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PERFECTLY-MATCHED-LAYER TRUNCATION IS
EXPONENTIALLY ACCURATE AT HIGH FREQUENCY"

JEFFREY GALKOWSKIT, DAVID LAFONTAINE!, AND EUAN SPENCES$

Abstract. We consider a wide variety of Helmholtz scattering problems including scattering by
Dirichlet, Neumann, and penetrable obstacles. We consider a radial perfectly matched layer (PML)
and show that for any fixed PML width and a steep-enough scaling angle, the PML solution is
exponentially close, both in frequency and the tangent of the scaling angle, to the true scattering
solution. Moreover, for a fixed scaling angle and large enough PML width, the PML solution is
exponentially close to the true scattering solution in both frequency and the PML width. In fact, the
exponential bound holds with rate of decay c¢(wtan6 — C)k, where w is the PML width and 6 is the
scaling angle. More generally, the results of the paper hold in the framework of black-box scattering
under the assumption of an exponential bound on the norm of the cutoff resolvent, thus including
problems with strong trapping. These are the first results on the exponential accuracy of PML at
high-frequency with nontrivial scatterers.
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1. Introduction.

1.1. Context and background. Since the work of Berenger [4], perfectly
matched layers (PMLs) have become a standard tool in the numerical simulation
of frequency-domain wave problems such as the Helmholtz equation. This method
approximates the solution of a scattering problem in an unbounded domain by mak-
ing a complex change of variables in a layer away from the region of interest and
truncating the problem with a Dirichlet condition.

It is well known that, for fixed frequency, the error in the truncation decreases
exponentially with the width of the PML; see [22, Theorem 2.1], [23, Theorem A],
[18, Theorem 5.8], [5, Theorem 3.4]. However these error bounds are not explicit in
the frequency.

The only frequency-explicit error bounds on the accuracy of PMLs obtained up
till now are for the model problem of no scatterer. In this case, the error is known to
decrease exponentially in the width of the PML, the tangent of the scaling angle, and
the frequency; this was proved in [9, Lemma 3.4] (for d = 2) and [24, Theorem 3.7]
(for d =2,3) using the fact that the solution of this problem can be written explicitly.
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PERFECTLY-MATCHED-LAYER TRUNCATION 3345

FiG. 1.1. The diagram shows the obstacle, Q_, the ball of radius R1 (outside of which the
scaling begins), the ball of radius Ry, and Qi 4 (shaded in the hatched lines) where the domain
exterior to Q2— is truncated.

In this paper, we consider a wide variety of Helmholtz scattering problems, in-
cluding scattering by Dirichlet, Neumann, and penetrable obstacles in any dimension,
and including problems with strong trapping. We consider a radial PML and prove
that, provided that the PML change of variables is C2, the error decreases exponen-
tially in frequency, the PML width, and the scaling angle with a rate that, at least in
one dimension, is sharp.

We first state these results applied to the particular problem of plane-wave scat-
tering by an impenetrable obstacle in section 1.2 and then state the results in the
“black-box scattering” framework in section 1.3.

1.2. The main results applied to plane-wave scattering by an impen-
etrable obstacle. Let Q_ C R? be bounded and open with Lipschitz boundary
I'_:=09Q_ and connected open complement Q :=R%\ Q_. Truncation by a PML is
widely used to compute approximations to the exterior Helmholtz problem

(11) (—A - k%) u®=01in Q, Bu® = —Bexp(ikz -a) for r €' _,
. (0, — ik)u® = of %) as r:=|x| — 0.

Here, B is an operator on the boundary giving either the Dirichlet (sound-soft) con-
dition, w — u|r_, or Neumann (sound-hard) condition, u — (9,u)|r_, and v(x) is
the outward unit normal to Q_. Physically, u® corresponds to the scattered wave
generated when the plane wave exp(ikx - a) hits the obstacle 2_.

Let Rp(k) denote the solution operator for (1.1) (see Proposition 2.1 for the
precise definition); the letter R stands for “resolvent,” and the subscript P is there
because we use this notation for the solution operator for the more general operator P
in section 1.3 below. Let y € C2°(R?) with x =1 in a neighborhood of the convex hull
of 1_. We define the exponential rate of growth for the solution operator through a
subset J C R that is unbounded above:

. 1
(1.2) A(P,J) 3:11’?15UPE10g||XRP(k)X||L2aL2-
— OO
kEJ

We write A(P) for A(P,R). If T'_ is C*°, then A(P) < oo. If, in addition, I'_ is
nontrapping, then A(P)=0. Finally, if I'_ is only Lipschitz, then for all § > 0 there is
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a set J CR with |R\ J| < ¢ such that A(P,J)=0; see sections 1.3 and 2.1 for details
and references.

We now describe the geometric setup for the PML truncation; see Figure 1.1
for a schematic. Let Ry > R; > 0, such that Q_ € B(0,R;). Next, let Ry, > Ry
and Q; C R? be a bounded Lipschitz open subset with B(0, Ri,) C €. Finally, let
Qe+ 1= Qr N4, Ty i= 0y, and 0 < 0 < w/2. The PML method replaces (1.1) by
the following problem:

(1.3)
CIAVES k2)vs =0in Q¢ 4, BvS=-B exp(ikz - a) for z €T _, v® =0 for z € Ty,.

Here, —Ay is a second order differential operator that is given in spherical coordinates

(r,w) €[0,00) x S4~1 by

1 2 d—1 1

— o) T+ . . Or + .

L+ify(r) ) (r+ifo(r)) (1 +ifg(r)) (r+ifo(r))
1 Kl <(r+z’fg(r))d1 a> N 1 A

(A +ifg(r)(r+ifo(r))*=tor \ L+ifg(r) or)  (r+ife(r))?

with A, the surface Laplacian on S%~! and fy(r) € C3(]0,00);R) given by fo(r) =

f(r)tan@ for some f satisfying

(L5) {f(r)=0}={f()=0}={r<Ri},  f(r)=0,  f(r)=ronr=>Ry;

i.e., the scaling “turns on” at r = R; and is linear when r > R,. We emphasize that
Ri; can be < Rs, i.e., we allow truncation before linear scaling is reached. Indeed,
Ry > Ry can be arbitrarily large and therefore, given any bounded interval [0, R] and
any function g € C3([0, R]) satisfying

(1.6) {g(r)=0}={g'(r)=0}={r<Ri}, 4'(r)>0,

our results hold for an f with f|jo,z =g. A concrete example of a g(r) satisfying the
conditions (1.6) is the piecewise degree-three polynomial

(L.7) g(r) = (r = R1)*1 (g, 00) (7).

(14) Ay :( Ao,

Remark 1.1 (link with notation used in the numerical analysis literature). In
(1.3)—(1.5) the PML problem is written using notation from the method of complex
scaling (see, e.g., [11, section 4.5]). In the numerical analysis literature on PML,
the scaled variable is often written as r(1 + ic(r)) with o(r) = o¢ for r sufficiently
large (see, e.g., [18, section 4], [5, section 2]). To convert from our notation, set
a(r)= fo(r)/r and op = tanf. We also highlight that, whereas the numerical analysis
literature on radial PMLs often assumes that the exterior domain is truncated by a
ball (i.e., Q, = B(0, Rpas1,) for some Rpprp, > Ry), the PML problem (1.3) is posed
with a general truncation boundary. One practical advantage of allowing an arbitrary
truncation boundary is that, when solving the PML problem with the finite element
method (FEM), one can then use simplicial elements without having to deal with
error in approximating the truncation boundary.

THEOREM 1.2. Let I'_ be Lipschitz and J C R unbounded above with A(P,J) <
00. For all n,e > 0 there exist C,C' kg,cc > 0 (independent of Ry and Ry) such
that for all Ry, > Ry + ¢, B(0,Ri;) C Qi € R with Lipschitz boundary, there exists
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0o(P, J, Ryy) < w/2 (with 0g(P,J, Riy) a nonincreasing function of Ri.) such that if
Oo(P,J,Ryy) +e<0<m/2—¢€, k>ky with k€.J, and a € RY, then the solution v° to
(1.3) emists, is unique, and satisfies

v = 03[l (B, R\ )
[u¥ + e || 2 (B0, r\0)
< Cexp ( —k((2=n)ce(Ryy — Ry — €) tan — 2A(P, J))),

(1.8)

||US - USHHI(B(O,Rl)\Q,)
|uS + €% 2 g0, R\

where u” is the solution to (1.1). Furthermore, if A(P,J) =0, then 0o(P,J, Ry,) = 0.

Theorem 1.2 shows that both the absolute and the relative error in the PML
approximation of the total field u® + e**® is exponentially small in %k, the PML
width (i.e., Ry, — R1), and the tangent of the scaling angle (i.e., tan#@).

Theorem 1.2 is a consequence of the following more general result, which gives
explicitly the rate of decay and 0y(P,J, R,). This result involves the following two
functions:

19) Bor) {inftzo‘Im<(1+ifé(r))m>’7 i>9,

fé(r)7 d:L

JuS — USHHl(B(o,Rl)\Q,) <C

Ryr

(1.10) 0o(P, J, Ry;) :=sup {9 : /

Dy(r)dr < A(P, J)}
Ry

To better understand these functions, we record the following:

e Dy(r) >0 for all r (by definition), and ®y(r) >0 when r > R; and 6 >0 (by
part 1 of Lemma 1.4 below).

o If A(P,J) = 0, then 6y(P,J,Ry;) = 0. Furthermore, for any A(P,J),
0o(P,J, Ry) < m/2; this follows from part 1 of Lemma 1.4 below and the
fact that tan(w/2) = oo. In addition, 6y (P, J, Ry;) is a nonincreasing function
of Ry, (as claimed in Theorem 1.2) by the properties of ®y above.

Figure 1.2 plots ®y(r) (for d >2) and its integral for f(r) given by (1.7).

THEOREM 1.3. Let I'_ be Lipschitz and J C R unbounded above with A(P,J) <
oo. Then for alln,e> 0 there exist C,C" ko >0 (independent of Ry, and Ry ) such that
for all Ry, > Ry + ¢, B(0, Ry;) C Q4 € R with Lipschitz boundary, 0o(P,J, Ry) + € <
O<m/2—¢, k>ko with k€ J, and a € R, the solution v to (1.3) exists, is unique,
and satisfies

(1.11)

u¥ = 03| g1 B0, R\ ) ( /R“ >
: <Cexp| —k((2— Dy(r)dr —2A(P,J)) |,
[uS + 4| L2 (B0, R\ ) (( " R o(r) ( )>

u¥ = 03| g1 B0, R\ )
[uS + e*= || 2 g0, ri 0 )

[u® = v g Bo,rne ) < C

where u® is the solution to (1.1).

Moreover, when d = 1, explicit calculations show that our estimate is nearly
optimal in the sense that the factor 2 — n multiplying f}};l” Dy (r)dr in (1.11) cannot
be replaced by any number larger than 2.
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Fic. 1.2. Plots of f(r) with floe given by (1.7), (), ﬁ@g(’l‘) (for d > 2), and

ﬁ Jr ®g(r)dr for Ry =3.

f(r) and Lo flgl Dy(s)ds

J| Bt ooy

| | 5
50

| | 4
4k o

| 31
3 i i
20 | 2
1 | 1
L— : 0

3 5

F1G. 1.3. Plots of f(r) gwen by (1.17), f'(r), ﬁ@@(f‘) (for d >2), and ﬁf;fbo(’r) dr for
Ry =3 and R2 =5.

To better understand the estimate (1.11), we record five properties of the function
®y(r); note that properties 1, 3, and 4 are illustrated in the right-hand plots of
Figures 1.2 and 1.3.

LEMMA 1.4.
1. For all § >0, there is cs > 0 such that ®(r) > cstand onr > Ry + 0, 6 > 4.

2. @y(r) = fy(r) if and only if

r? 2r

fFr)2 fr)f(r)

3. If f(r)=r, f'(r)=1, then g(r) = fo(r).

(1.12) tan? 6§ >
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4. For all § > 0, there is 65 < w/2 such that for 6 > 05, ®ge(r) = fj(r) on
r 2 Rl + 57
5. The map (r,0)— ®q(r) is continuous for (r,0) € [0,00) x (0,7/2).

Point 1 in Lemma 1.4 implies that, for Ry, > Ry + 9,

Rer
(1.13) —/ Dy (r)dr < —cs(Riy — R1 — 0) tan 6.
Ry

Points 1 and 3 in Lemma 1.4 imply that, for R, > Ro,

Ry
(1.14) —/ (I)g(’/’) dr S —Cé(RQ—Rl—é) tan&—(Rtr—Rg)tanﬁ < —(Rtr—R2)tan0.
Ry

Point (4) in Lemma 1.4 implies that for all 6 > 0 there is 85 < 7/2 such that for 6 > 05,

Ry
(1.15) —/R Bo(r)dr < —(f(Rew) — F(Ry +6)) tan 6.

By (1.13), for Ry > Ry + 0, the right-hand side of (1.11) is less than or equal to
(1.16) Cexp ( — k(2= n)es(Ru — Ry — 6) tan® — 2A(P, J)))

for some ¢5 > 0; analogous bounds follow using (1.14) and (1.15). These bounds show
that the error between u° and v® decreases exponentially in the frequency, the PML
width, and the tangent of the scaling angle. In particular, the result (1.8) follows
from using (1.16) in (1.11).

An example f that satisfies (1.5) is the piecewise degree-eight polynomial

(1.17) f(r):r</r (t—R1)3(R2—t)SI[Rl)Rz](t)dt) </R2(t—R1)3(R2—t)3dt)_l;

R1 Rl
see [5, section 2]. See Figure 1.3 for plots of ®y(r) and its integral in this case.

1.3. The main results for black-box scattering. We now describe our re-
sults for black-box operators, namely, operators that are equal to the Laplacian out-
side a ball and are equal to some self-adjoint operator inside the ball; see section 2 for
a careful definition of these operators and associated notation. Black-box operators
(a.k.a. black-box Hamiltonians) include examples such as scattering by Dirichlet,
Neumann, and penetrable obstacles and scattering by inhomogeneous media. Let
Ry >0 and P:D — H be a black-box operator equal to minus the Laplacian outside
B(0,Ry) (i.e., B(0, Ry) contains the scatterer); here D is the domain of the operator
(see (2.2)) and H is a Hilbert space coinciding with L? outside B(0, Ry) (see (2.1)).
Let x € C°(R?) with x =1 on B(0, Rg). Then, by [11, Theorem 4.4] (see Proposition
2.1), the cutoff resolvent

x(P=X)"":H—=D, —Z<Arg(\)<?F,

is meromorphic with finite rank poles. Let Rp(\) := (P — \?)~L.
The analogue of (1.2) in the black-box setting is

. 1
(1.18) A(P,J):=limsup — log ||xRp(k)x|ln-n € [0, 00].
Gy b
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Many black-box Hamiltonians satisfy A(P) < oco. They include scattering by
Dirichlet, Neumann, and penetrable obstacles with smooth boundaries and scattering
by inhomogeneous media with smooth wavespeeds (see section 2.1 for details). In
addition, for all black-box Hamiltonians satisfying a polynomial bound on the number
of eigenvalues of the reference operator (see, e.g., [11, equation 4.3.10]) and all 6 > 0,
there is a set J C R with [R\ J| < ¢ such that A(P,J) = 0; see [21, Theorem 1.1] or
(under an additional assumption about how close the resonances can be to the real
axis) [32, Proposition 3].

Let Ry > R > Rp and §2, bounded and open with Lipschitz boundary such that
B(0, Riy) C Oy, and define 0y(P, J, Ryy) as in (1.10). We define the complex-scaled
operator Py corresponding to a black-box Hamiltonian as in (1.4) (for the more general
setup, see (A.1)). We then study the difference between the solutions

(1.19) (Py—k*)v=g,  wlp, =0
and
(1.20) (P—k>)u=g, (8T—ik)u:0(7“%) as r — oo.

