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Abstract

Background Earlier detection of pancreatic ductal adenocarcinoma (PDAC) is key to
improving patient outcomes, as it is mostly detected at advanced stages which are associated
with poor survival. Developing non-invasive blood tests for early detection would be an
important breakthrough.

Methods The primary objective of the work presented here is to use a dataset that is
prospectively collected, to quantify a set of cancer-associated proteins and construct multi-
marker models with the capacity to predict PDAC years before diagnosis. The data used is
part of a nested case-control study within the UK Collaborative Trial of Ovarian Cancer
Screening and is comprised of 218 samples, collected from a total of 143 post-menopausal
women who were diagnosed with pancreatic cancer within 70 months after sample collec-
tion, and 249 matched non-cancer controls. We develop a stacked ensemble modelling
technique to achieve robustness in predictions and, therefore, improve performance in newly
collected datasets.

Results Here we show that with ensemble learning we can predict PDAC status with an
AUC of 0.91 (95% CI 0.75-1.0), sensitivity of 92% (95% CI 0.54-1.0) at 90% specificity, up
to 1year prior to diagnosis, and at an AUC of 0.85 (95% Cl 0.74-0.93) up to 2 years prior to
diagnosis (sensitivity of 61%, 95% Cl 0.17-0.83, at 90% specificity).

Conclusions The ensemble modelling strategy explored here outperforms considerably
biomarker combinations cited in the literature. Further developments in the selection of
classifiers balancing performance and heterogeneity should further enhance the predictive
capacity of the method.
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Plain language summary
Pancreatic cancers are most fre-
quently detected at an advanced
stage. This limits treatment options
and contributes to the dismal survival
rates currently recorded. The devel-
opment of new tests that could
improve detection of early-stage dis-
ease is fundamental to improve out-
comes. Here, we use advanced data
analysis techniques to devise an early
detection test for pancreatic cancer.
We use data on markers in the blood
from people enrolled on a screening
trial. Our test correctly identifies as
positive for pancreatic cancer 91% of
the time up to 1 year prior to diag-
nosis, and 78% of the time up to 2
years prior to diagnosis. These results
surpass previously reported tests and
should encourage further evaluation
of the test in different populations, to
see whether it should be adopted in
the clinic.

A full list of author affiliations appears at the end of the paper.
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dismal 5-year survival rates (~3-7%) and is projected to

become the second cause of cancer deaths by 203013, A non-
specific clinical course leading to late-stage diagnosis is a feature of
pancreatic cancer, and only 15% of the patients are diagnosed at
early stages with resectable tumours?=. Following surgery and
adjuvant therapy however, less than 30% of patients survive 5 years
after diagnosis®, compared with a <10% 5-year survival in those
with unresectable disease®. The development of new tests that could
improve detection of early-stage disease is pivotal for optimal
outcomes for pancreatic cancer patients. Indeed, it has been shown
that if tumour size at detection can be reduced from 3 to 2 cm,
improved oncological resection rates (7% to 83%, respectively) and
increased median survival (from 7.6 to 17.2 months) can be
achieved”-8. CA19-9%10 is the only serological tumour marker used
routinely for confirmation of diagnosis and monitoring of PDAC
progression, however, with 79-81% test sensitivity and 82-90%
specificity at best!l. Despite this, we have recently shown that
CA19-9 (and CA125) can be used to detect pancreatic cancer up to
2 years before clinical diagnosis, using samples from a repository
collected as part of the UK Collaborative Trial of Ovarian Cancer
Screening (UKCTOCS)!2. These samples, which were prospectively
collected months and years prior to diagnosis, enabled the detec-
tion of rising levels of potential serological biomarkers ahead of
PDAC diagnosis with high reliability. We proposed that CA19-9 in
combination with markers identified in this cohort and their use in
multi-marker algorithms, may improve performances and enable
early detection of PDAC.

In a rapidly evolving omics era, multi-cancer early detection
tests (MCETs) are increasingly reported. Two outstanding
MCETs include the CancerSEEK!? and the Galleri (GRAIL)
tests!415, These multi-analyte tests analyse circulating tumour
(cell free) DNA for specific genetic mutations in combination
with proteins (CancerSEEK) or cancer-associated methylation
patterns (Galleri). With a median sensitivity of 67% (at ~99%
specificity) for 12 cancers, CancerSEEK test sensitivity for
detecting pancreatic cancer (stages I-III) was reported as 72%
(99% speciﬁcity)13. With variable sensitivities across 12 cancer
types (11.2% for prostate to 93.5% for liver/biliary tract cancers),
the reported overall sensitivity (at 99.5% specificity) for PDAC
detection was 83.7%. For early PDAC (stage I-II) test sensitivity
was around 60%. The performance of such tests in larger cohorts
in which the low prevalence of PDAC is more accurately reflec-
ted, however, requires further validation prior to their imple-
mentation as screening tools.

Combining markers into multi-marker models has tradition-
ally involved the application of simple cut-off rules and machine
learning methods such as multivariate logistic regression!2, neural
networks and support vector machines!®-18, Here, to attain better
performances and robustness, we applied an ensemble modelling
technique!®~22 and a repeated cross-validation resampling strat-
egy. Ensemble methods have been immensely successful in pro-
ducing accurate predictions for many complex classification
tasks!%21:23, because they address fundamental problems in data
analysis. For example, these methods avoid overfitting by com-
bining single learners with a local search heuristic which
decreases the risk of obtaining a local performance minimum.
Issues surrounding dimensionality are also addressed with
ensemble models. By allowing each classifier to focus on sub-
spaces of features, the burden of large search spaces is reduced.
This specific field in machine learning is consistent with the well-
known Condorcet’s jury theorem, which states that if each clas-
sifier has a probability larger than 0.5 of being correct then
increasing the pool of classifiers increases the probability of
making the correct decision by majority voting. The task of
finding successful ensembles is, nevertheless, more complex, and

P ancreatic ductal adenocarcinoma (PDAC) is associated with

dependent on a balance between diversity and consensus among
classifiers. A definitive recipe to achieve this goal has yet to be
completely defined!®2123, Two widely cited examples following
the ensemble paradigm that focus on complementary and het-
erogeneity are, for instance, stacking, a form of meta-learning?!,
and ensemble selection!®. Stacking constructs a higher-level
predictive model over the predictions of base classifiers. Ensemble
selection, on the other hand, uses an incremental strategy to select
base predictors for the ensemble while balancing diversity and
performancel!?.

Here we apply the stacking approach due to its simplicity and
computational efficiency. The use of multi-datasets and multi-
platform integration in pancreatic cancer studies?* are essential
for early detection and aligns at a fundamental level with the data
analysis methodology applied in our work. We demonstrate how
using a stacked ensemble approach which relies on a panel of 20
features, including cancer-associated proteins and clinical cov-
ariates, outperforms state-of-the-art multi-biomarker combina-
tions previously applied in pancreatic ductal adenocarcinoma
early detection.

