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Abstract. In animals and humans, curriculum learning—presenting data in
a curated order—is critical to rapid learning and effective pedagogy. A long
history of experiments has demonstrated the impact of curricula in a variety
of animals but, despite its ubiquitous presence, a theoretical understanding of
the phenomenon is still lacking. Surprisingly, in contrast to animal learning,
curricula strategies are not widely used in machine learning and recent simu-
lation studies reach the conclusion that curricula are moderately effective or
even ineffective in most cases. This stark difference in the importance of curricu-
lum raises a fundamental theoretical question: when and why does curriculum
learning help? In this work, we analyse a prototypical neural network model of
curriculum learning in the high-dimensional limit, employing statistical physics
methods. We study a task in which a sparse set of informative features are
embedded amidst a large set of noisy features. We analytically derive average
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learning trajectories for simple neural networks on this task, which establish a
clear speed benefit for curriculum learning in the online setting. However, when
training experiences can be stored and replayed (for instance, during sleep), the
advantage of curriculum in standard neural networks disappears, in line with
observations from the deep learning literature. Inspired by synaptic consolidation
techniques developed to combat catastrophic forgetting, we propose curriculum-
aware algorithms that consolidate synapses at curriculum change points and
investigate whether this can boost the benefits of curricula. We derive gener-
alisation performance as a function of consolidation strength (implemented as
an Lo regularisation/elastic coupling connecting learning phases), and show that
curriculum-aware algorithms can yield a large improvement in test performance.
Our reduced analytical descriptions help reconcile apparently conflicting empiri-
cal results, trace regimes where curriculum learning yields the largest gains, and
provide experimentally-accessible predictions for the impact of task parameters
on curriculum benefits. More broadly, our results suggest that fully exploiting a
curriculum may require explicit adjustments in the loss.

Keywords: machine learning
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1. Introduction

Presenting learning materials in a meaningful order according to a curriculum greatly
helps learning in animals and humans [1-4], and is considered an essential aspect of
good pedagogy [5]. For example, humans have been shown to learn visual discrimi-
nations faster when presented with examples that exaggerate the relevant difference
between classes, a phenomenon known as ‘fading’ [6-8]. Beyond humans, curricula
in the form of ‘shaping’ or ‘staircase’ procedures are a near-universal feature of task
designs in animal studies, without which training often fails entirely. For instance, the
International Brain Laboratory task, a standardised perceptual decision-making train-
ing paradigm in mice, involves six stages of increasing difficulty before reaching final
performance [9].

Building from this intuition, a seminal series of papers proposed a similar curriculum
learning approach for machine learning (ML) [10-12]. In striking contrast to the clear
benefits of curriculum in biological systems, however, curriculum learning has gener-
ally yielded equivocal benefits in artificial systems. Experiments in a variety of domains
[13, 14] have found usually modest speed and generalisation improvements from cur-
ricula. Recent extensive empirical analyses have found minimal benefits on standard
datasets [15]. Indeed, a common intuition in deep learning practice holds that train-
ing distributions should ideally be as close as possible to testing distributions, a
notion which runs counter to curriculum. Perhaps the only areas where curricula are
actively used are in large language models [16] and certain reinforcement learning
settings [17].

This gap between the effect of curriculum in biological and artificial learning systems
poses a puzzle for theory. When and why is curriculum learning useful? What properties
of a task determine the extent of possible benefits? What ordering of learning material is
most beneficial? And can new learning algorithms better exploit curricula? Compared
to the empirical investigations of curriculum learning, theoretical results on curricu-
lum learning remain sparse. Most notably, [18, 19] show that curriculum can lead to
faster learning in a simple setting, but the effects of curriculum on asymptotic gen-
eralisation and the dependence on task structure remain unclear. A hint that indeed
curriculum learning might lead to statistically different minima comes from a connec-
tion between constraint-satisfaction problems and physics results on flow networks [20],
but to our knowledge no direct result has been reported in the modern theoretical ML
literature.

In this work we study the impact of curriculum using the analytically tractable
teacher—student framework and the tools of statistical physics [21-24]. High-dimensional
teacher—student models are a popular approach for systematically studying learning
behaviour in neural networks [22, 25, 26], and have recently been leveraged to anal-
yse a variety of phenomena [27-32]. Using a simple model to build structured data
[12], we examine the impact of ordering examples by increasing difficulty (curriculum),
decreasing difficulty (anti-curriculum), or standard shuffled training. We derive exact
expressions for the online learning dynamics and the performance of batch learning.
However, in the latter, curriculum confers no benefit under standard training. Moti-
vated by theories of synaptic consolidation and elastic weight consolidation [33, 34], we
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Figure 1. Teacher—student setting for curriculum learning. (a) Illustration of
teacher—student setting in which a ‘student’ network is trained from i.i.d. inputs
with labels from a ‘teacher’ network. Since the teacher network is sparse, its out-
put depends only on a subset of relevant input features. (b) We consider curricula
which order examples by difficulty, here taken to be the variance in the irrelevant
feature dimensions. We refer to increasing, decreasing, and random difficulty order
as curriculum, anti-curriculum, and no curriculum, respectively. (¢) Example test
error on hard examples for the student over training. The switch-point between
easy and hard samples lies at o =1/2. Solid lines show numerical simulations,
while dashed lines show theoretical predictions derived in section 3. For this par-
ticular parameter setting, curriculum speeds learning but only modestly improves
final performance at o = 1. Parameters: oy =1, s =1, A1 =0, Ay =1, v = 1072,
n=3.

introduce elastic penalties (Gaussian priors) that regularise training toward solutions
obtained in prior curriculum phases. With these priors, curriculum yields benefits both
in the online 3 and in the batch 4 settings.

2. Model definition and overview of approach

In the following, we revisit a prototypical model of curriculum learning from [12] that
finds correspondence to the fading literature [6] as highlighted in section 5. Our setting
is summarised in figure 1. The model entails a simple teacher—student setup, where
teacher and student are each shallow one-layer neural networks of size N (also known as
perceptrons). The learning task for the student is a binary classification problem, with
dataset D = {(y", a:“)}ﬁil, where the ground-truth labels are produced by the teacher
network y* = sign W - x/. A key feature of this model is that the teacher network is
sparse, with only a fraction p < 1 of ~ A/(0, 1) non-zero components. Therefore, in order
to achieve a good test accuracy, the student has to guess which components should be
set to zero and align the relevant weights in the correct direction. A large range of
0 < p < 1 could give rise to the phenomenology we seek to analyse. In the remainder of
the paper we will focus on the case p = 0.5.

