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Abstract

The approach we present in this thesis is that of integrating optimization problems

as layers in deep neural networks. Optimization-based modeling provides an ad-

ditional set of tools enabling the design of powerful neural networks for a wide

battery of computer vision tasks. This thesis shows formulations and experiments

for vision tasks ranging from image reconstruction to 3D reconstruction.

We first propose an unrolled optimization method with implicit regularization

properties for reconstructing images from noisy camera readings. The method re-

sembles an unrolled majorization minimization framework with convolutional neu-

ral networks acting as regularizers. We report state-of-the-art performance in image

reconstruction on both noisy and noise-free evaluation setups across many datasets.

We further focus on the task of monocular 3D reconstruction of articulated ob-

jects using video self-supervision. The proposed method uses a structured layer for

accurate object deformation that controls a 3D surface by displacing a small number

of learnable handles. While relying on a small set of training data per category for

self-supervision, the method obtains state-of-the-art reconstruction accuracy with

diverse shapes and viewpoints for multiple articulated objects.

We finally address the shortcomings of the previous method that revolve

around regressing the camera pose using multiple hypotheses. We propose a method

that recovers a 3D shape from a 2D image by relying solely on 3D-2D correspon-

dences regressed from a convolutional neural network. These correspondences are

used in conjunction with an optimization problem to estimate per sample the cam-

era pose and deformation. We quantitatively show the effectiveness of the proposed

method on self-supervised 3D reconstruction on multiple categories without the
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need for multiple hypotheses.



Impact Statement

We show in this thesis that optimization techniques as components of deep learning

networks provide, in return, better accuracy. We experimentally demonstrate that

the methodologies presented in this thesis could be adapted to a wide range of vision

applications. Beyond these core research problems, there exist multiple real-world

use cases that can profit from our advancements.

In detail, the presented unrolled optimization methods for image reconstruc-

tion are general enough that could be used for reconstructing images from all sorts

of signals like, for example, Magnetic Resonance Imaging (MRI), Global Maxwell

Tomography (GMT), or synthetic aperture radar (SAR) data. All imaging systems

could benefit from using a mixed optimization and machine learning reconstruction

algorithm and compute accurate reconstructions without noise or visual artifacts.

This claim was also explored in follow-up work for microscope image reconstruc-

tion [1], and its applications can positively impact the medical sciences.

The 3D reconstruction techniques developed as part of this thesis have direct

applications in augmented and virtual reality (AR/VR) and the entertainment indus-

try. Modern head-mounted devices like Oculus, Spectacles, and Hololens open fan-

tastic opportunities for real-world impact; however, many technical and research-

oriented problems remain unresolved. Techniques presented in this thesis have the

potential to enable generic 3D reconstruction of objects, and further improvements

could enable the 3D reconstruction of whole scenes from images or videos and their

re-projection as holograms in the real world using appropriate optical devices. The

CGI industry could adopt the same techniques to speed up movie production and

extend the arsenal of techniques currently available for movie making.
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Chapter 1

Introduction

This thesis aims to embed prior knowledge in Convolutional Neural Networks

(CNNs) for 3D and image reconstruction problems of computer vision. Starting

from an inverse imaging work with a learnable optimization-based approach, we

show that the per-sample estimation of reconstructed images provides more ac-

curate and robust reconstructions than directly regressing images with neural net-

works. We then focus on this thesis’s main contribution, which is the integration

of optimization problems as layers in neural networks to accurately estimate 3D

reconstructions in the form of deformed 3D shapes and camera poses in weakly su-

pervised setups. We refer to layers implementing optimization problems as part of

bigger neural networks as structured layers. Our primary contributions in this thesis

for optimization-based modeling embedded in CNNs in the form of layers are the

following:

• A weakly-supervised approach for 3D reconstruction with CNNs using video

correspondences and a robust per sample estimation of deformation

• An extension of our approach to robustly estimate both camera pose and de-

formation per sample from unstructured image collections

• A per sample optimization approach with CNN regularizers for inverse imag-

ing problems

To position our contributions with respect to the broader 3D reconstruction

context, in Section 1.1 we begin by first defining 3D reconstruction in the context
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Figure 1.1: Sample results of this thesis.

of this thesis, followed by a review of the relevant 3D deep learning literature. We

then give an overview of structured layers in Section 1.2, the challenges they ex-

hibit when embedded in neural networks, and their applications in the general deep

learning literature. Finally, in Section 1.3 we summarize the contributions of this

thesis. In order to keep the presentation contained we present the literature of image

reconstruction only on Chapter 2.

1.1 3D reconstruction

1.1.1 Motivation

In the context of this thesis, we use the term 3D reconstruction to describe com-

puter vision problems where the objective is to reconstruct an object in terms of

a 3D dense surface, texture and camera pose. Although there has been significant

progress in 3D reconstruction, most of the research assumes the availability of mul-

tiple views and high-quality 3D datasets, while much less attention has been given

to the ill-posed problem of monocular 3D reconstruction. Humans have the abil-

ity to accurately guess the structure of an object depicted in a single image from

any viewpoint. Even for non-rigid objects like animals, a person given a single im-

age can easily decompose the depicted object to its 3D shape, its articulated parts

and even the viewpoint used to capture the photograph. Modern solutions for this
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challenging problem are limited, especially in the case of arbitrary high articulated

objects. Hence this thesis aims to develop methods for single-view 3D reconstruc-

tion of non-rigid objects where the object category may be known, but no other

information such as camera calibration, scene, depth or lighting is known.

1.1.2 Single-View Reconstruction

There are several methods for single-view reconstruction which can be grouped

into three different categories, model-based, Shape from X and 3D from image

collections.

1.1.2.1 Model-based Reconstruction

Model-based methods rely on the existence of accurate parametric 3D models

learned, referred to as 3D Morphable Model (3DMM), using high-quality 3D scans.

All model-based methods attempt to fit the parametric 3D model to a single image

for single-view reconstruction. The seminal work of Blanz and Vetter [6] built a

high-resolution morphable model of a 3D textured face mesh from 3D scans. Sub-

sequently, the method fits the model using non-linear optimization to a single image

to reconstruct the shape and albedo. The algorithm solves for the 3D shape and

texture parameters that minimize the differences between the rendered model and

the image constrained from linear statistical models of facial texture and shape. For

many years 3DMMs and their variants were the method of choice for 3D face recon-

struction [7, 8, 9] and can still perform comparably to the state-of-the-art in uncon-

strained 3D shape estimation [10]. Hassner and Basri [11] recover a 3D mesh from

a depth estimate of segmented faces and humans. Approaches working with exten-

sive collections of images work on top of keypoint detectors [12] which allow fitting

in a fully automated manner [13, 14, 15]. Recently, the focus has shifted towards

harnessing CNNs for 3D shape and texture reconstruction with either regressing the

parameters of 3DMMs based on an input image [16] or using 3DMM to synthe-

size an image [17, 18]. The rendering neural network proposed in [19] learns facial

deformations and view-specific textures using a variational autoencoder. Gecer et

al.[20] proposed an extension where 3DMMs are fitted using a generative adversar-
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ial network [21] (GAN) and a differentiable renderer that reconstructs faces with

photorealistic quality under arbitrary recording conditions.

Beyond faces, model-based approaches have been proposed for 3D recon-

structing humans from a single image. Early works for human reconstruction fit

primitive geometric shapes related by a kinematic skeleton to silhouettes [22, 23].

In Hasler et al. [24] the SCAPE [25] parametric body model is fitted to silhouettes

using known segmentations and 3D to 2D correspondences. Kulkarni et al. [26]

estimates body pose from single images using an articulated 3D human model to-

gether with a probabilistic framework. A major leap in performance came with the

introduction of SMPL [27] which, unlike SCAPE, has explicit 3D joints that are re-

lated to the 3D surface of the body, enabling inference of shape from joints. SMPL

is also a linear statistical model where the coefficients can be easily estimated using

optimization [28, 29, 30] or regressed using deep neural networks [31, 32]. Us-

ing an off-the-shelf keypoint detector, Bogo et al. proposed SMPLify [28] which

fits SMPL to 2D keypoints using strong priors to guide the optimization. The

recent method SPIN [33] regresses the parameters of SMPL using a CNN and

subsequently uses them as initialization for an iterative fitting routine that aligns

the model to the 2D keypoints. On the other end of the spectrum, many meth-

ods [34, 30, 35] rely exclusively on regression to address the problem of human

3D reconstruction. Kanazawa et al. [35] propose an end-to-end framework for the

reconstruction of 3D meshes of humans from a single image via minimization of re-

projection losses of keypoints. This training strategy allows the model to be trained

using images in the wild that only have ground truth 2D annotations.

There is little work that addresses the modeling challenges of animals. The

difficulty of handling live animals and the range of sizes, shapes, and intraclass

variability make traditional scanning techniques inapplicable. SMAL models both

articulations and intra-class variation well for a broad category of classes, including

lions, cats, tigers, dogs, horses, and hippos. SMAL [36], inspired by the SMPL

model, learns a parametric model from a small set of 3D scans of toy figurines in

arbitrary poses. The same parametric model is used in [37] to predict the 3D dense
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surface and camera pose of zebras in the wild using a single image as input. In

detail, a deep neural network is trained to regress SMAL parameters, having been

trained on an extensive collection of synthetic images of zebras. Biggs et al. [38]

propose an iterative fitting routine combined with SMAL as a detailed 3D prior

to 3D reconstruct dogs from monocular internet images. In Chapters 3 and 4, we

propose two methods to 3D reconstruct animals without any 3D parametric model

or 3D scanning, which allow us to support animals that the parametric models don’t

support.

1.1.2.2 Shape from X

Shape from Shading [39, 40] is one of the earliest single-view 3D reconstruction

methods that compute the three-dimensional surface from one image of that surface.

Following the success of Shape from Shading, other derivatives were proposed like

Shape from Texture [41], Shape from Defocus [42, 43] and Shape from Specular-

ities [44]. The recent work of Barron and Malik [45] unified multiple Shape from

X approaches by solving for the shape, reflectance, and illumination using a sin-

gle image of an object and its’ foreground mask. The proposed optimization-based

solution searches for the most likely explanation of a single image using a set of

appearance and illumination priors. Shape from Silhouette [46, 47] recovers 3D

models from a single silhouette image of an object using interactive contour label-

ing [48, 49]. Vicente and Agapito [50] built on these approaches to 3D reconstruct

animals from a reference silhouette and a small set of user-annotated keypoints.

A separate line of work solves single-view reconstruction by deforming a 3D

template to match the surface depicted in a single image. Shape from Template [51,

52] focuses on reconstructing inextensible surfaces such as a piece of paper where

the area of the surface remains constant under deformations.

1.1.2.3 3D from Image Collections

A new challenge in computer vision is the reconstruction of a target object from

a single image, using an image collection of similar objects [53, 54, 4, 55]. Given

multiple instances of an object category, the idea is that all different object instances

share a similar 3D shape which can be used as surrogate viewpoints to apply Struc-
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ture from Motion (SfM) techniques. The early work of [56] demonstrates the ap-

plicability of the idea but relies on ground-truth part segmentations to establish

correspondences between all images. Kar et al. [54] learns a deformable category-

specific 3D shape using foreground masks and camera parameters estimated using

SfM. Carreira et al. [53] establishes dense correspondences between all pairs of

training images. A target image is then matched to training images of similar view-

points, thus establishing correspondences to the rest of the training data. These cor-

respondences are combined with an SfM technique to obtain a 3D reconstruction.

Cashman et al. [57] learn a morphable model of dolphin shapes from 2D images

using a few keypoints and silhouettes to bootstrap the reconstruction process. Rein-

ert et al. [58] extract semi-automatically a 3D model from video sequences using

an interactive sketching and tracking approach. The 3D shape is obtained by fitting

and tracking cylindrical primitives over multiple frames.

Recent efforts have focused on achieving 3D reconstruction with minimal su-

pervision by removing the need for manual annotation either part segmentation or

camera poses; instead, the focus is shifted towards self-supervised correspondence

estimation [3, 59, 60, 61]. The common ground of correspondence-based loss is that

if the 3D shape is predicted accurately, it should consistently project to the image

with the 2D observations in a pixel-by-pixel sense. The geometric cycle loss terms

of [62, 4, 2] are explicitly phrased in terms of correspondences established from UV

maps. 3D to 2D cycles can also be defined on texture [3, 62, 61, 63, 60] to penalize

the differences of the reconstructed texture and the colored image observation.

In Chapter 3 and 4 we propose methods that do not require any annotations for

camera pose or part segmentations at training and test time.

1.1.3 Deformation of Surfaces

Deformation of 3D shapes is a ubiquitous task, arising in many vision and graphics

applications. Mesh deformation techniques take an input 3D dense surface, usually

a mesh, and deform it to fit 3D positional constraints and minimize the surface dis-

tortion. Linear deformations are commonly used for deforming models of faces [6],

people [27] and animals [36] due to their simplicity and easy adoption as a compo-
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nent in learnable 3D reconstruction pipelines [28, 33, 36]. The main drawback of

linear deformations is the high-quality 3D scans needed to learn a linear basis that

deforms meshes accurately.

Applications in movie or video game productions require deformable meshes

with high fidelity, so artists commonly model them. Deforming meshes for thou-

sands of frames requires many person-hours, so recent works have focused on inter-

polating and extrapolating deformation from a small number of exemplar meshes.

The exemplar meshes provided by the artists are subsequently used to learn defor-

mations that lie in the space of exemplars’ deformations [64, 65, 66]. Bailey et

al. [67] present a method that reduces the time required to compute mesh deforma-

tion for films using neural networks, a skeleton rig and a few exemplar meshes.

For free-form deformations where the positional constraints are displacements

of several 3D vertices, deformation is achieved with minimization of the elastic

energy [46], local rigidity constraints [68] or preservation of local differential prop-

erties [69]. Free-form deformations and their various constraints are better suited

for monocular 3D reconstruction tasks [61, 2] due to the lack of proper 3D su-

pervision. In Chapter 3 we present a method for learnable deformations that pre-

serves the surfaces of a 3D mesh while adhering to positional constraints provided

by a neural network. Similarly to free-form deformations, cage-based deforma-

tions [70, 71, 72, 73] enclose a shape with a coarse cage mesh, and all surface

points are written as linear combinations of the cage vertices. Recently, Yifan et

al. [74] propose a learnable representation for shape deformation using cages and a

deep network predicting deformations by controlling the cage.

In the next section, we introduce essential techniques needed to develop struc-

tured layers for 3D reconstruction tasks like those presented in Chapter 3 and 4 and

ways to back-propagate through them.
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1.2 Structured Layers

1.2.1 Structured Layers for Neural Networks

Modern deep learning models are composed of parametrized layers organized in a

directed graph with a feed-forward structure. Each processing node implements a

function that transforms the node’s input to an output. End-to-end learning is then

achieved by back-propagating an error signal as a gradient of some global objec-

tive back to all the processing nodes and adjusting the parameters to minimize the

objective. Back-propagation is achieved with automatic differentiation that com-

putes the derivatives of the output of a processing node with respect to the input and

the chain rule of differentiation. At the same time, back-propagation constraints

modern deep learning models to solely comprise processing nodes computing con-

tinuous numerical representations with well-behaved gradients. Non-differentiable

functions where the gradient or the sub-gradient is undefined are not suitable for

modern deep learning models like the operations argmin and argmax commonly

found in optimization.

This thesis proposes solutions that use classic constrained and unconstrained

optimization algorithms as a modular component of larger, end-to-end learnable

networks. These modular components are called Structured Layers because they

impose structural dependencies in the output in the form of error minimization that

purely feed-forward models like CNNs cannot explicitly capture. Energy-based

learning methods depend on an energy function Eθ (x,y) : X×Y→R parametrized

with θ that measures the fit between an input x and an output y. The energy func-

tion mathematically captures important domain knowledge in the output space of

a machine learning task. The solution ŷ is inferred as the stationary point of an

optimization problem

ŷ = argmin
y

Eθ (x,y). (1.1)

This formulation is powerful for modelling and learning purposes and sub-

sumes many modern machine learning methods like the deep feed-forward models.

Energy-based methods have been used for over two decades, and we refer the reader
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to this tutorial [75] for an extensive description of the methods. The domain knowl-

edge captured from an energy function Eθ depends on its formulation. This thesis

extends the concept of a generic neural network layer to include camera pose and

constrained surface deformations solvers and bi-level optimization for image recon-

struction. The proposed solutions use effectively the non-linear underlying physical

and mathematical models known to us apriori rather than having to re-learn these

within the network. Furthermore, structured components provide guarantees and

enforce hard constraints on representations within a model, such as predicting valid

rotations belonging to euclidean groups or surface deformations that maintain sur-

face details intact.

1.2.2 Differentiation of Structured layers

The ability to differentiate through structured layers relies on the complexity of

the optimization task that is solved. Iteration unrolling is a popular choice for

unconstrained optimization problems where a certain number of iterations is un-

rolled and the back-propagated gradients are computed with the chain rule. One

the other hand, if an optimization problem contains non-differentiable operations or

constraints differentiation is achieved with the implicit function theorem.

1.2.2.1 Iteration Unrolling

The solution to the minimization problem of Equation (1.1) often cannot be com-

puted analytically and in a closed-form. A viable alternative is unrolling first-order

gradient iterations of Equation (1.1) as an approximation. The optimization problem

will commonly have the form x∗= argmin
x

fθ (x), where the solution is obtained with

the gradient descent update rule xi+1 = xi−α∇x fθ (x) given an initial guess x0. The

estimate xN of the last step N is used as the output for loss and back-propagation

computation. The number of steps N required to have a good approximate solu-

tion depends on the convergence rate of the gradient descent for the energy func-

tion Eθ . Simultaneously, the maximum number of unrolled iterations is bounded

from the available memory since all intermediate computations are stored for gra-

dient computation. In Chapter 2, we provide a framework for Iterative Neural Net-
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works (INN), which unroll iterations of optimization schemes for a theoretically

infinite number of iterations without any memory constraints. We apply the pro-

posed method to image restoration tasks successfully over standard feed-forward

neural networks.