Methods

Study design. This nested case control discovery study was
approved by the Joint UCL/UCLH Research Ethics Committee A
(Ref. 05/Q0505/57). Written informed consent for the use of
samples in the UKCTOCS trial and secondary ethically approved
studies was obtained from donors and no data allowing identi-
fication of patients was provided. The study set comprised serum
from post-menopausal women aged 50-74 recruited to UKC-
TOCS between 2001 and 2005 and collected according to an
SOP2>26, All participants were ‘flagged’ with the national agen-
cies for cancer registrations and deaths using their NHS number.
Women subsequently diagnosed with pancreatic ductal adeno-
carcinoma (cases) were identified by cross-referencing with the
Health and Social Care Information Centre cancer registry codes
and death codes (ICD10 C25.0/1/2/3/9). Confirmation of diag-
nosis was sought from GPs and consultants through ques-
tionnaires and from the Hospitals Episode Statistics database. In
total, 143 cases were identified (with 218 associated serum sam-
ples) that had not been registered as having any other cancer
since randomization and that had a confirmed diagnosis of
pancreatic cancer. Matched non-cancer controls, i.e., with no
cancer registry code, from individual women were selected based
on collection date, age, and centre to minimize variation due to
handling and storage. From this set, 249 controls were selected.
35 of the PDAC cases had longitudinal data, with between 2 and 6
annual longitudinal samples per individual years before diagnosis
(Table 1). Due to the design of the UKCTOCS study, PDAC stage
for all the cases at the time of diagnosis was not available. The
number of cases and controls selected from UKCTOCS for the
study presented here as well as other characteristics such as body-
mass index (BMI) and Age at diagnosis can be seen in Table 1.
Detailed diabetes information for the UKCTOCS participants
selected for this study was not available or was incomplete. Dis-
ease duration was also unavailable. Any stratification based on
diabetes type was therefore not done.

Diabetes status was collected from a UKCTOCS first follow-up
questionnaire, from in-patient and out-patient Hospital Episode
Statistics or from death certificates. The full dataset used in our
work included only 44 individuals for which type was
determined. For the rest, only yes/no information was available
with respect to diabetes. 24 PDAC cases with diabetes mellitus
(DM) were non-insulin-dependent, 3 were classified as insulin-
dependent, 3 had both a classification of insulin-dependent and
non-insulin-dependent DM, therefore inconclusive, 1 had a non-
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Table 1 Study dataset description.

Variable Cases Controls P value
No. samples 218 249
Tumour site
Tail 10 na
Body 22 na
Body/tail 3
Head 88 na
Unspecified 95 na
Mean time to spin (h) (range) 21.7 (0.48-46.53) 21.82 (0.32-46.24) 0.93

Mean age at sample draw (yr) (range)
Mean BMI (kg/m2) (range)
Mean time from sample collection to diagnosis (months)

64.94 (51.19-74.87)
27.46 (17.80-43.74)
26.07 (0.99-70.09)

62.48 (50.44-76.86)
26.64 (17.91-44.39)
na

<0.0001 (OR =1.06)
0.078

(range)
HRT use (at randomisation)

Yes 19 48 0.0010

No 199 201 (OR=0.41)
OCP use (ever)

Yes 132 127 0.039

No 86 122 (OR=1.47)
Diabetes

Yes 42 n <0.0001

No 176 238 (OR=4.99)

BMI body mass index, OCP oral contraceptive pill use, HRT hormone replacement therapy.

P values were calculated according to a logistic regression model with a bias reduction method (see ‘Methods"), for the whole UKCTOCS sample distribution. For the same variables in the subsets used
as training and test sets see Supplementary Tables 1and 2. This table corresponds to taking all samples from all time-groups, i.e., O to 4+ years to diagnosis (n = 467). See also Supplementary Figs. 1, 2.

insulin-dependent and other specified DM, 1 had a non-insulin-
dependent and unspecified DM, 5 had an only unspecified DM
classification. Regarding the controls, only 1 had insulin-
dependent DM and 5 were classified as non-insulin-dependent.
Due to the smaller size of the subset for which DM type was
available and the incomplete nature of this information, we
decided to not incorporate type into our analysis.

As an external validation cohort, we resorted to the Accelerated
Diagnosis of neuro Endocrine and Pancreatic TumourS
(ADEPTS) study?’” (UCL/UCLH Research Ethics Committee
reference 06/Q0512/106), which is an early biomarker study
aiming to detect pancreatic cancer in patients at a much earlier
stage. The ADEPTS study, previously referred to as TRANSIa-
tional research in BILiary tract and pancreatic diseases (TRANS-
BIL) study, collected serum samples from adult patients who
presented to University College London and the Royal Free
London Hospitals between 2017 and 2019 with abdominal
symptoms suggestive of hepatobiliary disorders and pancreatic
cancer. For the purpose of this work, samples from patients with
no underlying gastrointestinal disorders or samples from cases
diagnosed with pancreatic cancer were used. The number of cases
and controls selected for external validation of the PDAC
signature developed in the UKCTOCS samples presented above
can be seen in Table 2 (see also Supplementary Table 3), as well as
other sample characteristics. 17 PDAC cases and 17 controls were
available for the work presented here. The controls from the
ADEPTS study are the closest to the control population collected
from UKCTOCS as they did not present underlying gastro-
intestinal pathology. The PDAC cases used here had been
matched by age, gender and diabetes status. Hormone replace-
ment therapy (HRT) use at randomization and oral contraceptive
pill (OCP) use (ever) information was not collected for the female
participants. All patients have given written consent for the use of
their samples for research purposes and data were anonymized.
The samples were processed according to NTHR standards?® and
diagnoses were confirmed by interrogating patient hospital
electronic records at University College London and the Royal
Free Hospitals.

Serum analyte measurements. All UKCTOCS serum samples
were randomized for testing. Supplementary Table 4 summarizes
dilution factors and coefficients of variation. Carbohydrate anti-
gen 19-9 (CA19-9(A)) was measured using the Mucin PC/CA19-
9 ELISA Kit (Alpha Diagnostic International) according to the
manufacturer, using a 1:4 serum dilution. CA125(A), Mucin-16
(MUCI16) assay was performed using the Cobas CA125 II CLIA
with a CA125 II Calibrator Set (Roche and Fujirebio Diagnostics)
on a Cobas E411 analyzer with PreciControl Tumour Marker to
monitor assay imprecision. Leucine-rich alpha-2-glycoprotein
(LRG1) level was assessed using the human LRG1 ELISA Assay
Kit (Immuno-Biological Laboratories) at a 1:2000 serum dilution.
Polymeric immunoglobulin receptor (PIGR) was measured using
the human secretory component (SC) ELISA Kit (Cusabio) at a
1:500 serum dilution. Regenerating family member 3 alpha
(REG3A/PAP) level was determined using the PANCREPAP
ELISA Kit (DynaBio) at a 1:100 serum dilution and Factor XII
(F12) using the Factor XII Human ELISA Kit (Abcam) at a
1:1000 serum dilution. For the von Willebrand factor (VWF), we
resorted to the Von Willebrand Factor Human ELISA Kit
(Abcam) at a 1:100 serum dilution. Thrombospondin-1 (THBS1/
TSP1) level was evaluated using the Quantikine Human
Thrombospondin-1 Immunoassay (R&D Systems) at a
1:100 serum dilution. Anterior gradient protein 2 homolog
(AGR2) was calculated using the Anterior Gradient Protein 2
ELISA kit (USCN Life Science) at a 1:25 serum dilution. Alpha-1
antitrypsin (A1AT/SERPINA1) was measured by a-1-Antitrypsin
ELISA kit (Immunodiagnostik AG) and Interleukin 6 signal
transducer (IL6ST/IL6RB) by Quantikine human soluble gp130
(R&D Systems), according to manufacturer recommendations.
Thrombospondin-2 (THBS2/TSP2) was measured using the
Quantikine Human Thrombospondin-2 Immunoassay (R&D
Systems) at a 1:10 serum dilution, TEK Receptor Tyrosine Kinase
(TEK) using the Quantikine human TIE-2 ELISA Assay Kit
(R&D Systems) at a 1:10 serum dilution and Insulin-like growth
factor binding protein 1 (IGFBP1) by human IGFBP1 ELISA
Assay Kit (Abcam) at a 1:50 serum dilution. Finally, Interleukin
17 receptor A (IL17RA) was measured using the human IL17RA
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Table 2 External validation set characteristics.