We model the variable degree of difficulty in the samples by decomposing each input
vector as ¥ = [z, /] € RY, where z/ € R*" denotes the relevant components of the
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input, and @' € RO-PN the irrelevant ones. Note that, crucially, the sparse teacher
network is completely blind to the irrelevant part of the input: y* = sign fivl WTijﬁfJ.
While ' ; ii.d. N(0,1),V u,> we consider the variance for the irrelevant components
to be sample-dependent z}; ~ N (0, A"). Note that a smaller variance in the irrelevant
part induces a higher SNR in the student learning problem.

The dataset is partitioned according to difficulty levels given by the variances of the
irrelevant inputs. For simplicity we consider only two partitions in most of our analysis,
but generalisations to more difficulty levels follow straightforwardly. We have a dataset
with M = (ag + ay) N = aN total samples, in which the irrelevant inputs of the first a; N
samples have variance A;, and the remaining o, N samples have variance Ay > A;. In
the curriculum learning condition we present the easy examples first, while in the anti-
curriculum condition we present the hard examples first. Standard learning presents
examples shuffled in random order.

3. Online dynamical solution in the large input limit

We start by focusing on the same online learning setting explored in [12]. We consider
a one-layer student network with sigmoidal activation function, o(-) = erf(-/v/2), that
learns to minimise a mean square error loss with L, regularisation of intensity v, using
gradient descent. This yields the updates

The dynamics of the model can be analysed in the high-dimensional limit N, M — oo
with « = M /N = O(1). Generalising the results of [26, 35] on the online stochastic gradi-
ent descent dynamics in single-layer regression problems, we obtain a precise description
of the performance at all times, as a function of several order parameters: the squared
norm of the relevant and irrelevant part of the student weights Q, = % W' W' and

Q; = % W' - W', respectively; the overlap of the relevant weights of the student and
teacher R = % W' - Wr; and the squared norm of the teacher vector T = % Wr - Wr.
In particular, given @,, @;, R and T, the test loss (i.e. average loss on a new example)
on a dataset with variance A in the irrelevant inputs is given by

R/VT

1 1 —1 Qr +AQ2 2 .n_1

Loisgp = — + —si ——
MSE +7TSIH 1+ 0, + A0, ﬂ_Sl

2

the accuracy by

1 . 1 1. R
Az]E[Q(y sagny%—l)} = 5—}—;811& 1< T(QT+AQi)). (2)

5In [12] the distribution of relevant and irrelevant inputs is uniform between 0 and 1, but this difference does not qualitatively
change the results.
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If the dataset contains a random mixture of different difficulty levels A, A, ..., the
loss and accuracy can be obtained by taking a weighted average over the partitions.

To understand how test performance changes through learning, we study the evo-
lution of the order parameters. Combining their definition with the definition of the
dynamics (1) and the fact that the random variables concentrate in the high-dimension
as N— 0o, we obtain an analytic form for the updates: Q, < fo,(Q., Qi, R, T),Q; <
f0,(Qr, Qi, R, T), R+ fr(Q,,Q;,R,T); where fq., fo, and fz are long but explicit
expressions that are reported in the appendices.

Dynamical advantages of curriculum. With these theoretical results in hand, we now
characterise the performance of curricula in the online setting. The dynamical equations
have two key advantages relative to simulating models in this setting. First, they are
free of finite size effects and stochastic fluctuations. And second, their evaluation is very
fast, enabling systematic exploration of the parameter space of the problem, along with
fine-grained optimisation over hyper-parameters such as learning rate, weight decay and
scaling in the initialisation.

Optimising final test accuracy separately for each curriculum strategy, we find that
curriculum learning is the optimal strategy, followed by baseline (no-curriculum) and
lastly anti-curriculum. In figure 1(c) we show typical learning trajectories for a dataset
with equal numbers of easy and hard samples. The results of the simulations (solid
lines) are well-described by our theoretical equations (dashed lines), and show that
the curriculum strategy leads to better performance throughout training. Figure 1(c)
shows the evolution during training of the test accuracy computed on the whole
dataset.

Next we systematically trace the effect of curriculum for a range of total dataset
sizes (a; + ap) and number of easy examples a; in the phase diagram in figure 2. This
diagram shows on the left (centre) the accuracy on hard instances reached at the end
of training by curriculum learning (anti-curriculum learning respectively) normalised
by the accuracy reached by the standard strategy. The two heatmaps show that cur-
riculum learning always outperforms standard learning and that, on the other hand,
anti-curriculum learning outperforms standard learning only in part of the diagram.
Comparing the two strategies, figure 2 (right), we can observe that there is a region for
small a and oy where anti-curriculum learning is the best strategy, while in the majority
of the situations curriculum learning is the best strategy. Interestingly, there is a size-
able region of the diagram in which both curriculum and anti-curriculum help, possibly
explaining why both have been recommended in prior work [12, 14, 36-38]. A possible
intuition behind this counter-intuitive phonemenon highlighted by our analysis, is that,
in some settings, the large amount of noise contained in the hard data will always be
too disruptive for effective learning. Thus, leaving the easy (cleaner) data for last could
allow the model to better exploit the easy data.

Further, we find that our setting, in which a small task-relevant signal is embedded
in large task-irrelevant variation, is critical to the benefit of curriculum. Figure 4 shows
performance as a function of sparsity p, additional details are deferred in appendix C.
Non-sparse tasks do not benefit. Hence curriculum aids tasks with many irrelevant
factors of variation. Interestingly, the literature from human psychology shows precisely
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ing.

Figure 2. Phase diagram of online learning performance gap with optimal parame-
ters. The colour scale shows the ratio of the accuracy on hard instances reached by
curriculum over no-curriculum (a), anti-curriculum over no-curriculum (b), and cur-
riculum over anti-curriculum (c), as a function of the total dataset size (v + )
and easy dataset size (7). Curriculum broadly benefits performance and anti-
curriculum is effective in certain regions, but the size of the improvement is modest.
Parameters: p = 0.50,A; = 0,A, = 1.

this: no curriculum benefits for low-dimensional tasks or tasks with no variation in
irrelevant dimensions [6].

Our results also highlight the intricate dependence of curriculum on parameters
of the learning setup. If not all parameters are correctly optimised, we can observe
more complex scenarios. For instance, anti-curriculum learning is always the best strat-
egy starting from a large variance in the weights’ distribution, as figure 3 shows for
weights of order 1. In this case, curriculum learning shows an advantage only in the
first phase when easy examples are shown, which is consistent with the results of [19].
However, in the next phase when hard examples are shown, the curriculum strat-
egy does not extract enough information and it is outperformed by the other two
strategies. The fact that curriculum or anti-curriculum can look better depending on
other learning parameters like initialisation might help explain the confusion in the
literature over the best protocol [12, 14, 36-38]. At least in this model, better perfor-
mance from anti-curriculum is a signature of a sub-optimal choice of the parameters.
To summarise our findings in this online learning setting, curriculum mainly offers
a dynamical advantage: it speeds learning, with only minimal impact on asymptotic
performance.

