
xx = σ e

yy, and

σ̂ =
√

τ 2
b + 3

4
(σ e

zz + N)2 (2.15)

and

γ̇ =
√

∂us

∂z

2
+ 4

3
∂vs

∂z

2
. (2.16)

A plastic material has a yield stress below which no flow occurs and for which additional
applied shear stress above the yield stress results in increasing amounts of deformation. The yield
stress of till has been widely observed to depend linearly on its effective pressure [3,6], so we
expect a yield condition of the form σ e = μ1N. Hence, in general we can write the rheology of a
yield stress till as

γ̇ =
{

γ̇ (σ̂ , N) σ̂ > μ1N,

0 σ̂ < μ1N,
(2.17)

where μ1 is a static friction coefficient, with μ1 ∼ 0.5 for till [6]. We expect the shear rate to increase
with shear stress, ∂γ̇ /∂σ̂ > 0, and decrease with effective pressure (since the yield stress increases)
so ∂γ̇ /∂N < 0. If the shear stress is close to the yield stress, the general leading-order form of the
shear rate will have some power-law dependence γ̇ = C(σ̂ − μ1N)a on this stress difference.

To evolve the porosity by equation (2.1), the solid velocity vs needs to be calculated as a
function of φ only. Thus, we need an expression for ∂σ e

zz/∂z in equation (2.10). By combining
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equation (2.14) with a generalized rheology in equation (2.17), the dilation (or compaction) rate
during shear is

∂vs

∂z
= 3γ̇

4
σ e

zz + N
σ̂ (γ̇ , N)

, (2.18)

meaning that if γ̇ and N can be determined in terms of σ e
zz and φ only, equations (2.18) and (2.10)

can be combined to give a second-order differential equation for vs(φ).
Since τb is constant in space, we can use the definition of σ̂ in equation (2.15) and the

rheology in equation (2.17) to write γ̇ = γ̇ (σ e
zz, N). Thus, all that is needed to close the system

is a constitutive law relating the solid fraction to local values of effective pressure and shear rate,

φ = φ(γ̇ , N). (2.19)

On substituting for γ̇ (σ e
zz, N), this equivalently provides an expression for effective pressure of

the form N = N(σ e
zz, φ). Models based on critical state solid mechanics would assume that the

solid fraction depends only on N, which simplifies this final step to N = N(φ). However, since it
is readily included in this framework, we leave open the possibility of shear-rate dependence. A
lower packing fraction at higher γ̇ is observed in tills [26,27] and granular flows [21]. As we shall
show, shear dilatancy of this form alters the strength of the induced water-pressure perturbations
and the timescale of the transient response.

These governing equations describe the response of the till to the conditions at the ice–till
interface, and in general can be forced by changes in effective pressure, shear stress or sliding
speed. Solving these equations, we can calculate the transient response of the depth profiles of
effective pressure, and we can then determine the shear rate, depth of the shear zone, surface
speed, compaction rate and solid fraction of the till. Here, we will restrict our attention to the
effect of changing effective pressure on surface speed when basal traction is kept constant, but
other types of forcing can be analysed similarly.

This general set-up can be used to model a wide range of materials and produce a variety of
behaviours. To model a specific scenario, we need to impose a constitutive relationship for the
rheology in equation (2.17) of the solid phase and the form of the solid fraction in equation (2.19).
In §3, we shall show the results for a specific choice of constitutive laws, but for the rest of this
section we discuss general behaviour resulting from this formulation.

(a) Steady state and the diffusive limit of pressure variations
The extent to which till deforms in response to the stress exerted on it by the ice above depends
on the shear rate throughout the deforming region and the depth of the deforming region itself.
The depth of the deforming region can be much shallower than the available depth of till, and this
depth emerges as a result of the forcing at the ice–till interface [28]. Unless there is some shallow
immovable layer on which the till rests, the depth to which it deforms is an important part of
setting the sliding law and till transport.

In steady state, the till is neither compacting nor dilating and so vs = 0. Thus, by equation
(2.14) the effective pressure is N = −σ e

zz, the shear stress σ̂ = τb and equation (2.10) indicates that
N simply increases with depth through the till. Hence, the yield strength of the till μ1N also
increases, until it exceeds the shear stress τb applied by the ice.

From equation (2.10), the effective pressure N increases from its value N0 at the ice–till interface
as

N(z) = N0 +
∫ z

0
�ρgφ dz. (2.20)

If φ remains close to a maximum value φm, we have N ≈ N0 + �ρgφmz and this depth-dependence
naturally defines the depth of the yield surface as [14,29],

z0 ≈ τb − μ1N0

μ1�ρgφm
. (2.21)
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In the deforming region above this depth, equation (2.17) gives the shear rate and so the flow rate
of till is given by

us(z) =
∫ z0

z
γ̇ (τb, N0 + �ρgφmZ) dZ. (2.22)

This equation can be used to constrain the rheology of the till given a depth-profile of
deformation. Taking as before the general power-law form for the leading-order behaviour of
the shear rate when the yield stress is exceeded, γ̇ = C(σ̂ − μ1N)a in equation (2.17), then

us(z) =
∫ z0

z
C(τb − μ1(N0 + �ρgφmZ))a dZ = C(μ1�ρgφm)a

a + 1
(z0 − z)a+1 (2.23)

and the total till flux is

qs =
∫ z0

0
us(z) dz = C(μ1�ρgφm)a

(a + 1)(a + 2)
(z0)a+2. (2.24)

Thus, the surface of the till moves with speed

ub = C(τb − μ1N0)a+1

(a + 1)μ1�ρgφm
. (2.25)

If we neglect slip between the surface of the till and the bed of the ice, and thus interpret ub as the
sliding speed of the ice, we can invert for the traction law

τb = μ1N0 +
(

(a + 1)μ1�ρgφm

C
ub

)1/a+1
, (2.26)

where the second term is a small strengthening away from τb = μN0, regularizing the speed while
allowing for close to plastic behaviour.

