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Abstract—Depression is one of the most common mental
health disorders, and a large number of depressed people
commit suicide each year. Potential depression sufferers usually
do not consult psychological doctors because they feel ashamed
or are unaware of any depression, which may result in severe
delay of diagnosis and treatment. In the meantime, evidence
shows that social media data provides valuable clues about
physical and mental health conditions. In this paper, we argue
that it is feasible to identify depression at an early stage
by mining online social behaviours. Our approach, which is
innovative to the practice of depression detection, does not
rely on the extraction of numerous or complicated features to
achieve accurate depression detection. Instead, we propose a
novel classifier, namely, Cost-sensitive Boosting Pruning Trees
(CBPT), which demonstrates a strong classification ability on
two publicly accessible Twitter depression detection datasets. To
comprehensively evaluate the classification capability of CBPT,
we use additional three datasets from the UCI machine learning
repository and CBPT obtains appealing classification results
against several state of the arts boosting algorithms. Finally,
we comprehensively explore the influence factors for the model
prediction, and the results manifest that our proposed frame-
work is promising for identifying Twitter users with depression.

Index Terms—data mining, boosting ensemble learning, on-
line depression detection, online behaviours.

I. INTRODUCTION

Depression is one of the most common mental illnesses.
It is estimated that nearly 360 million people suffer from
depression [1].In Britain, 7.8% of people meet the criteria of
depression diagnosis, and 4-8% will experience depression
in their lifetime [2]. Andrade et al. [3] reported that the
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probability for an individual to encounter a major episode
of depression within a period of one year is 3-5% for males
and 8-10% for females. Because of depression, about one
million of people committed suicide annually in the world

[1].

Depressed people may have a variety of symptoms: having
troubles in going to sleep or sleeping too much, lacking
of passion or feeling disappointed [4]. In clinical exercises,
psychological specialists are looking for reliable methods to
detect and prevent depression. Yang et al. [5] investigated the
relation between vocal prosody and changes in depression
severity over time. Alghowinem et al. [6] examined human
behaviours such as speaking behaviours and eye activities
associated with major depression. Diagnostic and Statistical
Manual of Mental Disorders [7] is an important reference
for psychological doctors to diagnose depression. There are
nine classes of depression symptoms recorded in the menu,
describing the distinguishing behaviours in our daily life.
Nevertheless, the symptoms of depression disorders evolve
over time and it has been advised to dynamically update the
criteria of depression diagnosis [1].

On the other hand, depression sufferers who do not receive
timely psychotherapy will develop worse conditions. More
than 70% of people in the early stage of depression do not
consult psychological doctors, and their conditions deterio-
rated [7]. Gonzdlez-Ibanez et al. [8] reported that people
are somehow ashamed or unaware of depression which
makes them miss timely treatment. Choudhury et al. [9] and
Neuman et al. [10] proposed to explore the correlation of
depression sufferers with their online behaviours on social
networks. With the explosive growth of computer network
applications, social networks have become an indispensable
part of many people’s daily lives. 62% of the American
adults (age 18 and older) use Facebook, whilst the majority
of the users (70%) visit Internet daily and a large portion
of the users access to Internet multiple times each day
[11]. There are 1.10 billion posts on Facebook every day.
Twitter and Tumblr also have 500 and 77.5 million users
who are active per day, where 70% of the Twitter users
log in every day [11]. Therefore, social networks provide a
means for capturing behavioural attributes that are relevant
to an individual’s thinking, mood, communication, activities
and socialisation [9]. Research studies reveal that collecting
social networking information for analysing human physical
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Fig. 1: Proposed framework. In phase 1, we conduct data preprocessing and extract various discriminative features of Twitter
users. In phase 2, the CBPT classifier combines the power of K pruned trees. The cost-sensitive boosting structure relies
on the landing position of samples in the pruned tree structure and an example of the sample decision path is highlighted

in dark black in the diagram.

and mental wellness is possible [12], [13]. Neuman et al.
[10] developed working methods for recognising associated
signals in the user’s posts on social networks, which suggest
whether or not clinical diagnosis is required, based on his/her
naturally occurring linguistic behaviours. Salawu et al. [14]
detected cyber-bullying on social networks by comparing
textual data against the identified traits. Nguyen et al. [15]
utilised psycholinguistic clues to conduct sentiment analysis
on users’ posts to detect depressed users online. Hence, it is
feasible to detect depression via social networks.

Our proposed framework is shown in Fig. 1. In the first
phase, we conduct data preprocessing and extract discrimina-
tive features from the posts of Twitter users, while the second
phase presents a new Cost-sensitive Boosting Pruning Trees
method based on the Discrete Adaboost [16] to classify the
users. Our new contributions reported in this paper are:

(1) We propose a novel resampling weighted prun-
ing algorithm which dynamically determines optimal
depths/layers and leaves of a tree model. The pruning
procedure can support the boosting training and improve
the robustness of the base tree estimator.

We combine the proposed pruning process with a
novel cost-sensitive boosting structure within an ensem-
ble framework, namely Cost-sensitive Boosting Pruning
Trees (CBPT). By introducing cost items into the learn-
ing procedure of the boosting paradigm, we highlight
the uneven identification importance among the samples
so that the boosting paradigm intentionally biases the
learning towards the samples associated with higher
identification importance.

We conduct comprehensive experiments to justify the
significance of our proposed framework against two
Twitter depression detection datasets, i.e. Tsinghua Twit-
ter Depression Dataset (TTDD) and CLPsych 2015 Twit-

@

3

ter Dataset (CLPsych2015). The experimental results
demonstrate that the prediction results are explainable
against the ground-truth and our proposed framework
can effectively identify Twitter users with depression.

II. RELATED WORK

In the literature, questionnaire or online interview is one
of the common means used in depression diagnosis. Lee et
al. [17] investigated whether or not interviewees have de-
pressive trends using a choice questionnaire. Park et al. [18]
conducted a face-to-face interview with 13 active Twitter
users to explore their depressive behaviours. These question-
naires and interviews have several limitations. For example,
they are time-consuming and hard to be generalised. On the
other hand, because of the explosive growth in the popularity
of social networks, online depression detection has attracted
large interests in recent years.