71.94 (43.00-88.00)
24.66 (12.04-41.35)

Mean age at sample draw (yr) (range)
Mean BMI (kg/m2) (range)

Gender
Male 9
Female 8
Diabetes
Yes 1 (Type I
No 16

Variable Cases Controls P value
No. samples 17 17
Tumour site
Tail Not collected na
Body Not collected na
Body/tail Not collected
Head Not collected na
Unspecified Not collected na
Mean time to spin (h) (range) (0.5-1.5) (0.5-1.5) -

54.47 (27.00-89.00) 0.0054 (OR=1.08)

23.84 (18.02-29.20) 0.58
5 0.7
12

4 (3 Type I, 1 unspecified) 0.18

13

information on pancreatic ductal adenocarcinoma (PDAC) stage in Supplementary Table 3.
BMI body mass index.

P values were calculated according to a logistic regression model with a bias reduction method (see ‘Methods’). Samples were collected from the ADEPTS cohort (see ‘Methods’, n=34). See also

ELISA Assay Kit (Abnova) and Alpha Fetoprotein (AFP) by using
the Human AFP Quantikine Immunoassay, according to manu-
facturer recommendations. Assays were performed on singlet test
samples and values not measurable on the standard curves were
given the value ‘low’. For the main results shown in Figs. 1-4,
from the markers listed above only CA19-9, CA125/MUCIS6,
VWF, THBS2 and IL6ST were used. See Supplementary Discus-
sion, Supplementary Figs. 3, 9 and Supplementary Tables 5-10
for further details and results on the use of a portion of the
markers listed above but for a much smaller set of participants.
All samples were also tested using Olink’s multiplex immu-
noassay Oncology II panel. Known cancer antigens, growth fac-
tors, receptors, angiogenic factors and adhesion regulators were
measured (see Supplementary Table 11).

As with the UKCTOCS samples, the same assays were run in
the subset of samples collected from the ADEPTS study, as well as
the same Olink platform of biomarkers. This secured that the full
biomarker signature developed in UKCTOCS samples could be
validated in a different cohort.

Statistical analysis. Our main dataset is part of a nested case-
control study within UKCTOCS?>>2¢ and is comprised of 143
individuals with PDAC and 249 controls (see Table 1 and Sup-
plementary Tables 1 and 2). Thirty-five of the PDAC-diagnosed
patients provided longitudinal samples, ranging between 2 and 6
annual samples per individual collected prior to diagnosis, with
an average of 1.53 samples per individual (see Table 1). Despite
the fact that 35 of the PDAC cases had longitudinal data, all
samples were taken as independent, and no intra-individual
correlation was imposed or explicitly modelled during data ana-
lysis in this instance. For the purpose of data analysis, we divided
all samples prior to any classifier development into a training (2/
3) set and test (1/3) set, by stratifying for age quartile, HRT use at
randomization, OCP use (ever), diabetes status (Yes/No), BMI
quartile, PDAC or control status and for sample single time-
group, ie., 0-1,1-2,2-3,3-4 and 4+ years to diagnosis (YTD).
Sample single time groups were attributed to each sample and
determined by the time to diagnosis at sample collection (com-
pare Table 1 with Supplementary Tables 1 and 2, see also Sup-
plementary Table 12 for the total number of cases and controls
per single time-group). The stratification outlined above enabled
a clearer evaluation of PDAC classifier panel performances in

collected samples not used in training, ie., the test set, and
ensured that the results are realistic and representative, and are
not biased by data or information leakage?°.

Receiver operating characteristic (ROC) curves were constructed
for each model to assess diagnostic accuracy. The area under the
curve (AUC) for the ROC curves was used as the performance metric
during optimization. Models were selected based on their rank in the
training set across cross-validation folds. ROC curves were generated
with the pROC R package (version 1.18.0, https://cran.r-project.org/
web/packages/pROC/index.html). 95% CI for AUCs were deter-
mined by stratified bootstrapping. All AUC confidence intervals
crossing 0.5 were deemed insignificant. In addition, sensitivity,
positive and negative predictive values and Matthews correlation
coefficients at 90% specificity are also reported. Comparison of ROC
curves was performed with a bootstrap test in pROC.

In order to evaluate the association between each of the single
markers, including the clinical covariates (see Table 1), and
PDAC status, we resorted to the logistic regression model
implemented in the logistf R package (https://cran.r-project.org/
web/packages/logistf/index.html, version 1.24.1). This approach
fits a logistic regression model using Firth’s bias reduction
method. The reported confidence intervals for odds ratios and
tests were based on the profile penalized log likelihood and
incorporate the ability to perform tests where contingency tables
are asymmetric or contain zeros. P values were used to rank
markers. The performance of single marker models was also
verified in the test set (see Supplementary Figs. 10, 24 and
Supplementary Discussion for further details and results).

Multi-dimensional analysis of the data was performed under
two separate frameworks: a brute-force algorithm scanning
through combinations of up to 3 markers and fitting a logistic
regression model (see Supplementary Discussion), and a stacked
ensemble algorithm with 10 base-learners. The models stemming
from the brute-force approach were ranked according to their
performance across cross-validation training folds (Supplemen-
tary Figs. 21, 22). The ensemble models relied on the performance
of the base-learners presented in Fig. 1 (see also Supplementary
Fig. 23) and highlighted below, run through caret (version 6.0-93,
https://cran.r-project.org/web/packages/caret/index.html):  deci-
sion trees and rule-based models for pattern recognition (C50,
version 0.1.6, https://cran.r-project.org/web/packages/C50/index.
html); support vector machines with radial basis function kernel
(SVM, version 0.9-31, https://cran.r-project.org/web/packages/
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Fig. 1 Ensemble model performance per joined/combined time-group. a Distribution of receiver operating curve (ROC) area under the curve (AUC)
across training folds for each of the base-learners and the Bayesian Model Averaging (BMA) stack meta-learner (Joined Time Group 2 Layer

(JTG2L) model, see ‘Methods’ section on statistical analysis). See also Supplementary Figs. 24, 25 to 28 for alternative stacking methods. b ROC curves in
the test set for the BMA stack per joined time-group. AUC 95% Confidence Intervals (Cl) were determined by stratified bootstrapping. € Cross-time group
performance of the BMA stack developed in the training set and evaluated in specific time-groups in the test set. 95% CI for AUCs are not shown but the
predictions were all significant. d Sensitivity (Sens), e Positive predictive value (PPV) and f Negative predictive value (NPV) at 90% Specificity

(Spec) corresponding to b. g-i Cross time-group performances for the ensemble trained in 0-4+ samples (last column in €). See also Supplementary
Fig. 29 for other stacking methods. For the Matthew correlation coefficients corresponding to d-i, see Supplementary Fig. 30. In a, b, d-i, shades of blue
from dark to light correspond to results obtained in 0-1, 0-2, 0-3, 0-4 and 0-4+ years to diagnosis samples, respectively. The number of independent
training samples was n =107 (0-1), n=180 (0-2), n=252 (0-3), n=309 (0-4) and n =363 (0-4+). The number of independent test set samples was
n=26 (0-1), n=60 (0-2), n=82 (0-3), n=98 (0-4) and n=114 (0-4+). See Supplementary Table 12 for further details on case and control samples.
See ‘Statistical analysis' in Methods for further details and Supplementary Data 1-3.

kernlab/index.html); regularized random forests (RRF, version
1.9.4, https://cran.r-project.org/web/packages/RRF/index.html);
neural networks with feature extraction (NNET, version 7.3-17,
https://cran.r-project.org/web/packages/nnet/index.html);  gaus-
sian process with radial basis function kernel (GAUSSPR, version
0.9-31,  https://cran.r-project.org/web/packages/kernlab/index.
html); lasso and elastic-net regularized generalized linear models
(GLMNET, version 4.1-4, https://cran.r-project.org/web/
packages/glmnet/index.html); bagged Adaptive Boosting (ADA-
BAG, version 4.2, https://cran.r-project.org/web/packages/
adabag/index.html); extreme gradient boosting (XGBOOST,
version 1.6.0.1, https://cran.r-project.org/web/packages/xgboost/
index.html); generalized Linear Model with Stepwise Feature
Selection with Akaike Information criterion (GLMStepAIC,
version 7.3-58, https://cran.r-project.org/web/packages/MASS/
index.html); naive Bayes classifier (NB, version 1.7-1, https://
cran.r-project.org/web/packages/klaR/index.html).