THEOREM 1.5. Let J CR and P be a black-box Hamiltonian with A(P,J) < co.
Let x € C°(B(0, R1)) with x =1 in a neighborhood of B(0,Ry), and n,e > 0. Then
there are C,kyg > 0 (independent of Ry, and Ry) such that for all Ry > Ry + €,
B(0, Riy) C Qi C R with Lipschitz boundary, 0o(P,J, Ri,) + € <0 <m/2—¢, GEH,
k> ko, and k € J, the solution v of (1.19) with g = xg exists, is unique, and satisfies

Ix(u—=v)llp + (L= x) (= v)[[H2(B(0,R1))
Rtr
(1.21) <Coxp (= k(20 [ eatr)ar-24(2.0) ) 3l
Ry
where u is the solution of (1.20) with g = xg.

One ingredient of the proof of Theorem 1.5 is the following resolvent estimate for
(1.19).

THEOREM 1.6. Let J C R, P be a black-box Hamiltonian with A(P,J) < oo,
X € C°(B(0,Ry)) with x =1 in a neighborhood of B(0,Ry), and € > 0. Then there
are C ko > 0 (independent of Ry and Ry ) such that the following holds. For all Ry, >
Ry +¢, B(0,Ry,) C Qi € R? with Lipschitz boundary, 0o(P,J, Ry;) + € <0 < /2 — ¢,
all g € H with suppg C Qi all k > ko, and k € J, the solution v to (1.19) exists, is
unique, and satisfies

(1.22) [vll72(0) + &2 [0l D(20) < ClIXRe(R)X |29/l 9]l24
where H(Qy) and D(Q,) are defined in (3.15).

Another ingredient of the proof of Theorem 1.5 that may be of independent
interest is that a bound on the cutoff resolvent xRpx implies the same bound on the
scaled resolvent.

THEOREM 1.7. Suppose x € C(B(0,R1)) with x = 1 in a neighborhood of
B(0,Ry). Then, there are C,ko >0 such that for k > ko, (Pp —k*)™' : H — D exists
and satisfies

1Py = k)" larmn + k721 (Po = k*) " lssp < ClIxRp (k) xle-sn-
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We also point out that, although it follows the same ideas as the smooth case,
complex scaling with C? scaling functions as described in Appendix A is new. While
the assumption that the scaling function is C% is essential for the analysis in Ap-
pendix A, and the assumption that it is C® is used to prove resolvent bounds for the
free problem via defect measures, other methods of complex scaling exist (see, e.g.,
[1, 29, 30]) and apply to, e.g., piecewise linear scaling functions.

Remark 1.8. In numerical analysis, piecewise linear scaling functions of the form
fo(r)=(r—Ry)4 tan6 are often used (see section 1.5). Although our theorems do not
apply to this case, we now sketch the key ingredients needed to extend our estimates to
this type of scaling function. First, define a modified scaling function fg(r) satisfying
(i) fo(r) = fo(r) on r < Ry, (ii) for some Rz > Ry, 01 > 0, fo(r) = rtan6; for
r > Rs, (iii) fo(r) satisfies (1.5) on {r > R1}, and (iv) fo € C>°({r > R1}). We would
then need two results: first, the nontrapping resolvent estimate for the free problem
(i.e., the analogue of Theorem 3.2) and second, agreement of the scaled resolvent and
unscaled resolvent away from scaling (see Proposition 3.1). Provided one has these
two results, the bounds in Theorems 1.5 and 1.6 follow.

1.4. Ideas and method of proof. PML can be understood as an adaptation
(used in numerical analysis) of the method of complex scaling, which originated with
[1, 2] and was developed in its modern form for black-box scatterers in [31] (see
section 3 or [11, section 4.5] for an introductory treatment of the subject). In complex
scaling, R¢ is deformed to a submanifold, T'y C C? in such a way that the radiating
solutions of (1.1) deform to L? bounded solutions, uj, of the deformed problem on

Iy := {x+zf9(|x\)ﬁ}
(1 23) (—AFG — kQ)U‘g =0 on F@ \ﬁ,
' Buj = —Bexp(ikz-a), ze€l_.

Moreover, this deformation has the property that “g|B(0,R1)\§T = US|B(0,R1)\§T,' The
PML equation (1.3) is then the Dirichlet truncation of (1.23).

Because uj and u¥ agree on B(0,R;)\ Q_, we are able to prove Theorem 1.3 by
comparing u(;g and v°®. The crucial fact (see section 4.1) that leads to exponentially
good estimates on the error between ug and v° is that both u‘g and v° are expo-
nentially decaying in R > Ry (both in |z| and k). Thus, the boundary values for uj
on Ty, are exponentially small and one can expect that uj and v¥ are exponentially
close. Combining these exponential estimates together with a basic elliptic estimate
for v¥ near Ty, and bounds on the cutoff resolvent for (1.23), we can complete the
proof of Theorem 1.3. Naively, this argument leads to an exponential improvement
~ kff;l” ®y(r)dr. To obtain the rate ~ 2k flfl ®y(r) dr, one must then use that errors
near the truncation boundary only propagate with exponential damping toward Rj.
This leads to the second factor in our bound; see the discussion in the caption of
Figure 1.4.

To understand the appearance of the function ®y(r), we recall that the semiclas-
sical principal symbol of —hA?Ag — 1 (where h:=1/k) is

57‘ 2 |£w‘%’d71
1—|—if(§(r)> T rEifer)?

p(r,&rw,80) = (

Replacing &, by the corresponding operator hD,., (D, := —id,), one obtains a family of
ODEs in r depending on |§w|%d_1. The infinitesimal growth/decay of the two possible
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Ty

Rd

exp (—k fl;l Dy (s)ds)

exp (—k fTR" Dy(s)ds — k f;l“" Dy (s)ds)

Fic. 1.4. The figure shows a wave ug (in blue) propagating toward Ty from near the obstacle
Q_. The wave ug decays exponentially as it enters the scaling region (where Ty # R%); this expo-
nential decay is shown in the orange dotted line. The wave vy then reflects off T'tr. There are two
possible solutions: one exponentially growing toward the interior and one exponentially decaying
toward the interior. Fortunately, the solution exponentially growing toward the interior corresponds
to the exponentially decaying (away from the interior) ug and this solution does mot produce an
error. The exponentially decaying (toward the interior) part of vg, however, does produce an error
in the interior. This solution is again exponentially damped as it travels toward the interior; this
solution is shown in red and the decay rate is shown by the brown dashed line.

solutions to this ODE at a point 7 is then given by the imaginary part of the roots,
s+ and s_, of the polynomial &, — p(r,&,,w, &, ). The function ®y(r) is then given by

®g(r) = inf min{|Ims|,|Ims_]|};
(r) = inf min {|Tms. . flms- |}
thus it is the smallest possible decay obtained in this way (see Lemma 4.1 for more
details).

1.5. Immediate implications for the numerical analysis of the finite el-
ement method with PML truncation. There have been two recent papers on the
k-explicit analysis of the h-version of the FEM applied to the Helmholtz equation with
PML truncation. (Recall that in the h-version of the FEM, convergence is achieved
by decreasing the meshwidth h while keeping the polynomial degree p constant.) The
paper [24] considers the Helmholtz equation in free space (i.e., with no scatterer) and
fo(r) =o00(r — R1)4+ (where zy =z for x > 0 and =0 for x < 0). [8] considers the
Helmholtz equation posed in the exterior of a smooth, star-shaped Dirichlet obstacle
with f¢(r) =75 /k with & € C* (and independent of k).

For the h-FEM applied to the Helmholtz equation, a fundamental question is,
How must h decrease with k£ to maintain accuracy of the Galerkin solution as k
increases? Both [24] and [8] prove that, for the PML problems they consider, the
answer is the same as for the respective Helmholtz problems truncated with the exact
outgoing Dirichlet-to-Neumann map.

Indeed, [24, Theorem 4.4] proves that if the approximation spaces consist of piece-
wise linear polynomials and hk3/2 is sufficiently small, then the Galerkin approxima-
tion, vy, to v satisfying (1.19) (with Py = —Ay) exists, is unique, and satisfies

(1.24) IV (v —v)llrz + kllv —vpl| 2 < ChE*?||g]| 2
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(cf. the results in [20] for the Helmholtz problem with the exact outgoing Dirichlet-
to-Neumann map). Furthermore, with piecewise polynomial of degree p, if hPkP*+!
is sufficiently small, then [8, Theorem 5.4] proves that, for the exterior Dirichlet
problem with star-shaped €_, the Galerkin solution exists, is unique, and satisfies a
quasioptimal error estimate with quasioptimality constant independent of & (cf. the
results in [25, 26] for the Helmholtz exterior Dirichlet problem truncated with the
exact outgoing Dirichlet-to-Neumann map).

Combining the results in the present paper with the FEM analysis in [24], we
immediately have that the results of [24] (i.e., existence, uniqueness, and the error
bound (1.24) for the Galerkin solution when hk3/? is sufficiently small) extend to the
FEM solution of any of the Helmholtz problems in section 2.1, provided that (i) fo(r)
satisfies the assumptions in section 1.2, (ii)

IXRp(K)x||#on <C/k  for all k> ko

(which occurs, for example, when the problem is nontrapping), and (iii) the domain
of the PML problem D(€),), defined by (3.15), equals H?({2,). Indeed, Theorem 1.6
is a generalization (modulo the differences in scaling functions) of [24, Theorem 3.1]
and Theorem 1.5 is a generalization of [24, Theorem 3.7].

The results in [8], however, rely crucially on the fact that fp(r) ~ 1/k (e.g., the
comparison with the sponge layer in [8, section 5| fails if fo(r) > 1/k); therefore, the
results of the present paper cannot be combined with those in [8]. We expect the
error in the PML solution when fy(r) ~ 1/k to be only O(1) as k — oco. This is in
contrast to the exponentially small error when fy(r) ~1 (as shown in Theorem 1.5).

Finally, we highlight that the results of the present paper are used in the follow-
up paper [15] to obtain results about the hp-FEM applied to the Helmholtz PML
problem; these results are analogous to those obtained in [14] about the Helmholtz
problem truncated with the exact outgoing Dirichlet-to-Neumann map.

1.6. Outline of the paper. Section 2 recaps the framework of black-box scat-
tering. Section 3 recaps the method of complex scaling and proves Theorem 1.7.
Section 4 proves elliptic estimates in the scaling region. Section 5 proves Theorems
1.5 and 1.6 (i.e., the main results in the black-box framework). Section 6 proves the
bound on the relative error in Theorem 1.3 for the plane-wave scattering problem.
Section 7 proves the nontrapping estimate on the free resolvent for the scaled prob-
lem with C? scaling function. Section A proves results about complex scaling with a
C? scaling function. Section B recalls results from semiclassical analysis. Section C
proves Lemma 1.4 (i.e., properties of ®y(r)).

2. Black-box Hamiltonians. Throughout this paper we work in the setting of
black-box Hamiltonians (see [11, section 4.1]); we now review this notion.
Let ‘H be a complex Hilbert space with the orthogonal decomposition

(2.1) H="Hg, ® L*(R*\ B(0,Ry)),

where Hp, is an arbitrary Hilbert space. We take the standard convention that if y €
L>*(R?) with x = ¢o € C on B(0, Rp), then for u € H with u = u| g0, ry) + R\ B(0,R)>
ulRo € Mr,, and ul]Rd\B(O,RO) € LQ(Rd \ B(Oa RO))7

Xu=Cop (U|B(O,Rg)) + (XIra\ B(0,R0)) (URd\B(o,RO)) EH.
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We say that P is a black-box Hamiltonian if, for H as in (2.1), P: H — H is an
unbounded self-adjoint operator with domain D C ‘H such that

Iga\p(0,ro)D C H*(RY\ B(0,Ro)), 1ra\5(0,Ry) (Pu) = —A(ulpa\ 5o, 7o)
(2.2) {ue H*(RY) : u| B0, Ry+¢) =0 for some e >0} C D,
15(0,Re) (P + i)"':H — H is compact.

We equip D with the norm
(2:3) lullD = llull3, + |Pul3;,  ueD,
and define D? for s € [0,1] by interpolation between H and D. We also define

Hcomp = {u S U|Rd\B(O,R0) € L?:omp}v Hioe := HR(J D Ll20c (Rd \ B(O7 RO)))

Dcomp =D chompv Dioe := {u € Hioc Xu € D for all X € C?(Rd)vx =1lon B(OaRO)}

We now recall some properties of the resolvent of a black-box Hamiltonian.

PROPOSITION 2.1 (Theorem 4.4 [11]). Suppose that P is a black-box Hamiltonian.
Then,

Rp(\):= (P —\?)"':H — D is meromorphic for Im\ >0
with finite rank poles. Moreover, for all x € C2°(R?) with x =1 on B(0, Ry),
Rp(A) : Heomp — Dioc is meromorphic for — Z < Arg(\) < 2F

with finite rank poles.

2.1. Examples.
1. Scattering by a Dirichlet obstacle. Let Q_ C B(0,Rp) be an open set such
that I'_ is Lipschitz and Q :=R9\ Q_ is connected. If # = L?(2;) and

D={ueH" Q) :ulr_=0,
7_AUEL2(Q+)}5

then P = —A is a black-box Hamiltonian by [21, Lemma 2.1]. If T_ is C'°,
then by [6, 36] A(P) < oo. If Q_ is nontrapping [35, 27] [11, Theorem 4.43],
or Q_ is star-shaped [28, 7], then A(P)=0.

2. Scattering by a Neumann obstacle. Let Q_ C B(0, Rg) be an open set such
that T'_ is Lipschitz and Q, :=R?\ Q_ is connected. If H = L?(Q,) and

D={ueH'(Qy): (Qu)|r_ =0, —Aue L*(Q4)},

then P = —A is a black-box Hamiltonian by [21, Lemma 2.1]. If I'_ is C°,
then by [6, 36] A(P) < oo. If Q_ is nontrapping [35, 27] [11, Theorem 4.43],
or I'_ € C? and Q_ is convex [28], then A(P)=0.

3. Scattering by inhomogeneous media. Let a >0, A € C%*(R%;Mgyq) be real,
symmetric, and positive definite, b € C1%(R%;R9), and ¢ € C%*(R%; R) with
Alra\B(0,Ry) = I, suppb,suppe C B(0, Ry). If H = L*(R%) and D = H*(R?),
then

P =0;A"(2)0; + (b'(z)D; + Db (x)) + c(z)
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is a black-box Hamiltonian. If the Hamiltonian flow for A% &:&; is nontrap-
ping, then A(P)=0 [17]. Moreover, if A% b’ ce C>, then A(P) < o [6, 36].
We note that we could combine this example with either of examples 1 and 2,
with the result that scattering by an inhomogeneous media containing either
a Dirichlet or Neumann obstacle is covered by the black-box framework.

4. Scattering by a penetrable obstacle. Let Q_ C B(0,Ry) be an open set such
that I'_ is Lipschitz and Q := R4\ Q_ is connected. Let A = (A_,A})
with AL € C%Y(Q4,Myyxq) real, symmetric, and positive definite and such
that Alga\p(o,r,) = I Let ¢ € L>(Q2_) be such that cyin < ¢ < cpax with
0 < cmin < Cmax < 00, and B8 > 0. Let v be the unit normal vector field on
00 pointing from (2_ into Q2 , and let J, 4 be the corresponding conormal
derivative from either Q_ or Q.. If = L?(R9) and

D::{v:(v,,wr), where wv_€ H'Y(Q_), V-(A_Vo_)eL?*(Q_),
vy € HY(RU\QD), V- (44Vvy)) e LP(RY\QD),

vy=v_ and Jya,vy =80, 4 v_ on 6(2_},
then
Py:=— (02V (A_Vv_),V- (A+VU+))

is a black-box Hamiltonian by [14, Lemma 2.4]. If 9Q_ € C* and Ay,c€ C,
then A(P) < oo [3].