4. Batch learning solution

The previous section discussed the online case where each example is used once and then
discarded. However, in common ML practice, neural networks typically revisit each
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Figure 3. Performance gap starting from high initialisation variance. The first two
figures show the accuracy-gap on hard instances between curriculum learning and
the baseline (a) and anti-curriculum learning and the baseline (b). Contrary to the
phase diagram in figure 2, curriculum learning is not always the optimal and anti-
curriculum is not always the worst strategy. The right panel shows the accuracy
evaluated on the hard samples for a; = as = 0.5.

sample repeatedly until convergence. Therefore an important question is: can cur-
ricula lead to a generalisation improvement when trained on the same dataset until
convergence?

We investigate this question by considering a student that learns from slices of a
dataset in distinct optimisation phases, where in each phase the student optimises a Lo-
regularised logistic loss. Without further modification, curriculum can have no effect in
this setting: due to the convex nature of the teacher—student setup [22], the network is
bound to converge to a minimum uniquely determined by the final slice of data, with no
memory of the progress made at intermediate steps. This simple observation may help
explain empirical observations on real data, such as [15], which find no benefit of curricu-
lum in standard settings. Despite curriculum could still influence non-convex problems
[12], empirical results in the ML field are not showing clear signals of memory retention.
A possible explanation is that relying on memory effects in the learning dynamics would
require one to hit a sweet spot in the learning rate value and in the number of training
epochs, and this seems hard to be achieved consistently. These observations raise the
theoretical question of how curriculum learning could induce a non-vanishing effect in
batch learning settings.

To instantiate a memory effect in our model, we propose biasing the optimisation
landscape via a Gaussian prior, centered around the optimiser of the previous learning
phase. The additional term in the loss acts as an elastic coupling between the successive
phases, and the associated intensity 7,, is then an additional hyper-parameter of the
model. This scheme is similar to regularisation methods proposed against catastrophic
interference in continual learning, such as synaptic intelligence [39].

Tools from statistical physics can be used to analytically compute test performance
under this scheme. In order to simplify the presentation, we first consider just two
learning phases. It is natural to frame this setting as a two-level problem, involving
two systems with independent copies of the network weights W, and W,. In a typical

https://doi.org/10.1088/1742-5468 /ac9b3c 8
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statistical physics approach, we associate a Boltzmann—Gibbs measure to the systems,
with an energy function determined by the regularised logistic loss £,. While the statis-
tical properties of the first system can be determined self-consistently, the added elastic
interaction creates a dependence of the second measure on the configurations of the
first system. In mathematical terms, the coupled system is represented by the following

partition function:
e Pily (W1,Dr)

Z(Wh)

" / AW, oL (WD) + 2 Wom W) (3)

(Z(Wy, WD, Do) w, = /dW1 log

where Dy, D, denote the two dataset slices. This object represents the normalisation of
the Boltzmann—Gibbs measure, and allows one to extract relevant information on the
asymptotic behaviour of our model. The optimisations entailed in each learning phase
can be described in the ‘low noise’ limit of 3,, 8, — 0o, where the measures focus on the
minimisers of the respective losses. In order to study a self-averaging quantity that does
not depend on a specific realisation of the dataset, we aim to compute the associated
average free-energy:

¢ = lim lim
N—oo ,31,,‘32%00 BQN

(log (Z( W, Wy Dy, Dy)) W1>D1D2. (4)

This quantity can be seen as a special case of the so-called Franz—Parisi potential com-
putation [40, 41], and the entailed double average can be evaluated through the replica
method. Refer to the appendices for details.

Similar to the online case, in high-dimensions the free-entropy concentrates on a
deterministic function that depends on several order parameters that capture the geo-
metrical distribution of teacher and student configurations. In addition to those already
introduced in section 3, we also have (), which is linked to the variance of the stu-
dent norm. Moreover, for each order parameter we also need to introduce a conjugate
parameter, denoted in the following with the hat symbol. The final expression for the
free-energy reads:

P = extr [— (RR + ;((Q(SQ - 5@@) >> + 9s(71,72, M12)

+ a1 gp(A1) + gE(AQ)} (5)

where ¢g¢ and g are two scalar functions, often called entropic and energetic channels,
that encode the dependence of the optimisation problem on the Gaussian prior and the
logistic loss respectively. The extremum condition for the free-energy yields a system of
fixed-point equations that converge to an asymptotic prediction for the order parame-
ters, comparable with the results of numerical simulations on large instances, figure 4.
At convergence, the order parameters can be inserted again in equation (2) to obtain
an estimate of the test accuracy. Note that this formalism is not limited to two phases,
but can be extended to the case of a discrete number of sequential stages.

https://doi.org/10.1088/1742-5468 /ac9b3c 9


https://doi.org/10.1088/1742-5468/ac9b3c

An analytical theory of curriculum learning in teacher—student networks*

1.06
0.84 1 0.8
R e TT PR Aol Y SRR S SV PR SR -1.04
g 0821 1.02
E 0.6 1 '
E 0.80 4 Q - 1.00
2
>
8 0.78 1 0.4 7 L 0.98
2 Y
8 —— curriculum - — - L 0.96
0.76 - ——— anti-curriculum 0.2
—— random splitting ' 0.94
=== no-curriculum
0.74 4 , . | | . - : . . .
-5 -4 -3 -2 -1 0 1 2 3 0.2 0.4 0.6 0.8
logy1, a
(a) Learning with curricula (b) Curriculum vs no-curriculum

Figure 4. Effect of elastic coupling (Gaussian prior) between curriculum phases.
(a) Comparison between asymptotic performance of curricula (full lines) and sin-
gle batch learning, at a; = 1,a0 = 1, with a regularisation ~, that yields the best
generalisation when learning the entire dataset (in principle not optimal for the
other strategies). The points represent the results from 10 numerical simulations
at size N = 2000. Parameters: p = 0.50, A; = 0 and Ay = 1. (b) ratio between the
accuracy reached by curriculum learning over anti-curriculum as a function of the
number of easy samples in a dataset of dimension «a; + as = 1, and of the sparsity
level of the teacher p. Note that p can also be seen as the fraction of relevant com-
ponents in the inputs. Ay =0 and Ay = 1. 7, = v, and 7,5 where set the values
that optimise test performance.

The itmportance of sparsity. Sparsity is a key ingredient in determining the impact of
curriculum strategies. It naturally introduces a notion of relevant and irrelevant input
components, and defines a secondary learning goal, i.e. identifying what part of the pre-
sented data should be disregarded by the model. Curriculum learning can be extremely
helpful in this identification process, since the easy samples are more transparent to this
structure. This is also observed in human experiments [6]. However, the relative diffi-
culty of the problem of inferring the support of the teacher and the problem of aligning
with its non-zero components depends on the degree of sparsity p, so the effectiveness
of curriculum can vary with it.