The selection of base-learners was grounded on covering a
number of state-of-art methods and algorithmic families, from
bagging and boosting to general linear models with in-built
feature extraction, previously referenced in the literature!®22, that
would be able to capture different aspects of the data with an
efficient computational effort and that had, for the most part,
typical hyperparameter ranges published in the literature??, some
with applications in biology?!. Due to the size of the datasets, we
narrowed down the size of the set of base-learners to 10. Further
work on ensemble selection from libraries of models should
contribute to clarifying if other techniques provide additional
valuel® by testing performance against base-learner pool
diversity?!. The training of the base-learners was executed in
two ways: by taking joined/combined time-group samples, i..,
collected 0-1, 0-2, 0-3, 0-4, 0-4+ YTD or by training the set of
base-learners in each single time-group specific samples, i.e., 0-1,
1-2, 2-3, 3-4, 4+ YTD. The first model forces the base-learners to
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Fig. 2 Feature importance across pancreatic ductal adenocarcinoma base-learner signatures. a Odds-ratios (represented proportionally by the size of
the circles) and P-values for the ranking procedure according to a logistic regression model using Firth's bias reduction method in the training set. b Feature
importance across all base learners and joined time-groups. All the features (biomarkers and clinical covariates) presented in this figure were selected
when training/optimizing the ensemble approach with 0-4+ samples. The importance plotted for the remaining joined time-groups is the importance of
each feature in their respective models. See also Supplementary Fig. 33 for the full plots and additionally Supplementary Fig. 34 for models developed with
single time-groups. In a and b shades of blue from dark to light correspond to results obtained in 0-1, 0-2, 0-3, 0-4 and 0-4+ years to diagnosis samples,
respectively. See ‘Statistical analysis’ in Methods for further details and Supplementary Data 4, 5. OCP oral contraceptive pill use. HRT hormone

replacement therapy.

learn specific and cross-time-group details together, whereas the
second model creates specialized groups of base-learners per
single time-group. We tested several staking procedures, i.e. the
meta-learners: by Bayesian Model Averaging (BMA) (version
3.18.17, https://cran.r-project.org/web/packages/BMA/index.
html) with an underlying logistic regression model (BMA stack),
by averaging with an arithmetic mean (MEAN stack) and
geometric mean across the probabilities attributed by each base-
learner (GEOMEAN stack), or by taking the maximum prob-
ability of being a case across all base-learners (MAX stack). This
class is named throughout this paper as Joined Time Group 2
Layer (JTG2L) (see Fig. 1 and Supplementary Figs. 24 and
Supplementary Table 13 for the optimal hyperparameters found
through a random selection of 1000 combinations for each base-
learner). For the second model we tested a 2-layer and a 3-layer
stacked model. The first, referred to as Single Time Group 2 Layer
(STG2L) (Supplementary Fig. 25), took the base learners trained
in each single time-group and applied the 4 stacks mentioned
above, although to a larger stack input space. If, for example, we
are training with samples belonging to every single time-group,
ie, 0-1, 1-2, 2-3, 3-4, 4+, the stack feature input space will have
10 times 5 dimensions; each base-learner is trained on each single
time-group, giving 5 models per base-learner and a total of 50
base-models (Supplementary Fig. 25). Subsequently, the prob-
ability output from each base-learner model is concatenated and
fed into the meta-learner. For the specific case of the STG2L
protocol, we also tested an average neural network meta-learner
model (AVNNET stack) trained on the concatenated probability

matrix created from each base-learner probability output. The
second, named Single Time Group 3 Layer (STG3L) (Supple-
mentary Fig. 26), stacks twice and, therefore, has 3 layers. First it
stacks the base-learners per single time-group with a BMA stack
and, subsequently, stacks the result, a 5-dimension feature space
of probabilities with either a BMA stack, a MEAN stack, a
GEOMEAN stack or a MAX stack, if, for example, we are training
with samples belonging to every single time-group (see
Supplementary Fig. 26 for further details). Other combinations
of time-groups were also tested, e.g., 0-1 plus 1-4, 0-2 plus 2-4,
etc., but the stacked classifiers either underperformed or were not
robust.

All base-models were trained by 5 times repeated 10-fold cross-
validation with over-sampling of the minority class, in our dataset the
PDAC cases (see Table 1). In order to further avoid overfitting, we
ranked each of the features, both biomarkers and clinical covariates,
with the logistic regression model mentioned before, and scanned the
ranked feature input space, in increments of 10 features, with the
objective of finding the optimal performance across cross-validation
folds, without bias®0. Despite some features not being significant
according to the logistic regression model with bias correction when
evaluated as a single predictor, the protocol we applied scanned over
all features, clinical covariates included. As described, the stacked
models were trained on the probability matrices, i.e., generated by
concatenating the vectors whose entries are the probability of being a
PDAC case according to each base-learner. We opted for a 10-times
10-fold cross-validation resampling strategy for the meta-learner to
further secure that the choice of the best models was robust. The
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Fig. 3 Enrichment analysis. g:Profiler terms for the set of features selected by the optimal classifier trained in 0-4+ samples. a Kyoto Encyclopaedia of
Genes and Genomes (KEGG) pathways. ¢ Reactome Pathway Database (REAC). e WikiPathways (WP). g Gene ontology terms biological process (GO:
BP). The respective adjusted p-values associated with each enrichment term or pathway are plotted in (b), (d), (f) and (h). See also Fig. 2. See 'Statistical

analysis’ in Methods for further details and Supplementary Data 6.

extensive resampling strategy secured both at the base-learner level as
well as the meta-learner level that the models learned performed
robustly across a large number of diverse folds. We also developed
other classifiers trained in both real and synthetic data by applying
state of the art techniques such as SMOTE3! and non-parametric
algorithms3? during resampling (see Supplementary Discussion and
Supplementary Figs. 31, 32 for details).

The fact that the PDAC cases had longitudinal samples which
we considered as independent, did not affect the training of the
models. The 5-times repeated 10-fold cross-validation resampling
strategy secured that the random allocation of samples to training
and validation folds during training avoided a systematic use
of samples from the same individual in hyperparameter
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optimization. Regarding the stratification of training and test
sets, given that this was done also with information of sample
single time-groups, there wasn’t a consistent presence of samples
from the same individual which would interfere with the
performances reported here.

The variable importance routine selected for evaluating feature
importance in each base-learner (see for example Fig. 2) was a
model-agnostic method based on a simple feature importance
ranking measure®3, implemented in the R package vip (version
0.3.2,  https://cran.r-project.org/web/packages/vip/index.html).
Model-agnostic interpretability separates interpretation from the
model, is a more flexible approach and can be applied to any
supervised learning algorithm. It was crucial in our case for
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Fig. 4 Performance in an external validation set. a Receiver operating curve (ROC) area under the curve (AUC) in the Accelerated Diagnosis of neuro
Endocrine and Pancreatic TumourS (ADEPTS) external validation set for the Joined Time Group 2 Layer (JTG2L) Bayesian Model Averaging (BMA) stack
models developed and selected in the UKCTOCS training set in the respective joined time-group samples (see Fig. 1), coloured in shades of green from dark
to light for 0-1, 0-2, 0-3, 0-4, 0-4+ YTD samples. b Sensitivity (Sens), ¢ Positive predictive value (PPV) and d Negative predictive value (NPV) at 90%
specificity (Spec) (see also Supplementary Fig. 39 for the corresponding Matthew's correlation coefficient value). The performances correspond to 1000
datasets whose difference from the original ADEPTS subset selected for this study is the random allocation of the missing features hormone replacement
therapy (HRT) and oral contraceptive pill use (OCP) to female participants. The red dots and respective numbers correspond to estimates of the mean
performance in ADEPTS (by bootstrapping with the boot R package (version 1.3-25)) for the respective model developed in UKCTOCS time-grouped

samples. The number of independent ADEPTS samples was n = 34. See 'Study design’ and ‘Statistical analysis’ sections in Methods for further details, and

Supplementary Data 7.

understanding the variance in importance attributed by each
base-learner.