In the limit of small perturbations about this steady state, the changes in porosity are small and
flow is nearly horizontal, so σ e

zz ≈ −N, which greatly simplifies equation (2.10) so that equation
(2.1) becomes a diffusion equation for changes in effective pressure,

dφ

dN
∂N
∂t

= kφ
η

∂2N
∂z2 . (2.27)

Since changes in solid fraction with effective pressure may generally be written as

dφ

dN
= ∂φ

∂N
+ ∂φ

∂γ̇

∂γ̇

∂N
, (2.28)

the diffusion coefficient is

D = k
ηα

, (2.29)

with compressibility

α = α0 + αγ̇ = 1
φ

∂φ

∂N
+ 1

φ

∂φ

∂γ̇

∂γ̇

∂N
. (2.30)

The static compressibility of the till α0 = (∂φ/∂N)/φ is augmented by a shear dilatancy αγ̇ =
(1/φ)(∂φ/∂γ̇ )(∂γ̇ /∂N). The reduction of the diffusion coefficient compared with the non-shearing
case can, therefore, result in longer-lasting transient dynamics.

(b) Transient dynamics
Changes to the conditions at the ice–till interface alter the shear rate and drive the steady solid
fraction towards a more dilated or compacted equilibrium. But in water-saturated till, the pore
space is filled with water, so to achieve this new steady state with an altered volume of pore space,
water must be driven through the till by non-hydrostatic pore-pressure gradients, which in turn
affect the strength of the till and the shear rate at depth. This continues until a new steady-state
balance is achieved between the surface forcing and the profiles of shear and solid fractions in the
till, when the pore pressure is once again hydrostatic.
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From the effective pressure evolution described in equation (2.27), given the total depth of the
shear layer in equation (2.21), the timescale for this process is

T ∼ z2
0

D
∼ ηα(τb − μ1N0)2

k(μ1�ρgφm)2 . (2.31)

The key parameters in setting this equilibration timescale are the permeability of the till k, the
water viscosity η and the till compressibility α. Since pressure gradients are inversely proportional
to k, very permeable till will re-equilibrate rapidly, while very impermeable tills take so long to
respond that the solid fraction appears almost fixed and the induced pressure gradients persist,
not allowing the till to accelerate. The dependence on η provides a partial explanation for the
vastly different response of dry till to transient forcing. Since air has much lower viscosity than
water, the induced pressure gradients are much smaller and the transient response is almost
instantaneous in dry granular media. If k and η are known for a sample of till, measuring the
timescale for re-equilibration following a step-change in forcing provides a way to constrain α.

When the surface shear rate increases and the till dilates, water is sucked into the till by
decreasing the pore pressure at depth, increasing the effective pressure and strengthening the
till. This is a negative feedback that transiently limits the shear rate. Conversely, when the surface
shear rate decreases and the till compacts, the water forced out of the pore space supports more
of the weight of the ice and keeps the till flowing. In low-permeability tills, the induced transient
pressure gradients can be very large, even for small compaction rates.

(c) Periodic sliding law
Many processes providing water to the subglacial environment are periodic or quasi-periodic
in nature, including pressure variations due to daily surface melt cycles or from tidal forcing
propagating up from the grounding line. Glaciers also accelerate and decelerate over the same
timescales, suggesting a link between variations in subglacial water availability and surface
velocities modulated by changes in the basal traction [9,11,30]. Classical sliding laws assume an
instantaneous relationship between effective pressure and sliding speed. We have described how
dilatancy can introduce a time dependence, or lag, between the pressure forcing and the velocity
response, and that induced water pressure gradients can buffer the till at depth from the imposed
pressure fluctuations. In this section, we explore the response of water-saturated till to periodic
fluctuations in effective pressure and examine the effect on the sliding law for a range of forcing
frequencies and till permeabilities.

For simplicity, we consider a periodic sinusoidal forcing in effective pressure applied at the
ice–till interface, while maintaining a fixed basal shear stress. When the amplitude of the pressure
forcing is small, the governing equations may be linearized and analytic expressions for both
the phase lag and relative amplitude of the velocity response (compared to steady state) can be
calculated.

If the forcing is sufficiently slow compared with equation (2.31), the till is able to dilate or
contract throughout the depth of the deforming region, and the pore pressure can equilibrate
relatively rapidly. The transient effects happen on a timescale that is short compared with the
forcing, so we recover an almost instantaneous sliding law, with the basal speed responding to
every change in effective pressure. By contrast, if the frequency of the forcing is rapid, the till
cannot respond throughout the depth of the shear layer. The induced pore water pressure persists
and counteracts the forcing, and the result is a sliding law that only depends on the average
effective pressure, filtering out the fluctuations.

If the pressure forcing is

N0 = N̄ + �N e−iωt (2.32)

with �N � N̄ and taking the real part is implied, then the leading-order response is controlled by
the diffusion equation (2.27). Given the linearity of the response to small variations, the surface
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velocity response takes the form

us(0, t) = ub(N̄) + û = ub(N̄) + A
dub

dN
�N e−i(ωt−θ), (2.33)

where A is the relative amplitude and θ is the phase lag. For quasi-instantaneous behaviour at
low frequencies, A → 1 and θ → 0. Induced pressure perturbations act to decrease the amplitude
A (buffering the till from rapid fluctuations) and increase the phase lag θ .

