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Organoids have become a prominent model system in pulmonary research. The
ability to establish organoid cultures directly from patient tissue has expanded the
repertoire of physiologically relevant preclinical model systems. In addition to their
derivation from adult lung stem/progenitor cells, lung organoids can be derived from
fetal tissue or induced pluripotent stem cells to fill a critical gap in modelling
pulmonary development in vitro. Recent years have seen important progress in
the characterisation and refinement of organoid culture systems. Here, we address
several open questions in the field, including how closely organoids recapitulate the
tissue of origin, how well organoids recapitulate patient cohorts, and how well
organoids capture diversity within a patient. We advocate deeper characterisation of
models using single cell technologies, generation ofmore diverse organoid biobanks
and further standardisation of culture media.
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1 Introduction

Organoid cultures are in vitro models derived from stem/progenitor cells, and involve the
generation of a heterocellular structure that is reminiscent of the tissue of origin in a three-
dimensional cell culture environment (Barkauskas et al., 2017; Liberti and Morrisey, 2021; Sen
et al., 2022). In the human respiratory system, nasal (Liu et al., 2020; Rodenburg et al., 2022),
tracheobronchial (Rock et al., 2009; Sachs et al., 2019), small airway (Basil et al., 2022) and
alveolar (Katsura et al., 2020; Salahudeen et al., 2020; Youk et al., 2020) epithelial organoid
models have all been generated from post-natal tissue-resident stem cells. Additionally,
organoid cultures derived from developing lung epithelia have been described (Nikolić
et al., 2017; Miller et al., 2018), and the stepwise differentiation of pluripotent stem cells
has been used to derive mature lung organoids and those resembling developmental
intermediates (Jacob et al., 2017; Hawkins et al., 2021; Hein et al., 2022). In addition to
providing a platform to study lung stem cell biology, organoids present a platform to investigate
respiratory diseases, including developmental disorders such as bronchopulmonary dysplasia
(Riccetti et al., 2022), genetic disorders such as cystic fibrosis (Sachs et al., 2019) and ciliary
dyskinesias (van der Vaart et al., 2021a), chronic respiratory diseases such as chronic
obstructive pulmonary disease (COPD) (Ng-Blichfeldt et al., 2018) and lung cancers (Sachs
et al., 2019).

Recent, comprehensive reviews are available on advances in methods to derive lung
organoids, and the potential uses of organoids in basic research and translational medicine
(Evans and Lee, 2020; van der Vaart et al., 2021b; Liberti and Morrisey, 2021; Sen et al., 2022).
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While lung organoids can also be derived from mouse lung epithelia,
offering an opportunity to address some research questions in vitro
and reduce the use of animals used in model species research, we will
focus on pertinent open questions within the human lung organoid
field with relevance across developmental, post-natal stem cell and
cancer studies.

2 How closely do lung organoids
recapitulate their tissue of origin?

To increase the likelihood of relevant findings, it is crucial that
organoids mimic the tissue of interest as closely as possible. To this
end, the development of multiple organoids to capture the diversity of
cells within developing lungs, adult homeostatic lungs and tumours
has been ongoing. It is important to note that in developmental
studies, organoids are typically derived from progenitor cells that
are capable of differentiation into different tissue types (e.g., airway
and alveolar), while adult lung organoids are typically region-specific
with less plasticity.

Developmental studies currently tend to favour the use of induced
pluripotent stem cells (iPSCs) due to issues of scalability, availability
and the fact that iPSCs represent a better-defined starting population
than those available from foetal tissue. Customised media have been
developed to expand specific cellular subpopulations from iPSCs; in
the airways, basal cells and secretory progenitor cells have all been
induced from iPSCs (McCauley et al., 2017; McCauley et al., 2018;
Hawkins et al., 2021) and, when cultured at an air-liquid interface,
goblet cells and ciliated cells have also been generated from iPSCs
(Firth et al., 2014; McCauley et al., 2017). For alveolar modelling,
iPSCs and human embryonic stem cells (hESCs) have been used to
derive AT2 cells (Jacob et al., 2017; 2019; Tamò et al., 2018; Hurley
et al., 2020), which can exhibit relevant morphological characteristics,
such as lamellar bodies and microvilli. However, although some iPSC-
derived AT2 organoids are stable in long-term culture, there are
reported stability issues with cells reverting to non-lung fates.