The enrichment analysis for each of the signatures developed
with single and joined time-groups was performed with the
gprofiler2 R package (version 0.2.1, https://cran.r-project.org/
web/packages/gprofiler2/index.html) version 0.2.0. In Fig. 3
only up to 15 significant terms are shown. Threshold for
multiple comparison correction under false discovery rate was
set at 0.05.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results

Dataset characteristics. Time intervals between UKCTOCS
sample collection and serum isolation, i.e., time to spin, were
comparable between PDAC cases and controls. There was no
significant difference in the mean time to spin between cases and

controls for the whole study dataset (Table 1), with the ranges
being also very similar. The same is observed in the training and
test sets (Supplementary Tables 1 and 2). The distribution of ages
at sample draw showed a significant association (OR = 1.06,
P <0.0001) with PDAC status, with cases having a mean value at
64.94 years and controls at 62.48 years. Once again, a similar
observation regarding significance can be made for the training
and test sets. In both, we verify odds-ratios favouring PDAC
status (Supplementary Tables 1 and 2). Through further analysis
in the training set, we verified that age at sample draw was,
nevertheless, only significantly associated with PDAC in training
samples obtained 4+ years prior to diagnosis (Supplementary
Figs. 1, 10). Moreover, by applying the logistic regression model
used for the ranking of individual features which was developed
in the training set (see ‘Methods’), we observed that age did not
generate significant AUCs in the test set, and the sensitivities were
very low (Supplementary Figs. 1, 10). To qualify as a predictive
marker, participant age had to be combined as a covariate in a
multi-marker model as is reported below (see also Supplementary
Discussion for an extensive study on typical biomarker
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combinations in simple state-of-the-art logistic regression mod-
els). As a single variate, participant BMI was neither a significant
predictor in the entire dataset (Table 1) nor was it in the training
(Supplementary Table 1). It was also unable to achieve significant
performances in the test set with a simple general linear model
(Supplementary Table 2 and Supplementary Fig. 10c, d).
Regarding HRT, it was significant in all datasets (Table 1, Sup-
plementary Tables 1 and 2). In the training set, this result
stemmed mostly from the association of HRT use with a lower
risk of pancreatic cancer (OR=022<1, 95% CI 0.04-0.85,
P =0.027, coloured in blue in Supplementary Fig. 10e) in the 2-3
single time-group samples. Its significant predictive potential for
distinguishing between cases and controls, however, was not
reproducible in the test set 2-3 time-group by applying a logistic
regression model developed in the training set, AUC = 0.56 (95%
CI 0.50-0.67) (Supplementary Fig. 10f). Similarly to age, HRT
only added value when part of a larger PDAC predictive index
(see below). Although demonstrating an association with PDAC
status across the entire study set (Table 1) and the training set
(Supplementary Table 1), OCP was not a significant predictor in
any of the single time-group samples evaluated independently
(Supplementary Fig. 10e). Overall, diabetes was the strongest
predictor of risk for PDAC among the clinical covariates (Table 1
and Supplementary Table 1). While consistent across both the
entire study set and our training set in all single time-groups
excluding the 1-2 YTD samples, the largest risk was in fact
observed in the 3-4 YTD subgroup (OR=13.26 (95% CI
1.36-1781.23), P=0.022) and 44+ YTD (OR=8.43 (95% CI
1.64-84.86), P =0.0090). These findings were, however, not
reproducible in our test (Supplementary Fig. 10e, f and Supple-
mentary Tables 1 and 2). Once again, diabetes had to be com-
bined with other covariates to enhance performances (see section
below on ensemble stacking of multi-marker models).

Regarding the potential effects of the fact that CA19-9
expression is absent in 8-10% of Caucasians!! on the perfor-
mance of the classifiers presented here, please check the dedicated
section to this topic in Supplementary Discussion.

We also used the best classifier developed in the UKCTOCS
training set (see section below on ensemble stacking of multi-
marker models) to test its predictive PDAC capacity in a subset of
cases and controls collected from an external cohort, the ADEPTS
study?” (see data description in Table 2). Regarding this subset of
cases and controls collected from the ADEPTS cohort, less
information was available (see Table 2). HRT and OCP use were
not collected for any of the women in the study. Yet, clinical
covariates such as Diabetes, Age, Gender and BMI were available
(Table 2). Apart from Age (OR=1.08 (95% CI 1.03-1.16),
P =0.0054), no other had an association with PDAC, but the
dataset available for analysis here was relatively small.

Ensemble learning multi-marker models improve performance.
The group of base-learners chosen for the ensemble analysis
reported here covered a large and diverse set of approaches (see
Methods, Fig. 1a and Supplementary Fig. 23), which was bene-
ficial, as different characteristics of the training set were captured
by different classifier techniques (see comments below on variable
importance attributed by each classifier). This, in turn, will
increase classifier heterogeneity and therefore the likelihood of
success when predicting outcomes in unseen data!®-22, Here, we
will focus on the results of the JTG2L BMA stack ensemble
classifier, which was trained on all samples collected 0-1, 0-2, 0-3,
0-4 or 0-4+ YTD (described in the ‘Methods’ section and in
Supplementary Fig. 24), which allows for larger numbers of sets
during cross-validation, better performances in the training set
and smaller confidence intervals (Supplementary Fig. 27).

For the results on other stacking ensemble strategies see the
‘Methods’ section and the Supplementary Discussion section on
ensemble classifiers specialized in single time-group samples (see
also Supplementary Figs. 25-27d, i).