In the right panel of figure 4, we explore the interplay between the sparsity of the
teacher p and the fraction of easy samples in the dataset a;, comparing curriculum with
the no-curriculum baseline. The phase diagram highlights the variability in the impact
of the curriculum ordering:

e Curriculum is most effective at low values of p and close to the diagonal, where the
fraction of easy examples in the dataset is comparable to the fraction of relevant
dimensions.

https://doi.org/10.1088/1742-5468 /ac9b3c 10
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e When p > 0.5, the possible gain from ordering the samples according to difficulty is
counterbalanced by the instrinsic cost of splitting the information content into two
blocks, thus curriculum can become detrimental.

e When o4 is too small compared to p (above diagonal), the first stage in the curriculum
strategy can only help in the support identification problem, but will not allow a
good estimation of the direction of the teacher. Because of the elastic prior, the
second stage cannot improve too much over it and the effect of curriculum is small.

e When « is larger than the sparsity (below diagonal), the easy examples contain
sufficient information for solving both the support and the teacher estimation prob-
lems, and this information is also exploited by the baseline. Thus the improvement
of curriculum becomes negligible.

We refer to the appendices for an in-depth comparison with anti-curriculum.

Asymptotic advantages of curriculum. Contrary to the online SGD case, if the frac-
tion of relevant directions is small, batch learning with elastic coupling notably improves
test accuracy of both curriculum and anti-curriculum above the baseline. This confirms
the utility of curriculum strategies when the signal is partially ‘hidden in clutter’ [42].
Figure 5 shows similar phase diagrams to figure 2 but for the batch setting. At each
point in the phase diagram the regularisation level v, = 7, and the coupling v, are opti-
mised to yield the best accuracy. In batch learning the performance order appears to be
nearly always preserved: curriculum followed by anti-curriculum followed by baseline.
We remark that this result is not trivial as splitting the learning process in two stages is
not advantageous per se. Note that in the appendices we observe similar improvement
applying the elastic coupling on the online setting and on real data.

5. Connection with experimental literature

Recent work has suggested that curriculum learning could provide an important win-
dow into the learning algorithms at work in biology [44]. Our analysis makes several
predictions for curriculum effects. In this section we assess these predictions based on
connections to extant experiments and propose future experimental tests.

First, we find that a curriculum strategy yields a speed up in learning in all the tested
settings (see figure 1(c)). This acceleration is broadly consistent with the findings from
cognitive science [1, 2, 6]. By contrast, our results show that the speed improvement
does not necessarily translate into a sizeable generalisation error improvement, and the
performance achieved at the end of training can even deteriorate when learning hyperpa-
rameters are not fully optimised (cf figure 3). Deterioration due to curricula has generally
not been reported in the psychology literature, though it has been observed in ML [15].
This fact may suggest that animals naturally learn with near-optimal hyperparameters
such that curricula generally confer benefits.

A more specific observation concerns the performance on different difficulties after
learning. As reported in [43], human and rodent subjects trained in an auditory task
using curricula showed the greatest improvement for intermediate level of difficulties as
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Figure 5. Phase diagram for the performance gap in the batch setting. The colour
scale shows the ratio of the accuracy on hard instances for curriculum over no-
curriculum (a), anti-curriculum over no-curriculum (b), and curriculum over anti-
curriculum (c), as a function of the total dataset size (o 4+ o) and easy dataset
size (). In contrast to the online case, performance benefits are greater and cur-
riculum is strictly better than anti-curriculum. Both v, = 7, and v,, are optimised
point-wise, in order to yield the best test accuracy. Parameters: p = 0.50, A; = 0,
Ay =1.

depicted in figure 6(a) (bottom). The same conclusion can be drawn from the experiment
of [7, 8], where, surprisingly, subjects trained with curricula to classify medical images
showed poor performance in hard tasks compared to the control group. To address this
phenomenon, we calculate accuracy as a function of difficulty in the model in figure 6(a)
(top). Consistent with these experiments, we find regimes where the gap between cur-
riculum learning and the baseline is non-monotonic, with the largest performance gain
for intermediate difficulties. Contrary to [7, 8], however, we do not observe negative
effects of curriculum for high difficulties. Further experiments that more systemati-
cally manipulate training and transfer difficulties could provide a stronger test of these
predictions.

A key ingredient in our model is the role of sparsity, such that a small signal is
embedded amidst many irrelevant features. Experimentally, the importance of having
many factors of variation to obtaining a curriculum effect has been documented in the
‘fading’ experiments of [6]. Human subjects were trained on classification tasks involving
stimuli with one task-relevant feature dimension and a variable number of task-irrelevant
feature dimensions. Example cartoon ‘daemon’ stimuli are depicted in figure 6(c), where
for instance horn height might be the distinguishing feature while colour, eye size, and
mouth size might constitute task-irrelevant features. Without any irrelevant factors of
variation (p = 1), they report no curriculum benefit. By contrast when 75% of features
are irrelevant (p = 0.25), they record a strong curriculum effect, as shown in figure 6(b)
bottom. This qualitative trend is also observed in our model (figure 6(b), top). While
these experiments tested only two sparsity levels, further experiments could sample this
dimension more extensively and test for interactions with the fraction of easy and hard
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Figure 6. Connection with psychology experiments. (a) (Top) Accuracy ratio of
different strategies in the model, with curriculum/no-curriculum in green and
curriculum/anti-curriculum in orange. The ratio shows non-monotonic behaviour.
(Bottom) The accuracy ratio obtained by [43]. Parameters p = 0.5, A; = 0.0,
Ay =1.0, a1 =1, ay = 1 and optimal learning rate, variance at initialisation and
weight decay. (b) (Top) Dependence on the sparsity of the generalisation gain of
curriculum over no-curriculum, measured as ratio between final accuracy, for fixed
total dataset size (ag + a2 =1). (Bottom) The ratio obtained from experiments
3 and 4 of [6]. (¢) Example cartoon stimuli from the ‘fading’ paradigm used in
[6], where participants distinguish daemons of the old world from daemons of the
new world. The distinguishing feature (horn length) is diluted among many irrel-
evant features (colour, eye size, mouth size). Highlighting the relevant feature to
participants leads to better and faster learning.

examples. We note that while the connectionist literature has addressed the effect of
curriculum in several settings [10, 11, 45, 46], we found that easy-to-hard effects appear
even in a simple setup without need for complex networks and/or dynamics.

