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Abstract
Train dwell time is a complicated component and depends on many factors. One of the dominant factors is passenger vol-
ume. This study used actual train movement data and passenger demand data from London Underground, UK, to estimate
the number of passengers and train dwell times at each station, and then evaluated train dwell times from a different perspec-
tive. Considering the various characteristics of stations, it is complicated to evaluate dwell time. Therefore, data envelopment
analysis (DEA) was introduced to evaluate the dwell time at each station in relation to passenger volume at that station. The
study investigated whether the dwell time spent at stations is efficient when considering the number of passengers that the
stations can serve. The results showed that, in low-passenger-volume stations, the dwell time efficiency score is low and
increases relative to the increase in passenger volume. For high-passenger-volume stations, interactions between passengers
are more relevant and have a strong influence on dwell time. Passenger movement direction is a key factor to classify sta-
tions. This research proposes that stations should be classified according to their characteristics, and points out the challenge
at any station with the same characteristics as Victoria station which has high passenger volume with bi-directional flow, and
where trains arriving are crowded. This characteristic would result in high interactions between passengers, thus making a
long dwell time. The station has to handle high passenger volume and also has to keep the dwell time within the threshold.
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Dwell time is a critical variable which determines peak
hour service frequency in many metro systems. Transport
for London (TfL)’s own research investigated interac-
tions between passengers, platforms, and train service
reliability, and reported that there are many stations in
the system confronted with train service disruptions
because of high levels of interaction between passengers
on platforms (1). In addition, other research carried out
by TfL (McKenna’s report) concluded that dwell time
takes 20%–25% of passengers’ in-vehicle time (2). This
research was published 30 years ago, and signaling tech-
nology has since improved to enable trains to run closer.
However, the issue that dwell time limits service fre-
quency still exists and tends to be more critical as time
progresses because of the increase in passenger volume.
Much research has addressed this problem (3–5).

Dwell time is a complicated component. It has almost
50 relevant factors of various aspects and affects several
metrics (1, 6). Interactions between passengers and infra-
structures or trains, and interactions between passengers
themselves, make dwell time one of the most complicated
components in the metro operation field. Much effort
has been put into the development of dwell time predic-
tion models; however, dwell time cannot be represented
well with one equation. Different dwell time models
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should be used in different conditions. This research clas-
sifies the conditions in relation to passenger volume.

In general, dwell time could be considered from differ-
ent perspectives such as efficiency and reliability. These
two aspects are not totally aligned, and the conclusions
drawn from each perspective could vary. A station which
has long dwell times and delays in service might be con-
sidered as underperforming if it has a low level of relia-
bility. However, it might perform well in relation to
efficiency. Even if it has a long dwell time, it can contrib-
ute to many outputs (for example, many passengers
alighting and boarding at the station). The efficiency of
dwell time in this study is evaluated by considering the
number of passengers at stations compared with the
amount of dwell time spent at these stations.

This research aims to evaluate train dwell time from a
different viewpoint and introduce a data envelopment
analysis (DEA) approach to benchmark dwell time
between stations, and to classify station characteristics
which can support the accurate application of dwell time
models.

Train Dwell Time and Passenger-Related
Factors

Train dwell time is known as one of the most compli-
cated components in the metro operation field as it is
determined by many factors and also by passenger beha-
vior, which is very difficult to predict. The definition of
dwell time in London Underground’s Train Service
Model (TSM) is the time between wheel stop to wheel
start. It is not only the time for passengers to board and
alight from the train, but also the technical time for the
door opening and closing process (7). Dwell time can be
divided into five components: door opening time, passen-
ger boarding and alighting time (BAT), signal delay time,
door closure time, and departure time. The analysis in
McKenna’s report presented that BAT, door closure
time, and departure time take up most of the overall
dwell time (2). Door closure time and departure time
normally take around 10 s, however they could take up
to 35 s if there is a repeated door closure caused by ‘‘late
runners’’ (passengers who get on the train while the doors
are nearly closed). Since late runner situations occur ran-
domly, they are mostly excluded from the dwell time
model (2). Therefore, BAT becomes the most significant
part of the dwell time model and the dwell time analysis
in this research refers to BAT. The factors affecting BAT
have been classified into three groups: passenger-related,
platform/station-related, and train-related (1). This piece
of literature focuses on passenger-related factors.