3. Complex scaling and perfectly matched layers. In section 3.1 we review
the method of complex scaling; as discussed in the introduction, this plays a crucial
role in our analysis of PML. In section 3.2 we prove Theorem 1.7. In section 3.3
we formulate the PML problem in the black-box framework using the language of
complex scaling.

3.1. The scaled operator. Let R, > Ry > Ry > 0 and P be a black-box
Hamiltonian as in (2.2). Let f5 € C*(]0,00);R) satisfy

(3.1) fo(r)=0onr <Ry, fo(r) >0, fo(r)=rtan6 on r > Ry,

and define Ay as in (1.4). The theory of complex scaling when fy is smooth is
standard (see [11, section 4.5]) but when fp € C%, some modifications to the standard
proofs are required. We record the main outputs of this theory for the operator Ay
here and prove these results (plus necessary intermediate ones) for C%¢ scalings in
Appendix A.

We now define the complex-scaled operator for a black-box Hamiltonian. With
x € C*(B(0,Ry)) equal to 1 on B(0, Ry), define Py:H — H with domain D by

(32) Pou=P(xu) + (=Ag)((1 = x)u).
(Strictly speaking, the domain and Hilbert space for Py involve the scaled manifold;
see (A.3) below. However, these can be naturally identified with D and #, and so

in the main body of this paper we make this identification to reduce notation.) The
following result is proved in Proposition A.10.
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PROPOSITION 3.1. Let Py, D, and H, 0 <0 < /2 be as in (3.2). If Im(e??\) >0,
then

Py=X:D>H

is a Fredholm operator of index zero. Moreover, for Ry < Ry and x € C°(B(0, Ry1))
with x =1 on B(0, Ryp),

150,r) (P = X*) " 150.r) = 150.r)(Po — X)) '1p0,R:) Im(eX) > 0.

We also need the following nontrapping estimate on the free resolvent of the scaled
problem; since the proof of this result is somewhat long and technical, we postpone
the proof to section 7.

THEOREM 3.2. Suppose that fy is as in (3.1) and 0 < 0 < w/2. Then for all
€ >0 there are C >0 and kg > 0 such that for k > kg, —1<m <0, 0<s<2, and
e<O<m/2—F¢,

(=80 = k)~ s g < Ch L

3.2. From cutoff resolvent estimates to scaled resolvent estimates. We
now prove Theorem 1.7; i.e., we show that an estimate on the cutoff resolvent,
xRp(A\)x, can be transferred to one on (Py — A?)~!. Since most estimates in the
literature are stated for the cutoff resolvent, this allows us to directly transfer those
estimates to the scaled operator.

LEMMA 3.3. Suppose there are R> Ry and g : [0,00) — (0,00] such that, for all
p € CX(B(0,R);[0,1]) with p=1 in a neighborhood of B(0, Ry) and k > ko,

(3:3) [pRp (k) plln—sn <Y (K).

Then, given € > 0, there exists C > 0 such that, for e < 0 < /2 —¢€, k > ko, and
0<s<1, (Pp—k?)~1:H — D exists and satisfies

(3.4) 1Py = k) lnmrpe < R ().

Theorem 1.7 follows from Lemma 3.3 taking Y(k) = ||xRp (k) x|l%—%-

Remark 3.4. Note that one always has ||[pRp(k)p|ln_n > ck~!. Indeed, given
p € C*(B(0,R);[0,1]) with p =1 in a neighborhood of B(0, Ry), let x € C>*(B(0, R)\
B(0, Rp)) with suppy C {p=1}. Let u = xe™**¢ for some a € R? with |a| = 1. Then,
for some C1,Cs > 0 (independent of k),

[(P = k*)ull = [[(=A = E*)ul 2 = [[=A, x]e™ | 2 = | (2ik(Dx, a) + Ax)e’™ ™| .2
< Clka
and ||u|l > Cy. Therefore, since suppy C {p =1},
lpRp(k)p(P — k?)ullz = | pulla = [[ulln = (C2/CORTH|(P — K )ul| 3.

Proof of Lemma 3.3. By Proposition 3.1, Py — k? is Fredholm of index zero; thus
the existence of (Py — k?)~! follows from injectivity, and injectivity follows once we
establish the a priori bound (3.4).

The idea of the proof of (3.4) is to approximate (Pp —k?)~! away from the black-
box using the free scaled resolvent and near the black-box using the unscaled resolvent.
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Let R:=min(R, R:), f € H, and o, x1 € CEC(B(O,]?Z)) with x1 =1 in a neighborhood
of suppxo and xo = 1 in a neighborhood of B(0,Ry). Let u = (Py — k?)"1g and
v=_(—Ag —k?)71(1 — x1)g. Then, we define

(P — k%) (u— (1= x0)v) = g + [~ A, x0]v — (1 = x0)(1 = x1)9 = x19 + [~ A, xolv=:§

and observe that g satisfies suppg € B(O,}Ni). Let © = (Py — k?)~'g so that u =
@+ (1 — xo)v. By Theorem 3.2,

(3-5) lu =l = [[(1 = x0)(=Ag — k)71 = x1)gll3 < CE™ | gll3-

Therefore, we need only estimate u. By Theorem 3.2 with m =0 and s =1,

1911 < Ixaglle + =2, xoJvll 2 < llgllz + [[I=A, x0l(=As = k)7 (1 = x1)g][ .
(3.6) < Cllgllw-

Since supp § € B(0, R), there is p € C2°(B(0, R)) such that p=1 on suppg U B(0, Ry)
and hence

u=(Py—k*)"*pg.
Let p; € C° (B(0, R)) with p; =1 in a neighborhood of suppp. Then,
(=Ag =)A= pr)u=(1—p1)pg — [-A, pr]u= [p1, —Ala,
and thus
(1= pr)i = (—Ag — k) [y, —AJf

Therefore, for py € CEO(B(O,E) \ B(0,Ry)) with p2 = 1 on suppdpi, and p3 €
C*(B(0,R)) with p3 =1 on suppps U supppi,
1(1 = pr)all g2 = |(=A¢ = k)" o1, =Alpait]| 12 < Ol p21| 2
= C|lp2ps(Py — k*) ' pspglln

= Cllp2psRp(k)pspgn
< CY(E)llpglln < CY(F) |9l

where we have used Theorem 3.2 (with m = —1 and s = 1), Proposition 3.1, and the
assumption (3.3). Putting this together with

lpvallze = lprpstllae < llps(Po — k)~  p3pglla = s R (k)pspglla < T (k)| pglla
<Y ()9l

we have
[all7 < CY (R[G5

Finally, using (3.5) and (3.6) and the fact that Y (k) > ck~! (by Remark 3.4) completes
the proof of (3.4) for s =0.

By the definition of || - ||p (2.3), to obtain the estimate for s = 1, we need to
bound ||Pu|%. Let ¢; € C*(B(0,Ry)), i = —1,0,1 with ; = 1, in a neighborhood
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of B(0,Ry), and suppt; C {¢;+1 = 1}. It is then sufficient to bound || Py ully and
(1 — tpo)u|| 2. Now, since P = Py on B(0, Ry),
(3.7) Pyyu=E*ru+ g+ [-A, ¢ ]u
and
(=8¢ — k) (1 = go)u = [A, to]u + (1 —ho)g.

A vpriori, we only have u € ‘H, and thus the right-hand side of the last equation is, a
priori, only in H~!. By two applications of Theorem 3.2 (the first with m = —1 and
s =2 and the second with m =0 and s=1),

(3-8) (1 = vo)ul| g2 < Ck||ullz + Cllglln.
Since
[[=A, ¢ ]ull 2 < C|[(1 = o)ull g1,

using these last two inequalities in (3.7), along with (3.4) with s = 0 (which we
established above), we have

(3.9) 1Pyrullz < C (K ull + llglla) < Ck* (T (k) +k72) gl

which is the required estimate on || Pyqu||4; we therefore only need to bound ||(1 —
Yo)ul|gz. If we can show that Ag((1 —1)g)u) € L?, then, by elliptic regularity (since
Ay is elliptic by [11, Theorem 4.32]),

(3.10) 11 = do)ullzz < C (|20 (1 = vo)ullz2 + [[ull2)
with a uniform constant for 6 € [e,7/2 — €¢]. Now

(3.11) Ap((1 = 4o)u) = (1 — o) (K*u+ g) — [Ag, Yo]u,
(3.12) IA6, olull Lz = [[[A; Polullz < ClI(1 = ¢-1)ull

and exactly the same argument used to prove (3.8) shows that
(3.13) 11 = Y-1)ullg < Ckllully + Cllglls

Therefore, combining (3.10)—(3.13), and using the bound (3.4) with s =0, we obtain
that

(3.14) 11 = o)ull gz < C(k?||ulla + llgllz) < CK* (T (k) +E72)llgll 2.
The combination of (3.9) and (3.14) proves the bound (3.4) for s = 1; the bound (3.4)
for 0 < s < 1 then follows by interpolation. 0

3.3. The PML operator. In addition to the Fredholm property for Py, we
need Fredholm properties for the corresponding PML operator. Let Q. € R? have
Lipschitz boundary and B(0, Ry) C Qt,. We study the PML operator PQD — A2 on §,.
That is, we define

H(Qu) :=Hr, ® L*(Q \ B(0, Ry)),

(3.15) D(Qyy) := {UEH(Q“) : for allxy € C°(B(0,Ry)), x =1 on B(0, Ry),
3.15
xu€D, (1—x)ue HE (), —Ag((1—x)u) € L2(Qtr)},

Pyu:=P(xu) + (=Ag)((1 = x)u).
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We then consider PP : H(Q¢,) — H(Q4r) with domain D(€2,) and norm
(3.16) ||U||%(Q“) = HUH’?{(QU) + ||P0DUH§{(QU)7 u € D(Qtr)-

PROPOSITION 3.5. Let PP, H(Q,), and D(Q,) be as in (3.15). Then, PP —\%:
D(Qy) = H(Quy) is Fredholm with index zero.

Proposition 3.5 is proved in Appendix A; see Proposition A.12.

4. Elliptic estimates. In this section, we prove the necessary bounds on the
solutions to (Py — k*)u = f and (PP — k®)v = f for k € R, k> 1. The Carleman
estimates in section 4.1 describe how both u and v propagate in the scaling region.
The bound in section 4.2 (obtained essentially by integration by parts) describes the
behavior of v in a neighborhood of T'y,.

It is convenient to use the semiclassical rescaling A= k~'' and write these equa-
tions as

(W2 Py — 1)u = h?g, (h2P9D —1)v = h?yg,

and we do so throughout the rest of the paper. We use the semiclassically scaled
Sobolev norms for ¢ € N defined by

lullye o= 3 1(hD) a3,

la<e

where D := —id. Then, for £ € N, Hgé = (Hf)* and the norms for s € R are defined
by interpolation. With (-) := (1 +]-|?)'/2, these norms satisfy

[l ~ [I(AD) ul| L2-

4.1. Carleman estimates. We start by proving an exponential estimate for
solutions to

(—h*Ap —Nu=g

for w supported in r > R;. Our estimates are proved using Carleman estimates with
weight 1 = (r). To this end, for ¢ € C*°([0,00)), we define

(4.1) Py :=e¥/M(—h2Ag — 1) ¥/"

with semiclassical principal symbol

§r+iwl )2 ‘§w|%d—1
) (

pelr &)= (Thipm) * Trifo)P

LEMMA 4.1. Let € >0 and ®g be as in (1.9). Then there is c. ; >0 such that for
r>Ri+eand e<O<7/2—¢€, Oy(r)>ce 5. Moreover, given 0 <a <1, there is ¢>0
such that for all e <0 <m/2—€ and r > Ry + € such that

(4.2) W' (r)] < a®e(r),
Py is uniformly semiclassically elliptic in r > Ri +¢€; i.e.,

Pyl >c(€)? r>Rite

1The semiclassical parameter is often denoted by h, but we use % to avoid a notational clash with
the meshwidth of the FEM appearing in section 1.5.
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Proof. In the following arguments, cy.,Cf. > 0 are constants depending on f
and e whose values may change from line to line. Throughout the proof, r > Ry + ¢
and 0 € [e,7/2 — €.

The solutions s4 to

~ s 2 [
=) +t——7—5 —1=0
pls) (1+zf;(r)) (r +ifo(r))?
are given by
s+ =+(1+ify(r)) 1—7|§w|2 .
(r+ifo(r))
The definition of ®(r) (1.9) then implies that
4.3 Py(r)= inf min{|Imsy|,|Ims_|{ = inf
(*3) or) = dnf min {[Tms.|, [Tms[}= . Inf

since sy = —s_.
By considering the real and imaginary parts of p(s), we find that

|ﬁ(s)|ch,e(|Res|2—|—|§w\2/r2—|—1)7 Ims =0,

where we have used the particular form of fy(r), i.e., fo(r) = f(r)tan, and the fact
that 6 € [¢,7/2 — €] to get uniformity in 6. Therefore, since there exists ¢y > 0 such
that

10D < cp,els],
there is cy, > 0 such that
(4.4) |p(s)] chye(\Res\Q—i—|§w|2/r2+1), Ims| < cg.e,

and thus [Imsy| > cye. Therefore, by (4.3), ®g(r) > cye. Hence, if [Ims| < a®q(r),
then

miin |s —s4|>cre(l—a).

In particular, since

(521 = | s g Z e
and
025(s)] = > < .
|14 if)|? '
there is cq, ¢, > 0 such that
[P(s)] > ca,5.e

if |[Ims| < a®p(r). Finally, by considering the real and imaginary parts of p(s) again
(this time with s not necessarily real), we see that there exists C't > 0 such that, for
[Res|® + [€u[?/r? = Cte,

[B(s)| > CF ¢ (IRes|* + |&w[? /72 +1).
Together, we have shown that for [Ims| < a®q(r),
5(s)] > ca,p.e(|Res|® + |6 [?/r® + 1)
and the claim follows. O

In the rest of the paper we use the notation that (a,b), := B(0,b) \ B(0,a).
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LEMMA 4.2. Let € >0, n > 0. Then there are C >0, hy >0, and 0 < 7] < €/6
such that for alle <O <7m/2—¢, §>¢,uc€L? 0<h<ho,

(4.5)

HUHH%(R1+57277,R1+675)7. < C||(—h2A9 - 1)u||L2(R1,R1+5)r
(1 _ ,'7) Ryi+6
+ Cexp ( A Py(s) ds)hHu”H}L(Rl,Rl-i-ﬁ),p + Chllull 1 (R, 45—, Ry +6),

and

(4.6) lull 2 Ry +5-27,00), < CI(=H* A = Dull2(r, o0),

(1—m) [+
+ Cexp ( T /R q)Q(S) ds) hHu”H%(Rthﬁ'?])r'

Proof. Let Py be asin (4.1). To prove the lemma, we construct a 1 satisfying (4.2)
with a = 1—17 for some, not yet specified, 7. Let 1o € CZ°((27,6—27); [0, 1]) withipg =1
on (37,0 — 3n). Then, let 0 < ®p(r) € C> with (1 —27)Pp(r) < Pg(r) < (1 —1)Py(r)
on [Ry +17],00) and supp®y C (R; + 7/2,00). Then define

(4.7) b(t) = —/ Dy (s)o(s — Ry)ds,
t
and choose 0 <7 < €/6 small enough such that
o0 . R1+(5
(48) — [ Bats = Ryds<—1—n) [ @als)ds
— 00 R1

note that this choice can be made uniformly in 6 > e. By (4.7) and the support
properties of v,

|4/ ()] = @a ()0t — Ra)| < (1 =) Po(t),

so that, by Lemma 4.1, |py| > ¢(€)? for all ¢. In addition

(4.9) ¥(t) = —/oo Dy (s)ho(s—Ry)ds, t—Ry <27, and (t) =0, t—Ry > 527

— 00

(see Figure 4.1) and
|0%(t)| < Coze  for all t.