Back-propagation through unrolled optimization is achieved using automatic

differentiation and is widely supported by all major deep learning frameworks such

as Tensorflow [76] and Pytorch [77]. This technique has been applied to many tasks

across different machine learning and computer vision fields. We highlight some

key works using unrolled optimization. The earliest work is [78] which proposes

back-propagation strategies for a fixed number of iterations of gradient descent or

LBFGS [79]. The authors of [80] propose a structured model that combines Markov

random fields with deep learning, and it is trained using unrolled optimization.

Schmidt et al. [81] proposed an iterative unrolled technique for image de-

noising and deblurring, combining random fields with an optimization algorithm

as a single unit. The seminal work of [81] inspired many other follow up

works [82, 83, 84, 1, 85, 86, 87] that explored the applicability of the method in var-

ious reconstruction tasks, including microscopy and MRI reconstructions. In many

recent works [84, 1, 85, 86, 87], the authors use CNNs instead of random fields to

learn priors about the task at hand, which are trained via automatic differentiation

of the unrolled iterations.

Beyond low-level vision, unrolled structured layers are found in dense la-

belling tasks that assign one label to each pixel of an image. Most dense labelling

methods capture interdependencies in the output space of neural networks to couple

local and global contexts before assigning a label for each pixel or image patch. The

authors of [88, 89, 90, 91] replace the last layer of convolutional neural networks

with conditional random fields for semantic segmentation. These end-to-end train-

able networks contain optimization as part of their architecture to perform mean-

field inference for a fixed amount of iteration. Differentiation through the mean-

field inference is performed automatically through the unrolled iteration. More re-

cently, Chandra et al. [92, 93] provide closed-form expressions for the gradients
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needed for inference, thus eliminating the need for a predefined number of infer-

ence iterations.

Beyond 2D vision, structure layers can be found in 3D reconstructions tasks.

A fully differentiable dense SLAM solver is presented in [94] to estimate maps

and trajectories from colour images. The method unrolls iterations of a Leven-

berg Marquardt solver to estimate the camera pose and map fusion, enabling back-

propagation from 3D maps to 2D pixels. The authors of [33] propose a method with

parametric model-fitting in a deep neural network for 3D human reconstruction that

is end-to-end differentiable. In detail, an initial estimate is regressed from a neu-

ral network to initialize an unrolled optimization framework that fits a parametric

model of the human body to 2D observations.

1.2.2.2 Implicit Differentiation

If a closed-form solution to the minimization problem of Equation (1.1) is avail-

able, then the gradient can be computed analytically. Common optimization formu-

lations with closed-form solutions are the quadratic [81] or Tikhonov regularized

problems [1] whose gradients end up being the solution of a linear system. How-

ever, there can be optimization objectives where differentiation through the argmin

operator of Equation (1.1) cannot be computed analytically with explicit methods

or iteratively with unrolled optimization. In these cases, differentiation is achieved

with bilevel optimization using the implicit function theorem. Implicit function

analysis [95] focuses on solving an equation f (p,x) = 0 for x as a function s of

p, i.e. x = s(p). Implicit differentiation considers how to differentiate the solution

mapping with respect to the parameters, i.e. ∇ps(p) and it is presented in Dontchev

and Rockafellar [95] as follows.

Theorem 1 (Implicit function theorem). Let f : Rd×Rn→Rn be continuously dif-

ferentiable in a neighborhood of (p̄, x̄) and such that f (p̄, x̄) = 0, and let the partial

Jacobian of f with respect to x at (p̄, x̄), namely ∇x f (p̄, x̄), be nonsingular. Then the

solution mapping S(p) = {x ∈ Rn | f (p,x) = 0} has a single-valued localization s

around p̄ for x̄ which is continuously differentiable in a neighborhood Q of p̄ with

Jacobian satisfying ∇s(p) =−∇x f (p,s(p))−1∇p f (p,s(p)) for every p ∈ Q.
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The implicit function theorem has been used in conjunction with the level-set

method that was developed in 1979 by Alain Dervieux [?] and subsequently popu-

larized by Stanley Osher [?]. A seminal applications of implicit function theorem

in computer vision is the method proposed by Mairal et al. [96] where they differ-

entiate the LASSO problem to learn supervised dictionaries for image restoration

and classification. Gould et al. [97] propose a class of models where gradients

are computed based on the desired behaviour using the implicit function theorem

rather than an explicit forward function which allows differentiation even in the

case where non-differentiable operations are used. In a follow-up, work [98] esti-

mate the position and orientation of a camera from a set of 2D image pixels and

3D points without prior knowledge of correspondences using geometric optimiza-

tion. The geometric optimization runs RANSAC [99] to drop outliers which is

non-differentiable; however, gradient estimation through this layer is achieved with

the implicit function theorem. In the context of video classification, Fernando and

Gould [100, 101] show how to differentiate through a rank-pooling operator [102]

within a deep learning model, which involves solving a support vector regression

problem. Lee et al. [103] consider the problem of few-shot learning for visual

recognition. A deep network learns linear classifiers as a basis for generalizing to

new classes. Training happens as part of a neural network layer, and it is achieved

with quadratic programming (QP) solver. Differentiation through the QP solver is

achieved with bi-level optimization in the form of implicit function differentiation.

1.3 Contributions of this thesis

Having described the most relevant literature on 3D reconstruction and structured

layers in deep learning, we now give an overview of our contributions in this thesis.

The following chapters will discuss each of these in detail.

Unrolled Optimization Schemes (Chapter 2) Building on majorization-

minimization framework we develop an unrolled optimization method for recon-

structing images from camera readings. We derive the analytic expressions of each

iteration and use neural networks as regularizers fitted on available training data.
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The approach has a transparent interpretation as a regularization technique com-

pared to black-box approaches mapping inputs to outputs. The method is end-to-

end differentiable however training unrolled optimization schemes exhibit signifi-

cant memory overhead. We present a modified version of the truncated backprop-

agation through time to circumvent this constraint. We demonstrate the utility of

our approach across many datasets, showing substantial improvements over strong

black-box baselines.

Structured layers for pose and deformation estimation (Chapter 3, 4) Build-

ing on structured layers, we focus on implicit differentiation which allow us to in-

troduce optimization as layers in neural networks. Implicit differentiation is used

in this thesis to solve pose estimation and deformation problems relevant to 3D

reconstruction.

In Chapter 3, we propose a method that uses self-supervision to reconstruct in

3D highly non-rigid objects from images and videos. We introduce an interpretable

model of 3D template deformations that controls a 3D surface through the displace-

ment of a small number of learnable anchor points. This structured layer relies on

Laplacian regularization and enables backpropagation through implicit differenti-

ation. We also employ a per-sample numerical optimization approach that jointly

optimizes over mesh displacements and cameras, boosting accuracy as test time

post-processing. We demonstrate the method’s efficacy with state-of-the-art recon-

structions for multiple articulated object categories.

In Chapter 4 we simplify the 3D reconstruction method of Chapter 3 and com-

pute both the camera pose and deformation using structured layers. Overcoming

the technical hurdles of the previous approach, we 3D reconstruct objects without

the need for multiple hypotheses and strong regularization. Instead, we simplify the

network to a single CNN that predicts 2D-3D correspondences between an input im-

age and a generic category template. By relying on these 2D-3D correspondences,

we use a structured layer to replace CNN-based regression of camera pose and

non-rigid deformation. The whole system is end-to-end differentiable, while back-

propagation through the structured layer is enabled using implicit differentiation.
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We demonstrate systematic improvements on multiple categories and substantial

improvements over multi-hypothesis approaches.

1.4 Summary of Publications
The contents of Section 2 appear in:

• [104] Kokkinos, Filippos, and Stamatios Lefkimmiatis. "Deep image demo-

saicking using a cascade of convolutional residual denoising networks." Pro-

ceedings of the European Conference on Computer Vision (ECCV). 2018.

• [105] Kokkinos, Filippos, and Stamatios Lefkimmiatis. "Iterative residual

cnns for burst photography applications." Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition. 2019.

• [55] Kokkinos, Filippos, and Stamatios Lefkimmiatis. "Iterative joint im-

age demosaicking and denoising using a residual denoising network." IEEE

Transactions on Image Processing (2019): 4177-4188.

The contents of Section 3 appear in:

• [61] Kokkinos, Filippos, and Iasonas Kokkinos. "Learning monocular 3D

reconstruction of articulated categories from motion." Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

The contents of Section 4 appears in:

• [106] Kokkinos, Filippos, and Iasonas Kokkinos. "To The Point:

Correspondence-driven monocular 3D category reconstruction." Conference

on Neural Information Processing Systems (2021).

Contribution to research articles as a non-primary author:

• [1] Valeriya Pronina, Filippos Kokkinos, Dmitry V. Dylov, Stamatios Lefkim-

miatis "Microscopy Image Restoration with Deep Wiener-Kolmogorov fil-

ters." Proceedings of the European Conference on Computer Vision (ECCV).

2020.
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• [107] Francesca Babiloni, Ioannis Marras, Filippos Kokkinos, Jiankang

Deng, Grigorios Chrysos, Stefanos Zafeiriou "Poly-NL: Linear Complexity

Non-local Layers with Polynomials." Proceedings of the IEEE International

Conference on Computer Vision (ICCV) (2021).

Pre-prints:

• [108] Filippos Kokkinos, Ioannis Marras, Matteo Maggioni, Gregory

Slabaugh, Stefanos Zafeiriou "Pixel Adaptive Filtering Units." arXiv preprint

arXiv:1911.10581 (2019).

1.5 Summary of Open-Source Code contributions
The code and experiments developed for this thesis are open and publicly available

online:

• https://github.com/fkokkinos/deep_demosaick: Pytorch code for the differen-

tiable Majorization Minimization experiments for image reconstruction

• https://github.com/fkokkinos/deep_burst: Pytorch code for the differentiable

Proximal Gradient Descent experiments and their application to burst denois-

ing and demosaicking

• https://github.com/fkokkinos/acfm_video_3d_reconstruction: Pytorch code

for the articulated mesh reconstruction of animals from monocular images

or videos

• https://fkokkinos.github.io/to_the_point/: Pytorch code for the implicit cam-

era optimization problem and their application to self-supervised monocular

3D reconstruction.

Beyond the dissertation projects, I have contributed to the project:

• https://github.com/vpronina/DeepWienerRestoration: Pytorch code for mi-

croscopy image reconstruction and deblurring using differentiable quadratic

solvers

https://github.com/fkokkinos/deep_demosaick
https://github.com/fkokkinos/deep_burst
https://github.com/fkokkinos/acfm_video_3d_reconstruction
https://fkokkinos.github.io/to_the_point/
https://github.com/vpronina/DeepWienerRestoration


Chapter 2

Implicit Regularization for Image

Reconstruction

In this chapter, we present an optimization unrolling method with implicit regular-

ization properties for the reconstruction of images from camera readings. While

there are several machine learning systems that have been recently introduced to

solve this problem, we propose a novel algorithm which is inspired by classical im-

age regularization methods, large-scale optimization and deep learning techniques.

The method is derived from first principles and unrolls a learnable majorization

minimization framework which is fitted to the available training data using standard

back-propagation practices. Consequently, our derived neural network has a trans-

parent and clear interpretation compared to other black-box data driven approaches.

Our extensive experimentation line demonstrates that the proposed network out-

performs any previous approaches on both noisy and noise-free data across many

different datasets.

The contents of this chapter were presented to the European Conference on

Computer Vision (ECCV) and an extension of the presented work was published on

the IEEE Transactions on Image Processing.

2.1 Introduction
Traditionally, high resolution images from a digital camera are the end result of a

processing pipeline that transforms light intensity readings to images. The image
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processing pipeline is typically modular and the first two and most crucial steps

involve image demosaicking and image denoising. Due to the modular nature of

the pipeline, demosaicking and denoising are dealt in a sequential manner where

the ordering will either alter the light intensity readings from the sensor if denoising

will be applied first, or the initial demosaicking will introduce non-linearities in the

noise statistics rending denoising an even harder problem. Moreover, both of these

problems belong to the category of ill-posed problems while their joint treatment is

very challenging since two-thirds of the underlying data are missing and the rest are

perturbed by noise. Evidently, reconstruction errors during this early stage of the

camera pipeline will produce unsatisfying final results.

Since, demosaicking is an essential step of the camera pipeline, it has been

extensively studied. For a complete survey of recent approaches, we refer to [109].

One of the main drawbacks of the currently introduced methods that deal with the

demosaicking problem, is that they assume a specific Bayer pattern [109, 110, 111,

112, 113, 114, 115]. This is a rather strong assumption and limits their applicability

since there are many cameras available in the market that employ different Color

filter Array (CFA) patterns, for example Fuji sensors. Therefore, demosaicking

methods that are agile and able to generalize to different CFA patterns are preferred.

Typical methods that work for any CFA are nearest neighbor and bilinear

interpolation of the neighboring values for a given pixel for each channel. The

problem with these approaches are the produced zippering artifacts which occur

along high frequency signal changes, e.g., edges and textures. Other classic ap-

proaches make use of the self-similarity and redundancy properties of natural im-

ages [112, 110, 111, 114] in order to reconstruct the image, but they require an

excessive amount of computation time and thus reducing their applicability to low-

resource devices. Another successful class consists of methods that act upon the

frequency domain, where any Bayer CFA can be represented as the combination of

a luminance component at baseband and two modulated components [116].

During recent years, research is directed towards learning based approaches,

although a common problem with the design of learning based demosaicking al-
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gorithms is the lack of ground-truth images. In many approaches such as those

in [117, 118, 115] the authors used already processed images as references that are

simulated mosaicked again, i.e. they apply a mosaick mask on the already demo-

saicked images, therefore obtaining non-realistic pairs for tuning trainable methods.

Under this training strategy, the main issue is that demosaicking artifacts on the

training data will hinder the performance and the overall quality of the reconstruc-

tion. In a recent work Khasabi et al. [119] proposed a way to produce a dataset

with realistic reference images allowing for the design of machine learning demo-

saicking algorithms. In their work, they thoroughly explained a methodology to

create a demosaick dataset which is on par with the reality. We use the Microsoft

Demosaicking dataset [119] in order to train, evaluate and compare our system. The

reason is that the contained images have to be demosaicked in the linear RGB (lin-

RGB) color space of the camera before being transformed via color transformation

and gamma correction into standard RGB (sRGB) space that common consumer

display devices use. Furthermore, two popular CFA patterns are contained into the

dataset, namely the Bayer and Fuji X Trans, which permits the development and

evaluation of methods that are able to deal with different CFA patterns.

The effectiveness of neural networks for image demosaicking has been studied

for over a decade. In earlier works [120, 121] feed forward neural networks were

used on par with dictionary methods in order to obtain adaptive solutions for image

demosaicking, while in [122] small patches were used to train a multi-layer neu-

ral network minimizing an error function. In a recent work, Gharbi et. al. [123]

exploit the advantages in the field of deep learning to create a deep Convolutional

Neural Network (CNN) that is able to demosaick images and a lot of effort was put

by the authors to create a new large demosaicking dataset, namely the MIT Demo-

saicking Dataset which consists of 2.6 million patches of images. Consequently,

new CNN approaches were developed extending the usage of CNNs in the field.

In Tan et al. [115] an ensemble of CNNs was developed which contained different

models trained to demosaick patches with specific attributes, for example textures

and smooth areas, while Henz et al. [124] constructed a convolutional autoencoder
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which was able to jointly design CFA and demosaick, therefore they obtained a CFA

that out-performed the common Bayer CFA for image reconstruction purposes.

Apart from the demosaicking problem, another problem that requires special

attention is the elimination of noise arising from the sensor and which distorts the

acquired raw data. Firstly, the sensor recording is corrupted with shot noise [125]

which is the result of random variation of the detected photons. Second, electronic

inefficiencies during reading and converting electrical charge into a digital count

exhibit another type of noise, namely read noise. While shot noise is generally at-

tributed to follow a Poisson distribution and the read noise a Gaussian distribution;

under certain circumstances both noises can be approximated by a random vari-

able following a heteroscedastic Gaussian pdf [125]. Prior work from Kalevo and

Rantanen [126], analyzed whether denoising should occur before or after the de-

mosaicking step. It was experimentally confirmed that denoising is preferably done

before demosaicking, however, Farsiu et al. [127] formulates the solution of a joint

estimation process in one step and demonstrates the superiority to an approach that

breaks the problem into individual step. Later on, many researchers [128, 129, 130]

validated experimentally the advantage of a joint estimation. Motivated by this

long-known fact, we also pursue a joint approach for denoising and demosaicking

of raw sensor data.

In this chapter, we propose an iterative neural network for solving the joint

denoising and demosaicking problem that yielded state-of-the art results on various

datasets, both real and synthetic, without the need of millions of training images.

We perform an extensive line of experimentation and ablation studies to identify

the performance of the proposed method with different configurations such as the

number of iterations and the effect of different initialization schemes in the overall

quality of the reconstruction.
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2.2 Problem Formulation
To solve the joint demosaicking-denoising problem, one of the most frequently used

approaches in the literature relies on the following linear observation model

y = Mx+n, (2.1)

which relates the observed sensor raw data, y ∈ RN , and the underlying image

x ∈ RN that we aim to restore. Both x and y correspond to the vectorized forms

of the images assuming that they have been raster scanned using a lexicographical

order. Under this notation, M∈RN×N is the degradation matrix that models the spa-

tial response of the imaging device, and in particular the CFA pattern. According to

this, M corresponds to a square diagonal binary matrix where the zero elements in

its diagonal indicate the spatial and channel locations in the image where color in-

formation is missing. Apart from the missing color values, the image measurements

are also perturbed by noise which hereafter, we will assume that is an i.i.d Gaus-

sian noise n∼ N(0, σ2). Note, that this is a rather simplified assumption about the

noise statistics distorting the measurements. Nevertheless, our derived data-driven

algorithm will be trained and evaluated on images that are distorted by noise, which

follows statistics that better approximate real noisy conditions [125].

Recovering x from the measurements y belongs to the broad class of linear

inverse problems. For the problem under study, the operator M is clearly singular,

i.e. not invertible. This fact combined with the presence of noise perturbing the

measurements leads to an ill-posed problem where a unique solution does not exist.