Fujiyama et al. conducted an experiment in
University College London’s Pedestrian Accessibility
and Movement Environment Laboratory (PAMELA) to

investigate whether 50 passengers could board and alight
at the door of a mock-up of a London Underground
train within 27 s. The experiment was conducted in three
scenarios with different boarding and alighting ratios (B/
A ratios) (45 alighters/5 boarders, 45 boarders/5 aligh-
ters, 25 alighters/25 boarders). Results showed that the
highest number of movements within 27 s was achieved
by the group of 45 alighters/5 boarders, followed by 45
boarders/5 alighters and 25 alighters/25 boarders, respec-
tively. The case of 25 alighters/25 boarders got the lowest
achievement because of the highest number of interac-
tions between passengers. Moreover, the experiment
found that if a boarding process continues after the den-
sity of the vestibule reaches four passengers per m2, the
passenger boarding rate will begin to drop. The passen-
ger boarding and alighting flow rate always changes dur-
ing the door opening time with non-linear distribution.
Therefore, using a constant average flow rate to deter-
mine the boarding and alighting rate may not be accu-
rate (8).

Before this study, there had been other research con-
ducted in PAMELA (9–13). Seriani explored the effect
of the B/A ratio with regard to the following aspects:
average boarding and alighting rate, sequence of move-
ment, formation of lanes, and the density inside the
train. This research found that passenger behavior can
vary when the level of passenger volume is different, even
when the boarding/alighting ratio is similar. Thus, the
numbers of passengers boarding and alighting are crucial
factors in the dwell time analysis. In a crowded situation,
if boarders are dominant (ratio=4), a small group of
alighters has to interact with many boarders, causing
alighters to spend more time per passenger than boar-
ders, and vice versa in an alighter-dominant situation
(ratio=0.25). Concerning the sequence of movement,
passengers will always alight from trains first, followed
by passengers boarding; however, in a boarder-dominant
situation (ratio=4) the boarding process starts earlier,
namely around 10 s after the alighting process starts.
This research also provided evidence that the boarding
flow rate will drop when the density of the vestibule
reaches four passengers per m2. The experiment tried
closing the train doors when the density of the vestibule
reached four passengers per m2 and found that this could
reduce the total dwell time by 26%, which is about 11 s.
The authors suggested future work to identify the ideal
time to close the doors in a crowded situation (12).

Harris experimented on a mock-up of South West
Train rolling stock in the U.K. His research divided
BAT into three elements: boarding time, alighting time,
and interaction time, and stated that interaction time is
the most complicated part as it cannot be calculated
straightforwardly. The passengers remaining on the train
also have an effect on interaction time. For example, if
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most passengers alight from the train, more spaces on
the train will lead to fewer conflicts, thus passengers can
board easily. Interaction time is an aspect which this
research demonstrated to be overestimated at high level
passenger flow by London Underground’s equation. The
study also showed that the increase in the number of pas-
sengers leads to a higher BAT but the correlation is in a
nonlinear function with a power function between 0 and
1 (which aligns with London Underground’s model).
Concerning the sequence of movement, this research also
supported findings that alighting and boarding rates are
not constant across alighting and boarding processes.
The fastest movement for alighters is right after the
doors open as passengers near the doors can get off with-
out obstruction, while the fastest movement for boarders
is at the middle of the process as early boarders might be
impeded by alighters and late boarders might be
obstructed because of the train being nearly full (3).