Many research studies for online depression detection
have focused on feature detection. Choudhury et al. [9]
introduced measures (e.g. egocentric social graphs and de-
scription of anti-depressant medications) to quantify the
online behaviors of an individual for a year before s/he
reports the onset of depression. Park et al. [19] explored
the use of languages in describing depressive moods using
real-time moods captured from Twitter users. Saha et al.
[20] analysed the content information of depressed users’
posts by extracting topical features. Most recently, Shen et
al. [7] extracted six groups’ features such as user profile and
engagement with online application programming interface
(API) to interpret the online behaviours of depression users.
However, most previous research studies focus on exploring
new features of depression behaviours whilst ignoring the
fitness of the classification models.
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Shen et al. [7] presented a multi-modal depressive dic-
tionary learning model (MDDL) which combines sparse
dictionary learning with logistic regression to identify de-
pressed users. Nadeem et al. [21] conducted experiments
to classify Major Depression Disorder (MDD) using four
binary classifiers, e.g. decision tree and naive bayes. Also,
Choudhury et al. [9] and Shuai et al. [22] proposed a
depression detection framework based on support vector
machine. Nevertheless, these established classifiers cannot
achieve consistent performance due to noise or errors in the
data.

In recent years, deep learning based methods for online
depression detection attracted the attention of researchers.
For example, Shen et al. [23] proposed a cross-domain de-
pression detection framework which transfers the knowledge
of Twitter to classify the instances of Weibo. Their pro-
posed method aims to improve the recognition performance
in the poorly labeled target domain (Weibo) utilising the
rich data of the source domain (Twitter). Ray et al. [24]
proposed a multi-level attention network that combines the
text, audio and video features to classify depressed people.
Gamaarachchige et al. [25] proposed a multi-task, multi-
channel and multi-input framework that fuses multiple input
features (e.g. emotion labels, tokens) and learns knowledges
from multiple classification tasks. Their proposed method
achieved good performance in the CLPsych 2015 dataset
[26]. Orabi et al. [27] proposed a word embedding opti-
misation method which combines multiple word embedding
features (e.g. Skip-Gram, CBOW). They used this technique
to extract text features from the Twitter users’ posts and iden-
tified the depressed users. These deep learning based method
can achieve promising performance on depression detection
especially on multi-level feature fusion and knowledge trans-
fer. However, these methods lack clear interpretations to the
model predictions as of which specific factor influences the
predicted depression risk.

Decision trees based ensemble learning brings up the
possibility of developing a powerful and interpretable model.
Decision trees can reveal the feature effects to the prediction
and ensemble learning uses multiple learning algorithms to
obtain better predictive performance than that of using any
of the constituent learning algorithms alone [28]-[31]. Our
framework is based on Adaboost which is one of the typical
ensemble meta-algorithms to reduce biases and variances
in supervised learning [32]. In general, Adaboost employs
decision dump as its base estimator. However, decision
dump cannot fit well the training data because of its simple
structure. Adaboost with decision dump does not perform
well in complex datasets [30]. Boonyanunta et al. [33]
proposed a method to improve Adaboost’s performance by
averaging the estimators’ weights or reordering estimators.
Based on Adaboost, Friedman et al. [34] reported Gradient
Boost Decision Trees (GBDT) which is the generalisation
of boosting to arbitrary differentiable loss functions. Unfor-
tunately, GBDT can be over-fitting if the data is noisy and
the training process of GBDT is time consuming. Chen et

al. [35] introduced an advanced Gradient Boost algorithm
(called ‘XGboost’) based on GBDT in 2016. Although
XGboost is more flexible and efficient than GBDT, it has
many parameters that are hard to tune.

In this paper, we propose a novel classification algorithm
based on Adaboost that can mitigate the influence of noise
or errors and have a strong fitness and generalisation ability.
We introduce the details of the proposed algorithm in Section
4. In addition, we summarise the discussed classification
methods in Table S4, Supplementary A.

III. DATA PREPROCESSING AND FEATURE EXTRACTION

In this paper, we intend to analyse depression users’
online behaviours. As the scripts on social networks may
be random and unpredictable, features with different noise
may be obtained and influence the detection accuracy. Before
feature extraction is implemented, we carry out the following
preprocessing procedure: (1) Minimisation of the influence
of noisy samples. Inspired by the work of Yazdavar et al.
[36], we remove the noisy samples from the dataset where
the posting number of the samples is less than five. These
samples cannot provide sufficient information for analysing
the users’ behaviours or topic modelling. (2) Processing of
irregular words. The words on social networks may look
irregular because of mistaken spelling or abbreviations. We
use the Textblob API reported in [37] (commonly used in
natural language processing tasks) to remedy the wrong type
of words. (3) Stemming. We expect to perform statistical
analysis on commonly used words of control and depressed
users separately and conduct topic modelling on the users’
posts. Words must be of unified representations regardless
of tense and voice. Hence, we utilise the SnowballStemmer
algorithm reported in [38] to deal with these words. For
instance, “accepting” and “accepted” can be converted to
“accept”. Afterwards, we extract three feature categories as
follows and the proposed framework is shown in Phase 1 of
Fig.1.

(1) User’s Profile Features: The user’s profile features
contain the user’s individual information on social networks.
We collect 4 different features here: total_favourites re-
flects the number of posts that this particular user favours
during his/her account’s lifetime; listed_count shows the
number of the public list that this user holds a membership
within. We collect the number of the user’s friends and
followers which well characterise the author’s egocentric
social networks.

(2) Social Interaction Features: Park et al. [19] discovered
that depressed users are less active in social networks,
and depressed users regard social networking as a tool for
social awareness and emotional interaction. Thus, we ex-
tract retweet count, mention count (e.g. @someone) and
favourites count (indicating how many times this post has
been favoured by the other users) to describe the behaviours
of the user interacting with others. Besides, we collect the
posting number and time distribution to demonstrate the
user’s activeness on social networks.
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(3) Linguistic Features: The content of the posts on social
networks can intuitively reflect a person’s mood and attitude.
Depressed users may post more negative words than control
users [7], [9], [19], [39]. Hence, we count the numbers of
negative and positive words in the tweets using the NLTK
toolkit [40]. In addition, we collect the numbers of emoji

Algorithm 1 Discrete Adaboost algorithm.

