10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Seasonal Mg isotopic variation in the middle Yellow

River: Sources and fractionation

Long-Fei Gou'?, Zhangdong Jin%", Albert Galy®, Yang Xu?, Jun Xiao?"', Yibo
Yang*, Julien Bouchez®, Philip A. E. Pogge von Strandmann®, Chenyang Jin%7,

Shouye Yang’, Zhi-Qi Zhao®

1 Department of Geography, Chang’an University, 710054, China;
2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth
Environment, Chinese Academy of Sciences, Xi’'an 710061, China;

3 Centre de Recherches Pétrographiques et Géochimiques, UMR7358, CNRS,
Université de Lorraine, 54500 Vandoeuvre les Nancy, France;

4 Key Laboratory of Continental Collision and Plateau Uplift, Institute of
Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101,
China;

5 Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne
Paris Cité, CNRS, UMR 7154, 1 rue Jussieu, 75238 Paris, France;

6 Institute of Geosciences, Johannes Gutenberg-Universitat Mainz, 55128
Mainz, Germany;

7 Department of Marine Geology, Tongji University, Shanghai 200092, China.
8 School of Earth Sciences and Resources, Chang’an University, 710054,

China.

Corresponding author: Zhangdong Jin (zhdjin@ieecas.cn)



mailto:zhdjin@ieecas.cn

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Abstract: In order to better understand how stable metal isotope signals in
large rivers can be used to constrain present and past weathering, the
seasonal riverine Mg-Sr isotopic pattern in the middle Yellow River was
systematically investigated based upon weekly collected samples for the
whole year of 2013. The results demonstrate that Mg is mainly transported in
the dissolved form (65%) in this river system and that 45% of the total
dissolved Mg is transported during the monsoon seasons, with 2% exported
over 4 days (~1% annual time) during a single storm event. Dissolved Mg in
the middle Yellow River is dominantly derived from both silicate and carbonate
(82-89%) in this arid to semi-arid region, with limited evaporite contribution
(~7%). Lithological mixing is the first order control on riverine dissolved Mg and
Sr isotopes, with a contribution from ~40% carbonate dissolution and ~60%
from silicate dissolution in the dry seasons, and ~50% carbonate and ~50%
silicate during the monsoon seasons according to 3%Mg signals. Furthermore,
a significant role of prior calcite precipitation (PCP) can be quantified, which
fractionates Mg isotopes by about 0.17%o. to 0.39%. positively depending on the
choice of elemental and isotope partition of Mg in secondary carbonates. Clay
formation following PCP further fractionates riverine Mg isotopes to the
negative side. An ~0.2%0 decrease of riverine Mg isotopes is attributable to (1)
a single storm event causing carbonate dissolution and (2) delayed delivery of
depleted waters to rivers (~3 months after the storm event) because of
subsurface hydrological circulation. Annually, the weighted average riverine
0%°Mg (-1.05%o0) in the middle Yellow River is identical to the global average

(-1.09%o). Despite the significant impact of lithology on the riverine dissolved
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Mg isotope signature, the mixing proportions of different Mg sources remain
virtually constant, even when there are huge contrast of temperature,
hydrology, and precipitation seasonally along the year, providing a basis for
dissolved &?®Mg response to climatic forcing on the continental scale. This
means that significant changes in the sedimentary Mg isotope records would

reflect extreme conditions in deep time.

Key words: Mg isotopes; Isotopic fractionation; Seasonal variation; Sr
isotopes; Prior calcite precipitation (PCP); Chemical weathering; Storm event;

The Yellow River; Chinese Loess Plateau (CLP)
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1. Introduction

Chemical weathering is one of the most important geochemical processes
on the Earth’s surface, leading to the production of water-bearing minerals and
thus to hydration of the continental crust, and regulating global climate by
sequestering atmospheric CO2 on geological time-scales (e.g., Walker et al.,
1981; Berner et al., 1983; Hilton and West, 2020). However, the role of COz2
removal by chemical weathering is still debated, given the numerous factors
acting on chemical weathering (e.g., Gaillardet et al., 1999; West et al., 2005;
Hilton and West, 2020). Isotopic proxies (e.g., Sr, Li, Si, Ca, and Mg, etc.) have
the potential to enhance our understanding of the processes and dynamics of
chemical weathering (e.g., Palmer and Edmond, 1992; Huh et al., 1998; Georg
et al., 2007; Tipper et al., 2006b; Teng, 2017).

Magnesium (Mg) and calcium (Ca) are the two major base cations present
in silicate minerals that combine with atmospheric CO2 leading to carbon
sequestration into carbonates (Walker et al., 1981; Berner et al., 1983;
Gaillardet et al., 1999). Mg is a major element in both silicates and carbonates,
but both reservoirs have distinct Mg isotope ratios (expressed as 5%°Mg), with
a relatively homogeneous 6%°Mg value of major igneous rocks (i.e., +0.1%o to
-0.6%o0, average -0.22%o, Li et al., 2010; Teng, 2017), while a hetegeneous
negative Mg isotopes of carbonates (i.e., < -0.80%o, Fig. S1). Seawater shows
a mean 5?°Mg value of -0.83%. (Fig. S1). Hence, Mg isotopes in rivers are
potentially a sensitive tracer to evaluate the relative roles of carbonate and
silicate weathering, biological Mg cycle, and associated C-sequestration.
However, the dominant controls on riverine Mg isotopes ratios are still debated,

including the following control factors or processes:
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(1) Preferential incorporation of either light or heavy Mg isotopes during
formation of secondary clay minerals (Tipper et al., 2006b, 2006¢; Pogge von
Strandmann et al., 2008a; Immenhauser et al., 2010; Opfergelt et al., 2012;
Riechelmann et al., 2012b; Ryu et al., 2016; Zhang et al., 2018; Hindshaw et
al., 2020) and of light Mg isotopes during carbonate precipitation (Galy et al.,
2002; Tipper et al., 2006c; Buhl et al., 2007; Immenhauser et al., 2010; Li et al.,
2012; Riechelmann et al., 2012b; Pogge von Strandmann, et al., 2019, 2020).

(2) Preferential adsorption and desorption of heavy Mg isotopes on
secondary oxides, hydroxides, and clay minerals (Huang et al., 2012; Pogge
von Strandmann et al., 2012; Tipper et al., 2012a; Fan et al., 2016).

(3) Mg isotopic fractionation during the early stages of weathering by
organic or inorganic processes (Wimpenny et al., 2010; Balland-Boulo-Bi et al.,
2019).

(4) Mixing of waters carrying Mg released of solutions stemming from the
congruent dissolution of minerals with distinct Mg isotope composition (Pogge
von Strandmann et al., 2008a, 2020; Wimpenny et al., 2011; Lee et al., 2014,
Ryu et al., 2016; Li et al., 2020).

In turn, the above-listed factors and/or processes responsible for Mg
isotope fractionation may (Wimpenny et al., 2014; Ma et al., 2019) or may not
(Tipper et al., 2006c) be sensitive to climate. In fact, due to the poor
understanding of the large-scale controls on Mg isotope fractionation, it is not
yet known how global riverine Mg isotopes respond to climate shift, although
such an understanding is required for the robust interpretation of Mg isotope
records in sedimentary archives, be it in marine documents (Kasemann et al.,

2014; Pogge von Strandmann et al., 2014; Higgins and Schrag, 2015; He et al.,
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2020), loess-paleosol sequences (Wimpenny et al., 2014; Ma et al., 2019), or
speleothems (Galy et al., 2002; Buhl et al., 2007; Immenhauser et al., 2010;
Riechelmann et al., 2012a, b).

To better constrain the effect of climate on river chemistry, time series of
river water samples collected under different meteorological settings is always
helpful (e.g., Galy and France-Lanord, 1999; Tipper et al., 2006a; Jin et al.,
2011; Zhang et al., 2015; Gou et al., 2019b, 2020). Indeed, within such time
series, tectonics and lithology are held relative constant, while the temporal
variations of temperature, discharge, and precipitation are known. Seasonal
variations in 3%®Mg in small catchments (~100 km?) have been shown to be
significant (Pogge von Strandmann et al., 2020). However, seasonal variations
of Mg isotopes in large catchments appear limited (Tipper et al., 2012b;
Hindshaw et al., 2019; Mavromatis et al., 2020), so that poor understanding of
seasonal Mg isotope variation on global scale hampers its further applications
in deep time.