In the meanwhile, Suazo-Vecino et al. found that the
passenger density inside the train is the most significant
variable in this subject (14). Their research developed a
dwell time model for one of the most congested subway
stations in Santiago, Chile. This model found that the
passenger density inside the train explains 73.6% of the
whole dwell time. In addition, the term ‘‘number of alighters
multiplied by the platform occupancy level’’ accounts for
11.55% of the dwell time. The research focused on this term
as they considered that it is controllable by limiting passen-
ger accessibility to the platform, resulting in fewer interac-
tions between alighters and passengers on the platform.

In summary, the following passenger volume factors
are the most relevant:

� The number of passengers boarding: the more
boarders, the longer BAT is needed to accommo-
date the passengers (2, 4, 15–20)

� The number of passengers alighting: the more
alighters, the more time is also accumulated on
BAT (2, 4, 15–20)

� Boarding/alighting ratio: the ratio of boarders and
alighters also influences the duration of BAT. In
the situation when either alighters or boarders are
dominant, it makes a shorter BAT as there are
fewer interactions between passengers compared
with the situation when the numbers of boarders
and alighters are almost the same (2, 8, 12, 13, 17,
18)

� Crowding inside the train: the crowding area
could increase the interactions between passengers
and obstruct passenger movement. Crowding
inside the train obstructs passengers alighting, and
crowding after alighting also obstructs passengers
boarding (3, 14, 17)

The Case Study on the Victoria Line

This research takes the morning peak hours of the north-
bound service of the Victoria line, London Underground,
as a case study. The Victoria northbound line runs from
Brixton to Walthamstow Central station and passes
through many busy stations (‘‘busy stations’’ are here
defined by high passenger volume for boarding and
alighting at these stations) such as King’s Cross, Oxford
Circus, and Victoria. The line has adapted an automatic
train operation system to achieve a shorter headway.
Technically, the line is scheduled to run 36 trains per
hour in peak time; however, it is sometimes unable to
achieve this in practice because most stations require lon-
ger times than the threshold (Figure 1). Train delays have
become one of the critical problems in the London
Underground system as it is a challenging task to manage
passenger congestion on the small platforms to avoid
accidents and handle passenger flow efficiently. One
important issue raised by Oberlander is that Victoria sta-
tion, which is the most critical station, becomes the sta-
tion that determines the line capacity because of the long
dwell time at the platform (21). This is because Victoria
station is a high-passenger-volume station and the trains
arriving at Victoria station are often full causing high
interactions between passengers. Dwell time delay at
Victoria station is the motivation of this research to eval-
uate whether the dwell times at high-passenger-volume
stations are efficient when considering the number of pas-
sengers that the stations can serve.

Figure 1 presents the average time spent at the sta-
tions on the northbound service of the Victoria line at
the busiest morning peak time (8:00–9:00 a.m.), which is
the time when passenger volume is at its highest and
trains are often delayed. The main components of the
time are composed of:

� Average run out run in time (RORIT) or the train
reoccupation time, which mostly depends on sig-
naling and train performance (blue boxes)

� Average dwell time, which is the train stop time at
the platform (red boxes)

� Dwell time’s standard deviation, which is mostly
from the inconsistency of BAT (green boxes)

� For lines with automatic train operation, a stan-
dard deviation of RORIT is disregarded.

In high-passenger-volume stations, the interactions
between passengers have a strong influence on dwell time
(1, 8). Two important passenger interactions in boarding
and alighting processes are involved. Passenger interac-
tions are illustrated in Figure 2. The first interaction is
between passengers alighting from the train and the den-
sity on the platform (the density on the platform includes
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the number of passengers attempting to board the train).
The effect of the number of passengers alighting would
depend on the density level on the platform which is the
area to which the alighting flow is heading. The second
interaction is between passenger boarding and the density
on the train. When the train is crowded and some people
would like to alight, combined with several passengers
attempting to board the crowded train, these interactions
could lead to a long dwell time and further train delay.