One popular way to deal with this, is to adopt a Bayesian approach and seek for the

Maximum A Posteriori (MAP) estimator

x⋆ = argmax
x

log(p(x|y))

= argmax
x

log(p(y|x))+ log(p(x)),
(2.2)

where log(p(y|x)) represents the log-likelihood of the observation y and log(p(x))

represents the log-prior of x. Problem (2.2) can be equivalently re-casted as the
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minimization problem

x⋆ = argmin
x

1
2σ2 ∥y−Mx∥2

2 +φ(x), (2.3)

where the first term corresponds to the negative log-likelihood (assuming i.i.d Gaus-

sian noise of variance σ2) and the second term corresponds to the negative log-prior.

According to the above, the restoration of the underlying image x, boils down to

computing the minimizer of the objective function in Eq. (2.3), which consists of

two terms. This problem formulation has also direct links to variational methods

where the first term can be interpreted as the data-fidelity that quantifies the prox-

imity of the solution to the observation and the second term can be seen as the

regularizer, whose role is to promotes solutions that satisfy certain favorable image

properties.

In general, the minimization of the objective function

Q(x) =
1

2σ2 ∥y−Mx∥2
2 +φ(x) (2.4)

is far from a trivial task, because the solution cannot simply be obtained by

solving a set of linear equations. From the above, it is now clear that there are two

important challenges that need to be dealt with before we are in position of deriving

a satisfactory solution for our problem. The first one is to come up with an algorithm

that can efficiently minimize Q(x), while the second one is to select an appropriate

form for φ (x), which will constrain the set of admissible solutions by promoting

only those that exhibit the desired properties.

In Section 2.3, we focus on the first challenge, while in Section 2.4 we dis-

cuss how it is possible to avoid making any explicit decisions for the regularizer (or

equivalently the negative log-prior) by following a machine learning approach. As

we will descirbe in detail, the proposed strategy will allow us to efficiently regular-

ize our solution but without the need to explicitly learn the form of the regularizer

φ (x).
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2.3 Majorization Minimization Method
One of the main difficulties in the minimization of the objective function in Eq. (2.4)

is the coupling that exists between the singular degradation operator, M, and the

latent image x. To circumvent this difficulty there are several optimization strate-

gies available that we could use, with potential candidates being splitting variables

techniques such as the Alternating Direction Method of Multipliers [131] and the

Split Bregman approach [132]. However, one difficulty that arises by using such

methods is that they involve additional parameters that need to be tuned so that

a satisfactory convergence speed to the solution is achieved. Unfortunately, there

is not a simple and straightforward way to choose these parameters. For this rea-

son, in this work we will instead pursue a majorization-minimization (MM) ap-

proach [133, 134, 135], which does not pose such a requirement. Under this frame-

work, as we will describe in detail, instead of obtaining the solution by minimiz-

ing (2.4), we compute it iteratively via the successive minimization of surrogate

functions. The surrogate functions provide an upper bound of the initial objective

function [133] and they are simpler to deal with than the original objective function.

Specifically, in the majorization-minimization (MM) framework, an iterative

algorithm for solving the minimization problem

x∗ = argmin
f

Q(x) (2.5)

takes the form [133]

x(t+1) = argmin
x

Q̃(x;x(t)), (2.6)

where Q̃(x;x(t)) is the majorizer of the function Q(x) at a fixed point x(t), satisfying

the two conditions

Q̃(x;x(t))> Q(x),∀x ̸= x(t) and Q̃(x(t);x(t)) = Q(x(t)). (2.7)

Here, the underlying idea is that instead of minimizing the actual objective

function Q(x), we fist upper-bound it by a suitable majorizer Q̃(x;x(t)), and then
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minimize this majorizing function to produce the next iterate x(t+1). Given the

properties of the majorizer, iteratively minimizing Q̃(·;x(t)) also decreases the ob-

jective function Q(·). In fact, it is not even required that the surrogate function in

each iteration is minimized. It is sufficient to find a x(t+1) that only decreases it.

To derive a majorizer for Q(x) we opt for a majorizer of the data-fidelity term

(negative log-likelihood). In particular, we consider the following majorizer

d̃(x,x0) =
1

2σ2 ∥y−Mx∥2
2 +d(x,x0), (2.8)

where d(x,x0) =
1

2σ2 (x−x0)
T [αI−MT M](x−x0) is a function that measures the

distance between x and x0. Since M is a binary diagonal matrix, it is an idempotent

matrix, that is MT M = M, and thus d(x,x0) =
1

2σ2 (x−x0)
T [αI−M](x−x0). Ac-

cording to the conditions in (2.7), in order d̃(x,x0) to be a valid majorizer, we need

to ensure that d(x,x0) ≥ 0,∀x with equality iff x = x0. This suggests that aI−M

must be a positive definite matrix, which only holds when α > ∥M∥2 = 1, i.e α is

bigger than the maximum eigenvalue of the binary diagonal matrix M. Based on

the above, the upper-bounded version of (2.4) is finally written as

Q̃(x,x0) =
1

2(σ/
√

a)2 ∥x− z∥2
2 +φ(x)+ c, (2.9)

where c is a constant and z = y+(I−M)x0.

Notice that following this approach, we have managed to completely decouple

the degradation operator M from x and we now need to deal with a simpler prob-

lem. In fact, the resulting surrogate function in Eq. (2.9) can be interpreted as the

objective function of a denoising problem, with z being the noisy measurements that

are corrupted by noise whose variance is equal to σ2/a. This is a key observation

that we will heavily rely on, in order to design our deep network architecture. In

particular, now it is possible instead of selecting the form of φ (x) and minimizing

the surrogate function, to employ a denoising neural network in order to compute

the solution of the current iteration.

Our idea is similar in nature to other recent image restoration approaches
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that have employed denoising networks as part of alternative iterative optimization

strategies, such as RED [136], P3 [137] and IRCNN [138]. However, a important

difference is that in our case we completely avoid the introduction of any free pa-

rameter that needs to be tuned by the user. We also move one step further from the

aforementioned approaches by finetuning our denoising neural network on available

data which allows us to implicitly incorporate domain knowledge to our learned

regularizer. This direction for solving the joint denoising-demosaicking problem

is very appealing since by using training data we can implicitly learn the function

φ (x) and also minimize the corresponding surrogate function using a feed-forward

network.

2.4 Residual Denoising Network (ResDNet)
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Figure 2.1: Illustration of the residual denoiser; a core module of our framework. The
deep learning based denoiser is used in every iteration to provide an approxi-
mate solution of the surrogate function.

Based on the discussion above, an important part of our approach is the design

of a denoising network that will play the role of the solver for the surrogate function

in Eq. (2.9). The architecture of the proposed network is depicted in Fig. 2.1. This

is a residual network similar to DnCNN [139], where the output of the network is

subtracted from its input. Therefore, the network itself acts as a noise estimator

and its task is to estimate the noise realization that distorts the input. Such network

architectures have been shown to lead to better restoration results than alternative

approaches [139, 140].

One distinctive difference between our network and DnCNN, which also

makes our network suitable to be used as a part of the MM-approach, is that it



2.4. Residual Denoising Network (ResDNet) 36

accepts two inputs, namely the distorted input and the variance of the noise. This

way, as we will demonstrate in the sequel, we are able to learn a single set of param-

eters for our network and to employ the same network to inputs that are distorted by

a wide range of noise levels. While the blind version of DnCNN can also work for

different noise levels, as opposed to our network it features an internal mechanism to

estimate the noise variance. However, when the noise statistics deviate significantly

from the training conditions such a mechanism can fail and thus DnCNN can lead

to poor denoising results. In fact, due to this reason in [138], where more general

restoration problems than denoising have been studied, the authors of DnCNN use

a non-blind variant of their network as a part of their proposed restoration approach.

However, training a deep network that requires a large number of parameters to be

learned for each noise level can be rather impractical, especially in cases where one

would like to employ such networks on devices with limited storage capacities.

In our case, inspired by the recent work in [140] we circumvent this limitation

by explicitly providing as input to our network the noise variance, which is then used

to assist the network so as to provide an accurate estimate of the noise distorting the

input. Note that there are several techniques available in the literature that can

provide an estimate of the noise variance, such as those described in [141, 142], and

thus this requirement does not pose any significant challenges in our approach.

A ResDNet with depth D, consists of five fundamental blocks. The first block

is a convolutional layer with 64 filters whose kernel size is 5× 5. The second one

is a non-linear block that consists of a parametrized rectified linear unit activation

function (PReLU), followed by a convolution with 64 filters of 3× 3 kernels. The

PReLU function is defined as PReLU(x) = max(0,x)+κ∗min(0,x) where κ is a

vector whose size is equal to the number of input channels. In our network we use

D ∗ 2 distinct non-linear blocks which we connect via a shortcut connection every

second block in a similar manner to [143] as shown in Fig. 2.1. Next, the output of

the non-linear stage is processed by a transposed convolution layer which reduces

the number of channels from 64 to 3 and has a kernel size of 5×5. Then, it follows

a projection layer [140] which accepts as an additional input the noise variance and
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whose role is to normalize the noise realization estimate so that it will have the

correct variance, before this is subtracted from the input of the network. Finally

the result is clipped so that the intensities of the output lie in the range [0,255].

This last layer enforces our prior knowledge about the expected range of valid pixel

intensities.

Regarding implementation details, before each convolution layer the input is

padded to make sure that each feature map has the same spatial size as the input

image. However, unlike the common approach followed in most of the deep learn-

ing systems for computer vision applications, we use reflexive padding than zero

padding. Another important difference to other networks used for image restora-

tion tasks [139, 138] is that we don’t use batch normalization after convolutions.

Instead, we use the parametric convolution representation that has been proposed

in [140] and which is motivated by image regularization related arguments.

In particular, if v∈RL represents the weights of a filter in a convolutional layer,

these are parametrized as

v = s
(u− ū)
∥u− ū∥2

, (2.10)

where s is a scalar trainable parameter, u ∈ RL and ū denotes the mean value of u.

In other words, we are learning zero-mean valued filters whose ℓ2-norm is equal to

s.

Furthermore, the projection layer, which is used just before the subtraction

operation with the network input, corresponds to the following ℓ2 orthogonal pro-

jection

PC (y) = ε
y

max(∥y∥2 ,ε)
, (2.11)

where ε = eγθ , θ = σ
√

N−1, N is the total number of pixels in the image (in-

cluding the color channels), σ is the standard deviation of the noise distorting the

input, and γ is a scalar trainable parameter. As we mentioned earlier, the goal of this

layer is to normalize the noise realization estimate so that it has the desired variance

before it is subtracted from the network input.
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Figure 2.2: A graphical representation of the proposed iterative neural network. We have
omitted the extrapolation steps for clarity.

2.5 Demosaicking Network Architecture

The overall architecture of our approach is based upon the MM framework, pre-

sented in Section 2.3, and the proposed denoising network. As discussed, the MM is

an iterative algorithm Eq. (2.6) where the minimization of the majorizer in Eq. (2.9)

can be interpreted as a denoising problem. One way to design the demosaicking

network would be to unroll the MM algorithm as K discrete steps and then for each

step use a different denoising network to retrieve the solution of Eq. (2.9). However,

this approach can have two distinct drawbacks which will hinder its performance.

The first one, is that the usage of a different denoising neural network for each step

like in [138], demands a high overall number of parameters, which is equal to K

times the parameters of the employed denoiser, making the demosaicking network

impractical for any real applications. Simultaneously, the high overall number of

network parameters would require a significantly higher number of training data

and training time. To override these drawbacks, we opt to use our ResDNet de-

noiser, which can be applied to a wide range of noise levels, for all K steps of our

demosaick network, using the same set of parameters. By sharing the parameters of

our denoiser across all the K steps, the overall demosaicking approach maintains a

low number of parameters and requires only a few hundred of images to train.

The second drawback of the MM framework as described in Section 2.3 is the

slow convergence [144] that it can exhibit. Beck and Teboulle [144] introduced

an accelerated version of this MM approach which combines the solutions of two

consecutive steps with a certain extrapolation weight that is different for every step.

In this work, we adopt a similar strategy which we describe in Algorithm 1. Fur-
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Algorithm 1: The proposed demosaicking network described as an iter-
ative process. The ResDNet parameters are shared across all iterations.

Input: M: CFA, y: input, K: iterations, w ∈ RK: extrapolation weights,
σ : estimated noise, γ ∈ RK: projection parameters

x(0) = 0;
Initialize x(1) using y;
for i← 1 to K do

u = x(i)+wi(x(i)−x(i−1));
x(i+1) = ResDNet((I−M)u+y,σ ,γ i);

end

thermore, in our approach we go one step further and instead of using the values

originally suggested in [144] for the weights w ∈ RK , we treat them as trainable

parameters and learn them directly from the data. These weights are initialized

with wi =
i−1
i+2 ,∀1≤ i≤ K. The underlying reasoning of finetuning the extrapolation

weights lies in [145] where the authors claim that some extrapolation weights may

actually hinder the convergence, so we opt to fit the weights upon available data and

derive a data-driven extrapolation suitable for our problem.

The convergence of our framework can be further sped up by employing a con-

tinuation strategy [146] where the main idea is to solve the problem in Eq. (2.9) with

a large value of σ and then gradually decrease it until the target value is reached.

Our approach is able to make use of the continuation strategy due to the design of

our ResDNet denoiser, which accepts as additional arguments the noise variance

that is fed to the learnable projection layer, and the ability to denoise images for

various noise levels. In detail, we initialize the trainable parameter of the projection

layer γ ∈ RK with values spaced evenly on a log scale from γmax to γmin and later

on the vector γ is further finetuned on the training dataset via back-propagation.

In summary, our overall demosaicking network is described in Algorithm 1

where the set of trainable parameters θ consists of the parameters of the ResDNet

denoiser, the extrapolation weights w and the projection parameters γ. All of the

aforementioned parameters are initialized as described in the current section and

Section 2.4 and are trained on specific demosaick datasets.

Finally, while our demosaick network shares a similar philosophy with meth-
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ods such as RED [136], P3 [137] and IRCNN [138], it exhibits some important and

distinct differences. In particular, the aforementioned strategies make use of certain

optimization schemes to decompose their original problem into sub-problems that

are solvable by a denoiser. For example, the authors of P3 [137] decompose the

original problem Eq. (2.1) relying on the Alternating Direction Method of Multipli-

ers (ADMM) [131] and solve instead a linear system of equations and a denoising

problem. The authors of RED [136] go one step further and employ a regularizer

that involves an image-adaptive Laplacian, which in turn allows the use of several

classical and machine-learning based denoisers to serve as sub-solvers. Both ap-

proaches are similar to ours, however their formulation involves a tunable variable

λ that weights the participation of the regularizer on the overall optimization proce-

dure. Thus, in order to obtain an accurate reconstruction in reasonable time, the user

must manually tune the variable λ which is tractable but not a trivial task. On the

other hand, our method does not involve any tunable variables. Furthermore, the

approaches P3, RED and IRCNN are based upon static denoisers like Non Local

Means [147], BM3D [148] and DCNN [139], meanwhile we opt to use a universal

denoiser, like ResDNet, that can be further trained on any available training data.

Finally, our approach goes one step further and we use a trainable version of an

iterative optimization strategy for the task of the joint denoising-demosaicking in

the form of a feed-forward neural network.

2.6 Network Training

2.6.1 Joint Denoising and Demosaicking

Since Eq. (2.9) is, as already discussed, a denoising step, we pre-train our ResDNet

denoiser on the simple case where M = I; casting our problem an Additive White

Gaussian(AWGN) denoising task. We found experimentally that pre-training the

ResDNet vastly reduces the necessary training time because it is a good initializa-

tion for the joint denoising and demosaicking task. In detail, the denoising network

ResDNet that we use as part of our overall network is pre-trained on the Berkeley

segmentation dataset (BSDS) [149], which consists of 500 color images. These
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images were split in two sets, 400 were used to form a train set and the rest 100

formed a validation set. All the images were randomly cropped into patches of size

180× 180 pixels. The patches were perturbed with noise σ ∈ [0,15] and the net-

work was optimized to minimize the Mean Square Error. We set the network depth

D = 5, all weights are initialized as in He et al. [150] and the optimization is carried

out using AMSGRAD [151] which is a stochastic gradient descent algorithm that

adapts the learning rate per parameter. The training procedure starts with an initial

learning rate equal to 10−2.

Using the pre-trained denoiser, our overall network is further trained end-to-

end to minimize the averaged L1 loss over a mini-batch of size d.

L(θ) =
1
N

d

∑
i=1
∥yi− f (xi)∥1 , (2.12)

where yi ∈ RN and xi ∈ RN are the rasterized ground-truth and input images, while

f (xi) denotes the output of our proposed network. Due to the iterative nature of

our framework, the network parameters are updated using the Back-propagation

Through Time (BPTT) algorithm. Specifically, using the same denoiser for every

iteration in Alg. 1 means that the same set of parameters is used for every iteration

and thus we have to sum the parameters changes in the K unfolded instances in

order to train the network. However, if the number of total iterations K is high,

then a number of prohibitive restrictions arise during training, for example both

K and mini-batch size d are upper-bounded from the GPU memory consumption.

It is evident that we need to keep all intermediate results of the Alg. 1 in order

to calculate the gradients which increases the memory requirements by a factor of

K. Thankfully, there is a workaround to avoid such restrictions by using instead

the Truncated Back-propagation Through Time (TBPTT) [152] algorithm, which

we explain in detail in Section 2.6.2. Using this solution, we are able to use an

arbitrary number of total iterations K for training and increase the batch size d with

the only trade-off of being the increase in the computation time. Furthermore, the

optimization is carried again via the AMSGRAD optimizer and the training starts

from a learning rate of 10−2 which we decrease it by a factor of 10 every 100 epochs.



2.6. Network Training 42

Figure 2.3: Increasing the number of iterations, our deep network is capable to achieve
increasingly better reconstruction with the same number of parameters. Also,
it can be seen that given a large number of iterations, the method is capable to
achieve virtually the same performance with and without proper initialization.

Figure 2.4: Results comparing the depth of the denoiser versus the number of iteration on
the noisy MSR Dataset. The heat-map depicts the ability of our method to gen-
eralize by decreasing the number of parameters and simultaneously increasing
the number of iterations.