In this study, we investigated how riverine 8°Mg shifts seasonally in the
middle reaches of the Yellow River, based on a weekly water sampling scheme
covering a full hydrological year. The middle Yellow River drains easily erodible,
homogeneous loess on the Chinese Loess Plateau (CLP) that is
representative to the average chemical compositions of the upper continental
crust (UCC, Taylor et al., 1983) and is subjected to pronounced seasonal
temperature, precipitation, and discharge swings due to the East Asian
summer monsoon and the Westerly jet, making it one of the most suitable
settings to define the response of riverine Mg isotopes to changes in

temperature, precipitation, and discharge on the continental scale. In addition,
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due to the easy erodible of loess, the SPM in the middle Yellow River is
actually loess mainly derived from the CLP (Li et al., 1984; Fan et al., 2016;
Gou et al., 2019, 2020). We found that in such (semi-)arid regions, significant
changes in climate parameters play a limited direct role on Mg isotopic
variation (~0.2%.). We then addressed this limited variation as a combined
result of prior calcite precipitation (PCP), clay formation, and seasonality in
hydrology, providing a case study of how dissolved 3%Mg values response to
climatic forcing on the continental scale.

2 Study area

2.1 Geography

The Yellow River originates from the northeastern Tibetan Plateau with an
elevation of over 4000 m, drains across the CLP at its middle reaches, and
discharges into the Bohai Sea (Fig. 1; Zhang et al., 1995; Wu et al., 2005). It is
the fifth longest (5464 km) and the most sediment-laden river in the world with
10.8 x 108 t/yr of sediment discharge (Zhang et al., 1995). Because of the high
erodibility of loess, the CLP is the largest sediment source to the Yellow River
between Hekou town (Toudaoguai) and Tongguan, contributing nearly 90%
sediment (Wang et al., 2010; Yu et al., 2013, Fig. 1), although only ~40% of
water is sourced from the 21 tributaries with a catchment area larger than 1000
km? that all drain the CLP (Zhang et al., 2015, Fig. 1). By contrast, the upper
reaches contribute ~60% of annual water discharge (Quw, 25 km3/yr), but
merely ~10% of annual sediment load (Li et al., 2018).
2.2 Geology

The Yellow River drains the old Sino-Korean Shield formed during the

Archaean to Proterozoic Eras (Zhang et al., 1995), featuring rock outcrops
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dating from the Precambrian to the Quaternary. In the upper river basin above
Lanzhou, at an elevation above 2000 m, rocks are mainly composed of
limestone, low-grade metamorphic rocks and clastic sediments interlaced with
volcanic rocks and evaporites (Chen et al., 2005). The middle Yellow River
drains through the CLP, covered by Quaternary eolian loess and loess-like
deposits, which account for 44% of the total catchment area (Fig. 1). Loess is
homogeneous, porous, friable, pale yellow, slightly coherent, typically
non-stratified and often calcareous (Liu, 1988), and has variable 5°°Mg values
(-0.32%0 to +0.05%0 (Li et al., 2010); -0.79%0 to -0.19%0. (Wimpenny et al.,
2014)). Mineralogically, loess is composed of quartz, feldspar, calcite, mica,
minor heavy minerals, and with small amounts of evaporites such as halite,
gypsum, and mirabilite (Liu, 1988; Zhang et al., 1995; Yokoo et al., 2004).
Severe physical erosion on the CLP leads to the formation of numerous gullies
and gives the Yellow River an extremely high sediment yield, in particular
during the monsoonal seasons. As a result, suspended particle matter (SPM)
in the Yellow River is of the same mineralogical and geochemical compositions
as the loess of the CLP (Li et al., 1984; Zhang et al., 1995).
2.3 Climate

The Yellow River basin is characterized by a temperate climate. Regions
of the upper reaches of the Yellow River basin are cold-arid to semi-arid with
an annual mean temperature ranging from 1°C to 8°C, whereas the regions of
the middle reaches are semi-arid to semi-humid with annual mean
temperatures ranging from 8°C to 14°C (Chen et al., 2005). Despite the fact
that the mean annual precipitation is quite variable across the river basin,

increasing from 368 mm in the upper reaches to 530 mm in the middle reaches
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(Wang et al., 2007), owing to the Asian summer monsoon, the seasonal
climate variation is more pronounced than the spatial one. Rainfall is negligible
in winter, but it is high, with frequent rainstorms, in summer, especially in the
middle reaches of the Yellow River. The rainy season (between June and
mid-September) accounts for 80% of the annual precipitation (500-600 mm,
Zhang et al., 1995). Note that there was a single storm event (22" to 25" July),
accounting for ~6% precipitation in 2013 (Gou et al., 2019b).

3 Sampling and methodology

3.1 Sampling protocol
3.1.1 Field sampling

A total of 60 river water samples were collected weekly in 2013 at the
Longmen hydrological station (N 35°40'06.43", E 110°35'22.88"). This station is
located in the middle Yellow River where waters from most tributaries draining
the CLP are already mixed, but its drainage basin excludes the drainage
basins of the Fen and Wei Rivers that host highly populated areas (Fig. 1).
Four samples (Nos. LM13-31 to 13-34) were collected daily during the storm
event (Zhang et al., 2015; Gou et al., 2019b, 2020), and three rain samples
were collected in July and August 2013 to appraise atmospheric inputs. A
sewage sample (TKT1) was collected in a farmland adjacent to the station to
constrain the composition of anthropogenic input (Gou et al., 2019b, 2020).

All river water samples were collected 0.5 m below the surface in the
middle of the river channel. For each sample, water temperature, pH, electrical
conductivity (EC) were measured in situ by a multi-meter (Hanna® Instruments,
Model: H198129). All water samples were filtered on site through 0.2-uym

porosity nylon filters. Filtered water samples were stored in pre-cleaned
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polyethylene bottles, acidified to pH<2 with distilled HNOs and stored at 4°C
before major cation concentrations, strontium and magnesium isotope
analyses. Another non-acidified 30 mL bottle treated with the same way for
anion analyses.
3.1.2 Sequential extraction of loess material

Five fresh loess samples were collected from 5 typical layers (L1, S1, S5,
L9, and the red clay) of a loess profile at Lingtai and underwent sequential
extraction for Mg isotopes (Tessier et al., 1979; Yokoo et al., 2004; Gou et al.,
2019b, 2020). Briefly, 0.5 g of ground loess was leached with 10 mL 18.2 MQ
cm water for 5 minutes, centrifuged and filtered to collect the water-soluble
fraction, referred to as the "evaporite" fraction below; the residue was then
leached for 2 h with 10 mL 5% acetic acid (HAc) solution at 25°C and then
centrifuged to collect the "carbonate" fraction of loess (Tessier et al., 1979;
Yokoo et al., 2004), which may also involves minor iron oxides. The residues of
the leaching procedures were digested with 10 mL HF—HCI-HNO3 (Yokoo et
al., 2004; An et al., 2014; Gou et al., 2019a) to constrain the "silicate" fraction
of loess.
3.2. Analyses

Concentrations of major ions for all river samples were reported by Zhang
et al. (2015). Major cations of extracted samples were determined by a
Leeman Labs Profile inductively coupled plasma atomic emission
spectroscopy (ICP-AES) instrument, with a RSD (relative standard deviation)
better than 5% reproducibility according to replicates and references materials.
3.2.1 87Sr/%6Sr ratio analyses

For Sr separation, sample solutions containing ~400 ng Sr were

10
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evaporated to dryness in pre-cleaned beakers and then re-dissolved in 1 mL 3
M HNOs. Strontium was then purified from matrix using the Micro Spec resin
(Sr-SPEC) with 3 mL Milli-Q H20 (e.g., Jin et al., 2011). Strontium isotope
ratios (87Sr/%Sr) were measured using a Thermo-Fisher Neptune Plus
MC-ICP-MS. Accuracy and precision were evaluated using the NIST reference
material SRM987 via internally normalized radiogenic Sr isotope compositions
as 8Sr/8Sr of 0.1194, returning 8Sr/%Sr 0.710253 + 0.000016 (2 s.d., n=15,
recommended value of 0.710245, see Jin et al., (2011)), in agreement with
previously reported values in our lab(e.g., Jin et al., 2011; Xu et al., 2021).
3.2.2 Mg isotope analyses