To prove (4.5), let x1,x2 € C°(R, R+ §) with x1 =1 in a neighborhood of [Ry +
7, R1+06—1], x2=1on suppyi. Let x— € C(Ry, R1+7), X+ € CC(R1+d—17, R+0)
with x— + x4+ =1 on supp(x2 — x1); see Figure 4.1.

Now,

Py = Opy(po,y) + 7Opp(p1,y)
with Po,y € Cl’asz, P1y € CO,asl’ and

Z Ceﬁ<§>2'

o,
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X- X2 Xi Y4
R Ri+7 Ri+23 Ri4o—27 Rito—7 Rits
Y(t) < —(1—n) [5T° Dp(r)dr b(t) =0

Fi1G. 4.1. The cutoff functions and behavior of the function ¥ (t) in the proof of Lemma 4.2.
Although 1 appears large here (for readability), we emphasize that 17 < 9.

Let p= H#a Then, by Lemmas B.6 and B.7, there is pj 4 satisfying
|8;3§ph,w(x7§)| < Ceyph™ 7 (g)ymIBl+ey
and

10ps(Phw) = Pyl 12 < Cagh.

By a standard elliptic-parametrix construction for p; in an exotic symbol class
(see Theorem B.2 for the standard elliptic-parametrix construction and [33, sections
7.3-7.4] for the construction in exotic calculi), there is E': L? — H?, such that

X1 = EOpp(pr,yp) + O(R%)g-oc.

Moreover, both E and the error are uniform over 6 > ¢, € <0 < /2 — €. Therefore,

Xle"’/hu = X1X26w/hu = EOph(ph,,b)Xgew/hu + Oﬁe(hoo)\l;—ooXQCw/hU

(4.10) =E(Py + (Opy(pry) — Pqp))XQBw/hu + Oﬁg(hoo)\ljfooXQew/hu

= Exoe?/"g — BEe¥/"[h2Ag, xau + Ofe(W) 1 s 12 x2e¥/ ",
where f:=(—h%*Ag — 1)u. Therefore, since dy is supported where x4 + x_ =1,
(4.11)
e/ all gz < C (e g2 + Bllx—e” "l my + Bllxcs e/ ull gy + llxae” ).
Since X2 = (X2 — x1) + x1 and x4 + x— =1 on supp(x2 — x1),
(4.12) 2"l s < Cllx—e”""ull gz + Clxs e ull gz + Ixae? "l gy -

Combining (4.11) and (4.12) and taking & sufficiently small (depending only on 1 and
€), we have

(413) e ull gz < Clixze gl e + Chllx—e”"ull gy + Chllxse? " ull ;.

Then, since ¢ < —(1—n) f}flﬁé ®y(s)ds on suppx—_ (by (4.8) and (4.9); see Figure 4.1),
and ¥ <0 everywhere (and thus, in particular, on suppyx+ ),
Ixae? Ml 2

(1-mn)
h

Ri1+6
< Cllxac? gl + Coxp (= S5 [ @als)ds )l ulluy + Ol

Ry

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/23 to 144.82.114.246 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

PERFECTLY-MATCHED-LAYER TRUNCATION 3363

The lemma now follows since xy; =1 and ¥y =0 on (Ry +9 — 277, Ry +J — 1)), suppx— C
(Ry,R1 4+ 1), and suppx+ C (R1 + 6 — 17, R1 + 0), and ¥ <0 everywhere.

To prove (4.6), we make the same argument as above except that xi,x2 €
C*(Ry,00) with x; =1 in a neighborhood of [R; + 7,00), x2 = 1 on suppxi, and
X+ = 0. 0

Next, we need an elliptic estimate away from the support of the right-hand side.

LEMMA 4.3. Let e,n > 0. Then there are C >0, hy >0, and 0 <7 < €/6 such
that for all e <O<T/2—¢, e<s<8—¢, 6 >2¢ and all u € L? satisfying

(—12Ap —Du=g

with suppg N (Ry, Ry +6), C(R1+6 —1,R1 +8),, and all 0 < h < hy,

(4.14)
(L—n) [Fres
el o2 pasom, S Co (= =0 | @o(r)dr)llullmy iy i,
1
(1_77) Rq1+6
+ Cexp (- o(r)dr) (llglee + hllullmy s o711+, )-
R1+S

(Note that, since 7 < €/6 and s <6 — €, Ry + s+ 21 < Ry + 3 — 7], the norm on the
left-hand side of (4.14) is indeed away from supp g.)

Proof. As in the proof of Lemma 4.2, we use a Carleman estimate with Py as
in (4.1). Let v_ € C((21,s — 27);]0,1]) with ¢»_ =1 on (37,s — 37), and ¥4 €
Co((s+2m,0 — 27;[0,1])) with ¢y =1 on (s + 37,0 — 377). Then, exactly as in the
proof of Lemma 4.2, let 0 < ®p(r) € C with (1 —27)Pg(r) < Pg(r) < (1 —7)Pp(r)
on [Ry +1,00) and supp®y C (R; + 3,00), for some, not yet specified, 7. Let

t ~
(4.15) v = [ @l ) = el — R)Bo(0)
Ri+s
and choose 0 <7 < €/6 such that
oo _ Ri1+6

(4.16) - Vi (r— Ry)Py(r)dr < —(1—77)/ Dy (r)dr

Ri+s Ri+s
and

Ri+s _ Ri+s
(4.17) —/ Y_(r— Ry)®p(r)dr < —(1 —77)/ Dy (r)dr;

— o R

note that this choice can be made uniformly in 6 > 2¢ and € < s < J —e. By (4.15)
and the support properties of ¥_ and 9,

[0/ (0)] < (|- (t = Ru)| + [t (¢ = Ra) ) o(t) < (1 = 7)Po(1)

and

(4.18) V() =— Vo (r — R)®(r)dr, t—Ry>06— 27,
Ri+s
P(t) =0, s—2<t— Ry <s+ 27,
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X-— X2 X1 X+
Jjjk Ry + 2 Ry +0— 27
Ry Ry +7 Ri+s—27 Ri+s+27 Ri+d—17 Ri+6
—————

G(t) < —(1—n) (B @p(r)dr V() =0 p(t) < —(1—n) [0 Do(r)dr

F1G. 4.2. The cutoff functions and behavior of the function ¢ (t) in the proof of Lemma 4.3.
Although 1 appears large here (for readability), we emphasize that 17 < 9.

Ri+s
(4.19) v == [ (- ROB()dr, ¢ Ry <27
see Figure 4.2.

To prove the lemma, let x1,x2,Xx—, X+ be as in the proof of Lemma 4.2, i.e.,
X1, X2 € C°(Ry1, Ry + 6) with x1 =1 in a neighborhood of [R1 +7,R1 +d —17], x2a=1
on suppy1, and x— € C°(Ry, R1+7), X+ € C(R1+d—1,R1+0)) with x_ + x4+ =1
on supp(x2 — x1). Applying the same argument as in the proof of Lemma 4.2, we
obtain

x1e¥/ = Expe?/" f — Eew/h[hz’YgAa xzlu+ Oﬁe(h)H;ﬁngWhXW

(see (4.10)). Arguing exactly as before, we obtain (4.13). Therefore, since 1 <
—(1-mn) Iiﬁs ®y(r)dr on suppx— (by (4.17) and (4.19)) and ¥ < —(1 —1n) }};11:86
Oy (r) dr on suppx+ Usuppf (by (4.16) and (4.18)),

1— ) Ri+s
T _(A-n) /
e’ ull gz < Cexp (=~ A Do (r) dr ) Bllx-ul sy
1_77 Ri1+46
+ 0o (=52 [ a)ar) (lgles + Al ul).
h Ri+s

The bound (4.14) now follows using the support properties of x+ and the facts that
x1=1and Y =0on (Ry +s—27, R+ s+27). |

4.2. Estimate on the PML solution near the boundary.

LEMMA 4.4. For any € > 0, there exists hog > 0 and C(e) > 0 so that for any
e<0<m/2—¢ Ry >Ry +e¢, B(0,R)) Q. CR? with Lipschitz boundary, if v € L?
is supported in Qi \ B(0,R; +¢€) and v=0 on 0Q4,, then, for all 0 < h < hy,

(4.20) 0]l @) < CONR* P = 1)l 20,

Proof. We use results from Appendix A and use that, by Lemma A.4, Fy/(x) >
0(€) > 0 in the sense of quadratic forms for « € suppv. Since v is zero in a neighborhood
of B(0, Ry),

(4.21) (RPP) —1)v,0) 120, = ((—h*Ag — 1)v,v>L2(Qtr).

However, by (A.7) and (A.8),
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(4.22)
(=189 =1)v,0) 12 = ||wl|72 —[|Fg (z)w]| 72 —2i(Fy (x)w, w) +1i{ Ag () v, v) — || 0] 72,

where Ap(z) € C%* and w := (I + F}/(x)*)"'hO,v. Taking the imaginary part of
(4.22) and using the fact that Fj/(z) > (e) > 0 for x € suppv, and then using (4.21),
we obtain that

110,0]13 < Clwl2: < C(Fy (@)w, w)
< Olm((~r2Ay — l)v,v>‘ + C"Imh(Ag(x)hamv,w
(4.23) < COl(R* By = 1)vllz2]|v]l 2 + CRlIAduv]| 2 [[v]l 2z,
where C' depends a priori on §. Now taking the real part of (4.22), we get
424)  |lvlZ2 < CllROv|IEe + CIN (R P = 1)v] 2 |lvll 2 + Chll ROz vl p2|v]| 2
Thus, combining (4.23) and (4.24), we have
17 < CI(R*PY = 1)v]l L2 |lvll 2 + Chll Rz vl p2]|v]| 2

With Fp and fy related by (A.2), and fy(r) = f(r) tan 6 satistying (3.1), all the implicit
constants appearing above depend continuously on tanf. Hence, for e <6 < 7/2 —,
there is C'(e) > 0, depending only on €, such that

[l < C(e) (1R Py = vl [[vll 2 + Al Adzvll 2 0] 22 | 5

the bound (4.20) then follows by taking i > 0 small enough depending only one. 0O

5. Proof of Theorems 1.5 and 1.6 (the main results in the black-box
setting). Proof of Theorem 1.6. By Proposition 3.5, P — k? is Fredholm of index
zero; thus the existence and uniqueness of v follow once we establish the a priori
bound (1.22).

The overall idea to prove (1.22) is to use the elliptic estimates in section 4 to
bound v near I'y, in terms of v away from I'y, and the data g, and then use Lemma
3.3 to bound v away from I'y,. Given € >0, let 7 >0 (to be fixed in terms of € later).
Then, by (4.5) with 6 = Ri; — Ry, there is 0 <7 < €/6 and C > 0 such that

0]l 22 Ry —27, s -7y, < CB2(lgl| 2 (80 R0, + ORIV 2(Rer— 7. R0,

(1-mn)

(5.1) e
+Cop(-H2 [ = @) dr ) Alellg

Let x € C(R4\ B(0, Ry, — 277)) with x =1 on Qy, \ B(0, Ryy — 7). Then, by Lemma
4.4
(5.2)
[0l 1 e\ B0, Ber—)) < IXON 3 (020r) < CR2(I(Po = k) x| L2 (001
< C(R*lIxgll 2@ + =72 A0, X0l 2200 )-

Combining (5.1) and (5.2), using that the derivatives of x are uniform in Ry, >
Ry + ¢, and suppdx C B(0, R, —77) \ B(0, Ry, — 27), and shrinking 7y if necessary, we
have

HU”H}L(QM\B(O,RH72W)) < Ch2||9||L2(Qtr\B(07R1))

Ly [Be
(5.3) +CeXp(_( - )/R @9(7«)dr>h|\v||H%(Rth+ﬁ),‘-
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Next, let x1 € C°(B(0, Ry;)) with x1 =1 on B(0, R, — 277). Then,

(R?Py — 1)x1v=h*x19 + [B* Py, x1]Jv = *Xx19 + [—h* Ag, X1 ]v.
Now, by (5.3),

D1, —h*Aglvlly < Chl[vll i1 (Re, — 27, Rer).
< CR*||g|| L2 (0 B(0,RY))

(1—p) [F 2
# 0o (=S5 [ g ) ol -
Therefore, by Lemma 3.3 with Y (k) = ||xRp(k)x|ln—n and s=1,
Ixivllo = [1(Po — k%) (x19 + [x1, —20]v) |
Ryx
<R 1) (Il + exp (<K= ) [ @alr)dr ) oy,
Ry
Similarly,
Ixavllze = 11(Ps = k)7 (xag + [xa, —Ae]v) |

<10 (loll +exp (~ k1 =) [

Ry

Rex
Dy (r) dr) HU||H;(R1,R1+W)T>-

By the definition of 6y (P, J, R,) (1.10),

Ry
5.4 = —A(P,J inf Bp(r)dr > 0.
64 com AP it [ ar

Now choose 7 (as a function of €) such that

(5.5) O<n<min{1, c }

. Ry
2infgcig, e r/2—¢] le Oy (r)dr

This choice implies that, for all 8 € [0y + €, 7/2 — €],

Ryx

(5.6) —A(P,J)+(1—n)/R qmmm«g%.

Then, using the definition of A(P,J) (1.18), and choosing k large enough, depending
only on € and 7 (and hence only on €), we have

(5.7) Ixavlla + k=2 xavllo < CY(E) gl
The definition of x; and interpolation imply that
0l 22 (R, R+, < C (X100l + k72 (x10]1D),
and thus combining this, (5.7), and (5.3), we obtain that
[vllx@n) <CY(E)gllr  for all k> ko.

Since || PP 0|00 = k2 [|v]13(020) + 19]#(0.) the bound (1.22) then follows from the
definition of ||v]|p(q,,) (3.16). |
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Proof of Theorem 1.5. To avoid writing ||xRp(k)x/|# - repeatedly, we let T (k) :
[0,00) — (0, 00] be such that, for all x € C°(B(0, R1);1[0,1]),

IXxRp(k)x|l2—n < T(K) for all k> k.

Given € > 0,n > 0, let 7 equal the minimum of the 7s from Lemmas 4.2 and 4.3.
Observe that the bound (1.21) gets stronger when n decreases. In the course of the
proof, therefore, we can reduce 7 (in an e-dependent way) without loss of generality.

By (1.19) and (1.20), v = (PP — k*)"'g and u = (P — k?)"1g = Rp(k)g, where
g=xg- Since suppx C B(0,R1), g =1p(0,r,)9, and thus

150.r) %= 150, BP(k) 150,79 = 1B(0,R) (Po — k*) '1p(0,R1)9

by Proposition 3.1. Since the bound (1.21) only involves 1p(g,g,)u, without loss of
generality we abuse notation slightly and let u = (Py —k?)~!g for the rest of the proof.
By (5.3), together with the fact that g is supported in B(0, Ry),

<C A=n) (™ 5 oy ar)n
(5.8) vl 2 (0\B(0, Rex—27)) < Cexp ( — s o(r)dr ) h||vl Ry Ry +7), -

Moreover, using (4.6),

(1L—m) [
(5.9) HUHH;L(Q”\B(O,R“—QH)) <Cexp ( - 7 - Dy(r) dT)hHU||H,§(R1,R1+ﬁ)T~
1

Therefore, by Theorem 1.6 and Lemma 3.3,

HUHH;L(QH\B(O,Rnfm”;)) + ||U|\H;l(9n\3(o,3trfzﬁ)

_ R
(5.10) SC’eXp(— (lh”)/R <I>a(r)dr>hT(h‘1)||g||H.