Finally, our results may shed light on self-generated curricula during human develop-
ment [47, 48]. Children undergo a spurt of vocabulary development that coincides with
their ability to grasp and centre objects in the visual field [48]. Quantitative estimates
of the amount of clutter (irrelevant objects) in self-generated views decrease due to this
grasping ability, yielding a self-generated curriculum [42, 49]. Our model similarly pre-
dicts that reducing clutter should improve learning speed and performance. To verify
this in a richer visual setting, we apply our curriculum-aware algorithm on real data
where the loss is modified to keep track of the different phases of learning. We construct a
simple cluttered object recognition task from the CIFAR10 dataset [50] by patching two
images together into a 32 x 64 input image (figure 7(a)). The network has to learn that
the classification depends only on the left image, while the right image is a distractor
that is irrelevant to the classification. Easy and hard instances are obtained by reducing
the brightness of the distractor. We train a single-layer network with the cross-entropy
loss and the curriculum protocol with Gaussian prior between the two stages. Weights
are optimised using SGD and momentum, with an annealed learning rate. All training
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Figure 7. Experimental setting on CIFAR10-derived data. (a) Input samples com-
bine a task-relevant image with a distractor image, and become progressively harder
from left to right. (b) Ratio between final accuracy on hard instances for curriculum
learning versus no curriculum. 7,7, vy, init, and stopping time are optimised.

parameters are optimised, and full details are presented in the appendices. Figure 7
shows a robust curriculum advantage in this setting, suggesting a possible functional
benefit for children’s self-generated curriculum.

6. Conclusions

We analysed a model of curriculum learning introduced by [12] and amenable of analyti-
cal treatment. This simple setting sheds light on results observed in the cognitive science
and ML literature, and the theoretical tractability allows for exploration of a wide range
of parameters that would be costly to obtain through experiments. Future work will need
to move beyond models with simple loss landscapes to address the impact of curricula
in complex tasks like reinforcement learning. Nevertheless, the model recapitulates a
variety of observations in the literature [43, 51, 52|, revealing that easy-to-hard effects
can appear when a sparse signal is embedded in many irrelevant dimensions of variation.
We find that making the algorithm curriculum-aware by modifying the loss can better
exploit curricula, offering a potential route for improved practical algorithms. Other
curriculum-aware approaches are possible such as adapting the learning algorithm [53]
or the architecture [10]. On the psychology side, some of our predictions can help in
designing new experiments. The benefit of anti-curriculum learning for intermediate
sparsity, is a counter-intuitive result testable in animal experiments.
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Appendix A. State evolution of the online dynamics

In this section we show how to derive the dynamical equations for the online dynam-
ics. The equations given in an implicit form in the main text, fo,, fo,, fr, are reported
explicitly at the end of the next section, equations (A.22)—(A.24). Finally, in the sub-
sequent section, we comment on how the state evolution is modified to deal with the
Gaussian priors and we derive the new dynamical equations for that case.

Derivation. We follow the derivation proposed in [26, 35] to derive the averaged high-
dimensional dynamical equations. The student is a one-layer network that minimises
sample-wise the square error

1

1
R O T AR N VAT
o= Ly - Loy (A1)

Given ¢(-) = sign(-), o (-) = erf(-/+/2), the online stochastic gradient descent updates are

W = W \/’%a’w + s, (A.2)
with
Al = \/IN W, a, (A.3)
N = oW, (A4)
o= \/% Wi - 2. (A.5)
The evolution of the dynamics can be tracked using four order parameters:
1
Q=W W, (A.6)
Q= Wi W, (A7)
R = ;W,ﬂ - Wp, (A.8)
T:;WT- Wr; (A.9)

representing the overlaps between the weights of student (relevant and irrelevant parts)
and teacher.

The evolution of those follow from the definition of the dynamics equation (A.2).
In the high-dimensional limit the random variables in the problem concentrates around
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the mean, therefor to the leading order we have the following equations

Qulk -+ 1] = Q[k] + 1 [20B[5 0'(h + M)A + pAPELF o' (A, + 1)) (A.10)
Qilk +1] = Q.[k] + % [27E[S§ o'(A + )N + (1 — p) ARE[8* o' (A + N)?] 5 (A.11)
Tk +1] = QK] + 5 I7EI5 o’ (A, + M)l (A12)

where the expectation acts with respect to all the stochastic variables. In order to
obtain explicit formulae we need to evaluate those averages. The random variables in
the equations—A\,, A\; and p—are Gaussian with zero mean, to characterise them we
only need their covariance:

Q- 0 R
Suvap=10 @ 0
R 0 T

In order to derive analytical expression we must evaluate the expected
values: E[6(p)o' (Mg, Elé(p)’ (WA, Elo(No'(Ngl, Elo(No' (WAl Elé(p)a’ (V2]
E[o(X)?0'(N)?], and E[g(p)o(N)a’(A)?], where o is the activation function of the stu-
dent and ¢ is the activation function of the teacher (in particular ¢(-) = sign(-) for
classification).

C2/T(Q +Qi+1) — R?

Elg(p)a’(A)p] = — 0 10 F1 (A.13)
Elp(p)o' (M)A = %Q]f(fgfl S 5 — (A14)
Elo(No' (Nl = %Q +}63,; +1 \/QQ% n QQQQ:?)E) 0. 11 (A1)
Elo(A)(MA] = %Q +QC§7; +1 \/2@% n 2QQQ++322 50,71 A1)
EM”“”M:%@+%Hw¢%ﬁﬁw@ﬁza+m&+r (4.18)
Eo(0)'0 (V)] = >z (A.19)

T rV2Q, 120+ 1
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9 27 i 1 sinfl Qr + Qz
EoW e W= 5 Ao 0) (1 +3(Q-+ @-))‘ 420
/ 2 4 1
E[p(p)a(N)o'(A)7] = 2 \/Q(Q +Q;) +1
xsin_l( 2O, + 0 >
V3(@Qr + Qi)+ 1,/(2Q, +2Q; + N[T(Q, + Qi) — R + R?
(A.21)

Finally, we can substitute those equations into the equations (A.10)—(A.12) and
obtained the state evolution equations used in the main section 3:

An(1 —ny)
N7(Q,[k] + AQi[k] + 1)
" { REJ(AQ;i[k] + 1) B Q. [K] 1
VT(Q[K] + AQi[k] + 1) + RIE?  /2Q,[k] + 2AQ,[k] + 1

4 o’ Tt @k AQiK
* PN\/Q(QT[k] + AQi[k]) + 1 {2 - (1 + 3(Q,[k] + AQi[k])>+

fo.(Q:[k], Qilk], R[K], T) = (1 —nv)*Q,[k] +

( )]
V3(Q, [k + AQi[K]) + 1/T(2Q.[k] + 2AQ,[k] + 1) — 2R[k]?
(A.22)

— 2 sin”