At the histological level, airway and lung cancer organoids can
resemble their in vivo tissue of origin remarkably well, despite the
absence of stroma in vitro (Kim et al., 2019; Sachs et al., 2019; Li et al.,
2020). Airway organoids contain all of the major airway epithelial cell
types, with basal cells, mucosecretory cells and ciliated cells present
(Rock et al., 2009; Sachs et al., 2019), although the consistency with
which they contain rare populations such as neuroendocrine cells,
ionocytes and tuft cells is unclear. Removing extracellular matrix cues
can generate organoids with cilia on their outer surface, which has
clear advantages for studies of motile cilia (Wijesekara et al., 2022).
Media composition appears to be vital in the selection of airway vs.
alveolar cells from adult lung tissue, as studies using distal lung
resection tissue for organoid generation have led to airway
organoid formation but an absence of alveolar organoids (Sachs
et al., 2019), in contrast to earlier mouse lung organoid studies in
which both organoid types were observed within the same cultures
(Lee et al., 2014). The resemblance of alveolar organoids to the alveolus
is more limited given the dependence of this tissue on precise
architecture. Alveolar organoids typically consist of proliferative
AT2-like cells but lack AT1-like cells, though cells resembling
AT1 cells can be induced by 2D culture (Youk et al., 2020),
suspension culture (Salahudeen et al., 2020) or using inductive
culture media (Katsura et al., 2020; Konishi et al., 2022).

Although progenitor differentiation to mature adult cell types is a
common goal, the lack of complete lineage characterisation hinders
our ability to fully distinguish these differentiated cell types. At
present, many iPSC studies accomplish progenitor specification but
are not able to fully substantiate claims of mature cells. Marker protein
expression remains the most common means to identify differentiated
cell types within organoids, which is not in itself sufficient to
demonstrate full maturity or functionality. Additional confusion
arises when mouse markers are extrapolated to human lung cell
types as, particularly in the developing lung, numerous distinct cell
types can share marker expression (Miller et al., 2020; He et al., 2022)
and marker expression can be transient (McCauley et al., 2018). To
overcome this, recent studies have combined marker expression data
with spatial information, transcriptomic analysis and organelle
characterisation (Dye et al., 2015; Miller et al., 2019; 2020; Sachs
et al., 2019; Hurley et al., 2020; Hein et al., 2022). The derivation of
organoids that capture the intermediary stages of lung development
has also been explored. Bud tip progenitors can be derived from iPSCs,
which in turn have the potential to differentiate into all lung epithelial
cell types (Hein et al., 2022). iPSCs were also used to culture a
progenitor population enriched in basal cells that were reminiscent
of those from foetal lungs (Ngan et al., 2021).

The increase in single-cell and bulk RNA sequencing studies of
human lung is allowing greater benchmarking of organoid systems
and comparisons of iPSC and embryonic tissue-derived cells (Ngan
et al., 2021; Alysandratos et al., 2022; He et al., 2022; Murthy et al.,
2022). Although cell culture often produces less robust and less
mature differentiated cells, iPSC-derived organoids frequently
produce more immature cell types than hESC-derived organoids,
citing the need for additional validation in these studies, such as
through lineage tracing or trajectory analysis (Hurley et al., 2020;
Hawkins et al., 2021). In protocols that highlight stepwise
differentiation and intermediary stages, the order of
differentiation should be carefully analysed, such as by
visualising differentiating structures, ensuring proximal-distal cell
patterning has been conserved, and/or by matching with
corresponding in vivo sequencing data. This level of detail allows
for a sequence of key developmental milestones and transitional
states to be uncovered, and potentially better recapitulation of
human foetal lung development (He et al., 2022). A major
limitation across lung organoid studies is the lack of direct
comparison to the in vivo tissue, and as yet, the field has not
created a standardised protocol for definitively assessing cell
maturity and identity. Additionally, there is a large amount of
variation between iPSC lines, with some unable to generate
mature lung cells.

In contrast to developmental and adult lung organoid studies, the
resemblance of cancer organoids to their tumours of origin has been
most extensively studied at the genomic level. There is a relatively high
concordance (± 80%) of single nucleotide variants (SNVs) and copy
number alterations (CNAs). Although whole exome sequencing has
been performed in some studies (Kim et al., 2019; 2021; Shi et al., 2020;
Hu et al., 2021), others have investigated a limited set of cancer driver
genes (Sachs et al., 2019; Chen et al., 2020; Li et al., 2020). Since
targeted approaches tend to target clonal mutations (those that are
found in every cancer cell), they identify mutations that are less
susceptible to loss during organoid culture. Whether lung cancer
organoids recapitulate the full spectrum of (subclonal) cancer
mutations is not yet clear; while on average the genetic
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concordance between organoids and tumour tissue is high, for some
samples the concordance is considerably lower (Kim et al., 2019; Shi
et al., 2020), whichmost likely reflects the selective outgrowth of minor
tumour subclones in those organoid cultures.