Finally, for every noise-free experiment we set γmax = 15 and γmin = 0, while for

every other case the respective values are γmax = 2 and γmin = 0.
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2.6.2 Training with TBPTT

As discussed, we would like to use an arbitrary amount of iterations K during train-

ing, however this is not always possible because K is upper-bounded by the available

GPU memory or RAM. Consequently, a higher number of iterations force us to use

smaller batches casting the training of our network slow. Therefore, to overcome

this restriction we propose to train our network with the TBPTT algorithm where

the loop is unrolled into a small set of k iterations (stages) out of K and the back-

propagation is performed sequentially on the unrolled stages. Thankfully, TBPPT

comes with no additional computational cost because an optimized implementation

of TBPTT has the same computation complexity with the full BPTT.

In similar learnable iterative approaches such as those in [153, 85] the au-

thors argued that a few number of iterations between 4 to 6 are enough for obtain-

ing a good reconstruction quality. However, we experimentally found that while a

few number of iterations might lead to adequate results aimed mostly on applica-

tions where computational time needs to be kept relatively low, the best results can

be achieved with as many as 20 iterations or even more. Indeed, as presented in

Figs. 2.3 and 2.4 the Peak Signal-to-Noise Ratio (PSNR) is increasing till a certain

number of iterations and after that it stabilizes. Also, from Fig. 2.3 it is clear that a

proper initialization of the network’s input allows the use of only a few iterations in

order to retrieve comparable performance.

Nevertheless, our method is capable to achieve the same performance even

with an improper initialization if a higher number of iterations is used, casting our

approach very attractive for other inverse problems where no good initialization

exist such as compressed sensing. Finally, in Fig. 2.4 the trade-off between the

number of network parameters and the iterations is demonstrated. In particular,

from these results we observe that networks which involve a denoising network of

smaller depth and thus less trainable parameters, can produce meaningful results

if the number of iterations is high enough, while networks that depend on deeper

denoising networks require only a small number of iterations in order to match the

same performance.
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2.7 Experiments
We perform an extensive line of experimentation on multiple datasets and CFA

patterns in order to evaluate and analyze our method. Our main metric used for

comparisons among different methods in all reported experiments is the PSNR.

2.7.1 Demosaicking Artificial Data

At first, we compare our method against prior work on the pure demosaicking task

with artificially created mosaicked data on the sRGB color space. The artificial

data are created using the standard datasets McMaster [110], Kodak [109] and the

newly created MIT dataset [123]; all of which are 8-bit sRGB data and they are re-

mosaicked, so the following experiments deviate from the standard camera pipeline

used in practical scenarios. Beyond this, the aforementioned dataset are known

to have flaws [123] and misrepresent the statistics of natural images [154]. Due

to the fact that these images are noise-free, we manually set σ = 1 as the noise

standard deviation for all images and no noise estimation takes place. The whole

MIT Dataset is used for training for 10 epochs and we set K = 1 in order to speed

up the training process; after that, the network is trained on a small random subset

of 40.000 with K = 10. In this case, the input is the mosaicked image and no

initialization takes place. From the reported results in Table 2.1 we observe that our

network achieves comparable performance for all different datasets with current

state-of-the art approaches, although, it requires only a fraction of the parameters

that the other systems use.

2.7.2 Demosaicking Raw Data

As mentioned earlier, Khashabi et al. [119] proposed that the evaluation of demo-

saicking and denoising should occur on raw RGB data, because this testing pipeline

is closely related to real digital imaging applications. MSR dataset contains ex-

clusively linear data encoded in the standard imaging 16-bit representation. The

dataset contains 200 images for training, which we augment with vertical and hor-

izontal flips, 100 for validation purposes and a test set of 200 images. The same

200 training images are provided with noise perturbations using the affine noise
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Table 2.1: Quantitative Comparison of our system to state-of-the-art techniques on the
demosaick-only scenario on artificial data in terms of Peak signal-to-noise ratio
(PSNR) performance.

Kodak McM VDP Moire

Bilinear 32.9 32.5 25.2 27.6
Zhang (NLM) [110] 37.9 36.3 30.1 31.9

Hirakawa [155] 36.5 33.9 30.0 32.1
Getreuer [156] 38.1 36.1 30.8 32.5

Heide [113] 40.0 38.6 27.1 34.9
Klatzer [130] 35.3 30.8 28.0 30.3
Gharbi [123] 41.2 39.5 34.3 37.0

Kokkinos [157] 41.5 39.7 34.5 37.0
Tan [115] 42.0 39.0 - -

Henz [124] 41.9 39.5 34.3 36.3
MMNet10 (ours) 42.0 39.7 34.5 37.1

model [125] with unknown values for the hyper-parameters of the noise. The lack

of these hyperparameters renders difficult the production of training data that follow

the same noise statistics. This reason, forced Gharbi et al. [123] to use a simpler

approach for Gaussian noise which diverges greatly from practical applications and

this fact is reflected from the inferior performance that their system achieves in the

noisy case (38.6 dB). While me made the same simplistic assumption in Section 2.3

in order to design the network architecture, our network after being trained on more

realistic noise conditions is capable to denoise successfully even the data dependent

part of the affine noise models.

We estimate σ for each raw image using the median absolute deviation of

the wavelet detail coefficients as described in [158] and provide it to the network

as additional input. Surprisingly, as show in Table 2.2 our method is capable to

achieve slightly better performance to Gharbi et al. in the noise-free scenario using

only 200 training images and surpass previous approaches in the noisy scenario by

a large margin of 1.3 dB if we employ K = 20 iterations and 0.4 dB if we set K = 2.

This fact clearly demonstrates the capabilities of our method to generalize better

even when trained on small datasets and the ability to trade off performance for

computing time and vice versa.
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Reference Hirakawa[155] Zhang(NLM)[110] Gharbi et al.[123] ours

Figure 2.5: Comparison of our network with other competing techniques on images from
the noisy MSR Dataset. From these results it is clear that our method is capable
of removing the noise while keeping fine details. On the contrary, the rest of
the methods either fail to denoise or they oversmooth the images.
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Table 2.2: PSNR performance of different methods in both linear and sRGB spaces. The
results of methods that cannot perform denoising are not included for the noisy
scenario. The color space in the brackets indicates the particular color space of
the employed training dataset. We exclude PSNR scores of methods who are
pure demosaicking from the noisy columns.

noisy noise-free

linRGB sRGB linRGB sRGB
Bilinear - - 30.9 24.9
Zhang(NLM) [110] - - 38.4 32.1
Hirakawa [155] - - 37.2 31.3
Getreuer [156] - - 39.4 32.9
Heide [113] - - 40.0 33.8
Khasabi [119] 37.8 31.5 39.4 32.6
Klatzer [130] 38.8 32.6 40.9 34.6
Gharbi [123] 38.6 32.6 42.7 35.9
Kokkinos [157] 39.2 33.3 41.0 34.6
MMNet2 (ours) 39.2 33.3 42.1 35.6
MMNet20 (ours) 40.1 34.2 42.8 36.4

Table 2.3: Evaluation on noise-free linear data with the non-Bayer mosaick pattern Fuji
XTrans.

noise-free
linear sRGB

Khashabi [119] 36.9 30.6
Klatzer [130] 39.6 33.1
Gharbi [123] 39.7 33.2
Kokkinos [157] 39.9 33.7
MMNet8 (ours) 40.2 34.0
MMNet20 (ours) 40.6 34.4

2.7.3 Demosaicking Non-Bayer CFA

Finally, we explore the applicability of our approach to other Non-Bayer CFA,

namely the Fuji-XTrans used by all modern Fuji digital cameras. Obviously, meth-

ods capable to demosaick images from any camera sensor are preferred for practical

applications. The images contained on MSR are also provided with the Fuji Xtrans

CFA but only on the noise-free case. Using this available data, we trained our

method without initialization and our results are provided in Table. 2.3. Clearly, our

method is capable to outperform the state of the art by a 0.7 dB margin for K = 20
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while being trained with only 200 images with flipping augmentations. At the same

time, our network is capable to outperform previous approaches even when em-

ploying only K = 8 iterations and using as input the mosaicked image without any

proper initialization.

2.8 Conclusions
In this chapter, we presented a deep learning system that produces high-quality im-

ages from raw sensor. The proposed iterative network yields superior results both

quantitative and qualitative compared to the current state-of-the-art network. Mean-

while, our approach is able to generalize well even when trained on small datasets

and the number of our network parameters is kept low compared to other compet-

ing solutions. Finally, we introduce an efficient way to train iterative networks with

arbitrary number of iterations, which we hope that will pave the way to successful

training of learning-based iterative approaches for other similar image restoration

tasks.



Chapter 3

Self-supervised 3D reconstruction of

articulated categories

In this chapter we propose a method that uses self-supervision to 3D reconstruct

highly non-rigid objects from images and videos. Monocular 3D reconstruction of

articulated object categories is challenging due to the lack of training data and the

inherent ill-posedness of the problem. We use video self-supervision, forcing the

consistency of consecutive 3D reconstructions by a motion-based cycle loss. This

largely improves both optimization-based and learning-based 3D mesh reconstruc-

tion. We further introduce an interpretable model of 3D template deformations that

controls a 3D surface through the displacement of a small number of local, learnable

handles. We formulate this operation as a structured layer relying on mesh-laplacian

regularization and show that it can be trained in an end-to-end manner. We finally

introduce a per-sample numerical optimisation approach that jointly optimises over

mesh displacements and cameras within a video, boosting accuracy both for train-

ing and also as test time post-processing. While relying exclusively on a small set of

videos collected per category for supervision, we obtain state-of-the-art reconstruc-

tions with diverse shapes, viewpoints and textures for multiple articulated object

categories.

The contents of this chapter were presented to the Conference on Computer

Vision and Pattern Recognition (CVPR).



3.1. Introduction 50

3.1 Introduction

Monocular 3D reconstruction of general articulated categories is a task that humans

perform routinely, but remains challenging for current computer vision systems.

The breakthroughs achieved for humans [28, 35, 159, 160, 161, 33, 162, 163, 164]

have relied on expressive articulated shape priors [27] and mocap recordings to

provide strong supervision in the form of 3D joint locations. Still, for general artic-

ulated categories, such as horses or cows, the problem remains in its infancy due to

both the lack of strong supervision [37] and the inherent challenge of representing

and learning articulated deformations for general categories.

Recent works have started tackling this problem by relying on minimal, 2D-

based supervision such as manual keypoint annotations or masks [56] and learning

morphable model priors [56, 54, 3, 59] or hand-crafted mesh segmentations [4].

In this work we leverage the rich information available in videos, and use networks

trained for the 2D tasks of object detection, semantic segmentation, and optical flow

to complement 2D keypoint-level supervision.

We make three contributions towards pushing the envelope of monocular 3D

object category reconstruction, by injecting ideas from structure-from-motion, ge-

ometry processing and bundle adjustment in the task of monocular 3D articulated

reconstruction.

Firstly, we draw inspiration from 3D vision which has traditionally relied

on motion information for SFM [165, 166], SLAM [167, 168] or Non-Rigid

SFM [169, 170, 171]. These category-agnostic techniques interpret 2D point tra-

jectories in terms of an underlying 3D scene and a moving camera. In this work

we use the same principle to supervise monocular 3D category reconstruction, ef-

fectively allowing us to leverage video as a source of self-supervision. In particular

we establish dense correspondences between consecutive video frames through op-

tical flow and force the back projections of the respective 3D reconstructions to be

consistent with the optical flow results. This loss can be back-propagated through

the 3D lifting pipeline, allowing us to supervise both the camera pose estimation

and mesh reconstruction modules through video. Beyond coming for free, this su-
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pervision also ensures that the resulting models will exhibit a smaller amount of

jitter and be more flexible when processing videos, since the motion-based loss is

sensitive to inconsistencies across consecutive frames, and failure to co-vary with

moving object parts.

Secondly, we introduce a model for mesh deformations that allows for learn-

able, part-level mesh control, inherently accommodates mesh regularisation, and is

back-propagateable, providing us with a drop-in replacement to the common mor-

phable model paradigm adopted in [3]. For this we rely on the Laplacian surface

deformation algorithm [172], commonly used in geometry processing to deform

a template mesh through a set of control points (‘handles’) while preserving the

surface structure and details. We observe that the result of this optimization-based

algorithm is differentiable in its inputs, i.e. can be used as a structured layer. We

incorporate this operation as the top layer of a deep network tasked with regressing

the position of the control points given an RGB image. Our results show that we can

learn meaningful control points that allow us to capture limb articulations while also

providing a human-interpretable interface that enables the manual post-processing

and further refinement using any available 3D software.

Thirdly we adopt an optimization-based approach to 3D reconstruction that

is inspired from bundle adjustment [173]: given a video, we use the ‘bottom-up’

reconstructions of consecutive frames delivered by our CNN in terms of cameras

and handle positions as the initialisation for a numerical optimisation algorithm.

We then jointly optimise the per-frame mask and/or keypoint reprojection losses,

and video-level motion consistency losses with respect to the cameras and handle

variables, giving a ‘top-down’ refinement of our solution that better matches the

image evidence. We show that this serves as a method for improving the results

at test-time based on whatever image evidence can be obtained without manual

annotation.

We evaluate our approach on 3D shape, pose and texture reconstruction on

a range of different objects that exhibit diverse articulations in nature. Our quali-

tative results show that our method successfully captures intricate shape deforma-
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tions across instances. Our ablation highlights the importance of the employed

self-supervised losses and the tolerance of our method to the number of learnable

handles, while our qualitative results indicate that our method largely outperforms

the results of competing approaches.

3.2 Connection to Related Work

Pose, Texture and Articulation Prediction Our work addresses the task of in-

ferring the camera pose, articulation and texture corresponding to an input image.

Prior works have addressed several aspects of this problem [3, 4, 2] with varying

forms of supervision. Earlier approaches like CMR [3] treat the problem of 3D

reconstruction from single images using known masks and manually labelled key-

points from single viewpoint image collections. Closer to our work is the method

of Kulkarni et al. [4, 2] named Canonical Surface Mapping (CSM) which produces

a 3D representation in the form of a rigid or articulated template using a 2D-to-

3D cycle-consistency loss. The articulated variant of CSM [2] achieves non-rigid

deformation by explicitly segmenting 3D parts of the template shape manually set

prior to training the method.

Surface Deformation Deformation of 3D shapes is a ubiquitous task and it is the

core component of a successful image 3D reconstruction. Recent works on monoc-

ular 3D reconstruction [3, 59] treat deformation as offsets added to mesh vertices.

These offsets are conditioned on images that are fed as input to deep neural net-

works. Plainly relocating vertices gives rise to potential surface distortions or cor-

rupt features and this mechanism can not be interpreted or post-processed by a hu-

man modeller.

Detail-preserving deformations have been studied in the geometry process-

ing community [172, 68, 174, 175]. Among the developed methods there is a

specific subset that rely on a sparse set of control points to achieve mesh defor-

mation. Changing the location of the control points allows the recovery of a de-

formed mesh as the solution of an optimization problem [172, 68]. By revisiting the

aforementioned technique we derive a method on top of the Laplacian Deforma-
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tion solver [172] that is capable of learning the control points and regressing their

position in the 3D space.

Video-based supervision Video has been commonly used as a source of weak

supervision in the context of dense labelling tasks such as semantic segmenta-

tion [176] or dense-pose estimation [177]. Drawing on the classical use of mo-

tion for 3D reconstruction, e.g. [165, 166, 167, 168, 169, 170, 171] many recent

works [178, 179, 180] have also incorporated optical flow information to supervise

3D reconstruction networks. Both in the category-specific [178, 179] and agnostic

[181, 182, 180] setting, optical flow provides detailed point correspondences inside

the object silhouette which can aid the prediction of object articulations and the

reconstruction of the underlying 3D geometry. More recent works have leveraged

videos for monocular 3D human reconstruction [162] or sparsely-supervised hand-

object interactions [183] based on photometric losses. In this work we show the

video is a particularly effective source of supervision for our case, where we jointly

learn the category-specific shape prior and the 3D reconstructions. We also rely

on robust, occlusion-sensitive optical flow networks [184] which provide a stronger

source of supervision than photometric consistency, since they are both trained to

be solving the aperture effect in the interior of objects and also recover large dis-

placement vectors when appropriate.

Our approach is reminiscent of the principle of cycle consistency [185, 186,

187], where the composition of two maps is meant to result in the identity map-

ping (in our case the lifting-based correspondence between two images and the

backward-flow between). We can understand our method as being the dual of [186],

where 3D synthetic data were used to learn dense correspondences between cate-

gories; here we rely on a pre-trained optical flow network to provide correspon-

dences that in turn help learn 3D object categories.

3.3 Method Description

Given an image our target is to perform ‘inverse graphics’, namely infer the 3D

shape, camera pose, and texture of the depicted object. We have at our disposal a
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single representative mesh for the category (’template’), a set of 2D annotations,

such as keypoints or masks (potentially extracted by neural networks, rather than

manually constructed).

In our approach during training we use videos and train per-frame inverse

graphics networks while exploiting temporal information for supervision. At test

time we can deploy the learned networks on a per-frame level, but can also ex-

ploit temporal information, when available, to improve the accuracy of our results

through a joint optimization that is inspired by bundle adjustment.

3.3.1 Learnable Laplacian Solver

Our aim in this work is to synthesise the shape of an articulated object category by a

neural network. While in broad terms we adopt the deformable template paradigm

adopted by most recent works [3, 59, 63], we deviate from the morphable model-

based [6] modeling of shape adopted in [3, 59, 63]. In those works shape is ex-

pressed in terms of offsets ∆V of a template shape V∗ = ∆V +T, where ∆V is

delivered by the last, linear, layer of a shape decoder branch, effectively modeling

shape variability as an expansion on a linear basis. Such models are well-suited to

categories such as faces or cars, but for objects with part-based articulation such as

quadrupeds we argue that a part-level model of deformation is more appropriate -

which is also the approach routinely taken in rigged modeling in graphics. Further-

more, the linear synthesis model is non-interpretable or controllable by humans and

requires careful regularization during training to recover plausible meshes.

We propose instead a deformation model where a set of learnable control points

(or ‘handles’) deform a given template so as to minimize its non-isometric deforma-

tion (i.e. stretching or squeezing) and the network’s task is to regress the positions

of the handles. This model is controllable, interpretable, and regularized by de-

sign, while as our experiments show it yields systematically more accurate mesh

reconstruction results.