For Mg isotope analysis, ~1 mL of water sample containing ~40 pg Mg
was dried down and re-dissolved in distilled concentrated HNO3. This solution
was dried again and re-dissolved in 1 mL 2 M HNOs for column
chromatography. Sample purification was performed twice using 2 mL of a
cation exchange resin (AG50W X-12, 200-400 mesh, modified from An et al.
(2014)), with 2 M HNO3+0.5 M HF and 1 M HNOs as the eluent. For each
sample, column recovery was assessed by collecting splits before, in, and
after the Mg cut, and analyzed using ICP-MS. The relative recovery was better
than 99.9% (Gou et al., 2019a) for all samples and the purity of the Mg fraction
(expressed as X/Mg molar ratio, X refers to individual element, Gou et al.,
2019a) in all samples reported in this study was less than 0.1, leading to
insignificant matrix effect on the accuracy of the measured Mg isotopic
composition (Galy et al., 2001; Huang et al., 2009; An et al., 2014; Teng et al.,
2015; Gou et al., 2019a). The total procedural blank of this method was less

than 1.8 ng Mg, negligible relative to 40 pg of Mg analyzed in each sample

11
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(Gou et al., 2019a).

Isotope analyses were all performed at IEE-CAS, on a Neptune Plus
MC-ICP-MS via sample-standard-bracketing method, with ~200 ng/mL Mg.
The 3%%Mg values are given as:
5?6Mg = [Mg/2*Mg)sample/(?*Mg/?4Mg)psm-3-1] x 1000 Eq (1)
where DSM-3 is the standard reference material of Mg (Galy et al., 2003).

Triple measurements were conducted to calculate average and standard
deviation for each sample. Two pure-Mg standards (namely Cambridge-1 and
IGGCAS-Mg, respectively) were run repeatedly for a 5 years period yielding
0?%6Mg = -2.60 = 0.07%o (2 s.d., n = 51) and -1.75 £ 0.07%o. (2 s.d., n = 53),
respectively, in agreement with previous studies (Galy et al., 2001, 2002;
Tipper et al., 2006b, c, 2008, 2010, 2012a, b; Pogge von Strandmann, 2008;
Tanimizu, 2008; Bolou-Bi et al., 2009; Chakrabarti and Jacobsen, 2010; Huang
et al., 2009; Bizzarro et al., 2011; Larsen et al., 2011; Wang et al., 2011; Choi
et al., 2012; An et al., 2014, Dessert et al., 2015; Coath et al., 2017; Hin et al.,
2017; Sikdar and Rai, 2017, Gou et al., 2019a; Xu et al., 2021). In addition,
another in-house standard (IEECAS-Mg) was also run repeatedly at IEE-CAS,
yielding a 8*®Mg of 0.30 + 0.07%. (2 s.d., n = 21), which is indistinguishable to
that measured at the Centre de Recherches Pétrographiques et Géochimiques
(CRPG, France, 3*®Mgieecas = 0.30 + 0.07%o, 2 s.d., n = 5).

Two rock reference materials (AGV-2, BHVO-2) and a seawater reference
material (NASS-6) were purified following the above procedure yielding 5?°Mg
=-0.19 + 0.04%o (2 s.d., n = 6, number of digestions = 6, number of separate
column passes = 6), 8°Mg = -0.22 + 0.06%. (2 s.d., n = 16, digestions = 16,

column passes = 16), and 3*®Mg = -0.83 + 0.07%o (2 s.d., n = 13, column

12



286 passes = 13), respectively, over a five-year period, in agreement with
287  previously reported values (e.g., Pogge von Strandmann, 2008; Foster et al.,
288 2010; An et al., 2014; Huang et al., 2015; Teng et al. 2015; Teng, 2017; Coath
289 etal., 2017; Hin et al., 2017; Sikdar and Rai, 2017; Xu et al., 2021). Based on
290 the long-term in-house, rock, seawater reference materials, and the replicates,
291 the 5-year external reproducibility for 82Mg measurements is better than 0.07%o
292 (2 s.d.; Gou et al., 2019a).

293 4 Results

294 4.1 Hydrology and suspended sediment concentration

295 Over the year of 2013, the water temperature of the middle Yellow River
296  monotonously increased from a January minimum of 0°C to an August
297  maximum of 28.8°C, and then smoothly decreased (Figs. 2 and S2). During
298 the monsoon seasons (June to mid-September), the daily air temperatures
299  were generally above 20°C.

300 The mean Q. gauged at the Longmen hydrological station was 25 km?3/yr
301 in 2013. During the dry seasons, these low Q. values were first reached in
302 January—February, and then they peaked in March followed by a minimum of
303 152 m3/s in May (Figs. 2 and S2). We define the first small Q. peak as an “ice
304 melting interval” because it was a result of ice melt from the 16" of March to
305 the 13" of April when the air temperature above 0°C. During the monsoon
306 seasons, the high Qu reflects the frequent, monsoon-driven precipitation within
307 the Yellow River basin. Notably, there was a storm event from the 22" to the
308 25" of July, resulting in the maximum Qu (2400 m3/s) of the year 2013 (Zhang
309 etal., 2015; Gou et al., 2019b, 2020).

310 All the waters of the middle Yellow River collected in 2013 were alkaline,

13



311 with pH values between 7.05 and 8.71 (Fig. 2, Fan et al., 2016). The annual
312  dissolved phase flux of the middle Yellow River for the year 2013 was 1.9
313 x10' kg/yr. Compared to the annual dissolved phase flux from the upper
314 Yellow River (above Lanzhou, Fig. 1) of 6.1x10° kg/yr observed for the year
315 2016 (Li et al., 2018), we can estimate that the upper Yellow River supplies
316  about 1/3 of the middle Yellow River’s dissolved phase. Note that the above
317 estimation bears uncertainty because of potential inter-annual variability, but
318  such uncertainty appears limited according to 4 decades record of TDS at
319 Longmen (Chen et al., 2003).

320 The Yellow River is well-known for being sediment-laden, contributing ~10%
321  of the global sediment delivery to the oceans (Zhang et al., 1995; Saito et al.,
322 2001). Seasonal variations of SPM in the middle Yellow River over the year
323 2013 spans five orders of magnitude (Fig. 2). SPM was low and constant
324  during the dry seasons with a spike during the ice melting period, whereas high
325 concentrations and fluxes of SPM were observed during the monsoon seasons
326 (Fig. 2). The highest concentrations and fluxes of SPM were recorded during
327 the storm event. Overall, instantaneous physical erosion rates (PER, Zhang et
328 al.,, 2015) during the monsoon seasons were one to three orders of magnitude
329  higher than those of the dry seasons (Figs. 2 and 3), resulting from intense
330 loess erosion during the monsoon season (Zhang et al., 2015; Gou et al.,
331 2019b, 2020).

332 4.2 Mg concentrations and elemental ratios

333 Dissolved river Mg concentrations (hereafter refers to as [Mg]w) and
334  5*Mgmw values of the time-series samples are shown in Fig. 2 and Table S1.

335  Over the year of 2013, the [Mg]w in the Yellow River waters were on average
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1285 pmol/L, ranging from 992 ymol/L for the storm event during the monsoon
season to 2024 ymol/L in winter, showing doubled Mg concentrations between
the wet and dry seasons. Meanwhile, the Qu» showed a variation of one
magnitude (Fig. 2), indicating a Mg retention in the basin during high discharge,
even if both co-vary. The [Mg]w showed its first low value when the air
temperature was above zero during the early ice melting interval (Ran et al.,
2015; Zhang et al., 2015; Gou et al., 2019b, 2020). After the ice melting peak,
the [Mg]w remained at relatively low concentrations, until the storm event
where [Mg]w reached the lowest value of the whole year (992 pmol/L, Zhang et
al., 2015). Then the [Mg]w increased again until a period of [Mg]w fluctuations
within relatively high values (1531-1679 umol/L; Fig. 2). Notably, [Mg]w did not
return to values similar to those of the beginning of 2013 (Fig. 2). All these
[Mg]ww values fall within the range reported elsewhere for samples of the Yellow
River (663 to 26100 pymol/L, Fan et al., 2016).