To find A and θ , we solve equation (2.27) with equation (2.32) as a boundary condition, and
find that the perturbation to N is given by N̂ = �N e−λz−iωt with Dλ2 = −iω. Again using the
leading-order form of the shear rate in equation (2.17) of γ̇ = C(τb − μ1N)a, the perturbation to
the shear rate becomes

ˆ̇γ = Ca(μ1�ρgφm(z0 − z))a−1μ1�N e−λz−iωt. (2.34)

Thus, integrating from the static base of the shear layer to the surface implies that the perturbation
to the surface velocity takes the form

û =
(

a
za

0

∫ z0

0
(z0 − z)a−1 e−λz dz

)
dub

dN
�N e−iωt, (2.35)

and the amplitude and lag of the velocity response are therefore

A eiθ = a
∫ 1

0
(1 − x)a−1 e−λz0x dx. (2.36)

A clear transition appears when the timescale of dilatancy is small compared with the period of
the pressure fluctuations T = 2π/ω, or equivalently the perturbation reaches a depth comparable
to that of the shear layer, when λz0 ∼ 1. The transition frequency is thus given by

ω ∼ D

z2
0

∼ k(μ1�ρgφm)2

ηα(τb − μ1N̄)2
∼ k

ηα

(
C(μ1�ρgφm)a/2

ub

)2/(a+1)

. (2.37)

In the limit of rapid perturbations, λz0 � 1 and the rapid fluctuations diffuse through the top
of the till only before decaying. Equation (2.35), therefore, reduces to

û = a
λz0

dub

dN
�N e−iωt = aμ1�ρgφm

τb − μ1N̄

√
k

ωηα

dub

dN
�N e−i(ωt−π/4), (2.38)

which corresponds to a maximal phase lag of π/4 and an amplitude that depends on
√

k/ω.
The deformation lags behind the pressure forcing by a time T/8, which is linear in the period
of forcing.

For slow perturbations with λz0 � 1, the perturbation makes it to the base of the shear layer,
and we instead recover exactly the linearized form of the steady-state sliding law, as

A eiθ = 1 − λz0

a
+ O((λz0)2), (2.39)

so A → 1 and θ ∼ √
ω → 0. The till responds to every change in effective pressure through the full

depth of the till in this limit. The time lag continues to grow with the period of forcing, but now
only like

√
T.

The transition frequency described by equation (2.37) is strongly dependent on the
permeability, which is to be expected since lower values of till permeability require larger pressure
gradients to drive the same amount of flow, according to Darcy’s law. This strengthens the
buffering effect and allows the till to act as a filter against high-frequency variations in water
pressure. By contrast, in high-permeability tills, small induced pressure gradients equilibrate
nearly instantaneously, and the response of the till mirrors the forcing.
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Table 1. Parameter values used in the numerical model.

parameter symbol value units

fluid viscosity η 1.8 × 10−3 kg m−1 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density difference �ρg 1.6 × 103 kg m−2 s−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

till permeabilitya k 10−11–10−19 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

surface shear τb 104 kg m−1 s−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

static friction μ1 0.5 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

friction parameter M 104 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dilatancy parameter b 5 × 104 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

maximum solid fraction φm 0.733 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aUnless otherwise stated, k = 10−12 m2 is used.

3. Calculations with a granular rheology
To explore the behaviour of our coupled two-phase model in more detail and extend it beyond the
linear regime, we need to impose constitutive laws for γ̇ (σ̂ , N) and φ(γ̇ , N). A granular rheology
provides an attractive starting point for modelling the flow of a sample of till composed largely of
grains. Several key properties of till are also observed in granular media: nearly plastic behaviour
with a pressure-dependent yield stress, shear dilation and rapid flow once the yield stress is
exceeded.

The granular literature defines two non-dimensional numbers that parametrize the rheology
of granular flows. In granular media where grain–grain friction provides the dominant resistance
to flow, the inertial number

I = γ̇ d√
N/ρs

, (3.1)

where d is the grain diameter, determines both σ̂ = μ(I)N and φ = φ(I). This fits readily into the
general framework introduced above since I = I(γ̇ , N), and has been used by Damsgaard et al. [14]
and Fowler [29] and to describe the rheology of till. However, in situations where the pore fluid
modulates the inter-granular friction, we would expect the appropriate dimensionless scaling of
the shear rate to instead be given by the viscous inertial number

Iν = ηγ̇

N
. (3.2)

A transition between the two regimes occurs when I2 ∼ Iν [31]. For the values of these parameters
relevant to subglacial till (table 1), we have I2 � Iν � 1, implying that the viscous scaling is
dominant. The leading-order form of the experimentally measured μ(Iν ) rheology [22] is

μ = μ1 + M

√
ηγ̇

N
, (3.3)

where μ1 is the static friction coefficient and M is a constant describing the rate-dependence of
the material after yield. Thus, we can invert for the shear rate,

γ̇ = 1
ηM2 (σ̂ − μ1N)2N−1. (3.4)

The inertial number-dependent form of the solid fraction proposed by the same experiment is
φ(Iν),

φ = φm

1 + b
√

ηγ̇ /N
. (3.5)
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Figure 2. Steady-state profiles of (a) shear ∂us/∂z, (b) horizontal speed us and (c) solid fraction φ for different values of
effective pressure,withτb − μ1N0 = 0.25, 0.5, 0.75, 1 kPa increasing in thedirectionof the arrow. Solid lines shownumerically
calculated profiles, while dashed lines show the leading-order expressions given in equations (3.7), (3.8) and (3.11). The
agreement is particularly good for low shear rates, as the leading-order approximation is valid for small Iν .