As we increased the interval of joined time-groups from 0-1 to
0-44, and thus the number of samples used to train, the
performances in the training (Fig. 1a, Supplementary Fig. 27a, b)
and the test set decreased (when the training and testing time-
groups are the same, Fig. 1b and Supplementary Fig. 27c), as
expected, since the median time to diagnosis increased (see also
the diagonal values of the heatmap in Fig. 1c). A similar trend was
roughly observed for the sensitivity, positive predictive value
(PPV) and negative predictive value (NPV) achieved (see
Supplementary Figs. 28a—c for the training set, and Fig. 1d-f
for the test set), with the 0-2 group appearing as the outlier. The
use of the JTG2L BMA stacked ensemble was beneficial both for
improving performance in the test set as well as decreasing
variability across training folds (Fig. 1a, Supplementary Fig. 27a).
Models trained in each joined time-groups attained, nevertheless,
better performances in the test set, in certain instances, when
evaluated in samples belonging to narrower time-groups, e.g.
AUCst, 5 (0-3, training) = 0.79 was considerably smaller than
AUCtest,, 5y (0-4+, training) = 0.84, with the difference being
borderline statistically insignificant (P=0.06) (Fig. lc, off
diagonal values in the heatmap). This result probably stemmed
from the additional non-specific information contained in the
single 3-4 and 4+ time-groups, which helped to correct for the
poor performances in the 1-2 single time-group (Supplementary
Fig. 29). Under normal circumstances, when evaluating the
PDAC risk for samples in newly collected data, early diagnosis
would only be a comprehensive effort if evaluated with the
classifier developed with 0-4+ joined time-group training set
samples, as time to diagnosis is obviously not available for data
collected from new patients. Reassuringly, the cross time-group
performances in the test set, generated with the 0-4+ classifier,
were not statistically different from those with narrower joined
time-groups (P, ;) (0-4+, training) =0.66, P,y (0-4+,
training) = 0.68, P 3y (0-4+, training) = 0.06, Py 4y (0-4+,
training) = 0.41, when comparing the last column in Fig. 1c¢ with
the diagonal), under this broad classifier, which justifies its use in
external validation sets. In addition, the JTG2L BMA stack
ensemble approach outperformed the single marker and multi-
marker models relying on simple logistic regression (Supplemen-
tary Figs. 21, 22); developed with 0-4+ training set samples and
evaluated in the 0-1 subgroup of the test set, it reached an
AUCtst, 1)(0-4+, training) = 0.94 (95% CI 0.83-1), which far
exceeded the results with CA19-9 alone (AUC™, 1,(0-1,
training) = 0.73 (95% CI 0.52-0.93), Sens'®, ;) =0.62 (95% CI
0.38-0.85) at 90% Spec.) or in combination with THBS2, MUC16
or CEACAMS5 when predicting PDAC status in the same time-
group (see Supplementary Figs. 21, 22 and Supplementary
Discussion section on single and multi-marker combination
models developed with simple logistic regression techniques). The
sensitivity at 90% specificity and the respective PPV and NPV
were also enhanced for the JTG2L BMA stack ensemble model
(see Fig. 1g-i). An improvement in performance with respect to
previous studies in pre-diagnostic samples was also achieved with
samples collected up to 2 years; there a sensitivity of 0.406 at
0.905 specificity was reported!2.

Despite any other test specificity than 100% used for
asymptomatic patient screening will result in a higher rate of
false positives®4, especially in a setting of low disease incidence
and prevalence such as that characterizing PDAC, this represents
an ideal scenario and currently used molecular or imaging
modalities are far from such performance. For CA19-9, which is
the only clinically applicable marker, the performance reported in
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the literature ranges between 72-81% for sensitivity, at 82-90%
specificity!l, in symptomatic patients. The accuracy of cross-
sectional imaging modalities, although dependent on disease
stage and extension stands at 92% specificity at best3>. Therefore,
for the purpose of comparing the results obtained with the
technique developed in this paper with the results reported in the
literature, we chose to also report model metrics at 90%
specificity.

The JTG2L BMA stack was capable of attaining a performance
of 0.84 (0.72-0.93), when trained in samples belonging to the
same joined time-group, ie., 0-2 (Fig. 1b), or 0.85 (95% CI
0.74-0.93), when trained in 0-44 samples (Fig. 1c), the difference
between the two was insignificant (P!, (0-4+, training) =
0.68). The use of the larger feature input space characterising the
JTG2L BMA stack is further justified given that the significant
single marker models in the training set (Supplementary Fig. 17)
did not reach significance in the test set in 0-2 samples, with
exception of CA19-9 and CEACAMS, both with an AUCtest,
<0.75 (AUC!s , (CA19-9) = 0.63 (95% 0.51-0.81), AUCtest,.
2)(CEACAMS5) =0.73 (95% 0.53-0.86)). A previously published
logistic regression model combining CA19-9 and MUCI16 gave
AUCs of 0.76 for the up to 1 year group in a previous study
validation set!2. In the current dataset, the same bi-dimensional
model predicted PDAC with an AUCHining, ., (CA19-9,
MUC16) =081 (95% CI 0.72-0.88), and AUCUaining
(CA19-9, MUCI16) =0.74 (95% CI 0.67-0.81), in the training
set (reported in Supplementary Discussion). The same models
tested at roughly the same level in the test set: AUCtest, ;) (CA19-
9, MUC16) = 0.76 (95% CI 0.55-0.93) and AUC!®st, ,) (CA19-9,
MUCI16) = 0.66 (95% CI 0.51-0.80) (see Supplementary Discus-
sion section on simple multi-marker models), the latter
considerably lower than the JTG2L BMA stack performance of
0.84 (trained in 0-2 samples, P = 0.0060) and 0.85 (trained in 0-
4+ samples, P=0.0061) (see Fig. 1c). The sensitivity, PPV and
NPV at 90% specificity also improved with the ensemble
algorithm proposed here, with sensitivities as high as 0.92 (95%
CI0.54-1), 0.61 (95% CI 0.17-0.83) and 0.63 (95% CI 0.29-0.77),
and PPVs as high as 0.91 (95% CI 0.85-0.92), 0.81 (95% CI
0.55-0.85) and 0.84 (95% CI 0.70-0.87), in 0-1, 0-2 and 0-3 test
samples, depending on the joined/combined time-group used to
train (see Fig. 1d, i and Supplementary Figs. 10, 21 for
comparison with CA19-9 and other widely referenced biomar-
kers). This outcome came at a cost of increased model complexity
and input space dimensionality. The features selected from the
101-marker input panel are plotted in Fig. 2. The selected panel of
biomarkers for the JTG2L BMA stack meta-learner developed
with all time-group training samples combined (0-4+4), shows
typical gene ontology and pathway terms with ‘Constitutive
signalling by aberrant PI3K in cancer’ [REAC], ‘Pancreatic
cancer’ and ‘Proteoglycans in cancer’ [KEGG], being significantly
over-represented (Fig. 3).

One of the striking aspects of the 0-4+ PDAC predictive index
was the presence of commonly cited markers such as CA19-9,
MUCI16, THBS2, CEACAM5 and VWF and 4 of the clinical
variables, excluding BMI. Diabetes was ranked just below CA19-9
according to the median importance across base-learners and
time-groups, something which is consistent with what is observed
in Supplementary Fig. 21 (see also the section on single biomarker
association with PDAC and multi-dimensional models reported
in Supplementary Discussion). Also remarkable was the variance
in the importance attributed to the same markers across models
developed in narrower time-groups, except for CA19-9 which
almost always was allocated a scaled importance of 1. These
observations are in line with those reported in the literature as
strong arguments for using stacking and ensembles of classifiers,
e.g., a pool of base-learners outperforms single classifiers by

enabling heterogeneity within the pool of the base-learners and
thus robustness in the predictions!®2l. There is, nevertheless, a
caveat to this as diversity and performance are not strictly directly
proportional and while there is a strong dependency between the
former and the latter, diversity might hinder performance of the
ensemble?!-36, Given that we started with a reduced pool of base-
learners, the true relationship between prediction heterogeneity/
diversity and performance could not be analysed extensively. Yet,
upon searching all possible combinations of base-learners from
the 10-dimensional input space, the use of all 10 classifiers in the
stack always outperformed the rest across a set of 10 times 10-fold
cross-validation strategy. Although there wasn’t a clear trend for
base-learner pair-wise diversity with time-group across base-
learners (see Cohen k-statistic in Supplementary Figs. 35, 36), the
JTG2L BMA stack did, in fact, outperform the best base-learner
in the training set (Fig. 1a), and any of the remaining stacks (see
Supplementary Figs. 27, 28). This was particularly clear in the
trend observed among stacks from best to worse in Supplemen-
tary Fig. 27a. From the performance across training cross-
validation folds, the BMA stack is the obvious choice across time-
groups and, consequently, constitutes the model of choice for
validation in new data. It was interesting to note that the MEAN
stack outperforms the GEOMEAN stack, a mixture of experts
focusing on consensus among base-learners, and the MAX stack,
choosing the maximum probability for PDAC status among the
base-learners, which, effectively, amounts to highlighting the
classifier that has the highest degree of -certainty/highest
probability of being a case for each sample. The BMA stack
and the MEAN stack provide a balance between base-learners, the
former being weighted, which also increased the performance in
the test set, especially in the 0-1 and 0-2 joined time-groups.