An(1 — ny) AQ;[k]
N7 (Q.[k] + AQi[k] + 1)
y { R[] 1 }
VT(Q.[k] + AQ,[k] + 1) + R[k \/QQT ]+ 2AQ;[k] + 1
4 (1 —p)Ap? Tl Q:[k] + AQi[k]
TN VR20 K £ AQE) T 1 { " (1 3(Q, M + AQi[k]>>+

fQi(QT‘[k]’ Qz[k]7 R[k]a T) = (1 - 777)2@@[13] -

2

) R[k] .
<\/3(QT k] + AQi[k]) + 1/T(2Q,[k] + 2AQ;[k] + 1) — 2R[k]2>1 ’

(A.23)

— 2 sin~
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fa(@: (K], Qilk], RIK.T) = (L= m)RIF + 5 m +277AQ2-[/<:] +1)

T(Q.[K + AQu[K + 1) — R[K> RK]
VT@Q.H+ AQK + 1) — RIKE  2Q,[K] + 2AQiK + 1]

(A.24)

FElastic coupling. The introduction of the elastic coupling between stages of learning
adds five new order parameters: three of them are just reminder of the previous stage
and do not need to by updated Q, = W/ - W/ /N, Q; = W/ - W//N, and R = W/ -
W' /N; two measure the correlation between the two stages S, = W, - W, /N and S; =
W/ - W)/N to the equations. These terms have associated their own state evolution
equations slightly modified the updates of the other order parameters.

Qrlk 4+ 1] = (1 — ny + ny2)* Q. [K] + zﬁn(l — 0y +n2)E[6 o' (A 4+ A\, ]

2 ~
- pA%EW o' (AN 4 X))+ 20712(1 — vy + 1712) S, [K] + 0P7,Q, [K]
2?2 N
. %Ew o' (A + AN 5 (A.25)
2n

Qilk + 1] = (1L — gy + nm12)*Qi[k] + N@ =0y +n72)E[6 o' (A + XA

2
+(1- P)A%EW o' (A + X))+ 20712(1 — 177y + n712) Si K]

2 9 F 2772’)/12 / 7.
+ 07 Qilk] — TE[(s o' (A + )N 5 (A.26)
Rk+1) = (1 =y + ) RIE) + 2E[S /(8 + Aol — moRIK5 (427

Sr[k + 1] = (1 - + n’Yl?)Sr[k] + %E[é 0,()\r + Az)S\r] - 77712627“ [k] 5 (A28)

Silk +1] = (1 =y + m2) Silk] + %E[é o' (A + M)A — mm2Qilk]. (A.29)

Introduced S\T = \/iﬁmr . Wr and 5\1 = \/iﬁml . IjVZ-, this two additional random variables

need to be averaged together with the others. The joint distribution of A, \;, Ay A, p is
still Gaussian with zero mean and covariance
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Figure A.l. Effect of elastic coupling in the curriculum. Figures showing the
teacher—student cosine, the validation loss, and the accuracy of the three learning
strategies. The two figures show the performance in presence (above) and absence
(below) of elastic coupling. The dashed lines are obtained from the theoretical anal-
ysis, the full line come from the average of 500 simulations. The parameters 7, -,
initialisation are set to the optimal values for each protocol. Parameters: p = 0.5,
a1 = 02, Qg = 02, Al = O, AQ =1.
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Notice that, a part from a slight change of the existing equations, the coupling

introduces only two additional integrals E[0 o' (A, + \)A,] and E[0 o' (A, + ;) \;]. After
long, but straightforward, computations we obtain

TQ,+ Qi +12Q7 +2Q,Q; + 3Q; +2Q, + 1

E[6 o'(A\ + M)A =
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275, — RR R(Qi+1) 1 N
TQT-—RQ+Q+1T(Q +Q+1) - R?
2TR— RS, 1
TQT—R \JTQ +Qi+1) - I

1

: : (A.30)
1, R (l _ L)
T " QT-RP\T T(Q+Qi+1)—R?
o 2 S Qr+1
E[6 o' (A + X)) = = : r
07N TQ + Qi+ 12074 2Q,Qi +3Q, 120 11
2 SiR 1
TQ+Qi+1T(Q,+Qi+1) — R?

(A.31)

Finally all the expected values are known and we can obtain the analytic updates
equations (A.25)—(A.29) with the coupling. Figure A.1(a) shows an instance of the
problem at a; = 0.2 and s = 0.2, a situation that is particularly adversarial for curricu-
lum according the phase diagram figure 2. This situation is treated by the introduction
of Gaussian priors, figure A.1(b), consistently with the phase diagram in figure 7(c).

Appendix B. Replica computation for the batch case

We here the detailed replica computation employed to obtain the analytic description
of curriculum learning in the batch case, in section 4. As mentioned in the main, we aim
to study a coupled system, represented by the following partition function:

e P1Ly (W1,D1)

— o
Z(w) 8

<Z(W23 WI;D17D2)>W1 :/dwl

X/dW2e{32(ﬁA’,2(W2,D2)+%2W2Wll%), (B.1)

where the examples is Dy, Dy are characterised by a different variances in the irrelevant
components.

This type of quantity is usually denoted as a ‘disordered’ partition function in sta-
tistical physics jargon, meaning that it is still dependent on a given realisation of the
datasets, i.e. the source of disorder in this model. We want to characterise a typical real-
isation of this object, in the high-dimensional limit. However, because of its long-tailed
statistics, the partition function turns out not to be a self-averaging quantity, i.e. its
expectation over the dataset realisations will not correspond to the typical case scenario
we are after. It is instead better to focus on the computation of the associated average
free-entropy:

® = lim lim
N—o0 “31,‘32%00 /BQN

<10g <Z( WQ, W] ;D17D2)>W1> (BQ)

Dy,Dy’
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What is immediately apparent is that we have to take the expectation of a logarithm,
which is not tractable with rigorous mathematical methods. Moreover, we also have to
average over the measure for W, which is also a complicated operation.

Fortunately, replica theory offers a method for approaching this calculation [40, 41].
The idea is to exploit two separate replica tricks:

e In order to evaluate the disorder average, the logarithm can be removed by replicating
the second weight configuration, i.e. introducing n identical replicas { W5}"_,, and
extrapolating the final result from the n — 0 limit. This is based on the mathematical
identity log z = lim,,_,00,z".

e The average over the teacher can instead be computed by introducing n — 1 non-
interacting and a single interacting replica of the first weight configuration {w¢}"_,
Thus, only the ¢ =1 replica will enter the Gaussian prior in the student measure.
The sought statistical average is again recovered in the limit n — 0.