Seasonal variations of Sr/Ca, Mg/Ca, and Sr/Mg molar ratios in the middle
Yellow River over the year of 2013 were shown in Fig. S2. Generally, variations
of the Sr/Ca ratio mimicked those of the Mg/Ca molar ratio, both showing a
slight decrease followed by an increase to their highest values at the beginning
of the monsoon season (i.e., Mg/Ca from 0.70 to 0.90; Sr/Ca from 6.5 to 8.0,
respectively), with a dramatic decrease in response to the storm event (Mg/Ca
0.65 and Sr/Ca 7.0, respectively), and a quick rebound to high values again
after the storm event (Mg/Ca 0.85 and Sr/Ca 8.0) followed by a gradual
decrease in both ratios (Mg/Ca 0.75 and Sr/Ca 6.5). The Sr/Mg ratio was
rather stable before the monsoon season (~8.0), with an abrupt increase in

June, eventually reaching its highest value during the storm event (~10.0). The
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Sr/Mg ratio decreased with fluctuations towards the end of 2013 (~8.0),
followed by an increase of Sr/Mg during in mid-November (~9.0, ~3 months
after the storm event; Fig. S2).

The dissolved Mg concentrations of the rainwater samples ([Mg]rain) were
relatively homogeneous, with an average of ~45 ymol/L (Table S2; Zhang et al.,
2015), higher than measured in rainwater samples elsewhere (0.9-38.4 umol/L,
Tipper et al., 2006c, 2012a; Pogge von Strandmann et al., 2008; Dessert et al.,
2015; Fries et al., 2019). This could be related to a higher dust contribution in
the studied area, leading to the dissolution of Mg-rich particles into rain
droplets (Jin et al., 2011; Fan et al., 2016; Gou et al., 2019b). The dissolved
Mg concentration of the sewage water collected in a farmland near the
hydrological station was 12.3 mmol/L (Table S2).

lonic compositions of the leaching experiment of the Lingtai loess were
reported in Table S3. The evaporite-fraction generally had a low Mg
concentration (~0.27 + 0.26 mg/g; in mg Mg per g of the initial bulk sample);
the carbonate fraction showed an intermediate Mg concentration (~1.00 + 0.87
mg/g); the Mg concentration in the silicate fraction was high (20.90 + 8.54
mg/g), in line to the value of the UCC (Taylor et al., 1983; Li et al., 2010; Teng
et al., 2010; Teng, 2017). Given that the SPM in the middle Yellow River shares
the same chemical and mineralogical composition with CLP loess (Li et al.,
1984; Fan et al., 2016; Gou et al., 2019b, 2020), a Mg concentration in SPM
([Mg]spm) of 22.2 + 9.7 mg/g, as measured for loess (Table S3, Taylor et al.,
1983; Yokoo et al., 2004) is used hereafter in the study.

4.3. 87Sr/85Sr ratios

In 2013, the &7Sr/%Sr values of the middle Yellow River water
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(87Sr/®Srw) ranged between 0.71098 and 0.71129 (Fig. 2, Table S1). The
87Sr/8Srw remained at relatively high values (averaging 0.71123) until the
storm event where they reached their first minimum (0.71110), but rebounded
to prior values within three weeks, and eventually attained a maximum
(0.71099) one month after the storm event (Fig. 2). After the monsoon,
87Sr/86Srw showed some fluctuations, followed by a dramatic drop to reach the
second minimum (0.71098) in mid-November. Then & Sr/%Srw rebounded
back to initial values (0.71123) and maintained those values for the rest of the
year.
4.4 5%°Mg

In 2013, the 3%®Mg values of the middle Yellow River water (5°°Mgmw)
ranged from -1.20%o to -0.98%o (Fig. 2), the long-term external reproducibility is
better than 0.07%.. This range is smaller than that reported for observed
relative seasonal variability in small catchments of the Himalayas or the Swiss
Alps (Tipper et al. 2006b, 2012b), is much smaller when compared to spatial
variability (~2.5%0) across global river systems (Tipper et al., 2006b, c; Brenot
et al., 2008; Pogge von Strandmann et al., 2008a, b, 2012; Wimpenny et al.,
2011; Riechelmann et al., 2012b; Lee et al., 2014; Dessert et al., 2015; Fan et
al., 2016; Mavromatis et al., 2016, 2020), but is almost the same to both the
seasonal variability and absolute values observed in the large catchment of the
Yenisei River (-1.13%o to -0.96%0, Hindshaw et al., 2019).

Clear seasonal variation in 8*®Mgmw in the middle Yellow River was
observed, with values remaining relatively high (-1.04 + 0.03%o) until the storm
event where 8*°Mgnw decreased from -1.09%o to -1.20%.. 5°°Mgw values then

returned to the preceding values within three weeks and eventually reached
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-0.98%0 one month after the storm event (Fig. 2). After the monsoon, the
5%5Mgrw values slowly decreased from -1.10%o to -1.17%o about 3 months after
the storm event. Then &%Mgw rebounded back to the initial values and
remained at those values for the rest of the year (-1.04 £ 0.02%o0). Fan et al.
(2016) reported a 52°Mgw of -1.03 + 0.10%o for water collected at the Longmen
hydrological station in August 2012, consistent with our values obtained for
samples LM13-36 to LM13-40 (from -0.98 + 0.03%o to -1.08 + 0.04%.) also
collected in August but 2013. This similarity supports a seasonal consistency
between two years for 3*Mgnw in the middle Yellow River.

Variations in 8*Mgw showed patterns similar to those of the 87/86Sr and
Mg/Ca ratios at the seasonal scale in the middle Yellow River. However, all
parameters show distinct responses to the storm event and in mid-November
(Figs. 2 and S3). Notably, there were obvious low Mg and Sr isotopic
compositions in mid-November (three months after the storm event),
presumably resulting from a lag in the subsurface water transport (defined as
hydrological hysteresis (Fig. 2), see discussion below; Andermann et al., 2012;
Wanner et al., 2014; Liu et al., 2015; Emberson et al., 2016).

The average 3%°Mg of the rainwater (3*°Mgrain) samples was -1.09%o,
and the sewage water showed a 3*®Mg of -0.84%.. The sequential extraction
experiment of 5 loess samples provided 5%°Mg for the evaporite, carbonate,
and silicate components of the loess (5?°Mgevap, 3*°Mgcarb, and 526Mgsi),
determined to be -1.11 * 0.44%., -1.58 * 0.95%0, and -0.21 % 0.19%o,
respectively. All these numbers fall within the range of reported 5?°Mg for
evaporite, carbonate, and silicate rocks (e.g., Teng, 2017, Fig. S1). The

inferred 5%%Mgsi is similar to that of the UCC (-0.22%o, Li et al., 2010; Teng et al.,
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2010; Teng, 2017).
5 Discussion
5.1. Mg fluxes in the Yellow River
Rivers export terrestrial Mg to the oceans either as dissolved load
(Mgw), or as solid (Mgspm). Equations below are employed to determine the

proportion of these two major forms of riverine Mg (Gaillardet et al., 2014; Gou

et al., 2019b):
— Mgrw flux
Mgrw (%) = Mgrw flux+Mgspm flux x 100 Eq (2)
Mgspm (%) = 100% - Mgrw Eq (3)

where the Mgmw flux and Mgsewm flux are given in t/yr (Fig. 2). The Mg flux is
the product of [Mg]w and the corresponding weekly average Qu as gauged
(generally, three times/day) in the sampling site. Similarly, the Mgspm flux is
calculated by multiplying the [Mg] in SPM and the corresponding weekly
average SPM flux. In the middle Yellow River in 2013, Mg was primarily
transported by the dissolved load (65.4%; Fig. S4). In the monsoon seasons, a
higher percentage of river Mg was transported as solid. It is noteworthy that
during the ice melting and the storm event intervals, the fraction of Mg
transported as solids increased dramatically (up to 98%, Fig. S4). ~45% of the
total dissolved Mg was transported during the monsoon seasons, with the
4-days storm event accounting for 2% of the annual flux (Fig. S4). Note that
these estimates do not account for potential variability of Mg concentration and
SPM with depth, although the middle Yellow River water appears
homogeneous with respect to Li and Ba concentrations and isotopes of SPM in
depth (Gou et al., 2019b, 2020). Such homogeneity should be applicable to Mg

because Mg is a major ion therefore less likely affected by distribution, so our
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461  estimated Mgspm flux is likely accurate. Both the dissolved Mg and Sr flux in
462 the Yellow River were exponential related to the PER, suggesting that
463  chemical weathering is tightly related to physical erosion (Fig. 3).