One particular aspect of PDAC is its low prevalence in the
general population, at 8-12 per 100,000 per year and a 1.3%
lifetime risk of developing the disease3”. The models developed
and tested here relied on data where the prevalence was
approximately between 40 to 50% (see Table 1 and Supplemen-
tary Table 12) and on the maximization of the ROC AUC, which
is independent from prevalence. At these values, the BMA stack
JTG2L reached PPVs as high as 0.91 (95% CI 0.85-0.92) in 0-1
samples and 0.84 (95% CI 0.70-0.87) in 0-3 samples (Fig. le). If
the prevalence of the disease in the test set was changed the PPV
and NPV at 90% specificity decreased and increased, respectively,
at lower disease prevalence, as expected (Supplementary
Fig. 37)38. The ROC AUC was nevertheless stable and the
tendency with time-groups observed in Fig. 1 was also verified
(see Supplementary Fig. 38). The larger variances at lower
prevalence stem from the smaller datasets.

In addition to the test set generated from the total number of
collected samples from UKCTOCS, we also evaluated the
performance of the JTG2L ensemble classifier with a BMA stack
in a subset of PDAC cases and controls which did not have an
underlying gastrointestinal disorder, collected under the ADEPTS
study?’. These samples were post-diagnosis. Although the
validation of the PDAC signature as an early detection tool is
not applicable in these participants, the value of this validation
lies in assessing whether the UKCTOCS PDAC signature is
capable of distinguishing blinded cases from controls collected
from a separate population. Since HRT and OCP use information
was not available for the ADEPTS cohort, we tested the marginal
performance of the best UKCTOCS classifier mentioned above
(JTG2L BMA stack) by generating 1000 random allocations of
Yes/No to the women in the ADEPTS subset (see Table 2) and
No to all the men. This was to verify if the HRT and OCP
covariates have a defining influence on the performance. Overall,
the marginal performance across the classifiers developed in each
time-group is above an AUC of approximately 0.84 and
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significant (Fig. 4a). The largest marginal performance is obtained
with the JTG2L model developed in 0-2 UKCTOCS samples with
a median value at 0.90 (Fig. 4a). Sensitivities, PPVs and NPVs
values at 90% specificity range from median values at approxi-
mately 0.59 and 0.71, above 0.85 and below 0.90, approximately
between 0.69 and 0.75, respectively, across all joined time-group
models (see Fig. 4b-d as well as Supplementary Fig. 39 for the
corresponding Matthew’s Correlation Coefficient values). An
interesting feature of the trend observed with joined time groups
is that it follows roughly from the median scaled importance
attributed to HRT and OCP (see Fig. 2). Despite this observation,
the dispersion observed in the marginal performance across the
random samples created is low and the impact of missing HRT
and OCP information is not sufficient to affect the predictive
capacity of the UKCTOCS best classifier to the point of it not
being significant. The performances when stratified by PDAC
stage in the ADEPTS samples are not shown due to the numbers
of cases in each class being low (see Supplementary Table 3) and,
therefore, not reliable.

Discussion
From the classifiers developed here, those trained with all avail-
able samples (0-4+) would be the most appropriate under a
clinical setting, as time to diagnosis is not available in newly
collected data. The features highlighted as predictive under these
circumstances included important and widely referenced markers
which we confirmed as having among the strongest association
with PDAC, namely CA19-9, CEACAM5, MUC16 (CA125),
THBS2 and diabetes (Fig. 2). Compared to the rest, CA19-9 was
the most prominent marker as all base-learner classifiers attrib-
uted it almost always the highest importance. CA19-9 is an
indicator of aberrant glycosylation in pancreatic cancer and it is
considered as a biomarker, predictor, and promoter in pancreatic
cancer, although it is often found elevated in benign pancreatic
biliary diseases such as pancreatitis, cholangitis and obstructive
jaundice, giving a substantial rise in false positives!1:3°. Moreover,
CA19-9 expression is absent in 8-10% of Caucasians with a
Lewis-negative blood group, as the CA19-9 epitope is in fact, the
sialylated Lewis A blood group antigen!l. Although CA19-9 levels
are routinely used in detection, determination of resectability and
monitoring of PDAC progression041, its low predictive value
and a low prevalence of pancreatic cancer in the general popu-
lation exclude it as a robust screening tool#2. The combination
of CA19-9 with other markers proposed here is, therefore,
advantageous. Regarding CEACAMS5 and the role of carci-
noembryonic (CEA) related cell adhesion molecules (CEACAMs)
1, 5 and 6 in progression of solid tumours (such as colorectal,
lung, melanoma, breast, liver) including pancreatic cancer is well
established, and their expression varies between different tumour
histological subtypes*3-4>, With respect to pancreatic cancer,
CEACAMS5 has been widely described as having a variable
diagnostic value in PDAC detection, while its expression has also
been reported to inversely correlate with disease stage®¢. In a
recent report, CEACAMS5 was found to be persistently elevated
up to 26.5 months prior to pancreatic cancer diagnosis, in a
cohort of longitudinally sampled participants?’. The predictive
performance of CEACAMS5 as a single analyte in pancreatic
cancer, however, is poor4. In our work, CEACAMS5 taken as a
single predictor achieves only significant performances in 0-1
YTD single time-group samples but is among the top covariates
in terms of importance across base-learners, which confirms the
necessity for non-linear multi-marker models.

MUCI16/CA125 also ranked high in importance across the
base-learner classifiers and time-groups despite not performing
well as a single predictor. MUCI16 is a cell surface glycoprotein

which can be elevated in tissue and sera of patients with various
cancers and is mostly used in the diagnosis and prognostication
of ovarian cancer®4%, MUC16-mediated metabolic reprogram-
ming in pancreatic cancer is associated with cellular invasion and
motility*. Due to its overexpression on the surface of pancreatic
cancer and absence from normal tissue, the value of MUCI16 as a
biomarker of PDAC has been investigated®. A progressive
change in expression of MUC16 throughout different stages of
disease progression is already evident at pre-malignant (pan-
creatic intra-epithelial neoplasia; PaNIN) stages, highlighting its
potential value as a diagnostic marker of early cancer*®>1. With
respect to its diagnostic performance, one meta-analysis which
included 1235 patients reported a pooled sensitivity of 0.59 (95%
CI 0.54-0.62; at 0.78 specificity, 95% CI 0.75-0.82) for detecting
PDAC using CA125 (an epitope of MUC16)°? as a single
marker®>. When combined with CA19-9 (AUC 0.85) CA125
increased the overall accuracy of the former (AUC 0.89),
demonstrating superior diagnostic accuracy compared to CA125
(or CA19-9) alone. The clinical value of MUCI16 in prediction
of metastasis and prognosis in PDAC has been also previously
reported>*>°. Serum levels of MUC16/CA125 have been shown to
be the strongest predictor of metastatic disease (AUC of 0.892 at
95% CI 0.846-0.938, p < 0.001) and survival (HR: 1.804, 95% CI
1.22-2.66, p=0.003) compared to other markers (including
CEA) in 180 PDAC patients®.