Input: A training set D = {(Xi7yi)}£\[:1.
Output: A model My (X) which is based on K decision
trees with their corresponding weight.

1: procedure ADABOOST(D)

. 2: Initialise sample weight distribution
and emoticons from the texts to form relevant features. In _ { (w(i)>}
order to comprehensively explore the semantics, Resnik et k ’
al. [41] examined the difference of the concerned topics  3: Set each sample’s weight wkz) to +.
between depressed and control users by topic modeling 4  for k€ (1,K) do
and observed that topic modeling might be effective for 5 Fit an estimator M}, (X) to the training data with
depression detection. In our work, we utilise the Latent Wkg.
Dirichlet Allocation (LDA) approach presented in [42] to 6 Let u; = 1 if the i-th case is classified
extract topic distributions from the tweets. incorrectly, otherwise zero. _

Finally, the extracted feature sets are used to train our  7: Compute training error €, = ZZL w](cl_)uz
proposed classifier CBPT, which is shown in Phase 2 of . Update sample’s weight w;(fl L= ;”;(f)ﬁ(f:) i
Fig.1 and we provide the details of the extracted feature (1—cp) ) iz wy, P
dimensionality in Table S1, Supplementary A. where ) = =

9: M, (X) — M+ (X)+log€ (3k>Mk (X)
10: end for
IV. PROPOSED METHOD . return My (X)

A. Discrete Adaboost

Our classification algorithm is built upon the discrete
Adaboost algorithm proposed by Freud et al. [16]. Algorithm
1 presents the baseline scheme of the discrete Adaboost that
combines many simple hypotheses (called weak learners)
to form a strong classifier for the task [30]. The algorithm
can be summarised as follows: (1) Training multiple base
classifiers sequentially and assigning a weight value In(s3,,)
according to its training error ,,. (2) The samples misclassi-
fied by the preceding classifier are assigned a higher weight

12: end procedure

is reached. To formulate our algorithm, we here declare
the used notations in advance. In particular, we denote the
training dataset as D = {(X;,:)}Y ., and X,i(v) € RVXV

=1

is the sample feature vector where IV represents the set size
and V is the feature dimension. y; represents the training

target. We employ W = {(

0) K
wy, ) eRN } to represent

the set of the sample weight distribution. f(flls the number
of the estimators (iterations) and each sample’s weight is
initialised to % in the first iteration during the normalisation.
Furthermore, we use 6 and Mk (X) to denote the k-th
estimator’s weight and the ensemble classifier.

1) Resampling Weighted Pruning Algorithm: In most of
the previous boosting algorithms [34], [35], [44], except
num trees, max depth and num leaves are two key
hyperparameters which affect the classifier’s performance
significantly. Manually tuning the hyperparameter combi-
nations is a heavy task and it is hard to find the best
parameter combinations for different datasets. Therefore,
we propose a novel technique called resampling weighted
pruning to automatically prune redundant leaves and produce
robust tree models, where weights are used to establish a
relationship between the pruning and boosting practice.

Firstly, we denote the original learning sanéple set D
which is divided randomly into S subsets, {D,}__; and the
training set of each subset is D) = D—D,. The tree Tz
comes from the original set D and we build a complete tree
on each subset D(*). We present the cost function of the
decision trees as follows:

Wm+1,i» Which will let the classifier pay more attention to
these samples. (3) Finally, combining all the weak classifiers
with their weights to obtain an ensemble classifier G(X).
As we have discussed above, Adaboost may not perform
well on a complex dataset, and hence we propose the CBPT
algorithm to improve the performance of Adaboost in two
aspects: (1) We improve the fitting and generalisation ability
of the base classifier. (2) We propose a novel boosting
structure to strengthen the sample re-weighting process.

B. Cost-sensitive Boosting Pruning Trees

In this section, we propose an ensemble method that
combines an improved Adaboost algorithm with pruned
decision trees for classification. Here, we still employ a
decision tree as the base estimator because of its flexibility
and interpretability. Decision dump often suffer from under-
fitting whilst a full tree has a high variance. We here consider
pruning trees in order to increase system generalisation.
In our algorithm, we firstly apply all the training samples
and allow a decision tree to fully grow, and then use the
cost-complexity pruning method reported in [43] to prune
certain branches of the trees and use the modified criterion

to evaluate the system performance with the pruned trees C ) w'®) 2
and update the weights. Afterwards, the above steps will be L(T;wy) = Z 1-— Z (%) )]
executed iteratively till the maximum number of the trees 7| =1 \ 2wy
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is the leaves’ number, C' denotes the class
number and the sample of class ¢ is defined as .. The
loss of the decision trees is the sum of all the leaf nodes’
gini impurity [45]. A complete tree’s loss L£(Tnqz; wi) is
zero because each leaf node only includes a single class’s
samples. But £(7T; wy) will increase in the pruning process
where the pruned nodes are merged with their parents’
nodes. Therefore, the present cost function is not a good
measure of selecting a subtree because it always favours
large trees. Thus, the penalty term, regularization parameter
« and the tree leaves Tll are added to the cost function. The
new cost function is de

La(T3wy) = £(T;wy) + o |T| )

where 'T‘

ned as follows:

The renalty term favours a simple tree when « is constant
and

T‘ decreases with pruning.

Now, the variation in the cost function is given by £, (T —
Ty wg) — Lo(T; wy), where Ty represents a branch with the
node at ¢ and a tree pruned at node ¢ would be T'—T}. Next,
the cost of the pruning on the internal nodes is calculated
by equating L, (T — T};wy) to that of the branch at node
t:

Lo(T =Ty wg) — Lo(Ti;wi) <0
= Lo (twg) — Lo (T;wr) <0
:>L(t;wk)+oz—£(Tt;wk)—a’Tt) <0 (3)
- E(t;wk) - E(Tt,wk)

T, —1

<a

We define:
ﬁ(t; wk) — ﬁ(Tt; wk)

- 4)
T -1

g(t)=

We will prune branch 7; with the decrease of the cost
function value when o > ¢ (¢). The order of pruning is
performed by setting & = arg min g(¢) in order to find the
suitable branch, which should be pruned, and the process
will be repeated until the tree is left with the root node only.