464 5.2 Sources of dissolved Mg

465 Dissolved Mg sources in river waters include atmospheric input,
466  anthropogenic input, and rock dissolution (Tipper et al., 2006b, 2008, 2012a, b;
467 Brenot et al., 2008; Pogge von Strandmann et al., 2008b, 2014; Wimpenny et
468 al., 2011; Opfergelt et al., 2012; Lee et al., 2014; Fan et al., 2016; Zhang et al.,
469  2019; Hindshaw et al., 2019; Mavromatis et al., 2020). Hereafter attempts
470  were made to discern the contributors to Mg in the middle Yellow River.

471 5.2.1 Limited atmospheric input

472 Evaluation of atmospheric Mg inputs ([Mg]atmo) was based on the Mg/CI
473 ratio (0.44 = 0.27 mol/mol) of three rainwater samples and the reported
474  evapotranspiration correction factor (F) in the middle CLP area of 1.76 (F
475  ranges from 1.61 to 1.90, Zhang et al., 2015). We estimated that the [Mg]atmo is
476  equal to 83.9 £ 50.2 ymol/L, which is 4%-8% of the total dissolved Mg (Fig. S5).
477  This is a rather high contribution compared with that reported for other
478  continental settings such as the Alps (0.6%, Millot et al., 2003; Tipper et al.,
479  2012a), but it is low by comparison with islands such as Puerto Rico
480 (71%-93%, Chapela Lara et al., 2017). These observations demonstrate that
481  the contribution of atmospheric input to riverine Mg to the river dissolved Mg
482  load strongly depends on the locations.

483 The 3%°Mg of rainwater samples were relatively homogeneous, -1.09%o +
484  0.03 (Table 2), within the range of the values reported elsewhere (e.g., —0.70 %o

485 to —-1.59%o; Riechelmann et al., 2012b; Tipper et al., 2010, 2012a; Teng et al.,
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2010; Fries et al., 2019), and were statistically different from the composition of
a pure seawater-derived aerosol expected to be around -0.83%. (Foster et al.,
2010; Teng, 2017). The lighter Mg isotopic composition of the atmospheric
contribution in the middle Yellow River basin is rather similar to the 3*Mg of
continental evaporites (average -1.11%., Table S2). The maximum atmospheric
input (8%) to the dissolved load combined to a maximum Mg isotopic
difference (0.11%0) between the 8%°Mgw and 3%°Mgrin implies that the
atmospheric correction of the 8?Mgw would induce a change < 0.01%o.
Therefore, no corrections were applied here.
5.2.2 Insignificant anthropogenic inputs

Anthropogenic activities within the upper and middle Yellow River basin
are dominated by sparse agriculture (Chen et al., 2003) without considerable
industry. As our dataset showed that NOs™ concentration in the middle Yellow
River is higher than in typical pristine river waters, we assumed that all NO3s
originates from fertilizers there (Chen et al., 2003; Zhang et al., 2015; Fan et al.,
2016; Gou et al., 2019b). Using a typical NOs/Na ratio of 7 + 3 for fertilizer
inputs (Roy et al., 1999; Chetelat et al., 2008), together with the Mg/Na molar
ratio (~0.01) of the sewage water samples (Table S2) for the composition of
anthropogenic inputs, we estimated the Mg anthropogenic input in the middle
Yellow River to be between 0.3% and 0.8% (Fig. S5). In addition, the Mg
isotopic composition of the anthropogenic input (-0.84 + 0.04%., defined as
0%®Mganth) was higher than those of all the river water samples. In this case,
during the monsoon season when agriculture prevails, we would observe a
quite high 5°°Mgmw value if the anthropogenic input were significant, which was

not observed. As a result, anthropogenic input is negligible in the middle Yellow
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River, likely because (1) Mg is the eighth abundant element in crust; (2) Mg is
rarely a primary component of fertilizers; and (3) agricultural activity is sparse
within the upper and middle Yellow River drainage basin (e.g., Chen et al.,
2006a; Zhang et al., 2015; Fan et al., 2016).
5.2.3. Negligible contribution from biomass decay

Mg is one of the most important rock-derived nutrients, such that its
incorporation in the biomass is associated with enrichment in light Mg isotopes
in residual waters (Black et al., 2008; Bolou-Bi et al., 2009; Pokharel et al.
2018). In the Yellow River basin, crops growth rates are high during the
monsoon seasons due to temperate climate and intense rainfall (Chen et al.,
2003). However, we first note that biomass is very sparse in the upper and
middle Yellow River basin due to the (semi-)arid condition and low temperature
(Chen et al., 2003; Zhang et al., 2015; Fan et al., 2016; Gou et al., 2019b).
Second, biological uptake tends to prefer both the heavy and light Mg isotopes
(e.g., Bolou-Bi et al., 2010; Opfergelt et al., 2014; Balland-Bolou-Bi et a., 2019).
If biological uptake were a driver of the dissolved Mg budget in the Yellow River,
we would expect a varying 8?Mgw values during the monsoon season when
biomass growth is at its maximum, and an opposite §?®Mgnw values to monsoon
season in the autumn when organic matter decays across the catchment
(Chen et al., 2003). As none are observed, biological uptake is inferred to have
a negligible effect on §*Mgmw in the Yellow River basins. Thus, seasonal
nutrient cycling is not important enough to affect the Mg cycle in the middle
Yellow River basin.

Negligible biomass cycling to Mg in the middle Yellow River basin (Zhang

et al., 2015; Fan et al., 2016) is consistent with observations elsewhere (Tipper
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et al., 2008, 2012b; Wimpenny et al., 2011; Lee et al., 2014; Dessert et al.,
2015), although this contradicts results from the montane forest ecosystem of
the Southern Sierra Critical Zone Observatory where over 50% Mg is taken up
during plant growth (Uhlig et al., 2017). One possible reason for such
difference could be related to the timing and kinetic of Mg turnover in plants.
5.2.4. Carbonate and silicate dissolution dominate the Mg budget in the
Yellow River

As a major element in both carbonates and silicate minerals, river
dissolved Mg is thought to be mainly derived from carbonate and silicate
dissolution (Tipper et al., 2006c, 2012a, b; Pogge von Strandmann et al.,
2008b, 2014; Brenot et al.,, 2008; Wimpenny et al., 2011; Lee et al., 2014;
Dessert et al., 2015; Fan et al., 2016; Zhang et al., 2019; Fries et al., 2019;
Zhao et al., 2019; Mavromatis et al., 2020). However, as the loess in the Yellow
River basin contains ~5-10% evaporites (Zhang et al., 2020; Liu and Ding,
1998; Yokoo et al., 2004; Zhang et al., 1995, 1990), the contribution of
evaporite dissolution to dissolved Mg in the middle Yellow River water
chemistry must be quantified (Fan et al., 2016).

Since evaporites are more soluble than carbonates and silicates (e.g.,
Meybeck, 1987) and thus could contribute significant to dissolved Mg in the
middle Yellow River (Zhang et al., 1990). Considering that the calculated
dissolved Ca derived from evaporites in the middle Yellow River is 717 + 180
pmol/L (Zhang et al., 2015) and using a typical molar Mg/Ca ratio of 0.099 +
0.034 for evaporite minerals (Table S3, Yokoo et al., 2004; Zhang et al., 2020)
contained of loess in the CLP, Mg derived from evaporites accounts for ~7%

(ranging from 4.2% to 9.7%) of the dissolved Mg in the Yellow River water. In
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addition, Mg retrieved in the evaporite fraction of our sequential extraction
experiments has a similar 3**Mg value (8?®Mgevap = -1.11 * 0.44%o) to that of
the river water (6?®Mgrw from -0.98% to -1.20%), making it highly unlikely that
evaporite dissolution has a discernible effect on the seasonal Mg values in
the middle Yellow River (Fig. S6).