Our algorithm builds on Laplacian surface editing techniques [172] which al-

low us to control a template mesh through handles while minimally distorting the

template’s shape. We represent the 3D shape of a category as a triangular mesh
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M = (V,F) with vertices V ∈ RN×3 and fixed edges F ∈ ZN f×3. Our deformation

approach relies on the cotangent-based discretization L ∈ RN×N of the continuous

Laplace-Beltrami operator used to calculate the curvature at each vertex of a mesh

[188].

We obtain our K handles H1,...,K through a learnable dependency matrix A ∈

RK×N
+ that is right-stochastic, i.e. ∑v Ak,v = 1, effectively forcing every handle to lie

in the convex hull of the mesh vertices by H = AV. The network’s task is phrased as

regressing the handle positions, denoted as ∆H . Based on those handles, we obtain

the deformed mesh V∗ as the minimum of the following quadratic loss:

V∗ = argmin
V

1
2
∥LV−LT∥2 +

1
2

∥∥AV− H̃
∥∥2

, (3.1)

where as in [172] the first term enforces the solution to respect the curvature of

the template mesh, LT, while the second one penalizes the difference between the

location of the handles according to V and the target location, H̃ = HT+∆H . The

stationary point of (3.1) can be found by solving the following linear system:

(LTL+ATA)V = LTLT+ATH̃ (3.2)

The solution V∗ of Eq. (3.2) can be very efficiently computed with conjugate gradi-

ents or sparse solvers. In the forward case we obtain the solution using a sparse least

square solver by concatenating the two matrices L and A. As it will be presented

the backward operation requires a different treatment and as such in the backward

operation we make use of a linear solver for PSD matrices.

We want to compute the gradients with respect to the learnable dependency ma-

trix A and the handle offset H̃. We rewrite equation (3.2) as WV = b where

W = LTL+ATA and b = LTLT+ATH. The direct solution is V = W−1b and

W is a symmetric PSD matrix as the addition of two likewise matrices. Instead

of resorting to matrix inversion, we compute V using a linear solver for sym-

metric PSD matrices. To compute the necessary gradients for backpropagation



3.3. Method Description 56

of gradients through Equation (3.1), we rely on matrix calculus and use of three

Kronecker product ⊗ properties [189]: 1) vec(QWE) = (ET ⊗Q)vec(W), 2)

Tm,nvec(Q) = vec(QT) and 3) (Q⊗W)(E⊗R) = (QE⊗WR) . The gradients of

any linear solver for symmetric matrices are the following

∂g(V)

∂b
=

∂V
∂b

∂g(V)

∂V
=

∂W−1b
∂b

∂g(V)

∂V

= W−T
∂g(V)

∂V
= W−1 ∂g(V)

∂V

(3.3)

∂g(V)

∂ vec(W)
=

∂V
∂ vec(W)

∂g(V)

∂V
=

W−1b
∂ vec(W)

∂g(V)

∂V

=
∂ vec(W−1)

∂ vec(W)

∂W−1b
∂ vec(W−1)

∂g(V)

∂V

=
∂ vec(W−1)

∂ vec(W)

∂W−1b
∂ vec(W−1)

∂g(V)

∂V

=
∂ vec(W−1)

∂ vec(W)

∂ (bT⊗ I)vec(W−1)

∂ vec(W−1)

∂g(V)

∂V

= (−W−1⊗W−1)T(bT⊗ I)T
∂g(V)

∂V

= (−W−1⊗W−1)(b⊗ I)
∂g(V)

∂V

=−(V⊗W−1)
∂g(V)

∂V
=−V⊗ ∂g(V)

∂b

(3.4)

As such,

∂g(V)

∂W
=−∂g(V)

∂b
VT (3.5)

After calculating the gradients of the linear solver, the final step is the computation

of the gradients with respect to the handle position regression H̃ and learnable de-

pendency matrix A. The gradient of the first quantity is straight forward to calculate

using Equation (3.3).

∂g(V)

∂ H̃
=

∂b
∂ H̃

∂g(V)

∂b
=

∂ (LTLT+ATH̃)

∂ H̃
∂g(V)

∂b

= A
∂g(V)

∂b

(3.6)
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Lastly we provide the gradient with respect to the learnable dependency matrix A

∂g(V)

∂ vec(A)
=

∂b
∂ vec(A)

∂g(V)

∂b
+

∂ vec(W)

∂ vec(A)

∂g(V)

∂ vec(W)
(3.7)

∂b
∂ vec(A)

=
∂ (LTLT+ATH̃)

∂ vec(A)
=

∂ vec(ATH̃)

∂ vec(A)

=
∂ vec(AT)

∂ vec(A)

∂ (H̃⊗ I)vec(AT)

∂ vec(AT)

=
∂TK,N vec(A)

∂ vec(A)
(H̃T⊗ I)T = TN,K(H̃⊗ I)

(3.8)

∂ vec(W)

∂ vec(A)
=

∂ (LTL+ATA)

∂ vec(A)
=

∂ vec(ATA)

∂ vec(A)

= IN⊗AT+(AT ⊗ IN)TK,N

(3.9)

In practice we initialize the dependency matrix A based on Farthest Point Sam-

pling (FPS) [190] of the mesh, shortlisting a set of vertices {vk},k = 1 . . .K that are

approximately equidistant. For each vertex vk we initialize the k− th row of A based

on the geodesic distance of the vertices to vk:

A[i,k] =
exp(1/di,vk)

∑ j exp(1/d j,vk)
(3.10)

We note that at test time we have a constant affinity matrix, A. Combined with

the fixed values of L and T, we can fold the solution of the linear system in Eq. 3.2

into a linear layer:

V∗ = C+DH̃, (3.11)

with C and D being constant matrices obtained by multiplying both sides of Eq. 3.2

by the inverse of LTL+ATA. We can thus interpret our method as using at train-

ing time template-driven regularization to solve the ill-posed problem of monocular

3D reconstruction, but being as simple and fast as a linear layer at test-time. In

Figure 3.2 we visualized the rows of matrix A for a trained network on videos of
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horses. An interesting observation is the locality of the learned distributions captur-

ing intuitive areas of the template and allowing for accurate mesh deformations.

3.3.2 Motion-based 3D supervision

Having described our deformation model, we turn to the use of video information

for network training. We rely on optical flow [184] to deliver pixel-level correspon-

dences between consecutive object-centered crops. Unlike traditional 3D vision

which relies on category-agnostic point trajectories for 3D lifting, e.g. through fac-

torization [165], we use the flow-based correspondences to constrain the mesh-level

predictions of our network in consecutive frames.

In particular, our network takes as input a frame at time t and estimates a

mesh Vt and a weak perspective camera Ct . A mesh vertex i that is visible in

both frames t and t + 1 will project to two image points pi,t = π(Vi,t ,Ct) and

pi,t+1 = π(Vi,t+1,Ct+1) where π amounts to weak perspective projection. As such

the displacement of point pi,t according to our network will be ũi = pi,t+1−pi,t .

This prediction is compared to the optical flow value ui delivered at pi,t by a

pretrained network [184] that we treat as the ground-truth. We limit our supervision

to image positions in the interior to the object masks and vertices visible in both

frames; vertex visibility is recovered by z-buffering, available in any differentiable

renderer. We denote the vertices that are eligible for supervision in terms of a binary

visibility mask γ : {1, . . . ,Γ}→ {0,1}.

We combine these terms in a ‘motion re-projection’ loss expressed as follows:

Lmotion =
1

∑
Γ
i=1γ i

Γ

∑
i=1

γ i ∥ui− ũi∥1 (3.12)

where we use the ℓ1 distance between the flow vectors for robustness and average

over the number of visible vertices to avoid pose-specific value fluctuations. Since

ũi = π(Vi,t+1,Ct+1)− π(Vi,t ,Ct) continuously depends on the camera and mesh

predictions of our network, we see that this loss can be used to supervise both the

camera and mesh regression tasks.

This loss obviously penalizes the cases where limb articulation observed in the
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image domain is not reflected in the 3D reconstructions, effectively forcing the 3D

reconstructions to become more ‘agile’ by deforming the mesh more actively. Inter-

estingly, we observed that beyond this expected behaviour this loss has an equally

important effect on the camera prediction, by forcing the backprojected mesh to

‘stand still’ in the interior of objects: even though different camera poses could po-

tentially backproject to the same object in a single image, a change in the camera

across frames will cause large 2D displacements for the corresponding 3D vertices.

Beyond motion loss we further make use of losses capturing keypoint, pixel-level

appearance and boundary level supervision for the shape.

Keypoint reprojection loss, as in [4], penalizes the ℓ1 distance between

surface-based predictions and ground truth keypoints, when available:

Lkp = ∑
i
∥ki−π (KiV,C)∥1 ,

where Ki is a fixed vector that regresses the i−th semantic keypoint in 3D from the

3D mesh.

Texture Loss compares the mesh-based texture and the image appearance in

terms of the perceptual similarity metric of [220] after masking by the silhoutette S:

Lpixel = dist
(
Ĩ⊙S, I⊙S

)
.

As in [3] we enforce symmetric texture predictions by using a bilateral symmetric

viewpoint.

Local Rigidity Loss, as in [54] aims at preserving the Euclidean distances

between vertices in the extended neighborhood N (u) of a point u:

Lrigid = E
u∈V

E
u′∈N (u)

∣∣∥∥V (u)−V
(
u′
)∥∥−∥∥V̄ (u)−V̄

(
u′
)∥∥∣∣

Region similarity loss compares the object support computed from the mesh

by a differentiable renderer [193] to instance segmentations S provided either by
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manual annotations or pretrained CNNs using their absolute distance:

Lmask = ∑
i
∥Si− frender(Vi,πi)∥

Lboundary = E
u∈V

C f g(π(u))+ E
b∈B f g

min
u∈V
∥π(u)−b∥2

2,

where as in [171, 54] the first term penalizes points of the predicted shape that

project outside of the foreground mask using the Chamfer distance to it while the

second term penalizes mask under-coverage by ensuring every point on the silhou-

ette boundary has a mesh vertex projecting close to it.

3.3.3 Optimization-based learning and refinement

The objective function for our 3D reconstruction task combines motion supervision

with other common losses in a joint objective function:

Ltotal = Lmotion +Lkp +Lpixel +Lrigid +Lmask +Lboundary , (3.13)

capturing keypoint, pixel-level appearance, rigidity priors, as well as mask- and

boundary- level supervision for the shape.

In principle a neural network could successfully minimize the sum of these

losses and learn the correct 3D reconstruction of the scene. In practice there are too

many local minima in neural network optimization, which is further exacerbated

in our weakly-supervised setting, where we are effectively requesting the network

to both recover and learn the solution to an ill-posed problem for multiple training

samples at the same time.

This has been observed even in human pose estimation [159, 33, 163, 191],

where careful per-sample numerical optimization was shown to yield substantial

performance improvements. Given that in our case we do not know the shape prior

or have access to mocap recordings for supervision, it makes per-sample numerical

optimization even more critical.

In particular we use focused, per-sample numerical optimization to refine the
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Method mIoU PCK
CMR [3] 0.703 81.2
CSM [4] 0.622 68.5
A-CSM [2] 0.705 72.4
Ours

8 0.64 84.6
16 0.676 89.8
32 0.688 89.7
64 0.711 91.5

Table 3.1: Ablation of deformation layer on CUB: Even with only 8 points, our handle-
based approach outperforms all competing methods in terms of PCK, while with
more handles both the mIoU and PCK scores improve further.

network’s ‘bottom-up’ predictions so as to better match the image evidence by min-

imizing Ltotal with respect to the per-frame handles and camera poses; if the object

were rigid this would amount to bundle adjustment, but in our case we also allow the

handles to deform per frame. Our approach also applies to both videos and individ-

ual frames, where in the latter case we omit the motion-based loss. At test-time, as

in the ‘synergistic refinement’ approach of [159], once the network has delivered its

prediction for a test sample (frame/video), we start a numerical ‘top-down’ refine-

ment of its estimate by minimizing Ltotal using masks delivered by an instance seg-

mentation network and flow computed from the video if applicable. The approach

comes with a computational overhead due to the need for forward-backward passes

over the differentiable renderer for every gradient computation (we use Adam [192]

for 50 iterations).

3.4 Experimental Results

3.4.1 Model architecture

We use the same encoder-decoder architecture that is presented in [3, 59]. Every

image is encoded using an ImageNet pre-trained ResNet18 to a latent feature map

z∈R4×4×256. A flattened version of z is processed with two MLP linear layers with

output channels equal to 200 and the final result is given to the handle deformation

predictor and camera predictor branches. The handle deformation branch provides

the handle offsets ∆H ∈RK×3 and the camera predictor predicts the scale, translation
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and rotation, which is encoded as quartenions, through 2 fully connected layers

each with 200 channels. Finally, we use the same texture predictor architecture

as [59] which takes as input the encoded features z and outputs the UV texture map

Iuv ∈ R128×256×3. We also use Pytorch3D [193] as the differentiable renderer.

3.4.2 Per-sample optimization training framework

We build on the camera multiplex training procedure proposed by Goel et al. [59] to

train the proposed method. We provide a small review of the method for coherency,

however we refer the reader to [59] for a thorough explanation and technical details.

The authors propose using a learnable set of possible camera hypotheses for

each training instance that is learned simultaneously with the rest of the 3D re-

construction CNN. In detail, each training instance i has Ci = {π1, . . . ,πNc} as-

sociated camera hypotheses, which are modelled as weak perspective cameras

(s ∈ R, t ∈ R2,q ∈ R4), that are retrieved from a ’camera database’ during training

using unique indices for each training sample. Each camera πi is optimized to mini-

mize the reconstruction losses for the silhouette Lsil,i and the texture Ltex,i like those

used in our proposed framework. In the case of the motion loss Lmotion,i, we avoid

using the cartesian product between the cameras pools Ci and Ci+1 since that would

require excessive computational resources. Instead, we form pairs for each of the

cameras in the hypothesis pool Ci with the nearest camera in the pool Ci+1. For up-

dating the parameters of the method, the resulting losses Li = Lsil,i+Ltex,i+Lmotion,i

of the camera set are used as a distribution over the most likely camera pose. This

is encoded as a probability pi =
e−Li

∑ j e−L j
for πi to be the most likely camera. Using

the computed distribution the final loss is formulated as

L = ∑
i

pi
(
Lsil,i +Ltex,i

)
.

The final step of this training procedure is to train a camera predictor using

the most probable camera of each training image conditioned on the image features

extracted from the backbone CNN that is driving the whole reconstruction process.

Building on this optimization driven paradigm, we extend the training protocol



3.4. Experimental Results 63

with three distinct modifications. First of all, alongside the silhouette and textures

losses we incorporate also the motion re-projection loss that is described in detail in

the main paper. Furthermore, we extend the camera set with per image deformations

D which is only one per image unlike the multiple cameras. In our pipeline, each

training image i has a camera set Ci and a single handle deformation vector Di ∈

RK×3 (with K being the number of handles) that are both used to express a multi-

hypotheses distribution similar to [59]. Thirdly, unlike the aforementioned work,

we simultaneously train our deformation and camera prediction branches using the

most probable explanation for both the camera and deformation in accordance to

the resulting silhouette and texture losses. This is achieved by adding two extra

losses in the total loss function that minimize the ℓ2 norm of the difference between

the predicted quantity and the optimized one retrieved from the ’database’ for each

of the cameras and deformations.

In the case of keypoint trained networks, we set Nc = 1 and initialize the cam-

era with a rigid SfM camera in accordance to CMR [3]. For all other experiments,

we use Nc = 8 and initialize the camera set C for every image in the training set with

camera hypotheses whose azimuth is uniformly spaced on the viewing sphere. The

handle deformations D are initialized with zeros which corresponds to the template

shape. As a first step, each camera is optimized using the silhouette loss Lsil and

motion loss Lmotion using the template shape before training the rest of the method.

We implement a drop hypotheses procedure [59] to reduce the computational com-

plexity where the most improbable hypotheses are discarded from the camera set.

In detail, after 20 epochs we keep the four most probable cameras and after 100

epochs we keep only the 2 most probable cameras. Any training augmentations that

scale and translate the training image i are directly encoded as affine transforma-

tions on the respective camera set Ci while the deformation Di remains unchanged

since the depicted deformation of the object remains identical.

3.4.3 Data

We report quantitative reconstruction results for objects with keypoint-annotated

datasets, i.e birds, horses, tigers and cows. For a wide set of objects a dataset is



3.4. Experimental Results 64

Table 3.2: Keypoint Reprojection Accuracy We report PCK accuracy (higher is better)
achieved by the methods [4, 2] for three different objects. We also indicate
datasets used to train each method alongside with their source of supervision.

Method Supervision
Training
Dataset Horse Cow Tiger

KP Mask Motion TigDog Pascal Pascal TigDog
CSM [4] ✓ ✓ P + I 59.0 46.4 52.6 -
ACSM [2] ✓ ✓ P + I 57.8 57.3 56.8 -
ACSM [2] ✓ ✓ TD 68.7 44.4 - 36.2
Ours, inference ✓ ✓ ✓ TD 74.7 57.2 - 51.9
Ours, with refinement ✓ ✓ ✓ TD 83.1 69.5 - 55.7

CSM [4] ✓ P + I 44.7 49.7 37.4 -
ACSM [2] ✓ P + I 58.1 54.2 43.8 -
ACSM [2] ✓ TD + YV 26.7 33.3 - 15.1
Ours, inference ✓ ✓ TD + YV 42.5 31.6 44.6 28.4
Ours, with refinement ✓ ✓ TD + YV 61.3 54.9 53.9 32.5

Datasets: Pascal (P), ImageNet (I), TigDog (TD), YVIS (YV)

collected, mainly from available video datasets [194, 195]. All of the videos in our

datasets have been filtered manually for occluded or heavily truncated clips that are

removed from the dataset.

Birds We use the CUB [5] dataset for training and testing on birds which con-

tains 6000 images. The train/val/test split we use for training and report is that

of [3]. While this dataset is single-frame, we use it to compare our deformation

module with prior works on similar grounds.