Because of the high-dimensional limit we are considering, all typical realisations of
the teacher vector with a given sparsity p will yield an identical free-entropy. Thus, we
can avoid averaging and instead fix a gauge W, =1for i=1,...,pNand Wy, =0
elsewhere. In order to simplify the presentation, in the following we will assume that the
datasets contain respectively a; and «y patterns, and that a curriculum ordering was
employed, A; < A,. Moreover, to avoid confusion with component and replica indices,
we will denote with W= W, and W = W, so that all quantities with a tilde refer to
the optimisation on the first dataset.

After the described replication procedures, we get the following expression for the
average free-entropy:

(J/lN
1 zm
il - [ |
b = anglr£18<llm /”dch 2II

B0 B o=

el ) )

Qa3

/H AWre BIWI e "W =W T

a=1 p=1

o e )
{z'}

where £(y, %) = log(1 + e ) indicates the standard logistic loss. The next step is to
explicitly compute the averages over the dataset realisations. Before doing that, we
need to isolate the dependence of our expression on the patterns, and we achieve this
by introducing Dirac’s d-functions for the pre-activations. We will use the integral
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representation of the §, with integration variables u for the teacher preactivations A
for the student preactivations:

7
Wwe [ BA -
— lim 0, | IdI/VCe* 2 W3 | | A Wee— 2IWIB,~ 252 | we— W3
N n—0
M e

</H dulpdul/t 1u1u Ulu ZL 1 fﬁ /H d)\(’ d)\(

27
I

/Hd)\zﬂ A, i, (g, il )>
=)

> He—%é(sigl}(ﬂl,,),(r(:\‘l’#))He—g€<sign(u2ﬂ),0</\fz"#))‘ (B4)

e n,a

Thus, the disorder average is now factorised and only involves exponential terms.
Since the two datasets are independent now that we made the teacher explicit, we can
take the averages over each one separately. In both cases we get:

pN ar LW N ) W
1T (A E M )t . (S ) Gt
> - (Irel)i'le ) (Iirr)i'le
i=1

i=pN+1

o i Wea
e 1— ) —+ 5\:“'—7: e

N

2
N W (g,
X | H 1— ZZ )\Z\/—Nxm — (Z )\Z\/N) Var(zy,) (B.5)

Wi > Var(x,e)
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=e ¢
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(B.6)

This expression suggests what are the order parameters that capture the interactions of
the model, namely:

~ N 1ire
e The teacher—student overlap at the end of the first learning phase: R¢ = ZLle
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N a
e The teacher—student overlap at the end of the second learning phase: R* = ZPZle
e The norm of the student after the first stage, decomposed into relevant /irrelevant
~ N jperizd = N gerid
parts' Qid — Z/‘):]JI;II/,'I/V?, Q]Cd — Zz:QJV}r\}vWLWL .

e The norm of the student after the second stage, decomposed into relevant /irrelevant

N yrrayrb
b — SINWEWE ab _ Sy WIWY
parts: Qp’ = ==, QFF = S

Therefore, after introducing these definitions by means of Dirac’s d-functions, we can
rewrite our replicated expression as:
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where we introduced interaction, entropic and energetic potentials:
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Replica symmetric ansatz. The replica trick allowed us to express the average free-
entropy as a function of the overlap order parameters. However, these objects are n x n
matrices or n-dimensional vectors and in principle we have to average over all their
possible realisations. Fortunately, the integrand function is exponential in N and in
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the thermodynamic limit N — oo the integrals are dominated by the extremisers of the
action, and thus can be approximated with the saddle-point method. Still, we need a
guess for how to parameterise these order parameters. The simplest possible ansatz,
which turns out to be the correct one in convex problems as the one at hand, is the
so-called replica symmetric (RS) ansatz, given by:

e R*=R.
e R'=R.
° ~f’;z = Gy, for c # d; ~f7z = QT/,,; for ¢ = d.
. Q;’I/’n = q,/n for a # b; Q;’I/’n = Q. for a=b.

We also perform a Wick rotation —i@ac’bd — Qac’bd in order to deal with real valued
conjugate parameters and pose a similar ansatz for them. In the next paragraph we will
compute the three terms separately, and finally put them together in the expression for
the RS free-entropy.

Interaction term. We start by evaluating the interaction term, or better its
normalised logarithm ¢; = lim;_ log G;/(nN):

ér@r+éiéi) +ﬁ(ﬁ_1) (: - :~>

R B e S N
Ar r A'i i —-1) ~
+n(Q2Q + Q’QQ) + n(n2 )(QT% + Ch%)) (B.11)

~ <QTQ7‘ + QzQz) 1 . .
=—| RR+ 5 = 5 (@9 + @) (B.12)

In order to recover the optimisation problems entailed in the curriculum procedure,
we now have to consider the zero temperature limit of this expression. When g — oo,
the order parameters follow non-trivial scaling laws:

Q- FQ+0(B), 11— pQ

« (Q—a)— —B5Q

e R — SR

e Q—q=0Q/B
and similarly for the tilde parameters. Intuitively, looking at the last scaling law, we
see that as the measure gets focused on the single minimiser of the loss, the overlap
between different replicas ¢ rapidly converges to the norm ). Moreover, the scaling with
the inverse temperature of the conjugate parameters prevents the interaction term from

becoming sub-dominant in the saddle-point. If we substitute the rescaled parameters in
the above expression we obtain:

9 =0 (RR +5(0:50,-50,Q.) + 4 (0@ - 6@@-)). (B.13)
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)

Entropic term. We can now compute a similar quantity for the entropic potential
. Jog Gg( R, R,Q, Q). The general expression we will obtain can be specialised

gi = T <~ y L1, 8 )
to the two cases ({ R, R,Q,, Qr}, {0,0, Q:, Q2}> appearing in the free-entropy. After
substituting the RS ansatz we find:

er Wl /H dWa 1’(r+r Wu :|
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In the zero-temperature limit, we consider the same rescaling of the order parameters

we described above. The integrals over the weights become an extremum operation
(B.16)
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Finally also the [ Dz [ DZ integrations can be carried out, giving:

el 3)
fo-fo s for fot )
B<R+R ﬂ;Q) +(’j§£) +Q

== . B.20
2 (7 +712) + 6Q (20

So, specialising to the two terms that appear in the free-entropy we get:

9s(71, 72, M2) = P Gs (Ra R,Q,, Qr) +(1—p)gs (07 0,Q;, Qz)
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(B.21)

Energetic term. Since one of the two energetic terms appearing in the replicated
free-energy depends on the n replicas of the first weight configuration, and there is no
interaction, we can take the n — 0 limit directly. Therefore we only have to evaluate
the other contribution (dependent on the n replicas of the second weight configuration).
Defining Q = Q,+ AQ;, Q= Q,+ AQ,;, we evaluate ggp = limnﬁ()%log(GE) in the RS

ansatz:
1 dudte ;5 _eq dXed\® A
o =t tog [ 5 “N‘/H(

~3(@-0x (A )2f%q<zia> —ARY A=A ()

. ,, (B.22)
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So in the 8 — oo limit, with the proper rescalings, we get:

9E Zﬂ/Dz/DuMg, (B.25)

where:

2 2
Mj; = maix — % — o[ sign(y/pu), o | \/3Q, + AOQN + \/QT TN I
p

(B.26)

RS free-entropy. Finally, assuming the we can write down the RS free-entropy for
the curriculum ordering as:

®/f = —extr <RR + ;((Q(SQ - 5QQ>T + (Q(SQ N (%?Q) ))

+ gs(715 72, M2) + @2 gr(As), (B.27)

where gg is defined in equation (B.21) and gy is defined in equation (B.25). The
order parameters for the teacher system are obtained independently from identical
equations, after substituting A\; — 0, Ay =— A\ and A5 — 0, s — oy and Ay — Ay, and
after adding a tilde to the remaining parameters.