J
This provides a sequence of subtrees {(TJ(S)); } with the
=1

associated cost-complexity parameters {(c;);Va € R};.Izl
where .J is the length of the subtree sequence.
(s) . .
Eor a, we apply the pruned tree Tq’ tlo predicting .the
estimations in the s-th test set, resulting in the following

error rate: .
(imiss)

(5) _ 2imies UK
Jj i

2o wl(c)
where 7,55 denotes the index of the misclassified sample’s
weight, w,(j) is the sample’s weight of the test set D, and

TE Sf) represents the misclassified rate of set D,. Hence, the
average misclassified rate of S is:

TE (5)

S
TE; = % > TEY (6)
s=1

Authorized licensed use limited to: University College London. Downloaded on January 24,2023 at

and we define
o =argminTE;, Ja; >0 @)

which is the best pruned tree obtained by pruning 7),.:
till Lo+ (Tynae; wi) reaches the minimum. The pseudocode
of our resampling weighted pruning algorithm is shown in
Algorithm 2.

Algorithm 2 Resampling Weighted Pruning Algorithm.
Input: A training set D with corresponding weight Wj.
Output: A pruned tree estimator M}, (X).

1: function BESTPRUNEDTREE(D, W},)

2: Randomly split the learning samples D into S folds,

(D5,

3: Grow a decision tree T},,,, on the whole set D.
4 for s € [1,5] do
5: Fit a decision tree T(*) to subset D(*).
6: Generate subtree sequence {(To(f)); Vo € R} by
Eq. (3). ;
7: Generate subtree sequence {(Tj(s)); } —
j=1
1. Calculate g (t) using Egs. (3)-(4)
2. Set a = argmin ¢ (¢) and prune the branch T}
3. Recursively repeat till the tree only has root nodes
8: Caleulate TEY) + Eq. (5).
: end for
10: Compute average error rate 7 & j against each
substree.
11 a* = argming; T&;; (Ja > 0).
12: The best pruned tree estimator My (X) +

Prune T}, till Lo (Thnae; wi) becomes minimal.
13: return M, (X).
14: end function

2) Tree-based Cost-sensitive Boosting Structure: As
shown at steps 7 and 8 of Algorithm 1, Adaboost employs
the training error €, as the evaluation criterion of the base
estimator’s performance, to set up the estimator’s weights
and update the samples’ weights. All the misclassified
samples receive the same weights in each iteration. In
general, we assume that misclassified samples should be
given different weights according to the “hardness” of the
samples - harder samples are of more weights. We now
propose a novel boosting architecture namely Tree-based
Cost-sensitive Boosting which utilizes the tree model to
assess the “hardness” of the training samples and optimize
the boosting process.

In the first step, we apply a complete decision tree to the
training data D and prune it in order to obtain the best tree
estimator My (X). A complex tree model has more depths.
Similarly, the deeper the landing node of a sample is, the
harder the sample can be classified. Here, we present a new
and effective depth penalty term as follows:

¢d(al(:) — min(oy))
max(ox) — min(oy)

DP) = 143 Ya €N g >1 (8)
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where a,(;) represents the landing node depth of sample
i, max(oy) and min(oy) are the maximum and minimum
values in the node depth array oy. 104 and n4 are two hyper-
parameters where 1), is the percentage of data scaling, and
nq 1s the lower limit of the penalty term. The depth penalty
term is a coefficient that is multiplied with the original
sample’s weight to enable hard samples to gain more weights
in the next iteration.

The landing node’s depth can be regarded as the global
evaluation of the hardness” of a sample associated with the
tree structure. In the pruning procedure, the pruned samples
are included in the parent node of the pruned branch. Here,
we use node impurity to represent the local evaluation of
the “hardness” of a sample. For instance, when two samples
land in different leaf nodes but with the same depth, the
sample of low node impurity will be given more weights as
the sample is separated from the most samples of the same
class in the feature space. Hence, the impurity penalty term
IP,(;) is defined as follows:

0 O N—® 20 N
o)) = Tk - E,E(l) [log g ()] kT ©)
(D _ o
7p(0) _ HD O I HD @ (02~ — min(oey))
i =(|[PPs +00 P 7oo)max(oek) — min(oey)
+ |[oPy

(10
Eq. (9) is an inverse transformation of the impurity value,
where ¢ is the sample number in the landing node,
E;?w) [log ¢(«)] is the impurity value either Cross Entropy or
Gini Impurity, p(x) and ¢(z) are the predicted probability
distributions of the sample X;. Similarly, in Eq. (10), we
employ the data scaling for oe,(;) and obtain the impurity

DP,(:) and HDPEJ) H are pos-
“+o0 —0o0

itive and negative infinity norms of the depth penalty vector

which are used to limit the range of data scaling.

penalty term IP](Ci),

The proposed two penalty terms mainly rely on the
landing positions of the samples in the pruned tree struc-
ture. Algorithm 3 returns the learning sample position by
recursively following the sample’s decision path as follows:

In each iteration k, the ensemble boosting aims to min-
imise an exponential loss function, described by:

L(M) =" exp[~yi(Mp—1(X,) + 0 M (X)) (11)

i=1
where M}, _1(X;) represent the k—1 trained pruned trees and

w,(j) = exp(—yiMi_1(X;)), 0k is the estimator weight of
the k-th pruned tree. We can calculate the first order partial
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Algorithm 3 Recursively Find Landing Node.