Methodology

Previous studies about dwell time have developed an
understanding of the impacts of passenger-related factors
on the train dwell time and have developed dwell time
prediction models. However, dwell time is complicated
and cannot be represented well with one equation, espe-
cially in situations of crowding. Different dwell time
models should be used based on different station charac-
teristics (i.e., different demand profiles, different crowd-
ing levels on trains, different boarding/alighting ratios).
When the stations on the line have different characteris-
tics and different lengths of dwell time, it is difficult to
benchmark their dwell time efficiency (i.e., some stations
have more passengers boarding while other stations have
more passengers alighting, or some stations have passen-
gers boarding and alighting equally). Thus, this research
introduces the DEA approach, which makes it possible
to benchmark stations by including multiple input fac-
tors which have complex interrelationships.

The analysis in this research was based on two essen-
tial data sources from TfL, namely NETMIS and
NUMBAT. NETMIS is the actual operation data from
London Underground’s train movement database, which
consists of the data of each train’s movement through
stations. The arrival/departure times whenever a train

Figure 1. The breakdown of time at each station on the northbound Victoria line (Transport for London [TfL–. 2019).
Note: RORIT = run out run in time.

Figure 2. Interactions between passengers boarding and alighting
trains.
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leaves a station are recorded, thus dwell time for trains
at each station can be calculated. NUMBAT presents
the number of passengers who travel on any specific line
to each origin-destination pair every 15min, and there-
fore allows an estimation of the numbers of boarders,
alighters, and passengers on trains within each 15min
interval. The train data of the northbound service of the
Victoria line in the morning peak period from November
2018 to March 2019 was extracted. Python 3 was used as
a tool in the data preparation process as it is a conveni-
ent and fast way to process the data extracted from
NETMIS, which has approximately 200,000 rows per
month of the dataset.

NETMIS and NUMBAT data sources provide the
average volume of passengers boarding and alighting,
and the average dwell time at different stations, which
are the major variables used in this study. Loadweights
on trains (showing the crowding level of trains) and
boarding/alighting ratios (showing passenger movement
direction) are additionally taken from the datasets, as
they are related factors which could determine train
dwell time. There is no dataset that could directly pro-
vide numerical data about the density on the platform;
however, it might be possible to infer this from passenger
demand (from NUMBAT data sources). There are some
limitations concerning the data used in this study:

� This research focuses on the case of the morning
peak time (which is the most crowded period on
the northbound line) from a macroscopic point of
view. The approach is deterministic (it uses the
average values of the number of passengers and
the average value of dwell times). However, fur-
ther analysis may consider the stochastic approach
if random factors are relevant.

� This analysis only considers passenger volume fac-
tors, which are one aspect of the factors that deter-
mine train dwell time.

� Dwell time could be evaluated by various indica-
tors. It might also be possible to use other indica-
tors for the analysis. This research focuses on the
number of passengers boarding and alighting at
the station to evaluate the dwell time.

Data Envelopment Analysis (DEA)

DEA, or frontier analysis, is a non-parametric approach
to compare the relative efficiency of units (decision mak-
ing units [DMUs]). It is a performance benchmarking
method which allows multiple inputs and multiple out-
puts in the analysis and identifies a best practice frontier
from a set of the units that have the highest efficiency
compared with others. The approach focuses on best

practice frontiers rather than central tendencies of the
data. DEA allows comparison between units without
requiring a formulated model (22–24). The original DEA
model was presented in Charnes et al. and is called the
Charnes, Cooper, and Rhodes (CCR) DEA model (25).
The ratio of outputs to inputs is used to evaluate the
relative efficiency of any DMUs, thus the model is for-
mulated in ratio form and converted into linear pro-
gramming form, which is easier to solve. The modified
linear programming model will set the denominator of
the objective function equal to one and add it as a
constraint.

In addition, the denominator of the efficiency function
will be multiplied by a scale factor. This model can be
transformed with this approach, as it has a single degree
of freedom. (The approach to convert the problem into
the modified linear programming form is demonstrated
in Beasley’s OR-Notes [23].) This research used the
Solver add-in in Microsoft Excel to solve the linear pro-
gramming model.