It should be noted that subglacial inertial numbers are much lower than the values achieved
in the mono-disperse granular experiments. However, Kasmalkar et al. [32] showed from DEM
simulations that φ continues to be a function of the inertial number even in the near-static regime.
This form of φ loses dependence on N when γ̇ = 0, in contrast to a critical state packing fraction
φ(N), which conversely has no dependence on γ̇ . While a transitional form of φ between critical
state and inertial number of the form φs(N) − f (I) has been suggested [33], given the lack of data
to constrain a model of this form for till and since the general dynamics depend primarily only on
the total compressibility α, here we only show examples calculated using equation (3.5). In this
case, the compressibility in equation (2.30) is

α = α0 + αγ̇ = bμ1

τb

√
ηγ̇

N
+ bμ2

1
τbM

(3.6)

and the shear dilatancy αγ̇ dominates over the static compressibility α0 at subglacial values of
shear rate and effective pressure.

In steady state, since N increases with depth as given by equation (2.20), we obtain profiles for
the shear rate and solid fraction with depth. To leading order in the inertial number, these reduce
to

γ̇ ≈ N0

η

(
τ − μ1N0 − μ1�ρgφmz

MN0

)2
(3.7)

and

φ ≈ φm

(
1 + τ − μ1 − μ1�ρgφmz

MN0

)−1
, (3.8)

as shown in figure 2.
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Figure 3. In situ depth profiles (blue symbols) from (a) Wood et al. [34] and (b) Iverson et al. [35] are well matched by the
theoretical profiles (red lines) for M= 104.5 and M= 103.5, respectively. (c) The resulting traction law only deviates slightly
from perfectly plastic even for large values of M, comparable to laboratory results from Iverson [6] (converted from γ̇ tot Iν
using reported pressures).

Integrating through the yielded region, we find that the speed of the till at the ice–till interface,
ub = us(0), recovers a power-law relationship between the sliding speed, driving stress and
effective pressure. This can equivalently be expressed as a traction law,

τb = τ (ub) = μ1N0 + (3ημ1�ρgφmM2ubN0)1/3. (3.9)

This forms a granular equivalent to, or physical justification for, commonly used basal traction
laws for ice sheet models, regularizing the sliding speed while allowing for close to plastic
behaviour. Perhaps unsurprisingly, the traction is dominated by the first, plastic, term since the
rate-strengthening second term is typically only a very small correction given the relative sizes of
ub and N0 in subglacial settings (figure 3c).

The total till flux can be found by integrating once more through the deforming region, and
we find that to leading-order the steady-state till flux is

qs = φm

12η(μ1�ρgφmM)2
(τb − μ1N0)4

N0
. (3.10)

Constraining the till flux is important for estimates of glacial erosion rates, and therefore setting
the coupling between ice dynamics and subglacial topography that builds a wide array of
bedforms. Understanding how ice sheet behaviour results in bedform construction can be used
to interpret the topographic record of palaeolithic ice streams and exploit features from below
current ice sheets to constrain till rheology.

(a) Fit to observations
The majority of experimental data on the deformation of subglacial till comes from ring-shear
tests on thin layers of till, so the effective pressure and shear rate are close to uniform across the
shearing region. This allows for comparison of the local form of μ as a function of N and γ̇ , but
not the depth profiles. The conclusion from ring-shear tests is that μ ≈ 0.5 and that this value is
insensitive to the shear rate or effective pressure (see [6] for compiled data from seven different
ring-shear tests). While our traction law is consistent with this conclusion, in that μ changes by
only a few per cent over speeds of up to kilometres per year (figure 3c), the lack of sensitivity
means this steady-state data does not place a strong constraint on many of our model parameters.
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It is perhaps more informative to look at in situ deformation profiles from subglacial till
samples. Using a granular rheology of the form in equation (3.3) in equation (2.23), we predict
a velocity profile as

us ≈ M
3ημ1�ρgφm

(
τb − μ1N0 − μ1�ρgφmz

MN0

)3
. (3.11)

The depth of shear zones under glaciers has been observed to range from centimetres to
metres [4,6,27]. Shear zone depths of this magnitude can be estimated from equation (2.21), the
parameters of which are well constrained, and require that the traction difference τb − μ1N0 ≈
1 kPa. Since the speed of till deformation is so low, equation (3.11) implies a large value of M,
in contrast with experiments on idealized mono-disperse granular media where M ∼ 1. In situ
measurements of till displacement with depth [34,35] show good agreement with our steady-state
profiles if we take M ∼ 104 (figure 3a,b). This suggests that once yielded, subglacial till has a much
higher resistance to flow than the mono-disperse smooth grains typical of granular experiments.
As well as geometric differences in the grains, a possible reason for this large resistance is that
the clasts may experience an effective viscosity much larger than that of water, due to the high
clay content in the soil, which would alter the appropriate scaling for the viscosity in the inertial
number.