Altogether, neither rain, anthropogenic, biological cycling, nor evaporites
can contribute more than 20% of the dissolved Mg in the middle Yellow River,
such that the remaining Mg derives from carbonate and silicate dissolution.
This is consistent with that the lithology of the CLP which is made up of
carbonated loess, with carbonates typically accounting for 8-20% of the loess
(Kukla, 1987; Liu and Ding, 1998). Therefore, carbonate dissolution has a
significant impact on the water chemistry in the Yellow River (Zhang et al.,
2015). Initial attempts were made to quantify the contribution of carbonate vs.
silicate dissolution to total dissolved Mg in the middle Yellow River by using a
typical (Mg/Na)sii ratio of 0.54 (0.52—-0.57, Gaillardet et al., 1999; Wu et al.,
2005; Zhang et al., 2015). Results showed that the fraction of carbonate-
sourced Mg (~43*35%) is roughly equal to that of silicate-sourced Mg (~43*3%%,
Fig. S5). However, this approach is unable to disclose the role of prior calcite
precipitation (PCP), recognized to be a significant process impacting riverine
chemistry in the CLP of the Yellow River (Li and Li, 2013). Furthermore,
dissolved Mg once into river starts fractionation undiscernibly regardless its
origin sources. We thus use Mg/Sr ratios later in the discussion, and return to
this topic in section 5.3.1 (Figs. 4 and 5).

The Sr isotope ratios can serve as a conservative tracer of solute sources,

as Sr isotope mass-dependent fractionation is normalized during data
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reduction. We thus employed the 8Sr/8Sr and Mg/Sr molar ratios of the loess
from Yokoo et al. (2004), Yang et al. (1997, 2000) and Wu et al. (2005) as the
lithological end members (evaporite, carbonate, and silicate). During the
monsoon seasons, the correlation between 8Sr/%8Sr and Mg/Sr showed that a
mix of "carbonate of the upper reaches" and "Mg rich silicate of loess" with
carbonate from loess acts as the first-order control on the Yellow River
hydrochemistry (Fig. 4). This observation is in stark contrast with the lack of
relationships between & Sr/8Sr and Mg/Sr ratios during the dry seasons,
indicating that source effects alone cannot completely explain the Mg budget
during the dry seasons. It is because internally normalized Sr isotope ratios
would not reveal Sr removal, while the removal of Mg by both 1) PCP (Li and Li,
2013; Yang et al., 2015) and 2) clay formation likely as a subordinate control
on the Mg/Sr and Mg isotopes in the middle Yellow River (Fig. S7). We return
to this feature later in the section 5.3.1.

More generally, taking the whole dataset into account, the significant (p <
0.01) covariation between 8’Sr/%Sr and Mg/Sr (Fig. 4) supported: 1) a binary
mixing between carbonate and silicate dissolution as the first order of control
on 87Sr/88Sr ratios; 2) temporal variation in the fractional contributions of the
two end members, and 3) the fact that the end members retrieved during our
leaching experiments do not completely explain the mixing array (Fig. 4). In
particular, one additional end member can be identified as the carbonate
contribution from the upper Yellow River basin. There, carbonate dissolution
accounts for 60% of the TDS (Li et al., 2018) at an 8"Sr/%Sr ratio of ~0.71000
(Wu et al., 2005). As the upper Yellow River supplies ~1/3 of the TDS of the

middle Yellow River (see section 4.1), the contribution of carbonate dissolution
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in the upper reaches cannot be neglected for the dissolved Mg budget of the
middle reaches. In addition, we note that Mg-rich silicate minerals (e.g.,
chlorite) may contribute to riverine Mg significant (Yokoo et al., 2004), meaning
that some of the high Mg/Sr ratios observed in the riverine data (Figs. 2, 4 and
S2) could be explained by the weathering of Mg-rich silicate minerals. With
these two additional end members, the observed variation in ranges of
87Sr/86Sr and Mg/Sr ratios can be explained by mixing between silicates and
carbonates both from upper and middle reaches of the Yellow River (Fig. 4).
Altogether, Sr isotopes disclose a broad shifting proportion of weathering
product between silicate and carbonate seasonally, while Mg isotopes seem
revealing more details involved in weathering processes.
5.3 The role of PCP and clay formation on Mg isotopes

The seasonal 5?°Mg variation in the Yellow River depends on both 1) the
relative contribution of silicate and carbonate rocks to the dissolved Mg budget,
and 2) the processes affecting Mg once solubilized from minerals. First, to test
for the role of lithological mixing on Mg isotopes, we derived the corresponding
0%®Mg constrained by our leaching experiments and summarized in Table S3
(Fan et al., 2016; Teng, 2017, Fig. S1). Mixing relationships between end
member compositions (3*®Mg versus Sr/Mg) further confirm that the
dissolution of carbonate and silicate rocks are the primary control on dissolved
Mg and Sr in the middle Yellow River, with approximately the same contribution
for carbonate and silicate (i.e. ~40-50% each, Figs. 4 and 7), similar to
estimates derived from elemental ratios alone (Fig. S5). Therefore, a combined
dissolution of Mg from carbonate and silicate followed first by PCP (carbonate

precipitation), and then by clay formation can fully explain the observation.
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5.3.1 Quantifying the PCP fractionation on dissolved Mg isotopes

In rivers, the preferential removal of Ca relative to Sr and Mg during PCP
generates a co-variation of the dissolved Sr/Ca and Mg/Ca ratios (Li and Li,
2013; Wassenburg et al., 2020; Yang et al., 2015, Fig. 5). Variations in river
dissolved Mg/Ca and Sr/Ca ratios in response to the precipitation of secondary
carbonate can be described by Rayleigh distillation following (Elderfield et al.,
1996; Sinclair, 2011; Wassenburg et al., 2020):

[Sr/Ca]mw = [Sr/Ca]initiar % f DS Eq(4)

[Mg/Cajw = [Mg/Cal]initiar * fPMa-1 Eq(5)
where the [Sr/Cajinitias and [Mg/Caljinitias are the ratios of Sr and Mg to Ca in the
"initial" waters after mineral dissolution and "before" secondary carbonate
precipitation; Dsr and Dwmg are the trace element distribution coefficient of Sr
and Mg (e.g., Elderfield et al., 1996; Sinclair, 2011; Wassenburg et al., 2020),
and fis the fraction of initial Ca remaining in river water after the precipitation
of secondary carbonate. The Egs. (4) and (5) can be simplified to:

[Sr/Calw =k x [Mg/Ca]"solution Eq (6)
where n is equal to (Ds—1)/(Dmg—1).

The equation 6 can then be fitted to actual hydro-geochemical data to
retrieve a best-fit value for n. Using our whole dataset of the middle Yellow
River, the Sr/Ca and Mg/Ca ratios displayed a poor correlation (r? = 0.47),
yielding a n value that is inconsistent with that expected for the PCP (Fig. 5).
However, during the dry seasons (samples LM13-1 to 25 and LM13-56 to 60),
the Sr/Ca and Mg/Ca ratios were well correlated (r? = 0.93, p < 0.01) and yield
an n value of 1.064 + 0.24 (Fig. 5), in line with the range of the theoretical

~0.85-1.45 associated with the PCP (Sinclair et al., 2012; Wassenburg et al.,
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2020).

Despite the fact that the PCP might have slightly modified the Mg content
of river water, we can now determine the relative contribution of carbonate and
silicate dissolution to the "initial" Mg dissolved budget from the combination of
laws describing the evolution of water under the effect of PCP, and others
describing the mixing of different sources. Using the above-determined
coefficients for Mg, Ca, and Sr partitioning during the PCP in the middle Yellow
River, the evolution of the composition of a water parcel under the effect of
PCP can be described by:

In(1000*Sr/Ca)pcp = (1.064 + 0.24) x In(Mg/Ca) + (2.116 £ 0.02) Eq (7)
whereas conservative mixing between carbonate and silicate dissolution can
be written as below:

IN(Sr/Ca)mixing = (fsr(Srcarb - Srsil) + Srsi)/(fsr(Cacarb - Casil) + Casi)  Eq (8)

In(Mg/Ca)mixing = (fmg(Mgcarb - Mgsit) + Mgsil)/(fug(Cacarb - Casil) + Casi)  EqQ
(9)
where fsr and fug are the amounts of dissolved proportions of Sr and Mg
relative to whole Ca from carbonates (Li and Li, 2013; Yang et al., 2015).