Input: Node id [, a learning sample (X;,y;)
Output: Node depth a,(f), node sample number ,u,(f)
1: function TREERECURSE(/, (X;,y;)) > Find the tree
node where the sample land

2: if Node; == Leaf then 1> Check if node [ is a

leaf 4 }

3: return a,(j), u](;)

4: else

5. if X") < Threshold™ then > Determine if
the sample flow down to left or right child

6: return TreeRecurse (a;, (X;,v:))

7: else

8: return TreeRecurse (b, (X;,v:))

9 end if

10: end if

11: end function

derivative of Z(M ) with respect to the estimator weight 0y:
= N

OL(M) 9 (@)

— = —yi0 M (X;
0 = 90, ; ) exp(—yibi My (X))

>

iy =My (X;)

w,(f)ee’“ + w,(ci)e_e’“‘

12)
By taking zero to the left hand side of Eq.(12), we have:

(1 — Ek)

o +log(C —1))

1

01, o §(log (13)
where ¢}, is the training error of pruned tree M (X). log(C'—
1) is a regularisation term and C' is the number of classes.

The updating process of the new sample’s weights is
defined as:

() _ exp[—yi(My—1(Xi) + 0 My (Xi))]
Wk+1

Zit1
(4)
w i i
= - exp[201 1og(DP})) log(ZP )1, 211 ()
k+1

(14)
where Z;, is a normalisation factor, and
i = Z wg@pg)pgw+
ilyi A M (X;) ck
> o
ilyi=My(X;)
(15)

The two penalty terms are taken as the interference factors
to influence the updating of the sample’s weights and the
misclassified samples employ different weights according
to their landing positions in the pruned tree structure. The
iterative training of the cost-sensitive boosting will stop if it
converges (i.e. € reaches zero) or we reach the maximum

1949-3045 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorilgublicationsﬁstandards/ ublications/rights/index.html for more information.

:43:58 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3145634, IEEE

Transactions on Affective Computing

SUBMITTED TO IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

iteration number K. The whole algorithm is illustrated in
Algorithm 4, linked with the two proposed functions.

Algorithm 4 Cost-sensitive Boosting Pruning Trees Algo-
rithm.

Input: A training set D = {(Xl,yl)}iil with sample

distribution W = { (w{") e RN}K:

1
Output: A Cost-sensitive Boosting Pruning Trees model

Mg (X)
1: procedure COSTBOOSTING(D, W)
2: Initialize sample weight distribution

v {0

@

3: Set each sample’s weight wk) to %

4: for k € (1,K) do

5: My (X) < BestPrunedTree(D, W)

6: for i € (1, N) do

7: o, u TreeRecurse(0, (X, y:)) >
Start from the root node. ,

8: Calculate depth penalty coefficient DP,gz)
using Eq. (8). 4

9: Calculate impurity penalty coefficient / P,il)
using Egs. (9)-(10).

10: end for

11: Update the estimator weight using Eq. (13).

12: Update each sample’s weight w,i?_l using Eq.

(14).
13: M, (X) — M+ (X)—l—ekMk (X)
14: end for

15: return Mg (X).
16: end procedure

V. EXPERIMENTAL SETUP

To demonstrate the effectiveness of the proposed CBPT
for Twitter depression detection, we conduct experiments
on two publicly accessible datasets: the Tsinghua Twitter
Depression Dataset (TTDD) and the CLPsych 2015 Twitter
Dataset (CLPsych2015). All experimental procedures have
been approved by the Ethical Review body of University of
Leicester. In this section, we describe the setup details of
our evaluation.

TTDD': The Twitter database was collected by Shen et al.
[7] in 2017 for depression detection. The Twitter database
has three parts: (1) Depression Dataset D1: The dataset
was created based on the tweets collected between 2009
and 2016, where the users were labelled as depression if
their anchor tweet satisfied the pattern ”(I'm/I was/I am/I’ve
been) diagnosed depression”. (2) Depression Dataset D2:
This dataset contains Twitter messages where users were
labelled as non-depressed if they had never posted any tweets
containing the character string “depress”. (3) Depression
Dataset D3: Shen et al. [7] constructed an unlabelled large
dataset D3 for depression candidate. Based on the tweets

"http://depressiondetection.droppages.com/
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shown in December 2016, this unlabelled depression candi-
date dataset was established where the user were recorded
if their anchor tweet loosely contained the character string
“depress”. There are 2558, 5304 and 58810 samples stored in
D1, D2, D3, respectively. Each sample of these three datasets
contains one-month post information of a Twitter user . In
this paper, we employ the well labelled datasets D1 and D2
to evaluate our classification algorithm’s performance and
analyse the online behaviours of depression users.

CLPsych 2015°: The dataset was established by John
Hopkins University for a depression detection task in 2015
[26]. The dataset contains public Twitter users’ posts be-
tween 2008 and 2013 via the Twitter application program-
ming interface (API). Similarly, possible mental disease suf-
ferers are labeled as depression or post-traumatic stress dis-
order (PTSD) according to their self statement of diagnosis,
such as I was just diagnosed with depression or PTSD...”.
Furthermore, they conducted careful pre-preprocessing and
anonymisation operations, such as filtering the users whose
tweets are fewer than 25 and removing individual infor-
mation. Finally, they manually examined and refined the
annotation of each collected Twitter user’s logs by using a
semi-supervised method. The processed dataset consists of
477 depressed users, 396 PTSD (an anxiety disorder caused
by very stressful, frightening or distressing events) users and
873 control users. For each user, up to their most recent 3000
public tweets were included in the dataset.

Implementation Details: We implement the proposed
CBDT and other benchmark experiments using the Scikit-
learn framework [46] and deploy all the experiments on a
8-core Intel Xeon skylake 2.6GHz CPU with 64GB RAM.
The source code will be publicly accessible’.

VI. EXPERIMENTAL RESULTS

In this section, we present both quantitative and qualitative
experimental results of different trials. We first conduct an
ablation study of our method to show the impact of the
pruning procedure and the cost-sensitive boosting scheme
on the classification performance. We also compare our
proposed Twitter depression detection framework with sev-
eral state-of-the-art methods using the aforementioned two
Twitter datasets. Finally, we justify the signification factors
for depression prediction by our model.