Finally, we must constrain b, or equivalently α, using porosity variation with both γ̇ and N. The
static compressibility of clay-rich soils is on the order of 10−6–10−8 Pa−1 [36], and experiments on
till samples [3] at fixed shear rate and varying N confirm α0 ∼ 10−7. By contrast, in situ profiles
of porosity [27] in which γ̇ and N both vary with depth are consistent with b ∼ 104 and a much
larger shear dilatancy of αγ̇ ∼ 10−4 Pa−1. As noted for M, the value obtained for b is large in
comparison with previous granular experiments and may point to a higher effective viscosity η

of the interstitial fluid, increasing the sensitivity of μ and φ to the shear rate γ̇ . Fortunately, since
b and M are both inversely proportional to the value of η used, our estimate of α ∼ b/M remains
independent of this uncertainty in effective viscosity and we can be confident that our numerical
results capture a physically relevant regime for the transient response. The parameters used in
the numerical model are given in table 1.

To better constrain all the parameters of this model would require further steady-state and
time-dependent experiments on till. A systematic series of steady-state experiments on wet
till would determine the applicability of wet granular models to till at a low inertial number,
and verify the appropriate steady-state values of M and b. In particular, the model predicts a
large increase in α and decrease in diffusivity, associated with even small amounts of shear-
driven dilation, and further experiments to explore this prediction would be highly valuable.
Furthermore, to assess the transient response of granular till, periodic experiments could be
conducted to measure the depth and frequency dependence of the response. Such experimental
investigations would provide invaluable insight into the time-dependent rheology of subglacial
till and would be a robust test of granular models of the deformation of wet till.

The details of the dynamic rheological behaviour of till may have important implications for
the large-scale response of ice sheets to changes in basal conditions. In particular, granular till
models exhibit a wide range of behaviours such as dilatant strengthening, compaction, persistent
shear at depth and sudden jamming, all of which may present as a frequency-dependent effective
sliding law.

(b) Dilatant strengthening
If the effective pressure at the surface is suddenly decreased (figure 4a), there is an instantaneous
acceleration at the surface as the yield stress decreases (figure 4b). However, the till at depth
does not respond instantaneously. Instead, the decrease in effective pressure diffuses downwards
through the till (figure 4h), along with an associated increase in shear rate and decrease in solid
fraction (figure 4f ). The sliding speed gradually increases towards the new equilibrium value.
This transient response of the sliding speed can be interpreted as a transient increase in till
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Figure 4. Behaviour of the system when the effective pressure at the surface is instantaneously decreased from N = τb/μ1

to N = 0.975τb/μ1, with an initially fully compacted till. Plots show (a) the forcing τb − μ1N0, (b) surface velocity response
us(0), (c) increase in column height as the till decompresses, (d) depth of the yield surface and (e) effective friction coefficient
μeff. Depth profiles show (f ) deviation from maximum solid fraction φm − φ, (g) pore water-pressure deviation away from
hydrostatic pw − ρgz and (h) effective pressure N.

strength. To quantify this strengthening, we use the steady-state traction law in equation (3.9)
to define an effective friction coefficient as

μeff(t) = τb − [3ημ1�ρgφmM2us(0, t)N0]1/3

N0
. (3.12)

Here, if the till deforms less than would be expected in steady state, μeff > μ1, indicating dilatant
strengthening.

To understand the mechanisms behind dilatant strengthening, we consider the non-
hydrostatic component of the water pressure (figure 4g). As the till accelerates (figure 4b) and
dilates (figure 4c), the expansion of the solid matrix induces a water pressure gradient that
drives fluid into the increased pore space, lowering the pore water pressure at depth relative
to hydrostatic. Despite the decrease in effective pressure at the surface, throughout most of the
till the initial change in pore water pressure counteracts this surface change and instead drives
a strengthening of the till at depth (figure 4e). This introduces a lag between the surface forcing
(figure 4a) and the response at depth (figure 4b), and hence a time dependence in the effective
basal drag law, as illustrated by the effective friction coefficient μeff (figure 4e).

(c) Compaction and shear at depth
If the effective pressure at the surface is increased, there is a small instantaneous deceleration of
the surface layer of the till, accompanied by compaction in this region. Similarly to the case of
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Figure 5. Behaviour of the system when the effective pressure at the surface is instantaneously increased from N =
0.975τb/μ1 toN = τb/μ1, with till porosity initially in steady state. Plots show (a) the forcingτb − μ1N0, (b) surface velocity
response us(0), (c) decrease in column height as the till compresses, (d) depth of the yield surface and (e) effective friction
coefficientμeff. Depth profiles show (f ) deviation from maximum solid fraction φm − φ, (g) pore water-pressure deviation
away from hydrostatic pw − ρgz and (h) effective pressure N. The till fully jams at t = 3.2 h.

dilation, it takes time for the effective pressure at depth to increase as the pore water pressure
re-equilibrates. The rate of deformation of the till, therefore, slowly decreases towards the new
equilibrium value.

As the till compacts, water is driven upwards and out of the pore space by locally increased
pore pressures at depth (figure 5g). Thus, the effective pressure (figure 5h) and the till strength
(figure 5e) are transiently lower than the new equilibrium. If the compaction is strong enough,
the induced pore-pressure gradients can be sufficient to counteract the background hydrostatic
gradient, leading to a decrease in effective pressure and till strength with depth (figure 5h, early
times). Thus, the top layer of till can slide along over a layer of weaker material below, even if it
is not itself deforming.

As the effective pressure at depth increases, the yield surface moves upwards (figure 5d).
The till below the yield surface is fully compacted and stops deforming. As the overall rate of
compaction decreases, less water is driven out of the pore space and so the strength of the pore
water-pressure gradient is reduced. This increases the effective pressure, and the yield surface
migrates further upwards through the till, reducing the zone of compaction further. This positive
feedback can lead to a sudden shutdown of shear at depth as the till jams, as shown at late times
in figure 5.