Equating the right-hand sides of Egs. (7) and (8) and then employing Eq.
(9) to our data returns an fug of ~40 + 11%, confirming that carbonate
dissolution contributes ~40 + 11% to Mg in the dry seasons as inferred from
elemental constraints (Figs. 5 and S5). Note that variation in Mg/Sr of river
waters is probably a result of mixing between calcite and dolomite dissolution
(Fig. 5).

We then estimated the influence of the PCP on river dissolved Mg isotope

signatures in the middle Yellow River. To do so, we used a Rayleigh distillation
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equation:

5?6Mgrw = 82Mgpre-pcp +1000 x (g@1) -1) Eq (10)
where g = f x fiOMg1) fis the amount of Ca remaining in the fluid after the PCP
(Egs. 4 and 5). Comparing dry season (Mg/Ca)w to (Mg/Ca)mixing, ~80% Ca
has been lost through the PCP (Fig. 5), corresponding to a Mg loss of 5.6%.

The Mg isotope fractionation factors associated with the PCP (arcp)
deduced from experiments were ranged from 0.9965 to 0.9985, depending on
the carbonate precipitation rate (Galy et al. 2002; Mavromatis et al., 2013;
Saenger et al., 2014). We here used this range to model PCP trends in the
middle Yellow River based on Eq. 10.

The actual values of the partition coefficients Dmg and Dsr are related to a
number of factors, such as carbonate precipitation rate, water Sr/Ca and
Mg/Ca ratios, and temperature (Wassenburg et al., 2020). Considering the fact
that in winter waters of the middle Yellow River are highly oversaturated waters,
which mostly likely accelerates PCP, we used a Dwmg value of 0.07
(Wassenburg et al., 2020), corresponding to a Dsr of 0.01 according to Eq. (7)
(Sinclai, 2011; Sinclai et al., 2012; Li and Li 2013; Mavromatis et al., 2013;
Yang et al., 2015; Wassenburg et al., 2020).

In the model, 5**Mgpre-pcr is the "initial" Mg isotope composition of waters,
i.e. before the PCP occurs, and is derived from conservative mixing equations
(Figs. 4, 5 and 7). Around 1/3 of the TDS of the middle Yellow River is derived
from the upper Yellow River (60% from carbonates and 40% from silicates (Li
et al., 2018), such that loess-derived Mg accounts for the remaining TDS of the
middle Yellow River, with carbonate contributing 40% and silicate 60%.

Considering that the ?°Mg signature of silicates and carbonates from the
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upper reaches are to be -0.22%0 and -2.2%o, respectively (Fan et al., 2016), we
obtained a 8%®Mgpre-pcp value of -1.03%o and a Sr/Mg of 7.44 in the dry seasons
(Fig. 7). Similarly, given the elevated contribution of carbonate in the wet
seasons, we estimated that the ?®Mgpre-pcp was -1.18%o and Sr/Mg = 8.14
(Figs. 4 and 7). This is a first-order approximate quantification, leaving alone
the uncertainties related with (1) the relative contributions of carbonate and
silicate dissolution (Figs. 7 and S5) and (2) seasonal variability of the solute
contribution from the upper Yellow River.

Using these constraints, we modelled that the removal of Mg during the
PCP would approximately raise the 5?°°Mgmw of the water by ~0.17%o to 0.39%o
depending on the Dwmg and fractionation factor values associated with the PCP
(Fig. 7). Since most monsoon waters were supersaturated with respect to
calcite, we thus also draw the PCP trend for the wet seasons (Fig. 7). The
results showed that although the PCP fractionates Mg isotopes by
~0.17%0-0.39%0 compared to “initial” waters but lead to a positive trend in
0%Mgw and Sr/Mg, PCP doesn’t dominate riverine Mg isotopes. Rather, we
suggested that clay formation dominated Mg in the middle Yellow River
(Fig. 7).

5.3.2 Clay formation dominates dissolved Mg isotopes

After the PCP, Mg isotopes can be fractionated by clay formation, with a
fractionation factor experimentally obtained as 1.00050-1.00075 (dclay,
Wimpenny et al., 2010, Fig. 7). Though the fractionation factors employed here
are opposite to that Hindshaw et al. (2020), who argued that due to the Mg-O
band length, clay may favor light Mg, however, averages of the reported 5?°Mg

of soil (-0.20 £ 0.30%o), sediment (-0.09 + 0.29%0), and SPM (0.32 + 0.10%o)
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globally are all isotopically heavier than the UCC (Fig. S1, Li et al., 2010; Teng,
2017), indicating that formation of clays may generally favor heavy Mg globally
(Fig. S1). Therefore, we employed here the fractionation factors (Oclay,
1.00050-1.00075).

Using Eqg. 10 with this range of the aciay values, dissolution of silicate
minerals alone followed by clay formation is an unlikely scenario to explain the
observation on Mg isotopes in the middle Yellow River, as it would result a far
higher Mg than the observed data, regardless of the aciay values prevailing
during clay formation (Fig. 7). Alternatively, during the dry seasons, combined
contribution of Mg from carbonate (~40%) and silicate (~60%) followed first by
the PCP, and then by clay formation can fully explain the field observations.
For example, using a 60%-40% silicate-carbonate mixture of Mg for the "initial”
(before the PCP) composition of dry season waters, the inferred fractionation
factor for PCP is of 0.9985. Such a value is consistent with the current
knowledge on Mg isotope fractionation during PCP, as arcp is known to be
tightly related to precipitation rate. Indeed, when waters are highly
overstaturated, as is the case in the middle Yellow River during the dry season
(Zhang et al., 2015), a higher precipitation rate is expected (Galy et al. 2002;
Mavromatis et al., 2013; Saenger et al., 2014). After PCP, 3**Mgw could be
additionally elevated to -1.03%o to -0.86%o, due to clay formation modifying the
0%®Mgw and Mg/Sr ratios by removal of heavy Mg. Any value of aclay between
1.0005 and 1.00075 can explain the observed 3%°Mgn in the dry seasons (Fig.
7).

In the monsoon seasons, the slightly shift in mixing proportions (50%

carbonate and 50% silicate) result in a lower "initial" Mg (Fig. 7); however,
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most of the samples in the monsoon season are still supersaturated with
respect to calcite (only samples from the storm event and from mid-November
are unsaturated), implying that PCP is most likely operating during the
monsoon season. The 3%*Mgw values modified by PCP in the monsoon
season via carbonate precipitation can then be fractionated by clay formation
(Fig. 7). In particular, the Mg during the storm event and in mid-November
show the lowest values of 2013, which is consistent with undersaturation with
respect to calcite during those periods and associated absence of PCP that
could elevate 5?°Mgw (Figs. 7 and S7).
5.4 The role of subsurface water transport in generating time lags in river
hydrochemistry

Over the year of 2013, there were lower values of both 5?®Mg and &7Sr/8Sr
in the middle Yellow River during the storm event. Following the model above,
these low isotopic values would be mainly the result of enhanced Mg-bearing
carbonate dissolution (Figs. 6 and 7), likely caused by the supply of highly
undersaturated rainwater to the loess surface and subsurface (Meybeck, 1987;
Buhl et al., 2007). One of the most interesting observations is that during the
low runoff period of mid-November, low Mg and Sr isotope values were also
observed (Figs. 2 and 6). It is hard to attribute to the shift in weathering
sources or fractionation. Being considered that much of the surface runoff from
the storm event could be temporarily sequestered in the porous loess that
makes up the subsurface of the central part of the Yellow River basin. Here, we
suggested that when river discharge decreases in the dry season, such water
pool stored in the loess would be delivered to the river channel and maintain

discharge, bearing the Sr and Mg isotope signatures of the storm event. Based
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upon our data, such scenario would require a lag time of about 3 months (i.e.,
hysteresis, Fig. 2). In fact, significant water storage has also been inferred in
groundwater in mountainous areas such as the Andes (Liu et al., 2015;
Wanner et al., 2014) or in the Himalayas (Andermann et al., 2012; Emberson
et al., 2016), with a ~3 months residence time broadly (Fig. 7, Wimpenny et al.,
2011), thus in agreement with our observations.
5.5 Implications

Over the year of 2013, the flux-weighted mean riverine §?®Mg value of the
middle Yellow River is -1.05%o, which is identical within uncertainty (x 0.05%o)
to the global river average (-1.09%o, Tipper et al., 2006c), indicating that the
CLP region is a representative setting to study Mg isotope response to climatic
shifts on the continental scale. Despite the strong climatic seasonality affecting
the CLP, riverine Mg isotopes appeared to be strongly buffered, exhibiting only
~0.2%o variability throughout the year. The only significant shift in dissolved Mg
isotope composition in the middle Yellow River in 2013 occurred during an
extreme storm event and its subsequent hysteresis. Given that in the Yellow
River dissolved Mg isotopes are sensitive at the seasonal scale to enhanced
carbonate dissolution in the CLP during particular hydrological periods, the Mg
isotope composition of loess-paleosol archives could be related to cumulative
monsoonal precipitation through loss of carbonate (i.e., monsoonal
precipitation intensity), dynamically supporting the idea that Mg isotopes of
loess-paleosols can document monsoonal precipitation intensity on the CLP
(Ma et al., 2019).