A. Ablation Studies

In order to evaluate our proposed CBPT comprehensively,
besides the two Twitter datasets, we also use three publicly
accessible datasets (e.g. LSVT, Statlog, Glass) from the UCI
machine learning repository [47] to examine our method’s
classification performance. We compare our method with
Real Adaboost [48], XGboost [35], LogitBoost [49], Light-
Boost [50] and KiGB [44], which are state-of-the-art Boost-
ing methods. We also investigate the performance of the

Zhttp://www.cs.jhu.edu/ mdredze/clpsych-2015-shared-task-evaluation/
3https://github.com/BIPL-UoL/Cost-Boosting-Pruning-Trees-for-
depression-detection-on-Twitter
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TABLE I: Classification Results: [Mean Accuracy/F1 ScoretStandard Deviation] by eight boosting classifiers for five

public datasets. The Best results are shown in bold.
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TTDD CLPsych 2015 LSVT Statlog Glass
Algorithm Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score
Discrete Adaboost 86.48+0.93 84.88+1.02 | 64.76+£2.02 61.2842.48 80.154+4.39 | 75.45+6.71 77.1740.82 71.154+1.08 58.07+8.84 48.92+7.45
Real Adaboost 85.79+0.85 84.214+0.98 61.4243.75 57.7043.45 81.7243.30 | 78.05+5.09 70.341+4.29 62.544+4.26 | 40.64+11.68 29.724+19.01
XGboost 87.43+0.56 86.00+0.57 68.62+2.62 | 64.66+3.25 84.12+2.54 | 79.66+5.76 91.7440.79 90.1340.85 74.36+10.83 69.561+11.55
LogitBoost 86.5440.22 85.014+0.28 61.48+3.24 | 57.3243.79 80.09+6.80 | 76.00£5.65 90.33+0.63 88.234+0.59 | 75.27+6.74 71.84+8.98
LightGBM 87.6940.72 86.49+0.67 68.62+1.66 | 64.4642.30 85.75+3.87 79.90+10.72 | 92.46+0.62 | 90.90+0.59 | 76.67+8.87 72.67+10.42
KiGB 87.734+0.68 86.2910.68 67.06+2.05 62.79+2.27 81.69+5.53 77.16+4.83 91.40+0.70 89.714+0.59 | 77.13+£8.94 67.87+12.84
Adaboost+PT (Ours) 87.7040.77 86.341-0.83 69.71+£2.74 | 65.71+3.34 | 86.52+5.37 | 82.451+7.98 87.131+1.05 85.044+1.08 | 79.02+9.24 72.70+£9.06
CBPT (Ours) 88.39+0.60 | 86.90+0.62 | 70.69+1.84 | 66.5412.42 85.721+4.03 81.2616.24 92.21+0.31 91.20+0.38 77.631+8.58 70.66+9.55
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Fig. 2: Convergence Rate: Testing error per iteration/tree.
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Fig. 3: Learning curves for different training sets.

standard Discrete Adaboost and combine the Discrete Ad-
aboost structure with the pruning procedure (Adaboost+PT)
as a comparison method to validate the effectiveness of
our newly added components. We summarise the datasets’
details in Table S5, Supplementary B.

For the performance comparison, we use Accuracy and
Fl-score as evaluation metrics. The UCI datasets have
supplied feature vectors and the ground truth, so we use
the same feature extraction procedure (aforementioned in
Section 3) to extract features vectors from the two Twitter
datasets. We use 5-fold cross-evaluation on the five datasets,
where the training size is 75% and the test size is 25%. To
seek a fair comparison, we have evaluated different settings
of the hyperparameters for the compared methods and the
best results on the test set are recorded. Some key hy-
perparameters include: (1) Num leaves € {64,128,256},
which control the size of each tree. (2) Max depth €
{5,10, 15}, which limit the maximum depth of each tree. (3)
Learning rate € {0.1,0.5,1}, which determine the weight
coefficient of each tree. (4) We fix the tree number in all
the classifiers to 500 in order to obtain converging results.
More details of the parameter setting are listed in Table S6-
10, Supplementary B.

The results of classification on the five datasets are
presented in Table I. We observe that CBPT obtains the

best performance in the two Twitter datasets and achieves
92.21% accuracy and a Fl-score of 91.20% in the Statlog
dataset. But in the LSVT and Glass datasets, the ’ablation’
method Adaboost+PT results surpass CBPT by 1% and 2%
separately. The reason is that the cost-sensitive boosting
structure may be weak in the small-scale datasets. The
Adaboost+PT outperforms the baseline Discrete Adaboost
in the five datasets, confirming the effectiveness of our
proposed pruning procedure. In general, the classification
performance of CBPT for the five datasets is better than the
other boosting methods except Adaboost+PT. To find out
why this occurs, we undertake the following experiments.

Fig. 2(a)-(e) show the testing errors per iteration of the
boosting classifiers for the five datasets. We observe that
CBPT uses fewer trees to produce a comparable testing
error in the TTDD, CLPsych 2015, and Statlog datasets.
Comparing Adaboost+PT with CBPT, we witness the cost-
sensitive boosting structure is effective to speed up the
convergence of the algorithm in the TTDD, CLPsych 2015,
and Statlog datasets. In the LSVT and Glass datasets, the
cost-sensitive boosting structure is not helpful to improve
the testing accuracy. As the LSVT and Glass datasets only
have 128 and 214 samples respectively, we examine that in
the cost-sensitive boosting structure, the newly added two
penalty terms accelerate the weight updating and increase
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TABLE II: Detection performance compared with the SOTA
frameworks for the TTDD dataset. The best results are
shown in bold.

TTDD
Method Accuracy | Fl-score
Shen et al. [7] 85% 85%
Pedregosa et al. [46] 73% 71%
Song et al. [51] 82% 81%
Rolet et al. [52] 76% 76%
CBPT (Ours) 88.39% 86.90%

TABLE III: Detection performance compared with the SOTA
frameworks for the CLPsych 2015 dataset. The best results
are shown in bold. Columns: depression vs. control (DvC),
depression vs. PTSD (DvP) and PTSD vs. control (PvC).