Given the rich dynamics of compaction compared with the gradual diffusion of pore pressure
during dilation, this suggests that the system might exhibit complex hysteretic behaviour if the
pressure oscillates. Indeed, that is exactly what we see in the case of large-amplitude periodic
oscillations, as discussed in the following section.
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frequencies.

(d) Periodic sliding law
The timescale for pressure diffusion and till compaction leads to the introduction of lag between
the applied stress and deformation in the case of periodic forcing. With the introduction of
an explicit rheology for the till, we can go beyond the linear calculation presented in §2c and
demonstrate the wealth of nonlinear features emergent from the two-phase model, including
periodic jamming and stick-slip motion in response to smoothly varying forcing.

To show first the linearized results, we take the pressure forcing to be periodic and sinusoidal,
N0 = N̄ + �N e−iωt, and use the granular rheology of equation (3.3) in the general formula for
the amplitude and phase lag of the velocity response in equation (2.36). This gives a velocity
perturbation of

û = 2μ1[λ(τb − μ1N̄) − μ1�ρgφm(1 − e−λz0 )]

λ2ηM2N̄
�N e−iωt = A

dub

dN
�N e−i(ωt−θ), (3.13)

where λ2 = −iω/D. These values of A and θ are shown in figure 6, and clearly show the transition
that occurs when the timescale of dilatancy is small compared with the period of the pressure
fluctuations,

ω ∼ D

z2
0

∼ k(μ1�ρgφm)2

ηα(τb − μ1N̄)2
∼ kμ2

1(�ρgφm)4/3

η5/3αM4/3τ
2/3
b u2/3

b

. (3.14)

In the limit of rapid perturbations, λz0 � 1 and the rapid fluctuations diffuse through the top
of till only before decaying. Equation (3.13), therefore, reduces to

û = 2μ1(τb − μ1N̄)

ληM2N̄
�N e−iωt = 2μ1(τb − μ1N̄)

M2N̄

√
k

ωη3α
�N eiπ/4−iωt, (3.15)

again showing the generic phase lag of π/4 and an amplitude that decreases as the frequency
of oscillations increases, until the speed of the till depends only on the average value of the
effective pressure. Induced water-pressure variations buffer the till at depth from feeling the effect
of surface changes.

Slow perturbations, with λz0 � 1, reach the base of the shear layer and so the surface velocity
of the till changes as

û = μ2
1�ρgφmz2

0

ηM2N̄
�N e−iωt = (τb − μ1N̄)2

η�ρgφmM2N̄
�N e−iωt = dub

dN̄
�N e−iωt, (3.16)

which is exactly the linearized form of the steady-state sliding law.
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amplitude pressure perturbations, the velocity response is also sinusoidal, with some phase lag. As the frequency, increases,
the amplitude decreases. At low frequency, the steady-state sliding law is recovered. (b) For larger amplitudes, these trends are
maintained, but there is a higher degree of hysteresis and the nonlinear shape of the steady-state sliding lawbecomes apparent.

As shown in figure 7a,b, the till velocity is approximately constant in response to high-
frequency changes. As the frequency of forcing is decreased, the amplitude of the velocity
response increases and the phase lag reduces, so that the response traverses the steady-state
curve. This generic behaviour is seen both at small amplitudes (figure 7a), for which the above
linearization holds, and for much larger amplitudes of forcing (figure 7b) under which the velocity
responds nonlinearly. In both cases, it is the frequency of the fluctuation relative to the transition
frequency in equation (3.14) that determines whether the velocity response depends only on
the average forcing, or is a quasi-instantaneous response following the steady-state sliding law.
Between the two limits, the phase lag combined with the significant amplitude of the velocity
response produces hysteresis loops, with sliding speeds remaining high during compaction and
low during dilation.

The hysteresis in the system is exaggerated if, during forcing, the effective pressure at the ice–
till interface is high enough that τb < μ1N0. For frequencies below the transition frequency, there
is a smooth progression along the steady-state sliding law, with shear stopping when N0 > τb/μ1
and resuming when it crosses that value again. More complex behaviour emerges when the
forcing is above the transition frequency, as rapid compaction can lead to an extended period
of continued flow at depth, followed by jamming (see figure 8). Once jammed, shear cannot
restart until the top layer of the till begins to yield again. Shear begins at the top of the till
and the yield surface then moves down. This highly asymmetric process between the shutdown
and start up of shear gives a highly complex, stick-slip response of the till to simple periodic
forcing.

4. Discussion
There are numerous instances where the transient response of ice sheets is important, from the
rapid response to subglacial flooding events, the daily or annual variation of meltwater supply to
the bed, and the sudden reduction in back-stress after the rapid disintegration of ice shelves. To
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describe these scenarios requires a coupling of ice dynamics and basal processes. Here, we focus
on the response of ice streams to ocean tides and comment on the relationship of the current work
to rate-and-state models of transient ice–bed friction.

(a) Tidal response of ice streams
When applying this time-dependent sliding law to an ice stream model, the main distinction is
whether the lag introduced by till dynamics is significant compared with the period of forcing, or
whether an instantaneous sliding law remains appropriate. Since the velocity response to pressure
changes is only significant when the frequency of changes is slower than the permeability-
dependent transition frequency in equation (2.37), this can be used as a constraint on the
permeability of subglacial till.