Quadrupeds (Horses, Tigers) We use the TigDog Dataset [194] which con-

tains keypoint-annotated videos of horses and tigers. The segmentation masks are

approximate since they are extracted using MaskRCNN [196]. We also drop the

neck keypoint for both categories since there is a left-right ambiguity in all annota-

tions. For every class we keep 14 videos purely for evaluation purposes and train

with the rest, i.e 53 videos for horses and 44 for tigers. For these classes, the number

of handles is set to K = 16.

Quadrupeds (giraffe, zebras and others) We use Youtube Video Instance

Segmentation dataset (YVIS) [195], that contains videos for a wide variety of ob-

jects, to 3D reconstruct more animal classes. The cow category is used for eval-

uation against other methods and for the rest of the classes we provide qualitative
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Table 3.3: Ablation of deformation layer on CUB: Even when using only 8 points, our
handle-based approach outperforms all competing methods in terms of PCK,
while with more handles both the mIoU and PCK scores further improve.

Method mIoU PCK

CMR [3] 0.703 81.2
CSM [4] 0.622 68.5
A-CSM [2] 0.705 72.4

Ours:
8 0.64 84.6

16 0.676 89.8
32 0.688 89.7
64 0.711 91.5

results due to the lack of keypoint-annotated data.

For all categories we downloaded template shapes from the internet and down-

sampled to a fixed number of N = 642 vertices. For evaluation we use identical

template shape and keypoint annotations to those of [2] for all classes.

3.4.4 Results

Table 3.4: Ablation of motion and optimization based reconstruction for horses and tigers
classes.

Horse Tiger

w/ LMotion w/o LMotion w/ LMotion w/o LMotion
mIoU PCK mIoU PCK mIoU PCK mIoU PCK

Inference 0.536 74.7 0.519 71.5 0.538 51.9 0.52 49.0
Mask 0.691 79.5 0.691 79.5 0.663 51.8 0.616 49.4
Mask and motion 0.631 83.1 0.675 72.5 0.76 55.7 0.64 54.0

3.4.4.1 Handle-based deformation evaluation

We start with the CUB [5] dataset where we use the exact supervision of A-CSM [4].

We outperform the state-of-the-art system on reconstruction [3] by a significant

margin in both mean Intersection over Union (mIoU) and keypoint reprojection ac-

curacy (PCK). PCK is a measure of the accuracy of 3D to 2D correspondences. It

is computed by first defining a threshold distance d, then counting the number of

keypoints (or correspondences) for which the distance between the predicted 2D
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keypoint and the true 2D keypoint is less than d. All methods PCK scores were

computed at normalized distance threshold 0.1 with respect to image size. PCK

and mIoU (mean Intersection over Union) are 2D metrics that measure the accuracy

of 2D predictions, such as keypoints or object segmentation, but do not directly

measure the quality of the underlying 3D predictions. These 2D losses can give an

indication of how well the 3D predictions align with the 2D image plane, but they do

not provide information about the accuracy of the 3D geometry or the object’s pose

and location in 3D space. We ablate in particular the effect of the number of handles

on the achieved 3D reconstruction in Table 3.3. We observe that our results are out-

performing previous methods even with a very small number of handles, however

increasing the number of handles allows for improved performance. Compared to

CMR, we use handle-based deformation as opposed to per point deformation pre-

diction for improved control and optimization. Handle-based deformation allows

for coherent 3D surface areas to be grouped together, making it easier to optimize

the overall solution. This results in a deformation method that is easier to optimize

and in return surpasses the performance of CMR even with as little as 8 handles.

We also provide qualitative results in Figure 3.3 where we show that our method is

capable of correctly deforming the template mesh to produce highly flexible wings,

while the alternative methods barely capture open wing variation. These results

clearly indicate the merit of our handle-based deformation layer.

3.4.4.2 Motion- and Optimization- based evaluation

In Table 3.4, we perform an extensive ablation of the impact of our motion-based

supervision, and optimization-based reconstruction for the category of horses. We

consider firstly the impact that motion-based supervision has as a source of train-

ing (left versus right columns). We observe that motion supervision systematically

improves accuracy across all configurations and evaluation measures.

When optimizing at test time as post-processing we observe how the terms

that drive the optimization influence the final results: when using only masks we

have a marked increase in mIoU, and a smaller increase in PCK, while when taking

motion-based terms into account as well the increase in mIoU is not as big but we
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Figure 3.1: Quadruped reconstructions of our proposed method. We provide renderings
of the 3D reconstruction using the estimated camera pose, a different viewpoint
and the texture reconstruction.

attain the highest improvement in PCK. The same pattern is observed for the Tiger

category in the smaller ablation Table 3.4. We visualize in Figure 3.4 the mean

shape of several classes along with the first 3 common deformation modes. These

visualizations are created by running PCA on the collection of predicted handle off-

sets for the test set. We visualize the first 3 principal components while modulating

the weight for each from -3 to 3.
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Figure 3.2: Handle Influence: We visualize each row of the matrix D for the horse class.
We observe that the associations between the learned handles and the 3D points
are localized to areas of intuitive interest such as legs, tail and the head which
allow for accurate deformation of the template.

3.4.4.3 Comparisons on more categories

In Table 3.2 we report results on more categories where we have been able to com-

pare to the currently leading approaches to monocular 3D reconstruction [3, 4, 2].

We note that several of the datasets used in these works are not publicly available

(e.g. Imagenet post-processed images for the relevant categories), as such our train-

ing data are not directly comparable. Still we note that we use a very small number

of videos (53 for horses, 44 for tigers, 24 for cows) compared to the thousands of

images available in Imagenet or the hunderds in Pascal used by the existing ap-

proaches.

Starting with the comparison on horses for the case where keypoints are avail-

able, we observe that our inference-only method has a clear lead when testing on

the TigDog dataset (the other methods have not been trained on TigDog), while

optimization results in a further boost. When tested on Pascal (our system was not

trained on Pascal nor ImageNet), our inference-only results are comparable to the

best, while optimization gives us a clear edge. For cows we did not have videos
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ACSM CMR Ours ACSM CMR Ours

Figure 3.3: Bird Reconstructions: Qualitative comparisons between our method, CMR
and ACSM with images from the CUB test set.

with cow keypoints, as such we did not train our approach on it, while for tigers we

only report our own method’s results since it has not been possible to train models

for the existing methods.

Turning to results where we do not use keypoints, we observe that our method

outperforms both CSM and ACSM when used in tandem with post-processing op-
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(a) Deer (b) Cow

(c) Horse (d) Tiger

(e) Birds (f) Giraffe

Figure 3.4: Visualization of the predicted deformations for several objects by depicting
the mean shape in the center and the first 3 modes obtained by PCA on the
handle estimates obtained across the dataset.

timization, but overall we observe a larger drop in accuracy compared to the results

obtained when keypoint supervision is available. For the case of cows we observe

that even though our model was never trained on Pascal data, it outperforms the
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Figure 3.5: Reconstruction comparisons of our method and ACSM [2] for the object horse.

mask-supervised variants of both CSM and ACSM.

A pattern that is common for both sets of results is that post-processing opti-

mization yields a substantial improvement in accuracy. As our qualitative results

indicate in Figure 3.1, this is reflected also in the large amount of limb articula-

tion achievable by our model. We provide a qualitative comparison between the

proposed method and ACSM in Figure 3.5. The proposed method predicts more

accurate camera and deformation reconstructions while requiring less human inter-

ventation in the way the meshes deform.

3.4.5 Failure Cases

We visualize some failure cases of the proposed method in Figure 3.6. Common

failure cases are related to the inability to predict a good camera pose and the infer-

ence of simplistic textures. We believe that increasing the amount of training data

will enables us to learn models capable of generalizing well to difficult instances

like partially occlusions or close shots. Furthermore, a perspective camera would
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Figure 3.6: Failure Cases: We visualize some failure modes of our method. The columns
present the input image, 3D reconstruction from the predicted viewpoint and a
different one and the predicted texture .

be better able to capture the close shots as in the elephant and fox on the second

column. The current scaled orthographic camera used can not accurately capture

the necessary depth dependent projection to the image space.

3.5 Conclusions
In this chapter, we presented a learning framework for monocular reconstruction

that combines ideas from deep learning and geometry for the reconstruction of

highly non-rigid objects while delivering interpretable and controllable deforma-

tion representations. We have derived the algorithmic formulation for differentiat-

ing through Laplacian solvers for mesh deformation. The end result is a deformation

process that is interpretable and can be easily plugged in existing 3D software for

post-processing. We have also extended approach with an optimization-driven post

processing step that exploits image cues available to us during inference. Our exper-

iments and reconstructions highlight the potential of the proposed method, showing

that we can reconstruct challenging poses for a wide battery of highly deforming

objects. We anticipate that the proposed framework will be useful for tasks such as

graphics, AR, or robotic interaction with highly articulated animate object classes.



Chapter 4

Correspondence-driven monocular

3D category reconstruction

In this chapter we propose a method that uses self-supervision to 3D reconstruct

highly non-rigid objects from images. The method To The Point (TTP) recovers

a 3D shape from a 2D image by first regressing the 2D positions corresponding

to the 3D template vertices and then jointly estimating a rigid camera transform

and non-rigid template deformation that optimally explain the 2D positions through

the 3D shape projection. By relying on 3D-2D correspondences we use a sim-

ple per-sample optimization problem to replace CNN-based regression of camera

pose and non-rigid deformation and thereby obtain substantially more accurate 3D

reconstructions. We treat this optimization as a differentiable layer and train the

whole system in an end-to-end manner. Backpropagation through the optimization

scheme is achieved via implicit differentiation. We report systematic quantitative

improvements on multiple categories and provide qualitative results comprising di-

verse shape, pose and texture prediction examples.

The contents of this chapter were presented to the Conference on Neural Infor-

mation Processing Systems (NeurIPS).

4.1 Introduction
Monocular 3D reconstruction of general categories is a task that humans perform

with ease, yet remains challenging for computer vision due to its inherently ill-
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posed nature: the observed 2D image is the result of a confluence of multiple

sources of variation, including non-rigid intra-category shape variation, rigid trans-

forms due to camera pose, as well as appearance variation. CNNs can easily learn

to discard appearance variation, yet the treatment of the geometric sources of vari-

ability remains elusive. Even though strongly-supervised approaches have delivered

compelling results e.g. for human reconstruction [197], for general categories we

need to rely on weaker forms of supervision as well as self-supervision stemming

from the know-how of computer vision.

3D vision has traditionally relied on correspondences to recover both rigid

scenes from 2D images for the Structure-from-Motion (SFM) problem [166, 198,

199] as well as the more challenging problem of recovering Non-Rigid structure

from 2D point tracks (NR-SFM) [200, 201, 169, 202]. In all those problems 3D

reconstruction is accomplished by minimizing the reprojection error between the 3D

positions of the inferred 3D scene and their 2D image correspondences. While these

solutions have been developed for the (potentially deformable) single-instance case,

the idea of relying on correspondences to supervise monocular 3D reconstruction

has transpired in recent deep learning works.

CNN-driven monocular 3D category reconstruction [3, 59, 60, 61] has largely

relied on self-supervision for 3D recovery expressed in terms of correspondence-

based loss terms. For instance the geometric cycle loss terms of [62, 4, 2] are

explicitly phrased in terms of correspondence established from UV maps while the

texture-driven loss terms of [3, 62, 61, 63, 60] are implicitly relying on pixel cor-

respondence. The common ground of such loss terms is that if the 3D shape is

predicted correctly, it should project to the image in a way that is consistent with

the 2D observations, as measured in a pixel-by-pixel sense. These correspondence

terms are typically used in tandem with explicit geometric priors such as 3D sym-

metry [59, 3], predefined camera viewpoint ranges [4, 2, 59], or predefined object

scales [4, 2, 59, 61] in order to tackle the ill-posed nature of the problem and the

presence of multiple local minima in the associated learning problem.

Local minima however emerge even in the simpler single-instance case of NR-
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SFM, while highly sophisticated optimization schemes have been introduced to ad-

dress them, e.g. [203]. Current CNN-based approaches seem to ignore this problem

and further exacerbate it by delegating the solution of 3D reconstruction to back-

propagation with SGD: separate network heads are tasked with regressing the cam-

era pose and non-rigid deformation given an image and are trained in an end-to-end

manner, aiming to minimize the correspondence-driven losses. We argue that this is

making optimization harder: network training aims at simultaneously establishing

the association between images and rigid and non-rigid pose parameters as well as

solving the 3D reconstruction problem in terms of these parameters. Each of these

problems is hard enough in isolation and putting them together makes the optimiza-

tion even harder.

This challenge is reflected in the complicated numerical schemes currently

used to mitigate local minima; for instance [59, 61] use multiple camera hypotheses

during both training and testing. The number of hypotheses can range from 8 to up

to 40 for a single reconstruction and the hypotheses have to be accompanied with a

probabilistic method to select the most accurate pose either predicted by an MLP [4]

or using heuristic loss-based weighting schemes [59]. Another example of brittle

optimization, even when keypoint supervision is available, are the works of [3, 204]

where in a first stage SFM/NR-SFM is used to get the camera pose right based

on keypoint supervision, which is then followed by optimization with image-based

losses to recover a mesh. This challenge has been observed also in the strongly-

supervised case of human pose estimation, and the use of per-sample numerical

optimization [28] was shown to improve performance in [159, 33, 163, 191].

In this work we deviate from the current practice of using a CNN to regress

camera and mesh deformation estimates. Instead, during both training and testing

we solve a per-sample optimization problem that explicitly aims at providing a 3D

reconstruction that projects “To The Point" (TTP). We take as input the 2D coordi-

nates corresponding to the 3D vertices of a mesh and recover the 3D vertex positions

by optimizing with respect to the rigid and non-rigid pose parameters through dif-

ferentiable optimization [205, 206]. Hereafter, the term correspondence is used to
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indicate the consistency or agreement between the 3D points and the 2D points pre-

dicted by a neural network. This refers to the projection of the 3D points onto a 2D

image plane, and the consistency or accuracy of the neural network’s prediction of

these projections.

We obtain the 2D points required by our layer by only relying on mask an-

notations and optionally a small number of 2D semantic keypoint annotations, as

well as self-supervision coming from the 3D reprojection loss. We jointly learn

the 2D point regression and the 3D modes of shape variability through end-to-end

optimization, while treating the per-instance rigid and non-rigid pose parameters as

latent variables that are optimized on-the-fly, per sample.

We claim that predicting the correspondences is not only sufficient, but also

more appropriate for driving monocular 3D reconstruction: it spares us from the

use of any additional geometric priors and also yields state-of-the-art results while

only relying on a single camera hypothesis. We evaluate our approach on 3D shape,

pose and texture reconstruction on four objects categories using real-world datasets

CUB [5] and PASCAL3D+ [207]. We demonstrate competitive 3D reconstruction

quality to previous state-of-the-art methods and our ablation study confirms the

importance of the self-supervised losses we employ.

4.2 Related Work

Monocular 3D reconstruction Recent works on this problem [54, 3, 4, 2, 63,

61, 57] have relied on varying forms of supervision. Earlier approaches [3, 54]

treat the problem of 3D reconstruction from single images using known masks

and manually labelled keypoints from single viewpoint image collections. Recent

works [59, 63, 4] have removed the need for keypoints but introduced multiple

viewpoint and deformation hypotheses accompanied with a probabilistic method to

select the most accurate pose. [62, 208, 209] jointly recover cameras and non-rigid

3D meshes with single hypothesis-based networks, but limit themselves to sim-

pler, almost planar categories like faces, or exploit symmetry priors, limiting their

broader applicability.
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Closer to our work is Canonical Surface Mapping (CSM) and Articulated

Canonical Surface Mapping (ACSM) [4, 2] where the 3D representation is produced

in the form of a rigid or articulated template using a 2D-to-3D cycle-consistency

loss.

Non-rigid structure from motion (NR-SfM) The aim of NR-SfM is the re-

covery of the 3D shape and accompanying camera pose given only 2D landmarks

without any explicit 3D supervision [169, 202, 170, 171]. Lately, several deep

learning [62, 210, 211] methods have been proposed that surpassed the perfor-

mance of traditional methods while being considerably faster. All of the afore-

mentioned methods employ different priors to tackle the under-constrained prob-

lem of NR-SfM. The priors are embedded into the methods using low-rank sub-

spaces [212, 169, 203], spatio-temporal domains [171, 178], equivariance con-

straints [210] or sparse basis coefficients using L1 constraints [211, 213, 214].

Learnable Optimization: Common methods for incorporating optimization

as layers in deep neural networks include implicit function differentiation [205, 206,

215, 98, 216] and optimization unrolling [217, 218, 211]; we refer to [206, 205] for

a survey. In 3D reconstruction recent works address the challenge of incorporating

RANSAC in an end-to-end trainable pipeline for camera pose estimation based on

the Perspective-n-Point (PnP) problem, such as differentiable blind PnP [98, 216]

or DSAC [219]. Unlike these works, we do not have to address the combinatorial

nature of correspondence, but rather focus on regressing the 2D image positions of

a 3D template with a fixed number of vertices.

4.3 To-The-Point Monocular 3D Mesh Reconstruc-

tion

We start in Sec. 4.3.1 by introducing the 2D quantities predicted by our network,

we then present our differentiable camera and mesh optimization layer in Sec. 4.3.2,

and finally present the losses driving our end-to-end training in Sec. 4.3.4.
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Figure 4.1: Overview of our method: Given an image we use a network φθ to regress the
2D positions u corresponding to the 3D vertices of a template; we then use a
differentiable optimization method to compute the rigid (camera) and non-rigid
(mesh) pose: in every iteration we refine our camera and mesh pose estimate to
minimize the reprojection error between u and the reprojected mesh (visualized
on top of the input image). The end result is the monocular 3D reconstruction
of the observed object, comprising the object’s deformed shape, camera pose
and texture.

4.3.1 Predicting 3D to 2D Correspondences

Our method assumes that the template of our object category can be described in 3D

in terms of N points. As shown in Fig. 4.1, given an image, we use a CNN, φθ , to

regress the 2D coordinates u ∈ RN×2 corresponding to these N 3D points. We also

predict a visibility vector v where every vi ∈ [0,1] indicates whether the 2D to 3D

correspondence is occluded in the image. Recognition of occluded points allows

for accurate camera pose estimation by eliminating the influence of noisy predicted

points belonging to the non-visible areas of the object.