The extent to which lung cancer organoids diverge from tumour
tissues at the phenotypic level is much less clear. Since organoid
culture systems were originally developed to expand epithelial stem
cells (Sato et al., 2009), it is unclear if lung cancer organoids can reflect
tumour cells with different degrees of differentiation. Organoids
established from distinct histological subtypes retain characteristic
features, such as a cystic morphology for organoids from acinar
adenocarcinoma, and a solid morphology for organoids from the
solid subtype (Li et al., 2020). This suggests that tumour histology is at
least in part shaped by tumour-intrinsic factors and independent of
the tumour microenvironment (TME). The few reports of
transcriptomic comparisons of lung cancer organoids and primary
tissue are limited to overall concordance rates, which is (as expected)
lower than genomic similarity, partially due to the absence of TME
pathways (Shi et al., 2020; Hu et al., 2021). The absence of the TME
might have profound effects on organoid phenotype and drug
responses, as has been shown for pancreatic adenocarcinoma
organoids (Raghavan et al., 2021). A more thorough transcriptomic
and proteomic comparison of organoids and tumour tissues is needed
to identify where divergence occurs. While organoids can converge
upon culture specific transcriptional states, these can be modified by
adding “missing” paracrine signals from the TME to the media
(Raghavan et al., 2021). Alternatively, the TME can be partly
reconstituted by adding back cell types of interest, such as
lymphocytes or fibroblasts (reviewed in (Fiorini et al., 2020)).

The majority of lung organoid cultures are currently performed as
mono (epithelial) cultures, although investigations of epithelial-
fibroblast (Tan et al., 2019) or epithelial-macrophage (Iakobachvili
et al., 2022) interactions have been possible. Epithelial-mesenchymal
organoids have been developed from both embryonic cell lines and
iPSCs, which contained basal cells, immature ciliated cells, smooth
muscle and myofibroblasts (Dye et al., 2015). Additionally, iPSC
differentiation generated organoids that contained bronchi-like
structures surrounded by mesenchyme, and cells expressing
alveolar markers (Miller et al., 2019). Multi-organ systems have
also begun to be developed; iPSCs can be differentiated into
cardiac and lung epithelial lineages to establish cardio-pulmonary
micro-tissues (Ng et al., 2022).

While we advocate a better phenotypic characterisation of lung
organoids to investigate their resemblance to lung tissue, it must be
emphasised that organoids will always remain a reductionist model. The
generalisation or translational relevance of results obtained in this culture
system is best validated using orthogonal model systems (e.g., mouse
models, 2D primary cultures, precision-cut lung slices) or datasets
(including publicly available omics datasets). Moreover, it is not
possible to reproduce the complete in vivo complexity of epithelial-
stromal or epithelial-immune interactions, nor systemic variables such
as nutrient availability, mechanical forces and circadian rhythms.

3 How well do organoid cultures
represent patient cohorts?

A second important aspect of organoid modelling is the extent to
which it is possible to capture the biology of the target population.

Primary human bronchial epithelial cell cultures can show wide inter-
patient variability in differentiation potential and response to
stimulation, and so studying sufficient numbers of patient cultures
is crucial, particularly when studying phenomena that are likely to
vary with biological characteristics of the donor, such as age and/or sex
(Peretz et al., 2016; Maughan et al., 2022). At present, organoid studies
typically investigate cells isolated from small numbers of human
donors and these cultures are rarely common between
investigations from independent laboratories, due to limitations
around access to human material, restrictions imposed by ethical
approvals, and administrative and practical difficulties in sharing
tissue or cultures within and between countries.