THBS2 and THBS1 were both significantly associated with
PDAC, albeit not across all time-groups, the latter only in a subset
of samples (see Supplementary Discussion section on PDAC
signatures developed with additional proteomic data for a sub-
group of participants for the discussion on the performances
associated with these models). Thrombospondins are glycopro-
teins which mediate cancer growth and progression through cell-
cell and cell-matrix interactions, tissue remodelling and regula-
tion of inflammation, immunity, and angiogenesis®®>7. A specific
role for THBS2 in tumour-associated vascularisation has been
reported in various cancers (including colon, liver, lung and
melanoma) in which its aberrant expression was reported to be of
both diagnostic and prognostic value>6->8. With respect to PDAC,
recent observations in a cohort of 493 (263 with PDAC) showed
that THBS2 serum levels significantly differed and differentiated
PDAC from high-risk individuals (familial pancreatic cancer
patients) with a 55.9% test sensitivity (at 100% specificity; 100%
PPV and 66.5% NPV). Moreover, PDAC patients with higher
serum THBS2 (also termed TSP-2) levels showed worse clinical
outcomes (hazard ratio = 1.54, 95% CI 1.143-2.086, P = 0.005).
Interestingly, when combined with CA19-9 an improved panel
sensitivity for PDAC (90.5% at 98.7% specificity) was reported>®.
Taken as part of a signature as was presented here, THBS2 is
expected to help robustly with early detection of PDAC in other
datasets.

In this study, among all interrogated clinical covariates, dia-
betes was the strongest predictor of a higher risk for PDAC
(OR =13.26, 95% CI 1.36-1781.23, P = 0.022), in our 3-4+ YTD
cohort. An association between long-standing type 2 diabetes and
a 1 to 1.5-fold increased risk of PDAC compared to non-diabetics
has been reported>®%. The value of diabetes as a clinical covariate
in a multi-marker panel is supported by the fact that the presence
of new onset diabetes (NOD) (less than 3 years prior to diagnosis
of PDAC) increases this risk 5-fold and is induced by various
pancreatic conditions including chronic pancreatitis and PDAC-
induced hyperglycaemia (recently described as type 3c diabetes).
Abnormal fasting glucose or glucose intolerance are observed in
the majority (>80%) of PDAC patients>%%61; PDAC as an
underlying cause of NOD, is found in around 1% of individuals
aged over 50 and therefore NOD might be considered an early
warning sign of a pancreatic malignancy®!-%2. Not having detailed
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information on duration and type of diabetes for all participants
selected for the current study was an unavoidable aspect given
that it was not known at the time of sample collection (see
‘Results’). Therefore, the distinction between PDAC marker sig-
natures present in long-standing type 2 diabetes and NOD was
not possible. Had we had detailed information, the specific
importance of biomarkers with respect to diabetes status would
have been improved and adapted signatures for populations at a
higher risk3> been determined. We should emphasize, never-
theless, that collection of this information was not within the aims
of the main UKCTOCS trial focusing on ovarian cancer.
Despite numerous reports of recent biomarker discoveries, lack
of standardisation in sample identification and handling, meth-
odologies of analysis as well as data capture and bioanalytical
interpretation challenge their later validation in larger cohorts®4.
Moreover, due to the biological complexity in PDAC, tested
biological fluids and the overlapping features with high-risk
conditions (e.g. chronic pancreatitis), the predictive capabilities of
single analytes are clearly insufficient to meet acceptable diag-
nostic performances®. Considering their individual, relative poor
performance (79-81% test sensitivity and 82-90% specificity in
the case of CA19-9 for example) as well as the low prevalence of
PDAC in the general population, accepting low values for test
sensitivity and specificities results in an increased number of false
positives. The combination of multiple analytes in diagnostic
panels clearly enhances CA19-9 performance, as well as being
able to compensate for cases in which CA19-9 detection is limited
(Lewis body negative patients)®®. A mere combination of multiple
biomarkers with low sensitivities at high specificities based on
individual levels, however, would be insufficient, and their inde-
pendent contribution to the overall risk should be considered®’.
With this in mind, the aim of the ensemble modelling strategy
explored here was to improve on single classifiers by combining
diverse techniques in a way such that the predictive performance
of the ensemble would be greater and more robust in newly
collected datasets when resorting to multi-marker models, thus
addressing the issues highlighted above. The pool of chosen
classifiers proved to be useful in highlighting different aspects of
the data by selecting a larger panel of biomarkers and allocating
different importance to each. Despite finding that the stacking
protocols explored offered substantial and statistically significant
improvements over the previous state-of-the-art prediction
methods, we expect that scanning the space of all classifier
combinations from available code libraries will improve the
results. Yet, we must resort to other methods for finding better
performing ensembles when predicting PDAC. Early detection is
a notoriously difficult problem due to the extreme class imbal-
ance, missing values and the necessity to create predictive indices
performing well at representative disease prevalence. Because the
robustness of ensembles is an emergent, not an explicit property,
different directions for future work should be taken by for-
malizing the effects of calibration on heterogeneous ensemble
performance and explicitly incorporating diversity in the
search21-68, In fact, this will be even more prominent when
combining longitudinal methods®® with ensemble selection and
stacking techniques. To our knowledge, longitudinal samples and
associated time-series classification techniques have never been
applied to early detection of pancreatic cancer. Dynamic changes
of CA19-9 and MUCI6 identified in previous work!2 are an
indication of the importance of these types of studies. The
importance of trends and rates of change in each biomarker taken
separately or in multi-marker models has also proven to be
advantageous in improving early detection in ovarian cancer
longitudinal models®® and mechanistic tumour and biomarker
secretion models”’. Further developments in PDAC longitudinal

datasets and ensemble model selection routines should highlight
the importance of early and late biomarker panel dynamic
changes and increase performance in a clinical setting, in addition
to contributing with invaluable methodologies to the field of
machine learning and artificial intelligence in early detection of
cancer’!.

Our study based on UKCTOCS samples has several limitations
mostly related to participant gender. UKCTOCS samples were
only collected from postmenopausal women and the classifiers
developed might not reflect the levels of biomarkers associated
with pancreatic tumours in the general population, especially
when males are at a higher risk’2. We have, nevertheless, proven
that at least in samples collected in an independent, post diag-
nosis cohort (recruited under the ADEPTS study)?’, the perfor-
mances are comparable to those observed in the UKCTOCS test
set presented here, in samples closer to diagnosis.

The importance associated with HRT in the ensemble technique
described here might not be a characteristic of the UKCTOCS
cohort only. HRT has, in fact, been observed to reduce the risk of
pancreatic cancer’3. OCP use, on the other hand, might reduce risk
in postmenopausal women but the results at this point are
unclear’4. Another drawback of the current study lies with the lack
of or insufficient information on grading, staging, tumour size, and
diabetes type, but cohorts with samples taken years before diag-
nosis are scarce. The work reported here corresponds to a discovery
phase of the performance of an ensemble modelling technique and
the panel of markers that were available for the study. Alternative
datasets collected from external longitudinal cohorts such as that
being currently generated for the Pancreatic Cancer Early Detec-
tion Consortium (PRECEDE)”> will constitute a viable longitudinal
external validation alternative, albeit with a caveat, all individuals
have a family history of PDAC and/or are carrying pathogenic/
likely pathogenic germline variants in genes linked to PDAC.

Data availability

Data requestors will need to sign a data access agreement and in keeping with patient
consent for secondary use obtain ethical approval for any new analyses. Source data for
the main figures are available in excel format as Supplementary Data 1, 7.

Code availability

All packages used in the pre-processing of data and subsequent analysis have been
identified, together with their versions, to secure full reproducibility. We have also
identified the resampling strategies in detail and all base-learner stacking approaches
tested are also described in detail in the ‘Methods’ section and in Supplementary Figures
(see Supplementary Figs. 24-26). The application of each of the used algorithms follows
the respective package recommendation. The stacking strategy with joined time-groups
JTG2L with over-sampling of the minority class and synthetic data generation with HD-
DPM or SMOTE are available in R76. For the results obtained with the JTG2L ensemble
(see Fig. 1 and Supplementary Fig. 24), see Supplementary Table 13 for the optimal
hyperparameters found through a random selection of 1000 combinations for each base-
learner.
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