4.3.2 Estimation of Pose and Deformation

Our aim is to estimate the camera pose and object deformation using only the pre-

dicted 2D points u, the visibility vector v and the template mesh T. We first intro-

duce our assumptions about the rigid and non-rigid part of the shape and then turn

to the resulting optimization problem.

Firstly, as in [3, 59, 4, 2, 63, 60], we model the 3D-to-2D projection through

weak perspective [166]. This involves a 2×3 3D-to-2D “scaled orthographic” pro-
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jection matrix of the following form:

C =

s 0 0

0 s 0

 , (4.1)

where the scaling factor s accounts for global scaling due to depth variation;

given a set of 2D image points this is set to their standard deviation, yielding invari-

ance of the pose parameters to similarity transforms of the 2D and 3D coordinate

frames. The rigid pose parameters comprise a rotation R and translation t that ac-

count for viewing a 3D object V from a given camera position. The parametric

estimates for the 2D projections of a 3D object can thus be obtained as follows:

û(R, t) = C(RV+ t) (4.2)

where V is 3×N, u is 2×N, and we overload notation for + assuming that t is

replicated N times.

Having covered the rigid object case, we now turn to the modeling of non-rigid

categories. For this we rely on the deformable template paradigm [6] commonly

used also in the NR-SFM literature [169, 202], and obtain a shape estimate V by

adding offsets ∆V = Bc to a template shape T, yielding V =∆V +T. Combined

with Eq. 4.2, we have the following parametric estimate of the 2D positions:

û(C,R, t) = C(R(T+Bc)+ t) (4.3)

which is bilinear in R, t and c.

So far we do not deviate substantially from recent works [3, 59, 63, 60] in terms

of modelling: these also rely on the morphable model paradigm [6] and regress a

shape update ∆V and a rotation matrix through network heads. A minor modelling

difference is that we have a low-rank model for Bc, while their shape update is

driven by a high-dimensional latent vector. Our main difference is that rather than

delegating to the network the task of predicting the ‘right’ values of R, t,V, we

directly optimize for them through a lightweight and differentiable optimization
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scheme by exploiting our regressed 2D correspondences. This ‘optimizes out’ these

parameters and ensures our 3D inference will project as accurately as possible to

the 2D points, rather than delegating the optimization to backprop and the network

heads.

Our “To-The-Point” approach aims at minimizing the following re-projection

error between the predicted 2D points u and the 2D point estimates deliver by the

parametric, 3D-based prediction:

l(R, t,c) =
N

∑
i=1

vi ∥ui− ûi(C,R, t)∥2
2 + γ ∥c∥2

2 , (4.4)

where we weigh the discrepancy between the two quantities by the regressed vis-

ibility, ensuring that the reconstruction process is robust to occluded points. We

also add a regularization weight γ on the expansion coefficients to avoid instabili-

ties in the first stages of training, when the basis B is still unknown and can lead to

prematurely committing to large arbitrary deformations.

To minimize the loss term in Eq. (4.4), we use an alternating optimization

scheme and perform separate updates for camera pose estimation and mesh defor-

mation:

R̂t , t̂t =argmin
R,t

l(R, t, ĉt),subject toR ∈ SO(3) (4.5)

ĉt+1 =argmin
c

l(R̂t , t̂t ,c) (4.6)

where at each step we use some of the previously estimated quantities (denoted

by hat) as fixed and optimize with respect with the remaining ones to update their

estimates.

Starting from the optimization in Eq. 4.5, we satisfy the constraint that R ∈

SO(3) by using the angle-axis representation r of the rotation Rr such that Rr =

exp[r]× where [·]× is the skew symmetric operator . The underlying non-linear

problem is solved using the L-BFGS optimizer [79] and when t > 1 is initialized

with the estimate of the previous iteration. To backpropagate through L-BFGS we
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use the implicit function theorem as described in [98, 216].

We provide the closed form solution of the deformation step. The problem we

solve is

l(c) =
N

∑
i=1

vi ∥ui−C(R(Ti +Bic)+ t)∥2
2 + γ ∥c∥2

2

=
N

∑
i=1

vi

∥∥∥∥∥∥(ui−CRTi−Ct)︸ ︷︷ ︸
yi

−CRt+1Bi︸ ︷︷ ︸
ωi

c

∥∥∥∥∥∥
2

2

+ γ ∥c∥2
2

(4.7)

where y ∈ R2 and ω ∈ R2×K . The stationary point of (4.7) can be found by

solving the following linear system:

N

∑
i=1

vi(−2ωT
i yi +2ωT

i ωic)+ γI = 0

N

∑
i=1

(−2ωT
i viyi +2ωT

i viωic)+ γI = 0

(4.8)

The closed form solution can be further simplified using matrix representations.

Assuming a lexicographic ordering of matrix ωi we formulate the matrix Ω with

size 2N ×K. The matrix X ∈ R2N×2N is a diagonal matrix where each element

of the diagonal corresponds to the visibility vi. A lexicographic ordering is also

applied to vectors yi to retrieve the stacked vector Υ ∈ R2N . Using the formulated

matrices the problem Eq 4.6 is solved with

ct+1 = (ΩTXΩ+ γI)−1ΩTXΥ. (4.9)

Backpropagation through the matrix inversion of Eq. (4.9) is supported by all mod-

ern automatic differentiation frameworks, meaning that the chaining of the update

steps can be treated as a differentiable layer and be used in tandem with end-to-end

training.

Each row of Ω ∈ R2N×K is defined as Ωi = CRt+1Bi and X ∈ R2N×2N is a

diagonal matrix containing the visibility vector v. Finally, the vector Υ ∈ R2N is
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defined as Υ= ui−CRt+1Ti−Ctt+1.

Even though the only quantities regressed by our CNN are the 2D positions

and associated visibilities, the basis B that represents the shape variability of our

category in Eq.4.3 is a parameter of this layer, is randomly initialized, and is esti-

mated through back-propagation. As shown in Fig.4.5, the basis elements learned

this way can be intuitively understood, while our experimental results indicate that

they suffice for the accurate recovery of intricate mesh deformations.

4.3.3 Texture

The final part of monocular 3D reconstruction is the estimation of the texture of the

reconstructed 3D shape. The texture of the object is sampled from the input image

utilizing the predicted 2D points u closely resembling the sampling-based texturing

method of CMR [3]. Unlike CMR, we do not predict uv locations to sample pixel

values for the image with a dedicated learnable regressor, but use the predicted

2D points u that drive our whole 3D reconstruction process. For this we use a

sampling-based texture approach where the face color is computed by interpolating

the u coordinates and then sampling from the texture map, i.e the input image in our

case. Any losses applied on the estimated texture back-propagate information to the

predicted correspondences allowing us to use appearance image cues in addition to

foreground masks to enable accurate correspondence predictions.

4.3.4 Loss terms

To train our approach we incorporate different losses focusing on pose estimation,

texture prediction as well as mesh regularization.

Texture Loss compares the rendered textured image Ĩ and the image appear-

ance in terms of the perceptual similarity metric of [220] after masking by the sil-

houette S:

Lpixel = dist
(
Ĩ⊙S, I⊙S

)
.

We also apply the loss on the symmetric texture predictions by using a bilateral

symmetric viewpoint and average the two viewpoints. The soft symmetry con-

straint ensures that the texture of the non-visible side is still inline with the visible
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side. This constraint has been employed in prior works [3, 63], however, unlike the

proposed method it is commonly applied in a hard-coded manner by symmetrizing

the texture across an axis.

Points Chamfer Distance enforces points to lie inside and cover the silhouette

of the depicted object [54, 2]. In order to formulate our loss term we define Cmask

as the Chamfer distance field of the binary mask of silhouette S. Silhouette consis-

tency simply enforces the predicted 2D correspondences of an instance to lie inside

its silhouette. This can be achieved by penalizing the points projected outside the

instance mask by their distance from the silhouette. Silhouette coverage enforces

the predicted points ui to fully cover the mask of the depicted object and allows us

to predict better camera poses and mesh deformations.

LChamfer = ∑
i

Cmask(ui)︸ ︷︷ ︸
silhouette consistency

+ ∑
p∈S

min
ui
∥ui−p∥2︸ ︷︷ ︸

silhouette coverage

.

Region similarity loss compares the object support computed from the mesh

by a differentiable renderer [193] to instance segmentations S provided either by

manual annotations or pretrained CNNs using their absolute distance:

Lmask = ∑
i
|Si− frender(Vi,πi)|.

Cycle and Visibility loss Similarly to CSM [4] we use a cycle loss between the

regressed 2D correspondences u and the projected 3D points to ensure that regressed

points, that form neighborhoods in the template shape, remain close in the image

space. The cycle loss is defined as Lcycle = ∑i ∥ui−π (V)∥2
2. Furthemore, visibility

of correspondences aids the camera pose estimation in weakly supervised cases.

The visibility loss encourages the predictor φθ to encode the visible area of the

mesh in an image by enforcing the predicted visibilities to be similar to those of the

rendered z-buffer vgt

Lvis = ∑
i

∥∥∥vi−vgt
i

∥∥∥
1
.
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Equivariance Loss The point regressor should be robust to the pose variations.

For each training image, we draw a random spatial transform Ts(·) from a prede-

fined parameter range. We use random affine transformations (scale, rotation, and

shifting) for spatial transforms as well as vertical flipping Tv(·). We pass both the

input image I and transformed image I′ = Ts (I) through the φθ network and obtain

the corresponding predictions u and u′. For vertical flipping we retrieve two pose

estimations R and R′ for I and the flipped image Tv(I). We compute the equivari-

ance loss as follows:

Leqv = ∑
i

∥∥u′i−Ts(ui)
∥∥

1 + arccos
1
2
(
Tr(Tv(R)R′)−1

)
.

(Optional) Keypoint reprojection loss While we are primarily interested in

training without any manual annotations, our approach can be extended to leverage

an arbitrary number of high-level semantic keypoints. This is achieved by setting

manually the 3D keypoints on the template mesh and encoding them as a matrix K

acting on the mesh. The structure of K entails that each Ki is a fixed vector that

regresses the i−th 3D semantic keypoint from the mesh. Given the 2D annotations

for an image I and a camera π , a keypoint reprojection loss is formed between the

groundtruth annotation and the projected 3D points:

Lkp = ∑
i
∥ki−π (KiV)∥1 .

As-rigid-as-possible (ARAP) constraint Without any mesh deformation reg-

ularization, the predicted mesh deformation will lead to arbitrary deformations

exhibiting spikes and other anomalies. As such, we use the as-rigid-as-possible

(ARAP) [68] constraint as a loss function similar to [60]. The predicted shape V is

a locally rigid transformation from the predicted base shape T by:

Larap (T,V) =
1
N

N

∑
i=1

∑
j∈N(i)

wi j
∥∥(Vi−V j)−Ri

(
Ti−T j)∥∥

2

where N(i) represents the neighboring vertices of a vertex i, wi j the cotangent
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weights and Ri the best approximating rotation matrix, as described in [68]. Beyond

mesh regularization, the same loss is applied on each basis component that leads to

smooth and locally rigid components.

Even with ARAP there are cases where the network will squeeze the non-

visible side of the reconstructed object. This erroneous deformation is not penalized

by the ARAP loss, as long as it is locally rigid, and causes the method to predict

flattened meshes. We further apply an l2 constraint to the deformations to penalize

the method to retain the original volume of the template.

4.4 Experiments

4.4.1 Datasets and Metrics

Datasets We present extensive ablation results and comparisons on bird reconstruc-

tion, as well as quantitative results on three more object categories (planes, cars,

motorbikes). For birds we use the CUB [5] dataset for training and testing on birds

which contains 6000 images. The train/val/test split we use for training and re-

port is that of [3]. For the rest of the objects we use the Pascal3D+ dataset [207]

and the associated pre-defined training and validation sets. Similarly to [3], we

use both PASCAL VOC and Imagenet images to train our models and use Mask-

RCNN [196] to obtain foreground masks for the ImageNet subset. For templates,

we use identical to those of CSM [4] for CUB dataset and for PASCAL3D+ we

select one of the available CAD models for each object.

Evaluation Metrics We evaluate our model on the CUB dataset [5] and report

both the mean Intersection over Union (mIoU) and keypoint reprojection accuracy

(PCK) following CMR [3].

For Pascal3D+ we report a canonical 3D mean Intersection over Union metric

which measures the 3D overlap between the groundtruth and predicted deformed

mesh; in order to compute the overlap, both meshes are voxelized using a 32 grid

size before computing the 3D mIoU as in [59, 3, 221, 54].

Network Architecture Following prior work [3], we use a ResNet18 encoder

to map an image I to a latent feature map z ∈ R4×4×256. The position regressor is
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Table 4.1: Evaluation of TTP performance on the CUB [5] dataset. We report mean and
standard deviation (in parantheses, where applicable) of 2D mIoU and keypoint
re-projection accuracy (PCK) along with related supervision signals for recent
monocular 3D reconstruction methods.

Rigid Non-Rigid

2D keypoints
Camera
Priors

Camera
Hypotheses mIoU ↑ PCK ↑ mIoU ↑ PCK ↑

CMR [3] ✓ 1 - - 0.703 81.2
(A)CSM [2] ✓ ✓ 1 0.622 68.5 0.705 72.4
ACMR [60] ✓ 1 - - 0.708 85.5
TTP (ours) ✓ 1 0.656 (0.002) 70.0 (0.53) 0.760 (0.004) 93.4 (0.14)

(A)CSM [2] ✓ 8 0.625 50.9 0.693 46.8
(A)CSM [2] ✓ 1 0.637 (0.004) 39.0 (1.07) 0.684 (0.011) 44.5 (1.21)
TTP (ours) 1 0.652 (0.008) 48.7 (0.66) 0.752 (0.003) 50.9 (0.43)

Table 4.2: Performance of TTP method through iterations for pose and deformation es-
timation. We achieve the best results with more iterations, but even a single
iteration suffices for competitive scores.

Number of Iterations

1 2 3 4
mIoU PCK mIoU PCK mIoU PCK mIoU PCK

TTP w/ KP 0.732 92.5 0.755 93.3 0.758 93.3 0.758 93.4
TTP w/o KP 0.746 51.4 0.752 51.1 0.752 51.1 0.752 51.1

a fully connected layer having as input the flattened feature map z and outputs the

regressed 2D positions u ∈ R|V |×2 and their respective visibility v ∈ R|V |×1. The

number of basis components is set to K = 16 and the number of iterations for the

camera and deformation estimation is four.

Network Training To train the 3D reconstruction model we first warm up the

model without applying any deformation for 100 epochs. This warm-up process al-

lows the model to find the best pose possible given the rigid template using available

cues like masks, texture and optional keypoints. We then train the full 3D recon-

struction network with deformation enabled and all available cues for another 100

epochs. All experiments were run on a single RTX 2080 Ti GPU.

4.4.2 Quantitative Results

Evaluation on CUB In Table 4.1 we evaluate TTP on the CUB dataset and re-

port the average and standard deviation of 5 experiments with different seeds; the
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rigid part of the results table indicates the performance of models that do not use a

deformable component, while the non-rigid part amounts to the more challenging

problem of estimating both camera and mesh deformations.

We observe that our method outperforms the baseline models on both reported

metrics, i.e. mean IoU and keypoint re-projection accuracy, while requiring no cam-

era priors. When using 2D keypoint supervision (upper part of the table) our method

achieves the best results, outperforming the closest baseline by almost 8 accuracy

points. For the case where no 2D keypoints are used the only published result in the

literature is the ACSM approach of [2] which relies on 8 camera hypotheses during

both training and testing, while also using manual annotation of part-based rigs to

bootstrap the deformation model. Our work outperforms this baseline while relying

on a single camera hypothesis and without requiring any manual mesh annotation.

We posit that using multiple cameras in [2] aims at mitigating the local min-

ima in network training and optimization. We have therefore rerun the system of

[2] with a single camera and five different optimization seeds and observed a further

gap in performance compared to our work, as well as a larger variance in the recon-

struction accuracy compared to that of our work for the non-rigid case, suggesting

a potentially higher chance of getting stuck in local minima.

Ablation study We ablate various terms in our learning objective and report

the mIoU and the semantic keypoint reprojection (PCK) metrics. In particular we

examine the impact of removing any of the utilized losses in Table 4.3. When

using keypoint supervision the differences in performance are small. However in the

absence of keypoints, the method struggles to align the template with the depicted

object when we remove the visibility loss. While mIoU remains high, PCK score

decreases substantially meaning that the pose and deformation of the template cover

the foreground mask when rendered but not from a proper viewpoint of the object.

Similar performance drop occurs without the equivariance loss since the method

produces pose estimates biased towards one vertical direction. Finally, removing

the texture loss causes mIoU performance to drop significantly.

In Table 4.4 we study how performance changes as a function of the number
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Table 4.3: Ablation on losses.

With KP Without KP

mIoU ↑ PCK ↑ mIoU ↑ PCK ↑

TTP 0.765 93.6 0.749 50.9
TTP - Lpixel 0.752 92.7 0.667 49.2
TTP - Lvis 0.75 92.3 0.74 9.3
TTP - Lequiv 0.751 92.5 0.71 28.2

of basis elements. Increasing the number of components tends to increase per-

formance but up to 16 elements for both set of experiments. When training with

semantic keypoints increasing the number of basis components further improves

performance, however since the same does not apply to the mask-only case we have

set K = 16 for all of our experiments.

Finally, a key aspect of TTP is the iterative pose and deformation estimation

process. In Table 4.2, we provide the mIoU and PCK scores for every iteration for

two experiments trained with and without keypoint supervision. Multiple iterations

have to be executed to get the best performance, however TTP’s performance with

a single iteration still outperforms prior work for both metrics.

We are complementing these quantitative results with qualitative results in Fig-

ure 4.2 where we show that we can correctly deform the template mesh to produce

highly accurate 3D reconstructions. In Figure 4.6 we show the importance of key-

points in supervision. While TTP works with and without keypoints, subtle surface

details can only be captured accurately when we use keypoint supervision. For ex-

ample, the TTP-nokp model struggles to reconstruct long beaks and legs which is

attributed to the fact that these areas constitute a small area of the total image. As

such, all the 2D losses used for self-supervision don’t penalize as much the lack of

a long beak in the 3D reconstruction.