Organoids have been derived from patients across a wide range
of respiratory diseases, including pulmonary fibrosis (Surolia et al.,
2019), primary ciliary dyskinesia (van der Vaart et al., 2021a) and
cystic fibrosis (Sachs et al., 2019). An extensive organoid collection
from 664 cystic fibrosis patients has been reported (Geurts et al.,
2020) meaning that models are now available for a wide range of
causative mutations; however, these are rectal rather than lung
organoids, since airway organoid forskolin-induced swelling is
highly variable and limited to well-differentiated organoids.
However, in chronic respiratory diseases the use of patient-
derived organoids has been limited, likely due to a combination
of the difficulty in obtaining material from patients with COPD and
pulmonary fibrosis, the invasive nature of procedures to obtain
samples, and the intrinsic lower potential of cells from these
patients to generate organoid cultures (Ghosh et al., 2018). The
extent to which organoid collections capture the diversity within
patient cohorts will be disease-specific and depend on factors such as
the opportunity to obtain research biopsies (clinically, but also
geographically), the stage at which disease is most commonly
diagnosed, and/or the diversity of disease phenotypes. iPSC
technology might help to improve the range of chronic
respiratory disease organoid models available, although
pluripotent cell derived-organoids can have immature
phenotypes, resembling fetal, rather than adult, transcriptional
profiles. Indeed, a recent study of non-alcoholic fatty liver disease
pooled iPSC-derived progenitors cells from 24 genotyped donors
and derived mixed donor organoid cultures, before inducing a
disease-relevant phenotype to investigate phenotype-genotype
interactions (Kimura et al., 2022), suggesting that in the future
lung organoid models may also have a role in identifying risk
factors in addition to studying disease pathogenesis.

To date, lung cancer research has benefited most from
organoid-based disease modelling. As many hundreds of
organoid lines have been developed by multiple laboratories
worldwide, it is possible to assess the extent to which they
reflect non-small cell lung cancer (NSCLC) patient cohorts.
Surprisingly, organoid establishment rates are similar for lung
squamous cell carcinomas or adenocarcinomas (Kim et al., 2019;
Shi et al., 2020; Hu et al., 2021), despite their distinct cells of origin,
divergent driver gene landscapes, and the use of one medium
composition across histological subtypes. Organoids for diverse
histological subtypes (e.g., acinar, lepidic, or solid
adenocarcinomas) (Kim et al., 2019; Li et al., 2020) have been
reported, although a systematic comparison of organoid
establishment across subtypes is lacking. It is likely that current
approaches are biased towards establishing organoids from certain
tumour phenotypes and/or genotypes. Moreover, each of these
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studies differ in patient cohorts, the tissue digestion protocol used,
medium formulation, and criteria of what is considered a successful
culture, making it challenging to determine important contributors
to successful cultures and resulting in organoid establishment rates
of between 15% and 80% (Ma et al., 2022). The field would benefit
from standardisation, including systematic comparisons of
different protocols. Given the heterogeneity of lung cancer there
may not be a “one size fits” medium formulation, and the choice of
medium could be guided by driver gene status or features of the
tumour TME (Fujii et al., 2016). Larger studies should explore any
transcriptional or genomic features that are associated with culture
success. Given the heterogeneity of lung cancer, this will likely be
best achieved through large-scale collaborative efforts.

To date, most studies have generated lung cancer organoids from
surgical resections of primary tumours. To our knowledge, no
organoid models have been generated from pre-invasive disease,
but pre-cancer organoids would be particularly valuable to study
events in early tumourigenesis. Since most lung cancer patients die
from metastatic disease, representing these in organoid collections
would be valuable. One study established organoids from malignant
effusions from patients with advanced lung cancer with a high success
rate (Kim et al., 2021), suggesting that establishment rates from
metastatic disease could be higher than for early stage disease.
Organoid establishment from extrapulmonary metastases can also
avoid contamination with normal airway organoids (Sachs et al., 2019;
Dijkstra et al., 2020).

An alternative approach to deriving organoids from lung disease
patient cohorts, is to use the available model systems to investigate
specific hypotheses related to the disease process. In this regard,
pluripotent cell-derived organoids have proved useful pulmonary
fibrosis models. Introducing Hermansky-Pudlak syndrome (HPS)
mutations associated with interstitial pneumonia using CRISPR-
Cas9 promotes fibrotic changes in ES-derived lung organoids

(Strikoudis et al., 2019) or iPSCs from patients (Korogi et al.,
2019), while treatment of iPSC-derived AT2 organoids with
bleomycin also promotes fibrotic changes (Suezawa et al., 2021).
Moreover, early disease models can be generated by recapitulating
aspects of disease development in lung organoids. For example,
insights into pulmonary fibrosis have arisen from treating cells
with TGFb (Ng-Blichfeldt et al., 2019). These approaches, akin to
the sequential introduction of cancer driver mutations into normal
organoid cultures to study early events in tumourigenesis (Dost et al.,
2020), have the potential to reveal new insights compared to organoids
from established disease.