The current research applies the CCR DEA model to
compare the efficiency of the dwell time at each station
on the Victoria line. The dwell time efficiency in this anal-
ysis is measured by the number of passengers demanding
to alight and board trains at individual stations (consid-
ered as outputs in this analysis) and the dwell time spent
at these stations (considered as an input in this analysis).
If the station has a shorter dwell time or higher passenger
volume, the efficiency score evaluated with DEA could
be high. To evaluate the dwell time efficiency of station i,
the model can be formulated as shown in Equations 1–4.

MaximizeEi ð1Þ

subject to

Ej =
waiAj +wbiBj

vdiDj

, 8j 2 fStation j= 1, 2, . . . , ng ð2Þ

0 ł Ej ł 1 ð3Þ

wai,wbi, vdi ø 0 ð4Þ

where
i=the station being evaluated,
j=all stations being compared relatively with station i,
wai=the weight assigned to alighting passengers when
evaluating efficiency of station i,
wbi=the weight assigned to boarding passengers when
evaluating efficiency of station i,
vdi=the weight assigned to dwell time when evaluating
efficiency of station i,
Aj=the number of passengers demanding to alight at
station j,
Bj=the number of passengers demanding to board at
station j,
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Dj=dwell time being spent at station j.
The concept of the DEA model is to maximize the

efficiency of the station being evaluated by deciding the
weights for each input and output. The optimization has
to be repeated by changing the station being evaluated
(the maximum function in Equation 1) to find the opti-
mum efficiency for all stations. Equation 2 defines the
efficiency of each station as a weighted sum of outputs
divided by a weighted sum of inputs. The weights (wai,
wbi,vdi), which are the decision variables, are allocated to
find the best efficiency of the station being evaluated,
thereby presenting the particular station in the best pos-
sible practice. For example, if the model is aimed at eval-
uating Victoria station efficiency, the weights are chosen
to maximize Victoria’s efficiency (EVictoria) and the same
weights will be applied to other stations so that their effi-
ciency can be compared relatively. The constraint in
Equation 3 is set to make all station efficiency scores fall
between 0 and 1, therefore the best possible efficiency is
1. If applying the same weights makes the efficiency of
any station above 1, the allocated weights will be
adjusted according to the constraint of Equation 3,
resulting in a lower efficiency at Victoria station (the sta-
tion being evaluated) compared relative to other stations.
Equation 4 sets the weights to be positive. There is no
weights restriction added in the model’s constraint which
means that all factors are equally significant. The model
will apply the higher weight to the associated factor in
which the station being evaluated performs better to
maximize its efficiency. Therefore, it could be interpreted
that, if the weight assigned to any factor is high, it
implies that this factor is outstanding at the station being
evaluated.

With the DEA approach, stations with different char-
acteristics or different demand profiles can be evaluated
from their best potential. When stations that are being
evaluated obtain the highest efficiency score (E=1),
these stations will form the efficient frontier. The stations
with lower efficiency will be evaluated by being com-
pared relative to the frontier.

Station Demand Profile

This study used London Underground’s actual train
movement data to calculate the dwell times and trains’
loadweight as a percentage at each station (which shows
how crowded the trains are). Passenger demand data of
London Underground is used to estimate the numbers of
passengers wanting to alight and board at each station
(the data is taken as number of passengers per minute).

Table 1 shows passenger volume and dwell time at
each station on the northbound service of the Victoria
line during the morning peak hour. The passenger vol-
ume shown in the table covers passengers boarding, T
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passengers alighting, and on-board passengers before
arriving at the stations (preload). The B/A ratio presents
the direction of passenger movements. If the B/A ratio is
further from 1, it represents that either alighters or boar-
ders are dominant at that station.