We highlight that even there are strong variability in temperature or rainfall,

only an ~0.2%o change in river dissolved 3%*Mg occurs, which is hardly to
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cause a resolvable change in the ocean Mg isotope budget (Fries et al., 2019).
Meanwhile, although the dissolution of different lithologies provides very
different Mg isotope signals (~2.5%o), their mixing remains relatively constant
throughout the year at the scale of large rivers (Mavromatis et al., 2020).
Hence, changes in climate cause little enhancement of selective leaching of
different rock types, and hence Sr and Mg isotopes, on the continental scale.
Therefore, large rivers appear highly buffered, suggesting that their §**Mg
could remain relatively stable over long time periods. Only extreme changes
would be required to alter their Mg isotope ratios, which is an important
constraint for modeling the long-term evolution of the ocean Mg isotope
composition in the frame of paleo-environmental studies relying on 8%°Mg in
marine sedimentary archives (Pogge von Strandmann et al., 2014; Higgins
and Schrag, 2015; He et al., 2020), for example, snowball earth, OAE etc.

6 Conclusions

In order to elucidate the controls on Mg isotope fractionation in large river
catchments, we investigated how riverine Mg is affected by chemical
weathering and extreme hydrological events, using water samples collected
weekly from the middle reaches of the Yellow River in 2013. The following
conclusion was drawn.

1) Mg in the middle Yellow River was dominantly transported in the
dissolved form (65%); ~45% of dissolved Mg was transported during the
monsoon season, and 2% during a single storm event (4 days).

2) To the first order, conservative mixing of Mg derived from the
dissolution of carbonate and silicate rocks controlled the riverine Mg isotope

composition. During the dry season, the relative contributions of carbonate and
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silicate dissolution were 40 + 11% and 60 * 11% to total riverine Mg,
respectively; in the monsoon season, their proportions shifted to 50 + 10% and
50 £ 10%.

3) Prior calcite precipitation (PCP) led to ~80% Ca loss and ~6% Mg loss
from the dissolved load, resulting in a 0.17%0-0.39% fractionation of Mg
isotopically. After the PCP, clay formation further led the residual solution
towards lower values of both 82Mg and Sr/Mg ratios.

4) The seasonal variation in riverine dissolved Mg isotope composition
(~0.2%0) was mainly due to a single storm event that provided unsaturated
waters to the surface, which in turn enhanced carbonate dissolution.
Temporary storage of water in the porous loess underlying led to a ~3 months

delayed response of both Mg and Sr isotopes to such extreme events.
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1183  Figure 1 Map of the Yellow River drainage basin, with major tributaries and sampling locations (Toudaoguai and Longmen
1184  hydrological stations). Loess and desert dominate the lithology within the upper and middle reaches of the Yellow River basin. Inset

1185  map shows the whole Yellow River drainage basin.
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by weekly gauging, all showing obvious seasonal variations. Note that 5*Mgmw
and 87Sr/86Sr exhibited similar patterns, with two spikes during the storm event
and 3 months after its end (hydrological hysteresis). The intervals of ice
melting (during 16" March and 13" April), monsoon season (From June to
mid-September), a single storm event (22" to 25" of July), and the period of
hydrological hysteresis, shown as green, blue, dark blue, and red shaded

areas, respectively.
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Figure 4 Mixing diagram of 8Sr/®Sr vs. Mg/Sr, showing that at the first order

carbonate and silicate equally contribute to dissolved Sr isotopic compostions,

but preferential removal of Mg relative to Sr is required to fully explain the

seasonal data. The 87Sr/®Sr of three end members are 0.71158 + 0.00112 for

evaporite, 0.71953 = 0.00498 for silicates, and 0.71098 + 0.00082 for

carbonates, as constrained by our own leaching experiments performed on

loess samples. The 8Sr/%Sr composition of carbonate in the upper Yellow

River is from Wu et al. (2005), while the composition of Mg-rich silicate (e.g.,

chlorite) is from Yokoo et al. (2004). The corresponding Mg/Sr ratios of the

end-members are 41.6 + 21.1 (evaporite); 93.3 + 16.5 (carbonates); 290.7 +

114.5 (silicates), and ~351.3 (Mg-rich silicates; as constrained from Yokoo et al.

(2004). The Mg/Sr ratio of carbonates from the upper reaches is considered to
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be the same as the one extracted from loess using HAc of our leaching

experiments.
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precipitation (PCP) on Mg and Sr dissolved contents. Taking the entirety of our
dataset into account, the relationship between two ratios is poor (> = 0.47, red
line) and its slope inconsistent with the PCP; in the dry season (LM13-1 to 25
and LM13-56 to 60), however, the slope is consistent with the PCP (0.85-1.45,
r? = 0.93, black lines; Sinclair et al., 2012; Yang et al., 2015; Wassenburg et al.,
2020). Variation in the riverine Mg/Sr ratios exactly lies between the mixing of
the two PCP trends (each corresponding to dolomite and calcite as the end
member, respectively). The mixing line between carbonate and silicate rocks
(dark blue) intersects the PCP trend (black line) at 40 + 11% carbonate
contribution. Note that subtle variation in Mg/Sr of river waters is very likely a

result of mixing between dissolved calcite and dolomite (Fig. 6).
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Figure 7 Rayleigh fractionation model for Mg isotopes simulatation during prior calcite precipitation (PCP) and clay formation. End
members for Mg isotope compositions (i.e., evaporite, carbonate, and silicate in loess (Yokoo et al., 2004)), and carbonate of the
upper Yellow River (Wu et al., 2005; Fan et al., 2016; Teng, 2017) are shown. ~32% of the TDS of the middle Yellow River is supplied
by the upper Yellow River (with 40% vs. 60% for carbonate and silicate contributions; Li et al., 2018), and binary mixing of this TDS
with loess-derived Mg in the middle Yellow River. The Mg isotope ratio before the PCP (526Mgpre-pcr) value of -1.03%. (using a Mg
isotope composition of -0.22%o. for silicates and -2.2%. for carbonates; Fan et al., 2016) and the Sr/Mg ratio is 7.44 in the dry seasons
(red star). Similarly, in the wet seasons, the input of Mg-bearing calcite (Fig. 6) results in a decrease of 8"Sr/%Sr of 0.0003 and 5%°Mg
of 0.2%o., considering the Sr and Mg isotopic compositions of carbonates in the loess, corresponding to an elevated proportion of
carbonate by about 10%. Therefore, the 526Mgpre-pcp is estimated to be -1.18%. and its Sr/Mg ratio is 8.14 in the wet seasons (yellow
star). Experimental work suggests that the approximate fractionation factors for the PCP are between 0.9965 and 0.9985 depending
on the precipitation rates (Mavromatis et al., 2013; Saenger et al., 2014), whereas the fractionation factors for clay formation are in
the range 1.00050-1.00075 (Wimpenny et al., 2010). Because the PCP resultes ~80% Ca loss, and ~6% Mg loss (Fig. 5), we employ

a Dwg of 0.07 (Sinclair et al., 2012; Li and Li, 2013; Wassenburg et al., 2020) to calculate the Mg isotope shift of ~0.17%o to 0.39%o.
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