4 To what extent does an organoid
culture capture diversity within a
patient?

Intra-patient heterogeneity likely represents an understudied source
of variation in lung organoid research. At present, authors typically report
the diagnosis of the patient from whom organoids were derived and the
tissue of origin. However, airway epithelial cell phenotype is known to
vary in the proximal-distal axis within normal lungs with cells from the
upper airways having distinct transcriptomic profiles (Deprez et al., 2020;
Hou et al., 2020), innate immune defences (Mihaylova et al., 2018), and
susceptibility to infection (Hou et al., 2020), compared to those from the
lower airways. As an example, organoid origins (proximal versus distal, as
well as pluripotent versus adult) might partially explain the divergent cell
types that have been seen to be infected with SARS-CoV-2 in lung
organoid studies (Han et al., 2022). Moreover, patients with chronic
respiratory diseases might display additional heterogeneity, particularly as
IPF distal airway epithelial cells respond differently in cell culture to
proximal epithelial cells from the same patient (Stancil et al., 2021). Since
pulmonary fibrosis is characterised by upper lobe emphysema and lower

TABLE 1

How closely do lung organoids recapitulate their tissue of origin?

Challenges Potential Solutions

• In developmental studies, assessment of cell maturity and identity relies too heavily on
expression of markers, which can have low specificity

• Combining marker expression data with spatial information, transcriptomic analysis
and organelle characterisation

• Adult lung and cancer organoids lack data to determine to what extent they diverge
phenotypically from their tissue of origin

• Proteomic and transcriptomic characterisation of organoids and tissue of origin at the
single cell level

• Systematic identification of the influence of how medium composition and co-culture
with non-epithelial (e.g. immune cells) influence organoid phenotype

How well do organoid cultures represent patient cohorts?

Challenges Potential Solutions

• Success rates in lung cancer organoid establishment differ widely between laboratories • Systematic comparison of different lung cancer organoid derivation protocols

• There is poor representation of pre-invasive disease in organoid cancer models • Identification of transcriptional or genomic features associated with successful lung
cancer organoid establishment through collaborative efforts• Most chronic pulmonary diseases have limited model availability

• Disease modelling using genetic engineering of stem cell derived or non-diseased lung
organoids

To what extent does an organoid capture diversity within a patient?

Challenges Potential Solutions

• Intra-patient (spatial) heterogeneity is not considered in the establishment chronic
pulmonary disease organoids

• More detailed reporting on biopsy location when establishing organoids for chronic
pulmonary disease

• There is potential loss of intratumour heterogeneity in lung cancer organoids • Multi-region organoid establishment combined with high coverage sequencing to
detect sub-clonal mutations
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lobe fibrosis, the environment that cells experience even within the same
lung varies and might influence their subsequent behaviour. As such, the
precise location of a biopsy is likely to be consequential for experimental
reproducibility.

Lung cancers are genetically and phenotypically heterogeneous,
but the extent to which this is maintained in lung cancer organoid
cultures is so far poorly characterised. Given the variable
establishment rates of lung cancer organoids, bottlenecks are
expected that restrict heterogeneity in vitro. Indeed, one study
reported a low correlation of variant allele frequencies (VAFs)
between organoids and original tumours in approximately half of
the samples analysed (Kim et al., 2019). Evidence for selective
subclonal outgrowth has also been observed in bladder (Lee et al.,
2018) and colorectal cancer organoids (van de Wetering et al., 2015).
This could be due to sampling bias, selective clonal outgrowth, or
tumour evolution driven by ongoing genetic instability. While the
genetic landscape of organoids is relatively stable during long-term
culture (Kim et al., 2019), there is evidence for ongoing genetic
instability and clonal selection from single cell sequencing and
barcoding studies (Bolhaqueiro et al., 2019; Karlsson et al., 2022;
Kester et al., 2022). The establishment of organoids from separate
tumour regions, possibly combined with the generation of clonal
organoid lines at early passage, could prevent the loss of minor
subclones (Fujii et al., 2016; Roerink et al., 2018). Evaluating the
extent to which genetic heterogeneity is preserved requires sequencing
organoids and tumour tissues at sufficient coverage to detect subclonal
mutations.

5 Conclusion

Lung organoids provide a cell culture platform to study lung
development, stem/progenitor cell biology and disease pathogenesis.
Several open questions remain, however, concerning their ability to
recapitulate the tissue of origin and in vivo processes, the ability of
organoid collections to accurately reflect population level inter-
individual variability and intra-patient heterogeneity (Table 1). We
advocate for deeper characterisation of organoids alongside the tissue
of origin, for the generation of more diverse organoid biobanks and for
greater standardisation of culture media and conditions between
laboratories.
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