Figure 3 illustrates the demand profiles and the dwell
times at each station. The information noted above each
data point gives the station abbreviation and the average
dwell time spent at that station. The slope of the line
demonstrates the B/A ratio. The stations located on the
upper area of the line, where the slope equals 1, are the
stations with more boarding passengers. A total of 11 out
of 16 stations on the northbound service of the Victoria
line are stations with more alighting passengers, and most
of them have low numbers of passengers. The marks in
red represent the stations with the load on trains before
arriving the stations (preload) over 60% (the 60% load-
weight is roughly four passengers per m2) which is the
level of density where passenger movements in and out of
trains begin to be restricted (8, 12).

One question raised by this research is how to bench-
mark train dwell time performance among stations which
have different characteristics. One idea to measure a sta-
tion’s performance is to compare the dwell time spent at
the station with the contribution of the station (passenger
volume at the station being considered as a contribution
in this research).

The term ‘‘passenger volume’’ in this research differ-
entiates between the number of passengers boarding and
the number of passengers alighting. This is because these
two factors are opposite vectors which have a great influ-
ence on the dwell time in a crowding situation. The fol-
lowing three cases could clarify this point. If the

passenger volume of these three cases is considered as
the sum of the passengers, they would all equal 200 pas-
sengers per minute. However, these three cases affect
dwell time differently.

� Case 1: Boarders=150 passengers per minute,
Alighters=50 passengers per minute

� Case 2: Boarders=50 passengers per minute,
Alighters=150 passengers per minute

� Case 3: Boarders=100 passengers per minute,
Alighters=100 passengers per minute

When stations on the line show different characteris-
tics, it could influence the duration of the dwell time dif-
ferently. Some stations with alighter dominance or
boarder dominance may have lower passenger interac-
tions. Some stations at which passengers move in a bi-
directional flow in and out of trains may deal with higher
passenger interactions. However, the level of interactions
also depends on the passenger volume and the density on
trains. Considering the various characteristics of stations,
it is complicated to evaluate the dwell time performance.
The DEA is applied to benchmark the performance of
the dwell time among stations.

Train Dwell Time Evaluation

This section aims to evaluate train dwell time of the sta-
tions with different demand profiles by applying the
DEA approach. DEA benchmarks the efficiency of the
dwell time spent at each station by considering the num-
ber of passengers the stations can service, especially in
the case when the stations have different demand profiles
as mentioned in the previous section. DEA makes it pos-
sible to evaluate the dwell time at each station when the
different types of passenger are not comparable.

Passenger volume is first considered in relation to two
factors, which are the number of passengers wanting to
alight and the number of passengers wanting to board
the train at individual stations. The DEA approach
examines the two factors individually. Table 2 shows the
results of the dwell time efficiency scores derived from
the DEA approach. The efficiency scores and related val-
ues are calculated by a DEA-Solver on Microsoft Excel
provided in Beasley’s OR-notes (23). The method used in
this DEA-Solver is referred in Equations 1–4 as shown
in the previous methodology section.

The model evaluates the relative efficiency from the
ratio of the weighted outputs to the weighted input. The
two outputs of this analysis are the number of passengers
alighting (denoted as Aj) and the number of passengers
boarding (denoted as Bj), and the input is the dwell time
(denoted as Dj). One of the key results from this analysis
is the efficiency scores of each station which are derived

Figure 3. Demand profile of the stations on the line.
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from benchmarking among stations on the line under a
constant return to scale (CRS) assumption (26). A best-
practice frontier line is established from the most efficient
stations. The highest efficiency score (E=1) is given to
the stations which are the most efficient in utilising dwell
time. In addition to the efficiency scores, the analysis pro-
vides the projected dwell time for the stations which have
a lower efficiency score (E\ 1). This projected dwell time
suggests the length of dwell time necessary in order for
the less efficient stations to meet the same efficiency level
as the most efficient stations (E=1).

Evaluation Based on Passenger Volume

Figure 4 presents the results of the passenger volume/effi-
ciency score chart. Obviously, stations on the chart are
clustered into low- and high-passenger-volume stations.
In the lower-passenger-volume stations, the efficiency
score increases relative to the increase in passenger vol-
ume (without differentiating between the numbers board-
ing and alighting) and the dwell times are all lower than
35 s. These stations have very low usage demand, thereby
having low relative efficiency scores.