At Rutford, despite the daily tidal forcing, the largest constituent of the velocity response
is at the fortnightly frequency [37,38]. This model provides two possible mechanisms for this
observation. The nonlinearity of the till rheology may be sufficient to mix the daily frequencies
and generate the fortnightly signal in situ, similar to the suggestion of Robel et al. [39]. In the
electronic supplementary material, we show the effect of forcing the model with two diurnal
modes, and find that a weak fortnightly signal is generated in the sliding speed. Alternatively, if a
fortnightly component is already present in the pressure signal before it reaches the upstream till,
generated by the ice dynamics (for example, at the grounding line) [40,41], then the dynamic
response of the subglacial till may act as a low-pass filter, filtering out the daily signal and
increasing the strength of the fortnightly component.

Indeed, one important lesson from this modelling of transient effects is that care should be
taken when interpreting surface velocities as directly reflecting subglacial water pressures, both
in the timing and the magnitude of their fluctuations. Because the local velocity signal lags behind
the effective pressure, the time taken for glaciers to respond may not be the same as the time
for the water to transit through the subglacial environment—this could explain the timing of
slip events relative to the tidal cycle [11], or of the lag between borehole pressures and sliding
speeds [42]. Similarly, since the adjustment of the till porosity can buffer the sliding speed against
acceleration, inversions using an instantaneous sliding law may underestimate the magnitude of
pressure changes driving velocity perturbations [30,43].
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Considering the slip-stick motion of the Whillans Ice Stream, it is noteworthy that this
continuum granular model is able to generate slip-stick cycles from a simple rheology; one that
also produces continuously varying flow when the mean effective pressure is only slightly lower.
This supports the view that the hydrology of the region results in the characteristic motion of the
Whillans Ice Stream [3,44]. However, the inclusion of further details of the elastic ice response,
which we have not modelled here, may be required to reproduce features such as secondary
slip events at low tide [45]. Another mechanism not included here is the short-timescale elastic
behaviour of the ice–till interface itself, which is known to generate seismic events and allow for
rapid acceleration [44]. This model is far from a complete description of the Whillans slip events,
but does show how intermittent sliding can result from a continuum model.

(b) Comparison with rate-and-state friction framework
The RSF framework is a parametrization of transient frictional responses that is increasingly used
to describe basal friction [16,24,25]. In the RSF framework, the detailed characteristics of the basal
dynamics are encoded in a single state variable Θ , which evolves in response to changes in forcing
over time towards a new steady value, leading to temporal lag in the system. Our two-phase
model similarly introduces a time lag between the forcing and deformation due to the timescale
of the porosity response. This similarity between the two systems leads to the interpretation of
the porosity structure as a state variable. Indeed, Minchew & Meyer [25] explicitly set the mean
porosity of the till to be a function of Θ . Likewise, a comparison of the predictions between the
two models may lend physical meaning to the other parameters of the RSF model.

In the RSF model, the friction coefficient μ = τb/N is given by the functional form

μ = μ0 + a ln
(

ub

u0

)
+ b ln

(
u0Θ

Dc

)
, (4.1)

where ub is the sliding speed and Θ is a state variable that contains within it all the information
about the state of the bed [46]. In steady state Θ = Dc/ub, and μ0 is the value of μ at a reference
speed u0. The parameter a controls the initial ‘direct’ response of μ to a change in sliding speed,
while a − b parametrizes the eventual change once the system has re-equilibrated.

In steady state, the friction coefficient

μ = μ0 + (a − b) ln
(

ub

u0

)
(4.2)

is qualitatively similar to
μ = μ1 + (3ημ1�ρgφmM2)1/3 (4.3)

for granular till, as the friction coefficient increases sub-linearly with sliding speed if a − b > 0.
This parallel is also noted in [7].

Different evolution equations for θ are found in the literature [46], either taking the form of an
ageing law,

dΘ

dt
= 1 −

(
ubΘ

Dc

)p
, (4.4)

or a slip law,
dΘ

dt
= −ubΘ

Dc
ln
(

ubΘ

Dc

)
. (4.5)

While similar to the two-phase model in that the transient adjustment of the state of the bed
alters the drag away from the steady-state drag law, leading to initial strengthening before steady
conditions are recovered over longer timescales, we now have a timescale of adjustment of Dc/ub,
which decreases with increasing sliding speed, in contrast to the two-phase model.

Further differences emerge in the predictions of the two models when considering the finer
details of the time evolution of the friction. If we once more consider the response of this system
to a small periodic change in N of the form N̄ + �N e−iωt and observe the response in ub, we
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may compare the resultant time-dependent sliding law to our two-phase model results. Both the
ageing and slip laws for Θ reduce to the same linearized form,

iωΘ̂ = û
ub

+ Θ̂ub

Dc
, (4.6)

so

μ̂ =
(

a + b
iωDc/ub − 1

)
û
ub

. (4.7)

If τb is held fixed, then

û = −ubτb

N̄2

1 − iωDc/ub

a − b − iωaDc/ub
�N e−iωt = 1 − iωDc/ub

1 − a
a−b iωDc/ub

dub

dN
�N e−iωt, (4.8)

and the amplitude A and phase lag θ are given by

A eiθ = 1 − iωDc/ub

1 − (a/(a − b))iωDc/ub
. (4.9)

As in the two-phase model, at low frequencies the steady sliding law is recovered, with A → 1
and θ → 0. However, the phase lag decays with θ ∼ ω (rather than

√
ω as in the two-phase model)

as the frequency of the forcing decreases. The time lag tends to a constant Dc/ub rather than
continuing to increase with the period of the forcing.