The saddle-point equations, yielding at convergence the asymptotic prediction for
the order parameters, can be found by posing stationarity conditions for the free-entropy
with respect to all overlaps.

Note that, if instead of the simple setting just considered, where the data slice in
the second stage has homogeneous variance for the irrelevant components, there are
multiple subsets with different sizes and variances, the only variation in the free-entropy
is in the energetic contribution. In general one will have a sum:

over each of these subsets.

Moreover, if instead of two stages we consider multiple learning stages, the free-
entropy for each successive step has an identical form, and one only has to substitute
the tilde parameters with the order parameters obtained at the previous step. Note
that the simplicity of nesting stages in this problem is connected to the convexity of
this learning setting. Generally, adding more steps would increase the complexity of the
calculation considerably.

Generalisation error. With the saddle-point values for the order parameters, one
can easily evaluate the generalisation error on new datapoints, which is the measure of
performance we are employing in the main. This performance can be obtained as:
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Figure C.1. Effect of sparsity. Phase diagram on the effect of sparsity, figure 4(b),
extended for all learning protocols.

ol ()R

where A is the variance of the irrelevant components for the new pattern. A shortcut
for evaluating this expression is to insert the order parameters in the expression through
Dirac’s ds. After a straightforward calculation, along the same lines of the one presented
above, one obtains:

1 R
€= _ arccos( PR AQ@'))‘ (B.30)

Of course, the generalisation accuracy is just the complementary quantity 1 — ¢,.

Appendix C. Additional results on sparsity

We complement the discussion on the importance of sparsity, section 4, with the compar-
ison with other learning protocols. Observe that anti-curriculum suffers the same issue
of the curriculum method for sufficiently large fractions of relevant features p. In that
regime, the splitting becomes sub-optimal because the solution found in the splitting
does not provide enough information to help the other phase of learning. Consequently,
the network is forced to set neglect the information in the batch in favour of exploring
solutions further away from that one. This is outperform by standard learning, where
all the bits of information are used (figure C.1).

Appendix D. Simulations on CIFAR10

Task design. Because a sparse set of relevant features is crucial to observing curriculum
effects in our model, we created a task based on real data that has this property. In
particular we create 32 x 64 pixel input examples by concatenating two images side-
by-side from the CIFAR10 dataset (figure 7?). The correct output label is given by the
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label of the image on the left, while the image on the right is an irrelevant distractor.
To vary difficulty, we scale the contrast of the irrelevant image. This dataset is meant
to instantiate a simple example of learning an object classification amidst clutter. We
emphasise that, as in our synthetic data model, each training sample always contains the
same relevant and distractor images (i.e., we are not considering a data augmentation
setting where each relevant image appears with many non-relevant images). To ensure
no cross-contamination of training and testing samples, the distractor images for the
training and test sets are drawn only from the same set.

Model architecture and training regime. We train a single layer
network with cross entropy loss (i.e. softmax regression), implemented in
Pytorch Lightning by modifying the MIT-licensed PyTorch_CIFAR10 repository
(https://zenodo.org/record/4431043#.YLmz6zZKhsA) to ensure that training param-
eters accord with standard practice. Networks were trained with SGD and Nesterov
momentum, under default parameters: a learning rate of 1e — 2, momentum parameter
0.9, batch size 256, and 100 epochs. The learning rate was annealed according to the
‘WarmUpCosine’ schedule used in PyTorch_CIFAR10, which linearly reduces the learn-
ing rate over the first 30% of training steps before switching to a cosine shaped schedule
on the remainder.

Experiment details and hyperparameter optimisation. For the first phase
of training, we used dataset sizes in 10 equal steps between 1000 and 50 000. For the
second phase, we used nine dataset sizes in 9 equal steps between 5333 and 48 000. We
optimised hyperparameters in each phase separately. In the first phase, we evaluated
all combinations of initialisation scales of {0,0.2,0.5,1.0}, weight decay parameters of
{0,0.2,0.5,1.0,2.0}, and curriculum policy, for five random seeds. In the second phase,
for each random seed and curriculum condition, we continued training from the best-
performing model obtained in the first phase. We trained all combinations of five elastic
penalties log spaced between le — 3 and 1€2, and weight decay parameters {0,0.2,0.5}.
We then compute the best performing model for each seed and take the mean over seeds.
Finally, to evaluate the no-curriculum performance, we train shuffled dataset models
with initialisation scales {0,0.2,0.5,1.0} and weight decay parameters {0,0.2,0.5}. For
visualisation purposes, we used nearest-neighbors interpolation in the phase portrait to
provide values for all points used in the synthetic experiments. Experiments were run on
V100 GPUs and required approximately 10000 GPU hours (including debugging and
development), or ~1110 kg CO, equation according to the MachineLearning Impact
calculator of Lacoste et al, 2019.

Appendix E. Speed-up theory vs simulations

As remarked in the main text, one of the advantages of the theoretical analysis is a
huge speed-up in the time to collect the results, without need of averaging to reduce the
fluctuations. In this section, we briefly report a comparison between the time required
for the lines from theory and simulations shown in the main text.
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In order to obtain figure 1(c), a single run of the ODE equations takes 2 milliseconds
and a run of the simulations takes 500 milliseconds. The figure is however obtained opti-
mizing over all the hyperparameters (learning rate, initialization, weight decay) totalling
400 milliseconds for the analytical solution; while, due to noise, simulation results for
a single set of hyperparameters requires averaging 5000 realizations totalling 41 min.
We note that we did the hyperparameter optimization only once using the theoretical
framework and then used the optima in the simulations in order to save compute time.
The best comparison should therefore be done for a fixed set of hyperparameters and
gives 2 milliseconds vs 41 min. Overall, the analytical solution is between 2 and 6 orders
of magnitude faster.
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