Considering the recorded dwell time spent at the low-
passenger-volume stations, it does not clearly present an
increase relative to the passenger volume. This is because
the duration of the dwell time of the low-passenger-volume
stations depends more on rail traffic and the timetable.
The duration of dwell time spent at these stations might be
longer than the time needed for passengers to board and
alight trains (BAT). The dwell time at these stations has to
follow the schedule of the timetable even when passengers
have already finished boarding and alighting.

The dwell times at the low-passenger-volume stations
(uncrowded stations) are already short and they are not
the main problem causing train delays. This research will
therefore not consider improving dwell times at
uncrowded stations. Table 2 shows the projected dwell
times derived from the DEA analysis (the suggested
duration of dwell time to improve dwell time to the effi-
ciency level), which is inapplicable to low-passenger-
volume stations. (For example, the suggestion that
Tottenham Hale should take 2.19 s of dwell time to
improve the efficiency to the frontier, whereas this is not
necessary for a low-passenger-volume station.)

The focus of the research problem is on the higher-
passenger-volume stations where the dwell times result in
train delays. In contrast to the low-passenger-volume sta-
tions, Figure 4 shows that dwell time efficiency scores of
high-passenger-volume stations are not increased relative
to passenger volume, and the dwell times at each station
also show a great variation. There are other factors that
have a stronger influence on dwell times at high-passen-
ger-volume stations.T
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Evaluation Based on Passenger Movement Direction

Referring to the research reviewed in the previous sec-
tion, the differentiation between boarding and alighting
is another crucial factor that affects dwell times at
high-passenger-volume stations. The results from DEA
in Table 2 present that the stations which have the

highest efficiency score are Brixton station and Oxford
Circus station (E=1). Both stations have a much lower
dwell time than Victoria station, which has the third
highest efficiency rank (efficiency score=0.795).
Considering the demand data in Table 1, passengers at
Brixton and Oxford Circus move in a one-way flow in or
out of the trains. All passengers at Brixton are boarding
passengers (Brixton is a terminal station of the Victoria
northbound line) and most of the passengers at Oxford
Circus are alighting passengers (B/A ratio=0.25). Dwell
times at both stations are less than 40 s. Only Victoria
station has a bi-directional flow (the numbers of boar-
ders and alighters are not widely different) and it has an
extremely high dwell time.

Figure 5 shows the DEA approach in a graphical
chart which plots the high-passenger-volume stations
based on the ratios of the numbers of passengers per sec-
ond of dwell time for boarding and alighting calculated
separately. The chart visually compares the relative effi-
ciency of the stations by differentiating boarding and
alighting. The information noted above each data point
gives the station abbreviation, the dwell time spent at
that station, and trains’ loadweight as a percentage
before arriving at that station, respectively.

The stations with the highest value on the y-axis or on
the x-axis are preferred from the efficiency point of view,
as they represent higher ratios of the number of passen-
gers per second. A best-practice frontier would be formed
from the stations with the highest efficiency compared
with other stations. Considering the results under the
CRS assumption presented in Table 2, Brixton and
Oxford Circus stations have the highest efficiency score
(efficiency score=1) where one station has the highest
boarding rate, and the other has the highest alighting
rate.

When this research considers that the efficiency of the
dwell time at stations with different demand profiles is
not comparable, it is necessary to classify the demand
profiles before benchmarking the stations. High-passen-
ger-volume stations should be classified into three
groups, namely boarder-dominant, alighter-dominant,
and bi-directional flow stations. Then, stations with the
highest efficiency score of each group (which are Brixton,
Oxford Circus, and Victoria, respectively) should be con-
sidered as a best-practice frontier.

Evaluation Based on Crowding Inside Trains

There is another important factor which has not yet been
considered. Crowding inside trains (on-board passengers
before arriving at the station) could be another factor
that results in the high level of interactions between
passengers.