Another difference is that the presence of a direct effect (a 
= 0) means there is always an
instantaneous response (θ = 0) at high frequencies, with a relative amplitude A = 1 − b/a that does
not decay to 0 as ω increases, in contrast to the two-phase model. The maximal phase lag occurs
instead on intermediate timescales at a value of θ = arctan(b/2

√
a(a − b)). While this can be made

to match the π/4 of the two-phase model if a = (1 + √
2)b/2, the behaviour of the RSF system at

rapid forcing frequencies of oscillation is very different.
Time-dependent experiments measuring the amplitude and lag of the velocity response, over a

wide range of forcing frequencies, could be performed on granular till to determine which of these
models provides the better fit. Very rapid oscillations can be used to measure the magnitude of
the instantaneous effect, similar to the results of Zoet et al. [16], while very slow oscillations show
the recovery towards steady state and would allow for a robust measure of the phase lag between
the forcing and response. McCarthy et al. [47] performed a set of oscillatory experiments for the
analogous case of ice-on-rock friction and observed both an increase in amplitude with increasing
period and a lag in the frictional response, interpreted through the view of a RSF model fitted per
run. The dependence of the lag on frequency is an experimentally tractable way to test the validity
of the two models. While rate-and-state provides a convenient reduction of the variable space, it
is important to note that some information about the physics is lost in the process, and interrogate
to what extent this affects the resulting sliding laws if one representative value of the governing
parameters is chosen.

(c) Coupling with ice dynamics
In this analysis, we have imposed a (time-dependent) effective pressure at the ice–till interface.
Since this causes the till to dilate and compact, the volume of water in the till is not fixed—we have
assumed that a sufficient source of water is available at the surface of the till as required, making
this a drained model. Conservation of mass and till dilatancy determine the volume of water
needed to enter the pore space to produce this change in effective pressure. From our simulations
(figures 4c and 5c), 2 mm of water per unit surface area are required over a scale of hours, implying
a very modest induced flowrate even in the relatively high-permeability situation illustrated. We
could instead choose to impose the changes in water content and calculate the resulting pressure
fluctuations—this is the undrained configuration. In this way, we could couple our till model
to a parametrization of melt and refreezing occurring at the base of the ice, as in the model
of Tulaczyk et al. [48], where the water availability in the till depends on the sliding speed of
the ice.
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Indeed, an exciting potential extension to this work more generally is the dynamic coupling
between the deformation of the ice and the till, since in this paper we have assumed that the
role of the ice is to provide a constant basal traction and normal stress on the till surface, as this
is usually the boundary condition applied in ring-shear tests [28]. However, for the large-scale
deformation of ice sheets, the basal sliding speed is a key control on the total ice flux and thus over
long timescales will alter the thickness of the ice above, and in turn set both the ice overburden
pressure (directly proportional to ice depth) and basal shear stress (gradients in surface height).
This coupling [25] could be important for the long-term evolution of ice streams, in particular
in response to a pulse of meltwater (such as a lake-drainage event) or the start of a surge, or in
response to the rapid disintegration of an ice shelf.

Finally, there is the important question of the coupling between the base of the ice and the
surface of the till. While here we have examined the response of the till to the conditions at its
surface, the presence of a layer of water between ice and bed may effectively decouple the two.
As the ice approaches flotation, we would expect an increasing degree of slip between the ice and
till, so that the basal motion of the ice is not fully transmitted to the till. This could lead to a non-
monotonic till flux relationship with pressure, such as observed in [49]. Given the importance of
understanding till fluxes when explaining the formation of subglacial bedforms, an extension to
this work would be to consider the three-layer system that incorporates an increasingly deep film
of water at the ice–till interface, to more fully understand the transition from deep till deformation
to sliding over a water-filled cavity.

5. Conclusion
We have described a modelling framework for the coupled flow of water through, and the
deformation of, water-saturated subglacial till, starting from physically based mass- and force-
balance equations describing the motion of both water and till. Using this model, we have shown
that shear dilation, when coupled to the flow of water into the changing pore space, induces large
pressure fluctuations that modulate the normal stress felt by the till and hence its ability to deform.
We find behaviour such as transient dilatant strengthening appearing as emergent phenomena of
the model. We show this behaviour in both the general formulation and implementing a granular
rheology for the till.

The transient flows induced by dilation and compaction of till significantly alter the
deformation rate and depth of shear away from their steady-state values. This suggests both basal
sliding rates and till transport may be poorly represented by current parametrizations, which only
depend on instantaneous effective pressure. Instead, in the case of fluctuating water pressure, we
predict long-lasting continued shear at depth, followed by dilatant strengthening, altering the
deformation rate and till flux. Accurately quantifying the link between till rheology, ice dynamics
and subglacial sediment discharge influences our understanding of glacially driven erosion and
mechanisms of bedform construction. Since we are able to calculate analytic expressions for the
modified time-dependent sliding laws in the case of small amplitude periodic forcing, these could
be included in large-scale ice sheet models.

Till is a complex material and characterizing its behaviour requires a combination of careful
laboratory, field and theoretical approaches. Here, we have shown the potential for continuum
wet granular mechanics to capture both steady shearing and the transient coupling between water
pressure, till deformation and porosity variations. In particular, we highlight shear dilatancy
as an important mechanism driving the decreased diffusivity of effective pressure through
subglacial till, leading to a persistent transient response. However, our quantitative results rely
on parameters that currently lack experimental constraint, suggesting the importance of further
experiments, especially in the case of fluctuating effective pressure that may be most relevant
to glaciers over the daily cycle of melt or tides. Grain-scale simulations can also provide quasi-
experimental data, but our results highlight the need to accurately account for water flow to
produce results that are strikingly different to a dry granular till.
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