Let § = Ry — Ry, let 0 < € < e (to be fixed later), let € < s < § — € (to be
fixed later), and let x; € C°(B(0, Ry;);[0,1]) with x; = 1 on B(0, Ry — 77). Since
(=1?Ag — 1)(x1(u —v)) = [-h*Ag, x1](u — v) and

Supp[_h2A07X1](u - U) - B(Ov Rtr) \B(Oa Rtr - 77)7

we can apply Lemma 4.3 to x1(u—v), with € in this lemma replaced by €', and obtain

[|u— U||H,§(R1+s—2?7,R1+s+277)T

(L—n) [fo+
SCGXP(* T - QG(T) dr)hHui’U“H}l(Rl,RlJrﬁ)r
1
(1 _ 77) Ry
(5.11) +Cexp(— 7 - Dy(r) dr)h”U_UHH;(Rn—ﬁ,Rn)w

where C depends on n and €. Let xy2 = 1 on B(0,R; + s — 27j) with suppys C
B(0,R; + s+ 27). Then

(5.12) (=h% A — 1) (x2(u —v)) = [-h*Ag, xa](u — v).
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Hence, by Lemma 3.3, (5.11), and (5.10)

lIx2(w—v)l2 + h*[[x2(u—v)|Ip
< CY(h")h|ju— Ol E (Ry 45— 277, Ry +54200).

a 1_ R1+S
<CT(h 1)h2<Cexp<—(hn)/ o(r) dr)llu = vy, 1y 3.

Ry

1 Rir
+Cmm(—( "{/ édﬂdﬂHU—WMRmrﬁmm
h Rl Ts h

B 1_ Ri+s
<CY(h 1)h2<exp<—( hn)/R (I)G(T)dr)Hu_v||H,1L(R1,R1+7ﬁr

/I::s g(r) dr + /Pf“ Dy (r) dr] ) |Q|H>-

As at the end of the proof of Theorem 1.6, ¢, defined by (5.4) is > 0 by the definition
of 6 (1.10). Without loss of generality, let

1 e
(5.14) O<77<min{ ¢ }

P Ryr
2 21nfge[90+67ﬂ./2_6] R, (I)Q(T)d’r‘

(5.13) +Cm(h—1)exp(— (1;”)[

so that, for all § € [0y + €,7/2 — €], (5.6) holds. (We impose the condition (5.14), in
contrast to (5.5), since we later require that 1 — 27> 0.) Let

Ry
C
5.15 :=mi =.2 inf P d 0
(5.15) €0 mln{4, nee[eog,fr/ze]/m o(1) r}>

and choose € such that

R1+6—€/ c
AP J)—(1— inf / Py(r)dr < —-
(B J) = n)ee[eofel,wm—q Ry o(rydr< 4

and

R1+E/ €0
AP —(1—n)  sup / Bo(r) dr >~
0€0o+e,m/2—€] J Ry 2

the latter is possible since A(P,J) > 0. Note that ¢ depends only on e. By the
intermediate value theorem, there exists ¢/ < s <d — €', depending on 6, such that

Ri+s
(5.16) AP, J)—(1- 77)/ Dy (r) dr = —eq.

Ry

Then, using the definition of A(P,J) (1.18), and choosing k large enough, depending
only on €, 7, and €y, and hence only on €, we can absorb the term involving ||u —
V|l 1 (R, Ry 477, on the right-hand side of (5.13) into the left-hand side to obtain

[ wears [ R o(r)ir] )l

Ri+s

Ix2(u =) [l + 22| x2(u —v) |

gcmr(h—l)exp(— (1;”) [
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Now, by (5.16) and (5.15),

Ry Rer
[/ dr+/ Dy (1) dr}
Ri+s Ry

{ R" r)dr — / R1+S<I>g(r)dr]

Ry

:_Qn/R" <)dr+h(€0+A(P’J))

Ry
2(1—2 Rer 1
_fw/ Do (r)dr + —A(P,J).
h e h

We then use again the definition of A(P,J) (1.18) to obtain

Ix2(u =) [l + B[ x2(u —v) |
Rir

< Chexp (- %(2(1 —2) /R Bo(r)dr — 2A(P, J))) gl

This obtains the bound (1.21) with 2 — n replaced by 2 — 47. Repeating the proof
with 7 replaced by 7/4, the result follows. 0

6. Proof of Theorem 1.3 (relative-error estimate for scattering by a
plane wave). Recall that 2 C R? is bounded and open with connected open com-
plement, and Q¢, + = Q, \ Q_ is such that B(0, Ry,) C €, for some Ry < Ry,. Let u®
and v* be the solutions to (1.1) and (1.3), respectively, and let u(z) := exp(iz - a/h).

The key ingredient for the proof of Theorem 1.3, on top of the result of Theorem
1.5, is the following lemma.

LEMMA 6.1. Let Ry > 0 be such that Q_ € B(0,Rp). Given R > Ry there is
C >0 and hy such that, for 0 < h < hy,

[u!ll 22 (B0, < Cllu’ +u| 20, R)\0_ )
Proof. First observe that if

I > 2|l
u”ll2Bo,r)\0o) = 2[u” L2 (B(0,R))

then the claim follows from the triangle inequality. Therefore, without loss of gener-
ality, we can assume that ||US||L2(B(O7R)\Q_) < C < oo. Under this assumption, the
argument involving the free resolvent in [17, Proof of Lemma 3.2] shows that, for any
compact set K C R?,

|| p2(\0y < Ck-

We now show that, for any r >0 and ¢ € C2°(R? x R%:R) satisfying [5. ¢*(z,a)
dx >0, there exists Cg,, > 0 such that, for 2> 0 sufficiently small,

|Oph(<P)UIHL2~

(6.1) ! r2(B(0,r)) < Cr.e

Observe that, by the Fourier inversion formula, for any 1 € C2°(R¢ x R?),

(6.2) (Opp(¥)u’,u') = y Y(z,a)dr
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Now, let ¢ € C2°(R%) be such that 0 < ¢ <1, ¢ =1 in B(0, R), and is supported in
B(0,2R). Using (6.2), we obtain

o sy < o' = [ 6o < |BO.2R)

On the other hand, again using the Fourier inversion formula,

Om(ehe! 3= | )
and thus (6.1) follows with
1 —1
2 L 2
Ch.o .—2|B(0,2R)|<2 /Rd o (z,a) dx) .
Let 2o € 0B(0, 28 and V € T*R? be such that

(xp,a) €V, VC {(:17,5) {x, &) < O} nT* (B(O,r)\B(O,RO));

i.e., a is an “incoming” direction at xo. We take ¢ € Cgo(Rg), X € C*(RY) so that
suppx C B(0,R)\B(0, Ry), suppp(&)x(z) C V, and ¢ = 1 near a, x = 1 near xo.
Letting ¢ (z, ) := (&) x(x) and using (6.1) we get

|Opn(¥)u[| 2.

(6.3) ! || L2(B0,r)) < Cryp
We now write
(6.4) Opy,(¥)u’ = Opy,(¢) (u" + u®) — Opy, (Y)u®.

By, e.g., [13, Lemma 3.4], WF;(u®) N {(z,¢) : (,€) <0, |z| > Ro} = 0. Therefore, by,
e.g., [11, Proposition E.38],

WEF(Opy,(¢)u®) C suppy N WFy(u®) = 0.

By the definition of WF}, (see section B) and the fact that u® is uniformly bounded
in L , there is C' > 0 such that, for & sufficiently small,

|10py, (¥)u || 12 < Ch.

Now, by (6.2),
I 1
lu” |2 (B0, R)) = §|B(07R)|-
Therefore, with C':= C’(%|B(O,R)|)7l, for h sufficiently small,

10ps(¥)u5 |22 < C'Rl[u" || L2 (B0, R))-

Combining this last inequality with (6.3) and (6.4) and then using the fact that
p(hD,) € U together with the support properties of x, we obtain that, for & suffi-
ciently small,

" || 22(B0,r)) < CllOPA(W) (W + u®)||L2 < Cllu’ + 4| L2(B0,R)\B(0,R0)):

and the proof is complete. 0
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Remark 6.2. The proof below shows that for any 0 < R < R; such that Q_ &
B(0, R) we can replace the relative error

S = v i (B0, RN ) [u¥ = vl (Bo.R V)
[uS + €20 2 o, rR )\ ) [[u? + e+ | L2 (0, R0\ )

in Theorem 1.3.

Proof of Theorem 1.3. Let 0 < Ry < R < R; be such that Q_ € B(0,Rp) and let
x € C(RY) be such that xy = 1 near B(0, Ry) and suppy € B(0,R). Observe that
u® + xyu! and v° + yu! satisfy, respectively,

(=h2A —1)(u® + xu!) = [-h2A, xJu!  in RA\Q_,
(6.5) B(u® +xul)=0 onT'_,
u® + yu! is outgoing

and
(_hQAQ - 1)(US + Xul) = [_hQAQaX]uI in Rd\Q—7
(6.6) B +xu')=0 onI_,
v+ xul =0 on Ti,.

Hence, by Theorem 1.5, there are C,hy > 0 such that, with 8y given by (1.10), for
O+ e<O<m/2—¢€and any 0 <h< hy,

(¥ + xu') — (0% + xu') ”H}L(Qtr\ﬂ_)

(6.7)
Ry
<Cexp ( - k:((2 - 77)/ Dy(r)dr — 2A(P, J))) I[=h2A, X]uI”LZ(Q“\Qi).
Ry
Since AVu! = iau’,
(6.8) II=P2A, X! || 2 ey < CBlW! |3 (B0.r)) < CRllu || 2(B(0.R))-

We now apply Lemma 6.1. We obtain, reducing hy again if necessary, that for 0 <
h < hg,

(6.9) w280, r)) < Cllu’ + u®||L2(B0.R)\0).

The result (1.11) then follows by combining (6.7), (6.8), and (6.9). O

7. Nontrapping estimate on the free resolvent with rough scaling. The
goal of this section is to prove Theorem 3.2. This section uses notions of rough
semiclassical pseudodifferential operators recapped in section B.2. We first prove a
propagation result.

LEMMA 7.1. Assume that Q € C1*W? + RCO*W! s such that, for any w e HE,

(7.1) (ImQuw, w) < Cohljw>

7

ol

and that or(Q) — q with q satisfying

(7.2) la(z, &)l > clef?, gl >C.
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Given g € L? with ||g||12 < C" with C' independent of h, let u satisfy Qu = hg. Let
u have defect measure p as h— 0 (in the sense of (B.3)) and let u and g have joint
measure (i (in the sense of (B.4)).

Then, (i) the measure p is supported in {q =0}, (ii) for b€ S' and x € C=, as
h—0,

(7.3) 105 (b)xullZ> — p(bI*X?),
and (iii) for any real-valued a € C°(T*RY),
(7.4) p(Hpeqa® + Co(€)a?) > —2Imy (a®).

Proof. The fact that supp u C {¢ = 0} and (7.3) are shown in [17, Proof of
Lemma 3.6], where the only assumptions used are that (a) the operator associated to
the equation is in C*W?2 4+ ACY*W! and (b) the principal symbol satisfies the bound
(7.2). We therefore only have to show (7.4).

Let A :=Opy(a). Following the calculations in [16, equation 2.38], we have

— 2 Mim(A* Au, Qu)
=h"'Im((A*AReQ — ReQA*A)u,u) + 20~ 'Re( A* AImQu, u)
= h_lIm<[A*A, ReQ]u, u> + 2h_1Re<ImQAu, Au> + 2h_1Re<A* [A, ImQ)]u, u>
<A 'Im([A*A,ReQlu, u) + QCOHAu||2H% + 207 'Re(A*[A, ImQ]u, u)
h

by (7.1). We now examine each of the terms in (10), starting with the term on the
left-hand side. By (B.2) and the fact that a is real, o5 (A* A) = a?; using this and the
fact that ¢ is bounded in L? uniformly in A, we have

|27 Im((A*A — Opy(a?))u, Qu) | < 2| A*A = Opy(a®)| 2 lgll L2 — O;
hence, by the definition of p? (B.4), as h— 0,
(7.5) —2h Im(A* Au, Qu) = —2Im(Op;, (a*)u, f) + o(1) — —2Imp? (a?).
For the first term on the right-hand side of (7.8), by Lemma B.5, as h — 0,
(7.6) ™ Im([A* A, ReQ]u, u) — p( Hreqa?).
By the definition of y (B.3) and of the semiclassical Sobolev norms, as i — 0,
(7.7) ”AUHZE — u((€)a®).
By Lemma B.5 and the fact that a is real, as h — 0,
(7.8) ™1 (ReA*[A, TmQ]u, u) — 0.

The result (7.4) then follows from using in (10) the limits (7.5), (7.6), (7.7),
and (7.8). |

We now show that when Regq is sufficiently regular, invariance statements of type
(7.4) can be translated to invariance statements at the level of the Hamiltonian flow.
In this lemma, the assumption p € C? ensures that the Hamiltonian flow is well
defined; this is where the assumption f € C?® in our main results originates.
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LEMMA 7.2. Let i be a Radon measure on T*R® such that for any real-valued
a € CX(T*RY) and p € C?,

(7.9) p(Hya® + Co(€)a®) > 0.

Let ¢; be the Hamiltonian flow associated to p. Then, for any measurable B, and for
all t>0,

u(ei(B)) < u(B) +Co sup (€) / j(pa(B)) ds.
(z,£)eB 0

Proof. We first show that (7.9) remains valid for a € C!. To do so, let a € CL.
Let ¢ € C° be such that ¢ > 0, suppp C B(0,1), and [¢ =1. For € >0, let ¢, :=
e~ 4¢(-/¢), and define a, := a* ¢, € C>. Since Hya is continuous, Hya, = (Hpa)* ¢ —
Hpa pointwise. Similarly, a. — a pointwise. Hence Hpa? = 2a.Hya. — 2aH,a = Hya?
pointwise. In addition, since the derivatives of p are bounded on suppa, for 0 <e <1,

|H;Dae(p)‘ = ‘ /Hpa(p - €<)¢(C) dC‘ S Clstuppa+B(O,1)~

Similarly [ac(p)] < C'1 esuppatB(0,1).- Hence |HpaZ(p)| < 2CC'1 pesuppatB(o,1) and
thus, by dominated convergence, u(Hpya?) — u(Hpa?). In a similar way, p((¢)a?) —
w({€)a?); hence

p(HyaZ + Co(€)a?) — u(Hya® + Co(€)a’).

By (7.9), the left-hand side is nonnegative; since a. € C2°, so is the right-hand side,
and hence (7.9) remains true for a € C}.