4.4.3 Computational Analysis

In Table 4.6 we provide a run time analysis of our and prior methods on the task of

self-supervised 3D reconstruction. The analysis was performed on a machine with

a NVidia RTX 2080Ti, an Intel Xeon W-2255 and 32 GBs of RAM and reported is
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Table 4.4: Ablation on number of basis components.

With KP Without KP

Basis mIoU ↑ PCK ↑ mIoU ↑ PCK ↑

rigid 0.657 70.7 0.646 48.4
4 0.726 88.2 0.72 47.9
8 0.745 90.6 0.733 50.4
16 0.765 93.6 0.749 50.9
32 0.771 93.7 0.748 49.8
64 0.775 94.2 0.752 49.8

Table 4.5: PASCAL3D+ evaluation. We provide numerical score of TTP with and without
keypoint supervision during training. We observe that even without keypoint su-
pervision TTP is competitive with the other methods which, except for UCMR,
require keypoints.

DRC [221] UCMR [59] CMR [3] TTP w/ KP TTP w/o KP

aeroplane 0.42 - 0.468 0.488 0.45
car 0.67 0.646 0.64 0.67 0.665

the average of 20 runs for the reconstruction of a 256x256 image.

To ensure that the benchmark is fair for all methods, we compute the execution

time between the moment an image is given as input to a network up to the moment

where the network predicts the mesh, the camera pose and the texture; the imple-

mentations of the methods used for comparison are the publicly available ones from

the original authors. This ensures that the run times are fairly comparable and they

don’t reflect additional overhead such as rendering operations or loss computation.

As reported in Table 4.6, TTP is faster than both CSM and ACSM by a consid-

erable margin even on the CPU. CMR is the fastest method of all due to its simplic-

ity, however, it requires keypoint supervision and has substantially lower results as

indicated in Table 4.1.

We note that our implementation relies on PyTorch and we have used Py-

Torch’s python-based LBFGS optimizer for convenience and autograd for Jacobian

computation; understandably for AR applications the LBFGS timing can become

substantially faster in C and with explicitly coded Jacobian matrix computation.

This is reflected in Table 4.6 given the fact that the optimization step of TTP re-
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Table 4.6: Run time analysis in milliseconds of various self-supervised 3D methods. All
benchmarks were run 20 times using images of size 256x256 and we report the
average run times.

Device Iters CNN (msec) Optimization (msec) Total (msec)

CMR GPU - 5.11 N/A 5.11
CSM GPU - 150.73 N/A 150.73
ACSM GPU - 191.46 N/A 191.46

1 4.02 33.44 37.46
TTP GPU

4 4.02 125.14 129.16
1 18.52 33.44 51.96

TTP CPU
4 18.52 125.14 143.67

CMR UCMR Ours-u Ours-Mesh
Ours-
Texture New view

Figure 4.2: Bird reconstructions For each input image we provide the results of CMR [3]
and UCMR [2] alongside with our method. We visualize the input image,
predictions from prior works and TTP’s predicted correspondence (u), mesh
reconstruction and textured mesh from two viewpoints. We observe that we
better capture texture details, deformation and pose estimation.

quires virtually the same time for both CPU and GPU execution. The reason is that

PyTorch’s LBFGS optimizer doesn’t have a CUDA optimized backend and it is not

cachable and memory-friendly. This is in return causes the execution speed to be as

slow as the CPU execution. The main speed up when changing devices is reflected
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only on the neural network regressor due to the optimized CUDA implementations

of several operations. Lastly, each optimization step requires approximately 30 sec-

onds so the total execution time can be increased significantly when a lot of steps

are used. However, in Table 4.2 we have showed that the accuracy of TTP is com-

petitive even with one iteration and two iterations appear to be a good compromise

for both accuracy and speed concerns.

Evaluation on Pascal3D+ While our primary evaluation is on the CUB

dataset, we run supplementary experiments on the cars, airplanes and motorcycle

categories of PASCAL3D+ dataset. For cars and aeroplanes we provide compar-

isons against CMR [3], UCMR [59], a volumetric prediction network [221] and a

fitting based method [54]. Three of the methods use segmentation masks, cameras

and keypoints for supervision except UCMR that does not require keypoints.

We train our method with and without keypoint supervision and provide our 3D

mIoU results in Table 4.5. We observe that our method performs considerably better

than competing methods even when keypoint supervision is not utilized. Beyond the

3D mIoU metric we also provide the PCK scores of our method for the cars dataset

and compare it against the only available reported method [4]. Our approach trained

with and without keypoints results in 74.9 mIoU and 45.7 PCK scores while CSM

achieves 51.2 and 40.0 respectively. The difference is significant in both cases,

especially in the keypoint-free methods where predicting a correct camera pose is

challenging due to the weak supervision setup. We provide qualitative results of

TTP in Figure 4.3.

4.4.4 Failure Cases

We visualize some failure cases of the proposed method in Figure 4.4. Common

failure cases are related to the inability to predict a good camera pose and 2D points.

We maintain the belief that increasing the number of training data will allow the

proposed self-supervised method, TTP, to achieve better UV points regression as

well as camera and deformation predictions.
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Mesh Texture New view Mesh Texture New view

Figure 4.3: Pascal3D+ results We show predictions of our TTP method for test set images.
For each input image we visualize the 3D shape from the predicted camera, the
textured shape and a new view.

4.5 Discussion

We have proposed a method to reconstruct 3D meshes, poses and textures of generic

objects in the wild without any direct supervision. We learn unsupervised corre-

spondences between 2D image locations and 3D template vertices and use them to

compute the camera pose and deformation of the object. Even though our CNN
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Figure 4.4: Failure Cases: We visualize some failure modes of our method. The columns
present the input image, the predicted 2D points, and 3D reconstruction with
and without texture.

architecture predicts substantially fewer outputs - compared e.g. to [3] where all

of the 3D vertices and the camera are directly regressed by the network, we de-

liver substantially better results. We attribute this to the use of a direct optimization

scheme to optimize the 3D reconstruction problem both during training and test-

ing. The resulting optimization problem is particularly lightweight, meaning that

it can be used for interactive applications, e.g. in Augmented Reality, while our

results indicate that even a single step of the optimization suffices for accurate mesh

recover.
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Figure 4.5: Basis Visualization: We visualize 8 basis components T +Bi of a trained TTP
experiment for the CUB dataset. For each component we visualize a side and a
top view.
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TTPkp u TTPkp 3D TTPkp Tex. TTPnokp u TTPnokp 3D TTPnokp Tex.

Figure 4.6: Comparison of TTP trained with and without keypoint supervision. We
observe that TTP performs equally well on camera pose estimation with and
without keypoint supervision. However, keypoint supervision allows for more
accurate mesh deformation.



Chapter 5

Concluding Remarks and Future

Directions

Differentiable optimization provides the ideal building blocks for an extensive bat-

tery of computer vision tasks with countless real-world applications. This thesis

explored techniques that enable optimization-based prior knowledge to be used as

a core component of computer vision pipelines. In detail, we proposed several

methodologies and explored applications related to 2D image reconstruction and

3D monocular reconstruction of arbitrary classes.

The building blocks introduced in each chapter were combined with neural

networks to solve 2D and 3D tasks. The proposed methods were quantitatively

compared with end-to-end deep learning models, which implicitly solved the ex-

amined task. Our findings showcase that optimization-based layers allow networks

to accurately solve the problem at hand while also having a transparent algebraic

interpretation. For example, in Chapter 2, the transparent interpretation enables

us to connect the derived deep learning models directly to the majorization mini-

mization framework and revisit the proposed CNN from an implicit image recon-

struction regularization viewpoint. To the same extent, the presented methods in

Chapters 3 and 4 enable the development of 3D reconstruction frameworks capable

of optimization-based intervention in either deformation, camera pose estimation or

both.

Section 5.1 summarizes the contributions of each of the three papers presented
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in this thesis and discusses subsequent advances in the field since publication and

potential extensions of the work. Moreover, Section 5.2 discusses future directions

and critical challenges that were not considered in this thesis and remain currently

unsolved to a large extent.

5.1 Summary of contributions
We now highlight the key insights and contributions brought by each method, and

finally, we discuss potential extensions of each work.

Chapter 2: Implicit regularization for image reconstruction.

In Chapter 2, we presented an optimization unrolling method with implicit regular-

ization properties for reconstructing images from camera readings. Deviating from

deep networks mapping inputs to outputs, we proposed a novel algorithm inspired

by powerful classical image regularization methods, large-scale optimization and

deep learning techniques. The method is derived from first principles and unrolls a

learnable majorization minimization framework fitted to the training data. The net-

work resembles a recurrent neural network and is trained with truncated backprop-

agation throughout time (TBTT) to circumvent the memory constraints of unrolled

methods.

Inspired by the Majorization Minimization framework, the derived neural net-

work has a transparent and clear interpretation as an implicit regularization tech-

nique compared to black-box data-driven approaches. The provided experimenta-

tion line demonstrates that the network outperforms previous approaches on noisy

and noise-free data across different datasets.

The methods that initially outperformed the MMNet architecture used a com-

bination of deeper neural networks [222, 223] and larger datasets [224, 225, 226].

Interestingly in the MSR dataset [119], MMNet maintains at the time of writing

the state-of-the-art performance when compared to methods trained on identical

data. Beyond image reconstruction from camera readings, similar methods have

been developed for image restoration [140, 227, 82, 228, 83, 84], microscopy de-

blurring [1, 229] and MRI reconstruction [85, 230, 86, 87].
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The notion of unrolling optimization schemes has recently been visited from a

theoretical standpoint. In [231, 232], the authors examine under which conditions

unrolled optimization converges for inverse imaging problems. In detail, the au-

thors in [231] prove the convergence of unrolled schemes under mild assumptions

when the deep neural networks are Lipschitz regularized. Similar findings were

presented in follow up works with different optimization schemes like fixed-point

iteration [233] or proximal algorithms [232, 234].

Chapter 3: Monocular 3D reconstruction with handle-based deformation.

In Chapter 3, we proposed a method that uses self-supervision to 3D reconstruct

highly non-rigid objects from images and videos. Monocular 3D reconstruction

of articulated object categories is challenging due to the lack of training data and

the inherent ill-posedness of the problem. We introduced an interpretable model of

3D template deformations that controls a 3D surface through the displacement of a

small number of learnable handles or anchor points. This operation is formulated

as a structured layer relying on mesh-laplacian regularization and is trained end-to-

end. Interestingly the deformation method boils down to a learnable linear layer

where the matrix and the bias term strongly depend on the Laplacian matrix.

The method uses video self-supervision, forcing the consistency of consecu-

tive 3D reconstructions by a motion-based cycle loss. This largely improves both

optimization-based and learning-based 3D mesh reconstruction. We also employ a

per-sample numerical optimization approach that jointly optimizes over mesh dis-

placements and cameras within a video, boosting accuracy for training and test time

post-processing. As shown in Chapter 3, we obtain state-of-the-art reconstructions

with diverse shapes, viewpoints and textures for multiple articulated object cate-

gories.

One of the weaknesses of the proposed method was the elaborate framework

for learning the deformation and camera pose predictor. The framework is based on

multiple hypotheses, which increase the computational and memory requirements

linearly to the number of hypotheses. This drawback is met in many recent works [4,

2, 59] and Chapter 4 is the first, to our knowledge, approach trying to circumvent it.
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Chapter 4: 3D reconstruction with optimization-based camera and deforma-

tion estimation.

In Chapter 4, we presented a method that uses self-supervision to 3D reconstruct

highly non-rigid objects from images without the need for multiple hypotheses and

manual intervention. To The Point (TTP) recovers a 3D shape from a 2D image by

first regressing the 2D positions corresponding to the 3D template vertices and then

jointly estimating a rigid camera transform and non-rigid template deformation that

optimally explain the 2D positions through the 3D shape projection.

The work addresses the multiple hypotheses requirement of the self-supervised

method for monocular 3D reconstruction presented in Chapter 3 and similar liter-

ature [4, 2, 59]. By relying on 2D-3D correspondences, we use a per-sample opti-

mization problem to replace CNN-based regression of camera pose and non-rigid

deformation and obtain substantially more accurate 3D reconstructions. We treat

this optimization as a differentiable layer and train the whole system end-to-end

while backpropagation through the optimization scheme is achieved via implicit

differentiation. We reported systematic quantitative improvements on multiple cat-

egories and provided qualitative results comprising diverse shape, pose and texture

prediction examples.

At the time of writing, the paper remains the first approach to perform self-

supervised 3D reconstruction without multiple-hypothesis for pose and deforma-

tion estimation. Future work could make use of continuous 2D to 3D mappings

like [4, 2, 204] and a point sampling approach to estimate the camera pose and

deformation per sample. We expect that a continuous surface mapping will yield

smoother correspondences than the discrete one currently being used and reduce the

number of losses needed to train the TTP method.

5.2 Future Directions
Using optimization schemes as layers in machine learning pipelines opens several

new research directions and opportunities for influential applications. In the context

of the work presented in this thesis, we identify key currently unresolved challenges
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and interesting theoretical questions.

Provably converging unrolled optimization schemes with learnable compo-

nents

The method presented in Chapter 2 is an unrolled optimization scheme with

data-driven components. A thorough theoretical investigation would allow us to un-

derstand under which conditions the proposed framework converges and bounds the

convergence rate. The convergence of optimization schemes depends on whether an

operator is contractive. Contractive operators have, by definition, a Lipschitz con-

stant less than 1; however, computing the Lipschitz constant for deep non-linear

networks is computationally intractable [235]. Several works [235, 236, 237] have

been recently proposed to estimate the Lipschitz constant of generic neural net-

works, however at the time of writing, the bounds are loose and the computational

complexity high. At the same time, works on unrolled optimization schemes for

image processing [231, 232] follow a different approach where the neural networks

are Lipschitz regularized to enforce bounded Lipschitz constants.

Deploying a deep network once for each outer iteration comes with significant

computational overhead, and in most cases, the iterations can not be parallelized. As

such, bounding the convergence rate of recently proposed methods [87, 231, 234]

provides valuable feedback on how many iterations are needed for an accurate result

up to a tolerance.

Unrolled image reconstruction from various signal sources

Another direction is the application of the proposed framework to more ill-

posed inverse problems, especially those related to medical signal reconstruction

such as Magnetic Resonance Imaging (MRI) [85, 230, 86, 87]. Improvements in im-

age reconstructions technique from medical signals have a direct real-world impact

on diagnosis and medical staging. Further applications can be found in microscopes

widely used in biological and medical research, allowing the study of organic and

inorganic substances at a minuscule scale. The observed microscopy images suffer

from the inherent distortion introduced by the imperfections of the imaging system

as a whole and by the image-recording sensor in particular. There have been some



5.2. Future Directions 101

recent attempts [1] to address these shortcomings with the image reconstruction

process based on learnable unrolled optimization frameworks resembling closely

trainable Wiener filters [238].

3D reconstruction of arbitrary objects without strong supervision

Beyond the methodologies presented in this thesis, there are a plethora of dif-

ferent research directions on the applications of structured layers on 3D reconstruc-

tion. Both the methods presented in Chapters 3, 4 use structured layers as com-

ponents of bigger neural networks to push the boundaries of weakly-supervised 3D

reconstruction. Using optimization for camera pose estimation alongside neural net-

works will enable the localization of arbitrary items and scenes. In bundle adjusting

inspired Neural Radiance Fields [239, 240] representations of 3D objects are opti-

mized while simultaneously resolving large camera pose misalignments. Camera

pose is estimated with bi-level optimization using view synthesis as a proxy objec-

tive. Improvements in this area open up exciting avenues for visual localization of

SLAM-based systems, a fundamental problem in robotics and self-driving cars.

Another promising direction is minimizing the number of viewpoints re-

quired for reconstructing objects. Modern view synthesis methods require hun-

dreds of viewpoints to optimize a 3D radiance field with high fidelity [241]. CNNs

trained on billions of images [242, 243] can impose strong priors about objects

and minimize the number of viewpoints needed for a photorealistic reconstruction.

In [244, 245, 246] the authors present that a deep CNN trained on Imagenet and

other datasets regularizes the neural radiance field reconstructions. As a result, even

a single viewpoint is enough to generate a 3D reconstruction of an object [246].

Structured layers for Computer Graphics and AR/VR

Algorithms for computer graphics rely on optimization schemes to generate

and deform meshes. Techniques like the one presented in Chapters 3 enable us to

learn strong priors about the deformation of meshes through multiple frames of a

video. An interesting question is whether these techniques could allow profession-

als in the entertainment industry to deform objects with interactive methods that

extrapolate motion learned from extensive collections of data [247, 248, 249].
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Instead of modelling the motion frame by frame, the method will predict the

motion for the entirety of the time frame [250, 251] while also allowing for in-

terventions from a professional modeller. Given the rising popularity of VR and

AR, the same methods could be used for creating interactive filters of animals and

objects, which could be projected as a hologram on demand [249].

This thesis presents strong evidence for adapting optimization as a component

of deep neural networks with applications in image processing, computational pho-

tography, and computer graphics. We have shown that many applications benefit

significantly from the paradigm and have pushed the boundaries of the state-of-the-

art methods of the targeted applications.

Self-supervised 3D reconstruction of arbitrary objects

The field of 3D reconstruction of generic and deformable objects still faces

significant challenges. One major challenge is inferring details from 2D images, as

the process is difficult and often results in a lack of precision. This is because, infer-

ring 3D information from 2D images is an ill-posed problem as the same 2D image

can be generated from multiple 3D configurations. Additionally, templates and

morphable models, which have been used in the past, are not effective for generic

classes of objects. These models are limited to specific classes of objects and are

not able to generalize to new, unseen classes.

Unsupervised methods such as those proposed in this thesis have been pro-

posed to overcome these limitations, but they still have a long way to go. These

methods are based on self-supervised or unsupervised learning, where the model

learns from the data itself without any human supervision. But, these methods are

still in the early stages of development and are not able to reconstruct objects with

high precision and photo-realistic quality. Overall, it is clear that unsupervised 3D

methods have a long way to go before they are able to accurately and efficiently re-

construct a wide range of generic and deformable objects. Despite these challenges,

ongoing research in the field holds promise for the development of more advanced

and effective 3D reconstruction techniques in the future.
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