Figure 4. Plot of stations on passenger volume/efficiency score
chart.

Figure 5. The ratios of the numbers of passengers per second of
dwell time.
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Loadweights on trains before arriving at high-passen-
ger-volume stations in Figure 5 show that three out of
six stations are stations with pre-load on trains over 60%
(roughly four passengers per m2). Among these stations,
it is obvious that the dwell times at Victoria station are
exceptionally high. Other high-passenger-volume sta-
tions, which have much lower dwell times of less than
40 s, have a predominantly one-way flow movement. In
this case study, there is only Victoria station which has a
bi-directional flow. Therefore, it may not be possible to
conclude from this current study how crowding inside
trains affects the dwell times. The factor could affect the
stations with uni-directional flow and bi-directional flow
differently. Further investigation should collect the load-
weight data at each station separately and analyze with
the dwell times.

The situation at Victoria station is interesting with
regard to the challenge that it has to handle high passen-
ger volume with bi-directional movement, and the trains
arriving at Victoria station are exceptionally crowded.
More stations (on the southbound service, or other lines)
with the same characteristics as Victoria station should
be investigated to prove that this station characteristic
could lead to an extremely high dwell time and result in
train delay.

Considering the dwell time efficiency of Victoria sta-
tion’s upstream stations, some have lower efficiency
scores. Controlling passengers at these stations to get a
lower number of passengers on trains and making trains
less crowded before they get into Victoria station might
help reduce dwell time at Victoria station. There are
many researchers developing line-level passenger flow
control models, which basically is the approach to con-
trol passengers at upstream stations to make space on
trains available for passengers at the critical station (27–
29). The approach should be studied and applied on
Victoria line.

Station Classification and Train Dwell Time Evaluation

This research proposes the classification of stations
according to their characteristics and supports further
research to develop different dwell time models for sta-
tions with different characteristics. Table 3 shows an out-
line of types of stations derived from the results of this
paper combined with the findings from other studies.
Stations are classified based on passenger volume, pas-
senger movement direction, and crowding inside trains.

Conclusions

This research attempts to obtain insight into the com-
plexity of dwell times, especially the dwell times at
Victoria station where there are high interactionsT
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between passengers. There have been previous studies on
dwell time which conducted experiments on passenger-
related factors that affect the train dwell time; however,
the experiments were conducted within limited scenarios.
This research uses actual data which could reflect all
existing scenarios. In addition, there has been much
research which developed equations to predict train
dwell time, although actual dwell time is too complicated
to predict with one equation. This research proposes that
the accurate evaluation of dwell time should be con-
ducted by classifying stations according to their
characteristics.

Stations on the northbound service of the Victoria line
during the morning peak time have been analyzed con-
cerning their different characteristics, namely the number
of passengers boarding, the number of passengers alight-
ing, and passenger movement direction. The study
applied a DEA approach to evaluate and compare train
dwell times at each station.

In conclusion, results indicate that the dwell times of
the low-volume stations are all less than 35 s, and the
dwell time efficiency score increases relative to the
increase in passenger volume. In the low-passenger-
volume stations, there are fewer passenger interactions.
The general dwell time prediction models being devel-
oped are more reliable for the low-volume stations.
However, as mentioned earlier, the actual dwell times in
low-passenger-volume stations might be dominated by
train traffic issues which may lead to a longer dwell time
than necessary. In the case of high-volume stations, it is
necessary to differentiate between the numbers alighting
and boarding or to consider passenger movement direc-
tion (uni-directional or bi-directional flow). In addition,
the density on trains might be relevant as it results in
high levels of interaction between passengers. The density
on trains could affect the stations with uni-directional
flow and bi-directional flow differently.

In future work, the authors will focus on stations with
the same characteristics as Victoria station (which has
high passenger volume with bi-directional flow, and
trains arriving are crowded) to demonstrate that these
station characteristics could lead to an exceptionally high
dwell time. This is the key component in future attempts
to develop an approach to solve train delay at these
stations.
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