CLPsych 2015
Method/Problem AUC DvC DvP PvC
Resnik et al. [53] 0.860 | 0.841 | 0.893
Preotiuc-Pietro et al. [54] | 0.862 | 0.839 | 0.860
Pedersen et al. [55] 0.730 | 0.780 | 0.710
Coppersmith et al. [26] 0.815 | 0.821 | 0.847
CBPT (Ours) 0.840 | 0.812 | 0.898

the variance in the small-scale datasets. To validate our
assumption, we look at Fig. 3(a)-(e). The accuracy of CBPT
and Adaboost+PT increase as more training samples are
added. In spite of being trained with small data, CBPT
and Adaboost+PT still outperform the baseline Discrete
Adaboost, which verifies the pruning procedure effectively
improves the models’ generalization ability. From Fig. 3(a),
(b) and (d), CBPT outperforms Adaboost+PT after hav-
ing been trained with 32.5% or more training data. We
summarise that in the case of sufficient training data, the
proposed cost-sensitive boosting structure can improve the
robustness of the model.

B. Comparison with the SOTA Depression Detection Frame-
works

In the above discussion, we have verified our proposed
classifier CBPT outperforms the other SOTA boosting al-
gorithms in the two Twitter depression detection datasets.
We employ the same feature extraction procedure to extract
features from the two Twitter datasets. We obtain 38 di-
mensional feature vectors from the TTDD dataset and 40
dimensional vectors from the CLPsych 2015 dataset (i.e.
age and gender information are available so we extract the
extra two features from the CLP dataset). The two feature
matrixes are used to train CBPT.

Tables II and III show the comparison results of de-
pression detection. From Table II, it is obvious that our
framework achieves the best performance and surpasses the
SOTA method of Shen et al. [7] by 3.39% on accuracy
and 1.69% on Fl-score. In the CLPsych 2015 leader-board,
the detection performance is evaluated against three separate
classification tasks, i.e. Depression vs. Control, Depression
vs. PTSD and PTSD vs. Control. In Table III, the CBPT
results are competitive and better than the other methods in
the PvC task. Another advantage of our framework is that
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Fig. 4: Confusion Matrixes for the two depression detection
datasets.

the dimensionality of our extracted feature is far less than
that of the other methods. For example, Resnik et al. [53]
employed a complicated Supervised LDA model to extract
document vectors and combine these with large vocabularies
(feature dimensionality is about 500). Preotiuc-Pietro et al.
[54] applied the unigram word features of 41687 dimensions
to training their model. Our method only uses few features
and achieves competitive performance for the CLPsych 2015
dataset. From the two comparison experiments, we can
verify our proposed depression detection framework has
satisfactory robustness on different datasets.

C. Explainable Depression Detection

Previous research studies [7], [21], [56] have widely
analysed online behaviours of depressed users through ex-
amining features’ distributions or mean values and variances.
But they have not explored which specific factors contribute
to depression detection. Tree Shapley Additive Explanation
(TreeSHAP) [57] is a game approach to explain the output
of decision trees based models. The goal of TreeSHAP is
to explain the prediction of any instance by measuring the
contribution of each feature to the prediction. TreeSHAP
treats Shapley Values [58] as the features’ contributions and
uses all the advantages of Shapley Values: (1) TreeSHAP
has a solid theoretical foundation in the game theory. (2)
The prediction is fairly distributed over the features’ values.
(3) TreeSHAP gives contrastive explanations that compares
the prediction with the model’s expectation [28]. Hence, we
integrate our framework with TreeSHAP to comprehensively
investigate the influencing factors for the prediction results.
We use the subset CvD of the CLPsych 2015 and the TTDD
dataset for evaluating the depression risk factors, and other
results (e.g. DvP, PvC subsets) are shown in Supplementary
C. Besides, we list the related formulas of TreeSHAP in
Section A, Supplementary D and we give an example for
the calculation of the Shapley Values via decision trees in
Section B, Supplementary D.

In Section A, Supplementary D, we describe that ¢ x v (f)
represents the contribution of feature X to the classifier’s
prediction for instance X;. In our depression detection
datasets, we aim to explore the influencing factors for the
predicted depression risk of Twitter users, so the value
of ¢ X;)( f) represents how much the predicted depression
probability for instance X; has been affected by feature X .
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Fig. 5: Top 9 significant features for depression detection. (a) and (c): Average feature importance. (b) and (d): Summary
Plots. Each point is a Shapley Value ¢xv(f) corresponding to a feature and an instance. Overlapping points are jittered

on the y-axis direction.
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Fig. 6: Additive force plots for two Twitter users. The bold
text is the predicted depression probability. Each arrow (red
or blue) is a single feature of the instance and the arrow
length represents the feature’s Shapley Value.

Fig. 4 shows two confusion matrices of the prediction
results of CBPT over the two depression detection datasets.
From these figures, we know how many depressed or control
users has been classified. Here, we use feature impor-
tance to analyse which feature significantly affects global
depression detection. Feature importance is computed by

v — va=1 i]x;’(

D (N is the number of data instances). Fig.
5(a) and (c) show top 9 significant features for depression
detection in the two Twitter datasets. In these two figures,
features with large absolute Shapley Values are important.
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For example, topic2 stands in the most critical position
in Fig. 5(a) and topic2 changes the predicted depression
probability by 4% on average for all the instances. Although
the feature importance plot is useful, there is no more
information beyond the importance. For more information,
we use summary plots (Fig. 5(b) and (d)) to further analyse
the significant features. In the summary plots, each point
is a Shapley Value ¢ le( f) corresponding to a feature and
an instance. Overlapping points are jittered on the y-axis
direction so each row is the distribution of Shapley Values. In
Fig. 5(b), topic2 with a high feature value (red points) stands
for decreasing depression risk and a low value of topic2 (blue
points) refers to increasing depression risk. In Table S13-
S14, Supplementary C, we show the top 10 words that are
the most likely to occur in each LDA topic. Topic2 includes
words such as ’trump’, obama’, ’russia’ that infers topic2
may be related to "politics’. The feature value of topic2 is the
occurrence probability of topic2 in the posting texts. If a user
posts many tweets on the theme of politics, his/her predicted
depression risk will be decreased. Similarly, if a user posts
many tweets with emojis that receive many retweets, the user
is less likely to be depressed. Depressed users seem to lack
of communication with others that depressed users are more
likely to post tweets during midnight and their posted tweets
are barely retweeted or favoured by other users. And it is an
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Fig. 7: Feature dependence Plot: The point’s position on the X axis represents the target feature value, and the values on
the Y axis are the Shapley Values for the target feature. Color bar is the value range of the interactive feature. (a)-(c) are
the dependence plots of the TTDD dataset. (d)-(f) are the dependence plots of the CLPsych 2015 dataset.Please note that
the x-axis and color bar range have been trimmed to the 5th and 95th percentile of the data in order to avoid the x-axis

or color bar being too board because of the outliers.