Now let a € Cg°. Since the derivatives of p are bounded on suppa, by Hamilton’s
equations Js¢; is bounded on {ps € suppa} independently of time, and hence

105(a* 0 @) <Clx  for all (s, (z,&)) € [t,0] x T*RY,
where

X:= U s (suppa).
s€[0,t]

By the dominated convergence theorem, interchanging the derivative and integral, we
have

w(a? o)) — p(a?) /O as(/a%sosdu) dS/i/&;(aszs)dﬂd&

—t

Since p € C? and ¢, € C} for any s, a? o ¢, € C} for any s. Therefore, using (7.9),

0 0
p(a®) — p(a® o p_y) :/ /Hpa2 opsduds> fC’o/ /(5) a? o g duds.
—t —t

The result follows by approximating 1 by squares of smooth, compactly supported
symbols. ]

As a consequence, we obtain the following resolvent estimate.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/23 to 144.82.114.246 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

3374 JEFFREY GALKOWSKI, DAVID LAFONTAINE, AND EUAN SPENCE

LEMMA 7.3. Let (Qo)oco be a family of (rough) semiclassical pseudodifferential
operators with © C R compact. We assume that Qg € CH*W? 4 ACO*W! yniformly
in 0 €©. We assume further that (i) there exists Co >0 such that for any 6 € © and
any we H ?L,

)

(7.10) (ImQgw, w) < Cohljwl|®
H

St ol

(ii) on(Qg) — qo, where gg € C? and depends smoothly on 6 € © together with its
derivatives, (i) qo satisfies (7.2) uniformly in 6 € ©, and (iv)

(711) 377 > Ov90 S @7 V(l‘o,fo) € {qeo = 0}7 EngO (.730,50) > 07
s (e (@0:60) € () {(©2lao(e, &) 2],
0cO

where @Y is the Hamiltonian flow associated with Reqq.
Then, there exists C' > 0 and hg > 0 such that, for any 0 € O, if u € L? is a
solution of

Qou = hg
with g € L2, then, for 0 <A< hgy, 1<s5<2,
lullmg < Cllgll gz

Proof. For 6 >0, let

&:= N {(©2lao(e,6)] = 8}

0ce

We begin by showing two elliptic estimates ((7.15) and (7.16) below). Let b €
SO(T*R%) be such that b= 1 on &y /2 and suppb C &, /4. We write Qg = Op;q8+hOp;qf
with ¢ € C1*S? and ¢f € C%*S! uniformly in A — 0. Let ¢ € C°(R) be such that
¢ =1on [-2,2], and for € > 0 we define ¢f (7€) := (¢(¢| Dz |)gf ) (2,€). Then ¢f . € S?
and by Littlewood-Paley (see, e.g., [37, section 7.5.2]),

(7.12) sup [ DF (46, (+€) = a0 (+)) o < Cele)* 7,

where C' is independent of € and the uniformity in 6 comes from the fact that all the
involved quantities depend continuously on 6 and © is compact. In particular, by
(7.12), for e > 0 and 0 < h < hg small enough, qg’E is elliptic on suppb, uniformly in
€ >0 and 0 € ©. Therefore, by the elliptic parametrix (Theorem B.2), there exists
Se.o € ¥*~2 bounded uniformly from H* to H;" *™ in € > 0 and 6 € O, and such
that

(hD)*b(z, hDy) = Se.00py, (¢5.c) + O(R™) g,

and thus
(7.13)
(RD)*b(2,hDy) = Sc 6@ — Sc.0hOpy(q}) + Se(Opp(g) ) — Opp(g)) + O(R™) g

But, by (7.12) together with Lemma B.4,

(7.14) sup 10p4(45,) = OPr(a0) |l 212 < Ce,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/23 to 144.82.114.246 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

PERFECTLY-MATCHED-LAYER TRUNCATION 3375

where C is independent of € and h. In addition, by Lemma B.4 again, Op,(¢?) €
L(H},L?) uniformly in % and 6 € ©. Thus, using the fact that S, g € U¥ uniformly in
€>0 small and 0 € ©, (7.13), and (7.14), we find that

<hD>gb(.’I},hD$) :SE7OQ+O(h)H%_>H§*b +O(€)H§_>H§—a

Evaluating in w € H} and letting € — 0, we conclude that there exists C' > 0 such
that for A small enough and any 6 € ©

(7.15) o(z, AD)w| 1y < C||ng||H.;_2 + Chllw|[f;  forall we H}.

A near-identical argument, using (7.2), shows that for ¢ € C2°([—2,2]) with ¢y =1 in
[-1,1], and K large enough, for any 6 € ©

(7.16)
11 = (K AD )1 = b) (@, kD, Jwl sy < C'[Quwl -2 + C'Hlw] gy for all w € H).

Now, if the conclusion of the lemma fails, there exists w,, g, 6, € ©, and A, — 0
such that

Qo,, (hn)wn = hygn, ”wnHH;n > annHH??'
Normalizing, we can assume that
(7.17) lwallmy, =1 llgnll g2 = o(1).

Therefore, extracting subsequences, we can assume that wy, has defect measure w. In
addition, as © is compact, we can assume that 6, — 6 € ©.
Now, by (7.15) and (7.16),

(0= GO D)) (1 = b, D)y, + oG, D2 Yy,
< hn(Hgn”H;f + ”wn”Hgn) =O(hy),
and in particular

1+ O(fi) = [ (K~ A Dy ) (1 — b(xath))wn”Hgn
< CKH'(/J(K_lmnDID(l - B(Jjaﬁl)z))wnHL2 < CK

Thus, by the support properties of b and v
(7.18) w(&r g N{IEl <2KY}) > ek, w(&,2) =0, w(|é]>2K)=0.

_ Next, observe that letting u,, := (K~ hyDg|)(1=b(x, iD,))w, with ¢ € C°(R),
Y =1on [-2,2] and b€ S°(R?) with b= 1 on suppb, we have

Qo,tn = (K D)) (1 = b(a, AD2)) Angn + [Q, (K~ D) (1 — b(w, AD.)) | wp
::hngna

and u,, has defect measure 1 :=2(K~1|¢])(1 — b)?(x, hD,)w. Now, by Lemma B.5
it ([@o, (K R (1 = B, D), §(K "y DI)(1 = b, hDz )
= w(Y(K 1N (L = b(a, AD,)) Hyt (K~ HE]) (1 = b(x, hDy)) =0,
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since suppH g, ¥ (K ~1¢|) (1 — b(z,hD,)) N {|¢]| <2K} =0 and w(|¢] > 2K) =0.
In particular, this implies

1gnllz2 < Cllgnll -2 +o0(1) = o(1).

Therefore, u,, and g, have a joint defect measure equal to 0, and hence, by Lemma
7.1 applied with ¢ := gz, together with Lemma 7.2, for any measurable B, denoting

pi=¢°

t
(B <(B)+Co sup (&) [ ulpn(B)ds  forall t>0,
(z,£)eB 0

and thus, by a Gronwall inequality

(7.19) 1(pe(B)) < u(B) x exp (Co sup (£)t) for all £ > 0.
(z,£)eB

But, by (7.18), u(&,/2) = 0. Together with (7.19), this implies that x is identically
zero. Indeed, let (x,£) € {¢ = 0} be arbitrary. By (7.11), if B = V(z,§) N {q = 0},
where V(z, &) is a sufficiently small neighborhood of (z,&), there exists 7% = 7*(B) >0
such that ¢ .- (B) C &, /2, and hence p(¢_--(B)) =0, from which

1(B) = i r+ (-7 (B))) < plp—7+(B)) x exp (Co { sg}(é“) ) =0,

where we used the fact that supy, oy [€ | < co. This is a contradiction with the fact
that, by (7.18), u(€y ;) = ¢>0. 0

We now show that the scaled operator satisfies the uniform escape-to-ellipticity
condition (7.11) under suitable uniformity assumptions for Fy.

LEMMA 7.4. Let —Ay be as in section A.2, and let pg be its principal symbol.
Let © € (0,7/2). Assume that Fy € C* uniformly in 0 € ©. Then, there exists
v =v(0) > 0 such that, for any 0y € © and any (zo,&) € {Repop, = 1}, there ewists
7o, (20,80) >0 so that the trajectory gpfo (z0,&0) of the Hamiltonian flow associated to
Repy, and starting from (xo,&0) satisfies

wﬂw%@ﬂmfwejlﬂﬂzmdaOHEV}
€

Proof. Suppose the conclusion fails. Then there are {6,}72; and {(2n,&.)}02,
such that

@ (2, &,) C {(€)%po, — 1| <n~'} for all t > 0.

Since © is compact, we can assume 6, — 6 € ©. Moreover, since there exist ¢,C > 0
such that, for all 8 € ©,
(7.20)

Ipe(,&) — 1| > c(€)? — C for all (x,¢), and |po(z,&) — 1| > ¢ for all |z| > C,

we can assume that (z,,&,) — (20,&0). Now, for any fixed t > 0, p_¢(xn,&n) —
p—t(z0,&0). Therefore,

QO_t(xo,go)Cﬂpg—H:O} for all t > 0.
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Now, by (A.8)
Tmpy(x,€) = —2(Fy (x)(I + Fy (2)*) 7', (I + Fy (2)*) 7€)

Therefore, when Impg(z,£) = 0, since Fy'(x) >0, this implies Fé’(m)(I+F9"(x)2)_1§ =
0 and hence,

E= I+ (Ff(2)*)(I + (Fy (2))*) 7' = (I + (Fg' (x))*) '€
Now, again by (A.8)
Repg (w,€) = (I + (Fy'(2))) 7€, (I + (F4'(2))*) 1)
Therefore, when py(z,¢) =1,
Repy(z,€) =[P =1, OeRepy =2(I + (Fy (x))*) 7 (I + (Fy(x))*) "€ = 2¢,

and, since Fy'(x) is symmetric, and Fy' () =0,

Or Repy =~ << < (0))2) e FYF () + B 0, Y () (1 + () (@))€,

(I + (Ff (« £>
= <( (x)l + Fé/aIiFe(m)//)£7§> =
In particular, Hrep, = 2(§,0;) and |{| =1 on {py — 1 =0}. Thus, we have

¢—t(20,60) = (x0 — t&0,&0) C {pe =1} for all t >0,
which contradicts (7.20). O

Proof of Theorem 3.2. We let Qg := —h?Ay — 1 and check that Qy satisfies the
assumptions of Lemma 7.3 with © := [¢, 7/2—¢€]. Lemma 7.4 shows that the escape-to-
ellipticity condition (7.11) is satisfied, where Fy € C® uniformly in 6 € [e, 7/2 — €] since
fo(r) =tan@f(r) with f satisfying (1.5) and the functions Fy and fy are related by
Lemma A.4. Moreover, since for such a scaling function sup <g<o_ [|(I +iFy (x))]|

<C,

inf “2lo(=h*Ag —1 0 >C
eseg/z_E'g' o o—1[>0, [{[=C,

and hence (7.2) holds uniformly in 6 € [¢,7/2 — ¢]. Finally, (7.10) follows from (A.7)
and (A.8); indeed, for u € H?

(7.21) Im(—7%Agu, u) < Im (i A(z)0,u,u) < C’h||u||§{1/2,

where C' > 0 can be taken uniform in 6 thanks again to the particular form of the
scaling function. To see the last inequality in (7.21), observe that

(A(2)hdyu, ) = ((RDY~Y2 A(z) (D)2 (hD)~ /2 h,u, (RD)Y ),

and thus it suffices to observe that, since A(z) € C*, A: Hgl/2 — H,;l/2 is bounded
by Lemma B.4.

Therefore, Lemma 7.3 applies to Qg := —h2Ap—1, © :=[e,7/2—¢]. Let —1 <5 <0,
and \ > hal, where Ry is given by Lemma 7.3. Then Lemma 7.3 implies

lull ez < CHH | (—H22 — 1)ul .
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which implies that
||u||Hs =+ k72||u||Hs+2 < Ckiln(—Ag — kQ)UHHs.

In particular, (—Ag — k2)~! has no poles in k > hy' and the required estimates
hold. 0

Appendix A. Complex scaling for rough scaling functions.. We follow
the treatment of complex scaling in [11, Chapter 4], making the necessary changes to
allow for C%® scaling functions.

A.1. The scaled manifold and operator.. For 0 < 6 < «, let T'y C C? be a
deformation of R? satisfying the following properties:

(A1) ,
Lo N Bea(0,Ry) = Bra(0,Ry), TN (C?\ Bea(0,Ry)) =€ RN (C?\ Bea(0, Ry)),

Lo =3s(RY), Gp:RY—CY, is injective.
Recall that for £>1, a C%* manifold M C C¢ is called totally real if for all m e M,
TM NiT,,, M ={0}.

(Note that we identify T},, M with a subspace of R?? =~ C? in this definition.)
Furthermore, if u € C**(M), we call u € C%*(C?) a (£,t)-almost analytic extension
of w if

.,u(z) = O,(d(z, M)*—1+s), s<t,

where, if z; = x; + iy;,

1 = 1
8zj = 5(81J - 28%), 8,2]- = 5(8wJ + z(‘)yj)

Recall that a C' function, u, on Q C C? is holomorphic if and only if 5Z_ju =0 for all
ji=1,...,d.

We next need the analogue of [11, Lemma 4.30] for C** manifolds. To do this,
we first need a lemma which gives (¢,¢)-almost analytic extensions of functions in
CY*(RY) functions. For this, we need to use the C£* norm:

lull e ::SQPQWH)IIwi(IDI)UIILm,

where @ € C°(—=1,1), ¢1 € C’é?o((%,Q)), orp(x) = p1(2'7%2), k> 1, and Srer=1
We also recall that for all s,t,

0t 0.t
c*tc

and for 0 <t <1, Ot =C5,

LEMMA A.1. Let £ €7Z,, 0<t <1, and suppose that u € C4*(RY). Then, there
is we CLL(C™) such that Tga =u and for all s <t,

5zﬂ:Os(|Imz|Z+s_1).
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Proof. Let x € C°(B(0,2)) with x =1 on B(0,1) and ¢ € C°(R?) with ¢ = 1
on suppu. Define

(lég)d / e e O ((€)y)u(a')da' de.

Note that when y =0, u(xz) = u(x) by the Fourier inversion formula and the support
property of ¥. Next, observe that for 0 <t <1
sup e xwE)) — 0005 xy (€))]
Yy’ ly — /|7

u(x +iy) =

< Caﬁ,y<§>|5|+7*‘°‘|

and
y e Wy (y(€)) € 517

is continuous. Therefore, by [34, Theorem 13.8.3], U € (\,<py4 CEF=s(RL:; Cs L (RY))
and is compactly supported. In particular, o € C%*.
Finally, we compute

5yt [ e (@t

Siacn [ O Qo =1

Now, to estimate I, we observe that |z — 2’| > 0 on the support of the integrand, and
hence we can integrate by parts in £. In particular,

— 1 811[}(33) i(z—z' +iy,£) <$ — I/,D§> N ’ ! 3 N
1= 5 [ om0 (M) (e as'de = 01y,
On the other hand, to estimate II, observe that [(£)y| > 1 on suppdx({(£)y). Therefore,
Ayl T (@) [ ety s eers . OX(E)Y) N
II= T (27‘[‘)d /6 v <£> WU,(.’E )dﬂ? dé.,

d.u(x +iy) =

and since

Bo- w6 gyers_OXUEY) | viramig
PO gy < O

sup
Y
for all s <t,
1] < Cly| .

We now give the analogue of [11, Lemma 4.30].

LEMMA A.2. Let0 <t <1 and suppose M C C?% is a C*? totally real submanifold.
Then every u € C*(M) has a (£ + t)-almost analytic extension, u, to Ce IfP =
Z|a\gkaaag 18 a holomorphic differential operator near M, then P defines a unique
differential operator Py whose action on C%t(M) is given by

Pyu= (P(@))|m.

Proof. The proof follows that of [11, Lemma 4.30], where we replace references
to almost analytic by (£+ t)-almost analytic. O

We now recall [11, Lemma 4.29].
LEMMA A.3. Let 'y be as in (A.1). Then Iy is totally real if and only if

det(azge) 7é 0.
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In particular, if 0 <60 <w/2, and

(A.2) go(x) =2 +i0,Fy(x) : R — C?,

where Fy : R4 = R is convex, then Ty is totally real.

Throughout the paper we work in the case (A.2) as shown in the following lemma.

LEMMA A.4. Let go(x) := x+if9(|x|)|;ﬁ—‘ with fg as described in (1.5). Then there
is F(x) satisfying

F"(x) >0, F'(x)>0on |z|> Ry
such that gg(x) is given by (A.2) with Fp(x)=tanbF(z).
Proof. We follow [11, example on p. 269]. If

o= [ () ds,

then ggp(x) =z +itan00,g(|x|). With F(x) = g(|x|), direct calculation shows that

o S0z o S ()
0;F(x) = Pk (|| —z@x)+ FE rQx,
which is positive semidefinite everywhere and positive definite on |z| > R;. 0

We can now define the complex-scaled operator for a black-box Hamiltonian.
Suppose that 'y is given by (A.1), with g € C?¢, for some 0 <t < 1, and gy satisfying
(A.2), and that P is a black-box Hamiltonian as in section 2. With x € C°(B(0, Ry))
equal to 1 on B(0, Ry), define

Ho=Hr, ® L*(Tg \ B(0, Ro)),
(A.3) Dy={ucHp:xueD, (1-x)ucH*Ty)},
Pou=P(xu) + (=8¢)((1 = x)u)

with Ag:= Ar, defined as in Lemma A.2.

A.2. Fredholm properties of the scaled operator.. Throughout this section
we use the following standard characterization of Fredholm operators.

LEMMA A.5. Let X and Y, Zx, and Zy~ be Banach spaces such that X C Zx is
compact and Y* C Zy+ is compact. Suppose that there is a C >0 such that P: X —Y
satisfies

lullx <C(IPully +[[ullzx) — and |lu|

v S CO(||[P ull x- + [[ull 2y )-

Then P: X —Y 1is Fredholm.

It is easy to check that Ay is an elliptic second order differential operator given
by

(A4) Agu=((I+iF)(x))20,) - (I +iF)(x)) *0pu),  ueCH(Ty);

see [11, equation 4.5.13 and Theorem 4.32].
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LEMMA A.6. For u€ H(R?) and all € >0

(A5) Im(=Agu,u) <ellulfp +Ce Hullle,  [ulfn < C{(=Dou,u)| + Cllul|7.
Furthermore,
(A.6) ||u||%11 < C’(’Re(—Agu,uM — Im(—Agu,u) + ||u|\%2)

Proof. By the definition of the operator —Ay (A.4) acting on H!,
(A7) (—Apu,u) ={((I +iF} (x)) " 0pu, (I —iFy () ' 0pu) + (A(x)0pu,u),
where A(x) € C%%. First, note that
|[(A(@)0au, w)| < Cllull g [l e
Next, put v = (I + Fj/(x)?)7'0,u. (Note that the inverse exists and is bounded since

Fj/(x) is real, symmetric, and tends to tan#I.) Then,
(A.8)
(I +iFy () Opu, (I — iFy (2)) ™ Opu) = (I — iFg (2))v, (I +iFg (x))v)
=((I - iFy(x))%v,v)
= |lollze — 1Fy (2)vlZ2 — 2i(F5 ()v,v).

H—1 H

Therefore, since Fy is positive semidefinite, the first inequality in (A.5) holds.
To obtain the second inequality in (A.5), observe that if

—Im{(I + iFy (z)) " Opu, (I — iFy (x)) ' Opu) = 2(F} (z)v,v) > 2¢||v|?,
then (A.5) holds. On the other hand, since Fy is positive semidefinite,
(A.9) (F}/ (z)v,v) <e|jv]|2, implies that IFY ()02 < Ced ||v]|2..

Indeed, the multiplication operator Fj : L?(R% C?) — L?(R%C?) is positive semi-

definite and self-adjoint. Therefore, letting II. be the spectral projector onto the
1

spectrum < €3, we have

ellvl* > (F'v,v) = (Fy'Tlev, ew) + (Fy' (1 — TLe)o, (I — o)
> e3]|(1 =TI 7.
Therefore,
|Fiolige = 1FyTeolZa + |15/ (1 = TvlFs < CeF o] ..
Thus, using (A.8) together with (A.9) with € > 0 small enough, we have
(I +iFg ()™ 0w, (I = iFy (2)) 7' 0pu)| = c|lvll72 > cl|dzull7,

and (A.5) follows.
To obtain (A.6), we use the second equation in (A.5) to obtain that

[ullF < C|Re(=Agu,u)| + ClIm{=Agu, u)| + Cl|ul7
< ClRe(—Agu,u)| + C|Im<—A9u,u> - eHuHip - C’eil||uH%2|
+O(+ e Yull72 + Cellull7
= C[Re(—Agu, u)| — CTm(—Agu,u) + Ce||ul|3 + C%eHul|32
+CO(+ e YulZ2 + Cellull 7,

and e > 0 small enough. |
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LEMMA A.7. The operator
—Ag — A2 HY(RY) — HH(RY)

is an analytic family of Fredholm operators with index zero in ITm(e* \) > 0. Further-
more,

Rog(\):=(—=Ag — X)) 71 HTY(RY) — HY(RY)

is a meromorphic family of operators with finite rank poles and there is to > 0 such
that for t > to,

, c
Roo(eFO)l-1010 < .
Proof. First note that

_6—21',9A _ AQ _ e—2i9(_A _ ()\ei9)2) . HS(Rd) N H‘9_2<Rd)

is invertible for Im(\e?) # 0 since —A : L2 — L? is self-adjoint.
Suppose that

(—Ag — N)u=f.
Let x € C2°(RY) with x =1 on B(0, R2). Then,
1=x)f =1 =)A= )u= (e A= )1 - x)u+e *[-A, x]u.
Therefore,
(A.10) 1A = X)ullar < C(IL = X)gll -1 + [l L2(suppor) ) -

On the other hand, by Lemma A.6 for ¢ € C2°(R?), and ¢; € C2°(R?) with ¢ =1
on suppvy,

(A.11) lullim < C(agllas + brulz2)-
In particular, combining (A.10) and (A.11), there is ¢; € C2° such that
(A.12) lullin < C(I(=B0 = N2l + [brul 12)-
Now, since
(—e¥0A — 32): HY(RY) — H1(RY)
is invertible, an identical argument shows that
lull e < O~ = A2 ull -1 + [l )

Lemma A.5 now shows that (—Ag — A\?): H! — H~! is Fredholm for Im(e?)) > 0.
Finally, we check the index of this operator. For u € H', A=e7t, and ¢ = 1/\@,
by (A.6),
(=20 — N)u,u)| > c|Re(—Agu, u)| + c|(Im{—Agu, u) — t*[|u||?|
(A.13) > c|Re(—Agu, u)| — cIm(—Agu, u) + ct?||ul]?
> cllul[fn + (ct® = O)|Jull7-.
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Thus,

cllull + (ct? = O)lulle < 3 I(=A = N)ullf- + 5 [lull?y,

and hence, choosing € > 0 small enough,

V(et? = O)llull Lz + cllull g < [1(=2¢ = X*)ull -+

Similarly,

V(et? = O)llullpz + cllull g < 1(=Ag = X*) | g1,
and hence, for ¢ sufficiently large, (—Ag — (e T1)2): H' — H~! is invertible. O
2

e
LEMMA A.8. For Im(e®X) >0, Ry g(A): L2(RY) — H%(R?) and there are C >0
and tg >0 such that for t >ty, and £=0,1,2,

[Ro.6(e"5t)|| g2y e < Ct2

Proof. Suppose f € L?. Then, Ry g(\)f € H'(RY) and (—=Ag — A\2)Roo(\) f = f,
and using (A.13), we obtain

| Ro,0(N)|| 22 < Ct2.
By H? elliptic regularity (see, e.g., [12, section 6.3, Theorem 1]), for u € H*,
(A.14) [ull gz < C(I(=20 = X)ul|2 + [Ju] £2).
Therefore, Ry g(A): L? — H? and
[Ro,6(M 2wz < C;

the bound L? — H' follows by interpolation. 0

LEMMA A.9. Suppose that P(A\) : X = Y is an analytic family of operators in
Q C C and there are Q(A\) : Y — X and S(\) : Y — X meromorphic families of
operators with finite rank poles such that

POQW =T+EKi(N),  SONPO) =1+ Kz(N)

with K1:Y =Y compact and Ky : X — X compact. Then, P(\) is Fredholm.

Proof. Let g € Q. By the definition of a meromorphic family of operators (see,
e.g., [11, Definition C.7]), there are J >0, Ag(A):Y — X, and A, : Y — X such that
Ap () is holomorphic near X\, A; is finite rank, j=1,...,J, and

4,
Then, we claim that
J
(A.15) A~ PO)(@ON) — Ao(N) =1 + K1) = P Ao

Jj=1

is an analytic family of compact operators. Indeed, the left-hand side of this equality is
a meromorphic family of operators with uniformly bounded rank. On the other hand,
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the right-hand side I + K7 (\) — P(A)Ao()) is analytic. In fact, by Taylor-expanding

P()\) about A = \g and demanding that the coefficients of (A—\g)*~7 on the left-hand
side of (A.15) equal zero for k=0,...,J — 1, we see that, for 0 <k < J —1,

k
OY Pla=x
Z %AJ—IH-TL =0.

n=0
Thus,
J J
P(MNA; .
) ()\(_))\O;j =Y [APh=ro4s +O(A = Xl x-v]Aj,
Jj=1 j=1

and this operator is an analytic family of compact operators as claimed. We then
observe that

PA 1y Ry

P(NAN) =T+ K1 (M) =) RS

J

with K ()\) an analytic family of compact operators.
Writing

J B.
S(A) = Bo(\) + Z m

with Bo(A) : Y — X analytic and B, : Y — X finite rank, j =1,...,J, and applying
the same argument shows that By(\) is an approximate left inverse for P()). Since
P(\) has both an approximate left and right inverse, it is Fredholm (see, e.g., [11,
equation (C.2.8)]). 0

PROPOSITION A.10. Let Py, Dy, and Hg, 0 < 0 < w/2, be as in (A3). If

Im(e?)\) > 0, then
P.g — /\2 ZD@ — HQ

is a Fredholm operator of index zero and there is tg > 0 such that for t > to, and
0<s<1,
(A.16) 1(Py — it*) ™" |3gp 5 < O 2.
Moreover, let Ry < Ry with Ry as in (A.1). Then
(Al?) 1B(0,R1)(P — AQ)_llB(()’Rl) = 1B(O,R1)(P9 — AQ)_llB(O’le Im(@zeA) > 0.

Proof. Together with Lemma A.9, the proofs of [11, Theorems 4.36, 4.37] prove
the result with (A.17) replaced by
(A.18) X(P =2 "Iy =x(Py — X))y, Im(e? ) > 0,

for x € C°(B(0,Ry)) with x =1 on B(0, Ry). (Although the bound (A.16) is not
explicitly stated in [11, Theorems 4.36, 4.37], it is essentially contained in step 3 of
the proof of [11, Theorem 4.36].)

Replacing x on the left of both sides of (A.18) by the indicator functions in (A.17)
follows by the unique continuation principle since P = Py on B(0, R;). To replace x on
the right of both sides of (A.18), we approximate f € Hr,®L*(B(0,R1)\B(0, Ry)) by
fn€Hr, ®L*(B(0,R; —n~1)\ B(0, Ry)) and use continuity of (Py—\?)"1:Hg — He
and Rp(A) : Heomp — Hioc- O
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A.3. Fredholm properties for the PML operator.. Now that we have ob-
tained the Fredholm property of Py, we study the Fredholm properties of the corre-
sponding PML operator. Let Qy € I'y have Lipschitz boundary and B(0,R;) C Q.
We study the PML operator Py — A% on €. Let

(A.19)
Ho(Q9) :==Hp, ® L*(Q \ B(0, Ry)),
Dy(Qg) :={u€Ho(Qp) : xueD, (1 —x)ue Hj(Q), —Ag((1 — x)u) € L*(Q)},
Pou:=P(xu) + (=80)((1 = x)u).

We start by showing the Fredholm property when there is no black-box Hamil-
tonian, i.e., when Py = —Ay.

LEMMA A.11. The operator
(—Ag — /\2) : H&(Qg) — H_I(Qe)

is Fredholm with index zero. Let RE,(N) :=(=D8g—X?)"": H™(Qg) = Hg (). Then
there is to >0 such that for t >ty, and 0<s <1,

(A.20) RS (€ 5 1) L2(0)— e (029) < CE* 2.

Proof. Repeating the arguments in the proof of Lemma A.6 for u € Hg ()
instead of u € H'(R?), we obtain that, for u € Hg(Qy),

Im(—Agu, u)a, < ellullfq,) +Ce ulliz (),

(A.21) [ullF () < ClH{=A6u,w)a,| + Cllull72 (),
and
(A.22) [ullF1,) < CIRe(=Agu, u)q, | = Im(=Agu,u)q, + [[ull72(q,))-

The bound (A.21), together with the fact that —Ag : H} () — H~1(p) is bounded,
implies the Fredholm property for (—Ay — A2) : HE () — H () (similar to in
the proof of Lemma A.7). To check that the index of the operator is 0 we argue as
in (A.13). The estimate (A.22) implies that, for A = eTt, the estimate (A.13) holds.
The bound (A.20) for s = 0,1 then follows from (A.13) (exactly as in Lemma A.8),
and the bound (A.20) for 0 < s <1 then follows via interpolation. a0

Finally, we show that the black-box PML operator (A.19) is Fredholm with index
Zero.

PROPOSITION A.12. Let Py, Ho(Qy), and Dy () be as in (A.19). Then, Pp—\?:
Do(Qg) — Ho(Qg) is Fredholm with index zero.

Proof. To show that Py — A? is Fredholm, we find meromorphic families of oper-
ators giving both an approximate left and right inverse for Py — A2. Lemma A.9 then
shows that Py — A\? is Fredholm. To show Py — A? has index zero we find Ay where
Py — )% is invertible (since the index is constant in A by, e.g., [11, Theorem C.5]).
Approximate right inverse.

Let xo € C°(R%;[0,1]) with xo =1 on B(0, Ry + ¢) for some € > 0. Then choose
x; € C(R%[0,1]), j =1,2, such that

(A.23) X; =1 onsupp x;-1,, supp x; C B(0,Ry).
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Let
Qo :=(1—x0)R5 (N (1 —x1), Q1 :=x2(Pp — N*) "' x1,
where (Py — A\?)~1:Hy — Dy. Then
(Py = A*)Qo = (1= 1) + [29, X0l B5p (V) (1 = x1),
(Po — X*)Q1 = x1 + [—A6, x2](Ps — A*) "' x1,

and thus

(Po—=A)(Qo+ Q1) =T+K(\), where K(\):=Ko\)+Ki(\),

Ko(A) =[R20, x0] Ry (M) (L = x1),  K1(A) :=[~A9,x2](Py — A*) "' x1.

By Lemma A.11, RE, : L?(€9) — Dg(€2). Since Q is Lipschitz, Dy () C H3/?()
by [10, Lemme 2], [19, Corollary 5.7]. Therefore, since (1—x1) : Ho(20) — L?(2p) and
[—Ag, x0] : H¥?(Q) — HY?(B(0, R1)\B(0, Ro+e)), Ko(\) : Ho(Q) — HY?(B(0, Ry)\
B(0,Ry +¢€)). Thus, Ko(A) : Ho(9) = Ho(2g) is compact.

Next, by Proposition A.10, (Py—A2)~!:Hy — Dy. Therefore, since x1 : Ho(Qy) —
Hg, and [—Agp, x2] : Dy — Hgomp(B(O,Rl) \ B(0, Ry +¢€),

K1(X) : Ho(Qo) = Hlopp(B(0,R1) \ B(0, Ry + ).

In particular, K1 (A): Ho(29) = Ho(Qp) is compact and thus K (N) : He(Qg) — He(Qo)
is compact.
Invertibility of the right inverse.