interesting phenomenon that the posting texts of depressed
users may involve the content of "film’ (topic8) or ’policy’
(topic6) but without "band’ (topic5) information. In Fig. 5(d),
the most important feature topic4 is related to the theme of
’mental health’ (shown in Table S14, Supplementary C). In
the CLPsych 2015 dataset, depressed users are more likely to
undertake the following behaviours: (1) Their posted tweets
are related to the topics of “mental health’ (topic5) or "news’
(topicll) and include many emoticons and negative words.
(2) They are young and they do not take many Twitter
activities. (3) Their posted tweets may not be favoured by
others and their tweets’ content is not related to ’friend’
(topic19) and ’autism’(topic23).

Then, we use the additive force plots to explain why a
user is predicted as depressed or control. Using two instances
from the TTDD dataset, Fig. 6(a) is the prediction visualiza-
tion of a depressed user. In Fig. 6(a), the bold text 87% is the
predicted depression probability and the base value 34.8%
is the classifier’s expectation ¢o(f) referring to Eq. (2),
Supplementary D. Features pushing the prediction higher are
shown in red, while those pushing the prediction lower are
shown in blue. For example, the emoji number of this user is
0 which is lower than the average value 0.34 (shown in Table
S2, Supplementary A) and it contributes 8% probability
to the depression prediction. The total_post feature (= 612
that is larger than 457.31)* reduces the predicted risk about
4%. This supports our finding in Fig. 5(a)-(b) that few

4612 is the feature value of total_post and 457.31 is the average value
of this feature (shown in Table S2, Supplementary A).
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emojis lead to higher predicted depression risk and posting
many tweets leads to less risk. Similarly, for a control user
shown in Fig. 6(b), this user’s posting content may not be
relevant to ’politics’ (topic2=0.03 that is less than 0.11) that
increases the depression risk by 1%. This users’ tweets are
frequently retweeted by others (retweet_count=5064 that is
over 1843.14) and this behaviour decreases the user’s pre-
dicted depression risk. The predicted depression probability
for the control user drops from the base probability 34.8%
to 23%.

Finally, we use the dependence plots to show the detailed
interpretation of the features’ impacts. Fig. 7 includes 6
dependence plots for the most important three features
with their most interactive features in the two datasets.
The interactive feature can be selected arbitrarily and we
decide the most interactive features depending on Eq. (6),
Supplementary D. This equation calculates the correlation
coefficient between the Shapley Values of the target feature
and the values of the other features. In Fig. 7(a), the
predicted depression risk decreases with the increasing of
the values of topic2 and emojis. This suggests that posting
tweets on the theme of politics with many emojis leads
to lower predicted depression risks and vice versa. In Fig.
7(b), topic2 is also the most interactive feature of emojis.
This figure shows a similar trend to Fig. 7(a). In Fig. 7(c),
the predicted depression risk shows a decreasing value at
total_post=400. This suggests that control users are more
likely to post many tweets and share politics news than the
depressed users. Similarly, from Fig. 7(d)-(f), we observe
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that posting tweets about *mental health’ (topic4) and 'news’
(topicl1) is proportionally related to the predicted depression
risk. Depressed users’ tweets are hard to receive favourites
from others. The predicted depression risk for the Twitter
users is decreasing at age=23 and using the positive or
negative words will change the depression risk of the users.
By the above feature dependence analysis, we have shown
the influences of the feature interactions on the classifier’s
predicted depression probability and revealed the difference
of the online behaviours between the depressed and control
users.

VII. CONCLUSION

In this paper, we have made an attempt to automat-
ically identify potential Twitter depressed users. As we
have known, most of the established works mainly focused
on exploring new features of depression behaviours whilst
ignoring the fitness of the classification models. Consid-
ering the complexity of Twitter data, in order to improve
the robustness of the decision tree based estimator, we
proposed a novel resampling weighted pruning algorithm
which dynamically determines optimal depths/layers and
leaves of a tree model. Taking into account the “hard-
ness” of different misclassified samples, we also proposed
a cost-sensitive boosting structure to hierarchically update
the instances’ weights in the pruned trees. We combined
the proposed pruning process with the novel cost-sensitive
boosting structure within an ensemble framework, namely
Cost-sensitive Boosting Pruning Trees (CBPT) to classify
control and depressed users.

CBPT outperformed the other depression detection frame-
works in the two Twitter datasets. In the meantime, we
conducted the convergence analysis of our proposed CBPT
through comprehensive experiments. Moreover, we utilised
three UCI datasets to evaluate the classification ability of our
method quantitatively, which shows our method performs
better than the other SOTA boosting algorithm. We then
integrated CBPT with TreeSHAP in order to explain the
predicted depression risks of Twitter users by investigating
the contribution of each feature to the prediction. We used
three different types of figures, i.e. additive force plot,
summary and dependence plots, to explain the contributions
of individual features to the predicted depression risks.

Taking a close look at the above experimental results,
we found that the features extracted from the tweet content
were really important for depression prediction. Features
including LDA topics, negative/positive words and emojis
play a key role in online depression risk detection. In the
future, we will develop a robust topic model methodology
to summarise posting text content of depressed users with
clearly explainable topics. We will also attempt to mine sim-
ilar information over other social networks, e.g. Facebook,
Instagram, and Tumblr, for sentiment analysis.
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