We now show that for A = et and ¢ sufficiently large, I + K ()\) is invertible. By
Lemma A.11 and Proposition A.10, respectively, for ¢ > tq,

(A24) | RDy(eT 1)l 1200y s mi(y) SOt and  ||(Pp —it?) 1 <Cth

—1
||H9—>'D9

Furthermore, [Ag, xo] : H*(29) — Ho(p) and [Ag, x2] : DG% — Ho(Qp). Using these
bounds and mapping properties in the definition of K (), we find that, for ¢ > to,

||K(e%t)||H9(Qg)—>H9(Qe) <Ct L
hence I + K (e%t) is invertible for ¢ sufficiently large.

Approximate left inverse.
For the left inverse, let

So(A) == (1= x1)REs(N)(1 = x0) + x1(Ps — A*) " 'xz,
and observe that
So(A)(Pp — X?) =1+ Lg(X),

where

Lo(A) == (1= x1)R{s (M) [x0, D] + X1(Po — A*) ™ [x2, —Ag).

Note that Sy : He(Qg) — Do(Qg) and hence, Ly : Dg(Qg) — Dg(Q9).
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The fact that Lg: He(Qe) — Ho(g) is compact follows from the mapping prop-
erties

(A.25) RPy(N): H Y Q) = HY(Qe),  (Po—N)"1:D, ' /? = Dy?

with the former coming from Lemma A.11, and the latter coming from Proposition
A.10 plus duality and interpolation. Therefore, by the definition of | - | p,(q,) (inher-
ited from (2.3)), to show that Lg: Dy(Qp) — Dp(£2g) is compact, it is enough to show
that (Py — A2)Lg()\) : Do(Qg) — He() is compact. Now, using (A.23), we obtain
that

(A.26) (Py—A*)Lo(N) = [As, x1]Rs (M) x0, Do) + [~Ag, x1](Ps — A*) ' [x2, —Ag].

The compactness of (Py — A2)Lg(A) : Dg(Q) — Ho(Qp) then follows since [—Ag, xi] :
Dy — HY(B(0,R1) \ B(0, Ry +¢)),

(A, xil(Py = X*) 71 [=A, xal Rgp (M)
: H'(B(0,R1)\ B(0,Ro +¢€)) — H*(B(0,R1) \ B(0,Ro +¢)),

and I: H'(B(0,R1) \ B(0,Ry +¢€)) = Ho(£) is compact.
Invertibility of the left inverse. _

Finally, we show that for A = e@ ¢ and ¢ sufficiently large, I + Lg()\) : Dg () —
Dy(£2p) is invertible. As a map Ho(Qg) — Ho(Qs), (I + Lo(X)) ! exists by the same
argument used to show that I+ K (\) was invertible Sand the corresponding estimates
on RPy(A) : H= () — L*(Qp), and (Py — A2) : D, /> — Hy obtained from (A.24) by
duality).

Therefore, by the definition of || - ||p,(q,), to show that (I + Lg(\)) ™" : Dg(Qy) —
Dy(£2p), it is sufficient to show that (Py — A?)(I+ La(X)) ™1 : Dy(2) — He(Qe). Since

(Pp — A2)(I+ Lo(N) "' =Py — A2 — (Pp — A*)Lo(A\) (I + Lo(N)) !,
it is enough to prove that (Py — A%)Lg()\) : He(Qg) — He(p), and this follows from
(A.26) and the mapping properties (A.25). O
Appendix B. Semiclassical analysis..

B.1. Semiclassical pseudodifferential operators. We review here the nota-
tion and definitions for semiclassical pseudodifferential operators on R¢ used in this

paper.
Semiclassical Sobolev spaces. We say that u € H(R?) if

1(€)* Fr(u) (€)| 12 < 00, where (€) := (1 + [¢|*)% and Fp(u)(€) := / e H W u(y) dy

is the semiclassical Fourier transform.
Symbols and operators. We say that a € C°(T*R?) is a symbol of order m if

1020 a(x,€)| < Cap(€)™

and write a € S™(T*R?). Throughout this section we fix xo € C2°(R)) to be identi-
cally 1 near 0. We then say that an operator A : C2°(R?) — D'(R?) is a semiclassical
pseudodifferential operator of order m and write A € U7(R?) if A can be written as

1

B Au@)= g [ R ate €l yluty)dyds + .

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/23 to 144.82.114.246 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

3388 JEFFREY GALKOWSKI, DAVID LAFONTAINE, AND EUAN SPENCE

where a € S™(T*R?) and E = O(h™)y-, i.e., for all N >0 there exists Cy > 0 such
that

HEHH;N(Rd)*)HrILV(Rd) < CNﬁN.

We use the notation Opypa or a(x,hD,,) for the operator A in (B.1) with E=0. We
then define

e ::ﬂ\IIm, S—° ::ﬂSm, e ::U\Ifm, i ::USm.

THEOREM B.1 ([11, Propositions E.17 and E.19]). If A € V"' and B € V;"?,
then
(i) ABewytm,
(ii) [A, B] € hWymtm2—l
(ili) for any s € R, A is bounded uniformly in h as an operator from Hf to H; ™.

Principal symbol. There exists a map
o e 5 8™ /hSm!

called the principal symbol map and such that the sequence

n

0— hsm™—1 B gm %y gm pgm-1 g

is exact where Opy,(a) = a(z,hD). When applying the map o}* to elements of ¥,
we denote it by oy (i.e., we omit the m dependence). Key properites of o are the
following:

(B.2)

on(AB) =0on(A)an(B),  on(A")=Ta(A), il 'on([A, B]) = {on(A),0n(B)},

where {-,-} denotes the Poisson bracket; see [11, Proposition E.17].

Operator wavefront set. To introduce a notion of wavefront set that respects
both decay in i as well as smoothing properties of pseudodifferential operators, we
introduce the set

T*Re:= T*R? U (R? x §971),

where U denotes disjoint union and we view R? x S9! as the “sphere at infinity”
in each cotangent fiber (see also [11, section E.1.3] for a more systematic approach
where T*R¢ is introduced as the fiber-radial compactification of T*R?). We endow
T*Rd with the usual topology near points (zg,&) € T*R? and define a system of
neighborhoods of a point (z¢,&) € R? x S9! to be

e i={(2.6) € TR la — o] < e €] > €1, | 5 — o] <}
U {(2,6) eRTx S¥71 1 |z —mo| <., [€ — &o| <€}

We now say that a point (z¢,&) € T*R¢ is not in the wavefront set of an operator
A €™ and write (z9,&) ¢ WF,(A) if there exists a neighborhood U of (¢, &) such
that A can be written as in (B.1) with

sup 920; a(x,€)(€)N| < Capnh?.
(z,£)eU ;

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/23 to 144.82.114.246 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

PERFECTLY-MATCHED-LAYER TRUNCATION 3389

Elliptic set and elliptic parametriz. We say that (z9,&) € T*R¢ is in the
elliptic set of A and write (x9,&y) € Ell(A) if there exists a neighborhood U of (z¢, &)
such that A can be written as in (B.1) with

inf |a(z M >e>0.
it la(e.)) 7 >
The motivation behind this definition is that semiclassical pseudodifferential operators
are, up to a negligible term, microlocally invertible on their elliptic set, as appears in
the following elliptic parametrix construction.

THEOREM B.2 ([11, Proposition E.32]). Suppose that A € Y™ and B € V™
with WF(A) CEW(B). Then there exist Ey,Ey € ¥ ™™ such that

A=EB+O(h*®)g-, A=BE;+ O(h*)g-c.

Wavefront set of a tempered family of distributions. We say that uyp is
tempered if for all x € C2°(R?), there exists N > 0 such that

||XU/||H;N < 0.

For a tempered family of functions, us we say that (zg,&) € T*R? is not in the
wavefront set of uj and write (zg,&) € WFy(up) if there exists A € ¥° with (z0,&) €
Ell(A) such that for all N there is Cy > 0 such that

HAuﬁHHéV S CNhN.

Semiclassical defect measures. If ki, — 0, we say that a sequence (up)n>0 C
L2 . has semiclassical defect measure u as n — oo (associated to hy,) if u is a positive
Radon measure on T*R¢ such that, as n — oo

(B.3) for all a € C°(T*RY), (a(x, hnDy)tn, uy) — /ad,u.

In addition, if (f,)n>0 C LE ., we say that u,, and f, have joint measure p/ if p/ is a
Radon measure such that

(B.4) for all a € C°(T*RY), (a(x, hnDy)tn, gn) — /aduj.

THEOREM B.3 ([37, Theorem 5.2]). Assume that (un)n>0 C L, is uniformly
bounded in L ., that is, for any x € C° (R%), there exists C >0 such that for any n,
Ixunllrz < C. Then, (up)n>o0 has a subsequence (un,)r>0 admitting a semiclassical
defect measure. If, in addition, (fy)n>0 C L? is bounded in L? independently of n, ny
can be taken such that (un,)e>0 and (fn,)e>0 have a joint defect measure.

B.2. Rough calculus.. We need a semiclassical pseudodifferential calculus for
C™* symbols. We collect here the definition and properties of such operators that
we use throughout the paper. For r € N, 0 < @ < 1, and 0 < p < 1, we say that
peCm*S™ if

IDZp(,E)lleme < Cafg)™ 1.

Moreover, we say that B € C"*¥™ if B = 0Op;(b) with b€ C™*S5™.
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LEMMA B.4 ([17, Lemma 3.8]). For anyr>0,0<a<1, -r—a<s<r+a,
and m € R, the map Opy, : C"*S™ — L(H,‘;+m,H,§) is bounded independently of h.
Moreover, for aec Cg°,

Ch*S™ 5 ps h'[Opy(p), Opy(a)] € L(L?, L?)

is bounded independently of h.

LEMMA B.5. Let 0 < a <1 and Q = Op,(qo) + hOpp(q1) with qo € C1*S? and
q1 € C%*S° and suppose that u has defect measure u. Then for a,b e C°,

i<h_10ph(b)[0ph(a)7 Q]u7 u> - M(quoa)v
—i{u,h""Opy(b)[Opy(a), Qu) — u(bHy,a).
Proof. Let ¢ € C°(R) be such that ) =1 on [—2,2], and for € >0 we define
Gc(,€) = (S (el D)) (2, €),

where gy € S? and ¢; € S, and

(B5) Qe = Oph(qo,e) + hoph(qLe)y 66 = %’IE)% q0,e-

By [17, equations 3.8 and 3.9],

117Opy (a1 — q1.c), Opp(a)ull L2 < Che® [[ull L2 + Oc(R?),
11OPA(90 = go.c), Ops(a)lull L2 < Chellu] 2.

Therefore,

(B.6) [ ([Op4(0). Q —~ Qu,uu,

On the other hand, since, for any T,U € U,

+ | 7 (Opy(a), Q= Q| < O + 0. ().

(B.7) h~ton([T,U]) = —i{on(T),on(U)},
we have that, as h — 0,

ih™(Opy(b)[Opy(a), QcJu, u) — p(bHg, a),
—ih ! (1, Op(0)[Opy(a), QcJu) — n(Hg, a).

Therefore, sending h — 0 in (B.6) we obtain, by the above,
i lim 1™ (Op, (5) 0Py (a), QJu, ) — u(bHy,a)|
+| =i Jim 5 (u, Oy (B)[Opy (0), QJu) — (b, 0)| < Ce¥ .
—

Finally, since gy € C**S? uniformly in A, H;, — H,,. Sending € — 0 and applying
the dominated convergence theorem then proves the lemma. 0

LEMMA B.6. Suppose 0 <§ <1 and
|D?a| < Cﬁh(r+a)5<£>m*|3\*(r+a)5’ HD?QHCL"‘ < Cﬂ<£>m—\3\.
Then, Opp,(a) : Hy* — L?, and

”Oph(a)”H;ﬁ_Jg < C’h(T+a)6.
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Proof. Tt is enough to check this for m = §(r+a). For this, we unitarily transform
to the case h = 1. Let Thu(z) = h%/?u(h’z). Then, Ty : L?> — L? is unitary and
TOpy(a)T* = Op, (ap) with

an(x,€) = a(Roz, ht~%).
It is now easy to check that
ID{an| < Cpr* "+ (€)71P1|IDfal|cre < Cph® (€)1

Therefore, the lemma follows from [34, Chapter 13, Proposition 9.10]. 0

LEMMA B.7. Suppose that a € C™*S™. Then there is an ay satisfying

1020 an(w, )] < Cyh™* (1107,

D (a— an)| < hUT? (1Pt D (0 — ap) (-, ) | ore < Ca(g)™ 1P,

Proof. Let ¢ € C2°(—1,1), ¢ € C(3,2) such that

ei(lsl) + Y _@* (27 |s) = 1.

7>0
Then put
an(z,€) = (95 (°|Dx|)a) (z,€) 95 (€) + Y (95 (h*277°| Dy )a) (w, €) 3 ().
7>0
The estimates now follow as in the proof of [34, Chapter 13, Proposition 9.9]. ]

Appendix C. Properties of ®y(r)..
Proof of Lemma 1.4. We first note that, using the principle square root,
y?
{ze@:lm\/}:a}:z{42 a’ iy yER} $ Z,.

Therefore, if z lies to the left of Z,, then Im\/z > a.
We are interested in

, t(1+ify(r))?
2(t,r)=(1+ifp(r))? — ——0 2 t>0.
(tr)=( fo(r)) (r+ife(r))?
Note in particular that z(0,7) € Zyr(ry and the tangent to Zy (. at 2(0,7) is given by

2(r) ;_

1 .y
22 T )

Next, observe that
(L+ify(r))
(r+ifo(r))?
Hence, since Zj/ () is convex, z(t,r) lies to the left of Zjr(ry for t >0 (and thus
min;>oIm+/z(¢,7) = 2(0,r)) if and only if
-/ : / 2
o AHife() o (A4dtanbf7(r) o L e T 2r

(r+ifo(r))? (r+itanff(r))* — 2 )
and point (2) follows. Point (3) then follows from point (2)

Oz(t,r) = —(1+ifp(r))
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Now, fix § >0 and let g(r) denote the right-hand side of (1.12). Then, there is a
¢s > 0 such that both f(r) > c¢s and f'(r) > cs on r > Ry +46, and thus g(r) < Cs. Then
by (1.12), since tanf — oo as 6 T /2, there is 85 such that for 8 > 05, ®o(r) = fo(r)
and hence (4) holds.

To obtain (1), observe that by (4), for r > Ry 4+ ¢ and 6 > 05, ®g(r) = f(r) tan >
cstanf. Therefore, the result follows if ®y(r) > ¢5 for § < 0 < 5, which was proved
in Lemma 4.1.

Finally, we prove (5). Indeed, for r < Ry, ®y(r) =0, and r > Ro, $p(r) = rtand.
Therefore, we need only consider (r,0) € [Ry, R x (0,7/2).

Since we are using the principle square root and fy >0, fj >0, we have, for t >0,

4
Arg\/l - W € [0,7T/2),

and thus

. = F P f! t
(PQ(T):%ng‘q)@(T,t) where  ®y(r, 1) ::Im<(1+lf0(r))\/l_(7“+ifg(?”))2>.

Next, for r > Ry, 6 >0
fli{glo (I)Q(Ta t) = 00;

therefore, the infimum is achieved at some finite ¢, which we denote by t,, = t,,(r,0).
It is easy to check that, when (1.12) does not hold,

(A5 )
Im((l +iff)%(r— if9)2) s

(C.1) tm(r,0) :max(

Therefore,

0 if Im(1+iff)(r—ife)* <0,

ton(r,0) := (Im((1+ifé)2(r—ifg)4)
max - ,

Im((1+if))2(r —ifo)?)

Note that ¢,,(r,0) is continuous since the numerator of the left entry of the maximum

in (C.1) is zero when Im((1+if})(r —ifs)?) =0, and the singularity in the left entry

of the maximum in (C.1) occurs when Im((1 +if})(r —ifg)?) > 0; this completes the
proof. ]

, 0> otherwise.
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