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Abstract—This paper addresses a bearing-only formation
tracking problem in robotic networks by considering exogenous
disturbances and actuator faults. In contrast to traditional
position-based coordination strategies, the bearing-only coordi-
nated movements of the unmanned vehicles only rely on the
neighboring bearing information. This feature can be utilized to
reduce the sensing requirements in the hardware implementation.
A gradient-descent protocol is first developed to achieve the
desired coordination within a prespecified settling time, where the
unknown disturbances are considered in the vehicle dynamics,
then the bound of formation tracking error is guaranteed by
the Lyapunov approach. In case of damage to the actuators
(e.g., motors) in some of the vehicles during the task, fault-
tolerant analysis of the proposed controller is provided to ensure
the success of the task in extreme environments. Furthermore,
the proposed bearing-based method is extended to deal with
general linear systems, which can be applied to a wider range of
robotic platforms. Finally, numerical simulations and lab-based
experiments using unmanned ground vehicles are conducted to
validate the effectiveness of the proposed strategy.

Note to Practitioners—The aim of this paper is to develop and
design a practical bearing-only formation control approach for
multi-vehicle systems. Many real-world complex tasks can be
solved by multiple unmanned aerial and ground vehicles being
connected by a communication network. This paper has proposed
a formation tracking scheme for networked multi-vehicle systems
that only relies on the relative bearing information of the neigh-
boring vehicles. Closed-loop stability of the scheme and finite-
time convergence of the tracking error have been established
using the Lyapunov stability approach. The proposed method
ensures the robustness and fault-tolerance of the multi-vehicle
system against hardware faults or exogenous disturbances. A
systematic set of guidelines on how to apply the proposed strategy
in practice is also provided for the control practitioners in the
form of an algorithm. In order to demonstrate the feasibility and
usefulness of the proposed coordination scheme, numerical sim-
ulations and lab-based hardware experiments were conducted.
Potential applications of the proposed scheme include search and
rescue, security surveillance and cooperative exploration.

Index Terms—Distributed control, multi-vehicle systems, finite-
time consensus, swarm robotics, bearing-based formation.
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I. INTRODUCTION

Formation in robotic networks has received great atten-
tion from robotics and automation communities. Motivated
by commonly observed collective behaviors of animals, dis-
tributed control on formation tasks aims to coordinate a
team of unmanned vehicles to form a desired geometric pat-
tern through local information. Cooperative control methods
have been widely used in practical robotic applications, such
as collaborative manipulators [1], object transportation [2],
search and rescue [3]–[5], ecosystem hacking using micro-
robot swarms [6], exploration in unknown environments [7],
autonomous vehicle platooning [8]–[10], etc. This motivates
researchers to develop advanced coordination strategies for
multi-vehicle systems.

Among all the distributed formation control methods pro-
posed in the last decade, one of the major approaches to deal
with multi-vehicle formation tracking problems is position
measurement [11]. As an example, distance-based multi-robot
formation control was explored in [12] by utilizing the goal
assignment. A distributed estimation and formation control
problem was addressed in [13] with guaranteed performance.
The article [14] has laid a major contribution in the area
of fault-tolerant formation control design, where an event-
triggered control scheme was developed for autonomous sur-
face vehicles under malicious attacks. In another study, Hu
et al. [15] proposed a robust formation control protocol for
multiple mobile robots based on negative imaginary dynamics.
Bio-inspired formation control for unmanned aerial vehicle
(UAV) swarms was analyzed in [16], where multiple leaders
and switching topology were considered in the control system
design. A fault-tolerant formation protocol was proposed for
wheeled mobile robots in [17]. The authors in [18] employed
the radial basis function neural networks and sliding-mode
PID controller to deal with the fault-tolerant issue for hetero-
geneous vehicular platoons. However, in the aforementioned
studies, the proposed coordinated controllers depend on the
assumption that the relative distances or positions among
the neighbors are detectable, which requires high quality
sensory outputs that may not be easily fulfilled in extreme
environments.

To overcome these limitations, bearing-only control tech-
niques have been explored by researchers in recent years. Only
the neighboring bearings of vehicles are required to realize the
desired goal by implementing bearing-only protocols. Some
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preliminary results on bearing-based formation control have
been developed in [19]–[23]. During the hardware implemen-
tation, the bearing information can be detected by wireless
vision-based sensors [24]. Therefore, the design of bearing-
only control shows the promising capacity to achieve multi-
vehicle formation tasks by using on-board sensors. There are
two main methods in bearing-only cooperative control, the
first is controlling the bearing angles. In this regard, triangular
formations were first discussed in [25]. The authors in [26]
studied cyclic formations. However, they were constrained in
2-D space. The second strategy is coordinating the bearing
vectors. The bearing rigidity theory was proposed in [20],
which is a strong method to study the properties of the target
formation. The gradient-descent (GD) bearing-only protocol
was proposed in [27] for stability analysis. Furthermore, Zhao
et al. [22] proposed bearing-only control law by GD method
to handle double-integrator and unicycles systems. Since ex-
ogenous disturbances may appear in the dynamics of the
vehicles, the coordination problems become more challenging.
In [22], an integral term was introduced in the control protocol
to handle the exogenous disturbance. The authors in [28]
verified that the formation error could exponentially converge
to a bounded set with bounded exogenous disturbance. In the
follow up study [29], the upper-bound of the tracking error
was computed and then the correlation between system factors
were discussed. However, in the aforementioned works, only
global asymptotic stability can be ensured, which means that
the target geometric pattern cannot be formed within a finite
time period.

Another important indicator of performance is the settling
time of the cooperation task. As a result, the finite-time
control techniques have been extensively explored in multi-
agent systems (see [30]–[32]). In [30], the fixed-time forma-
tion tracking for networked agents with uncertain dynamics
was addressed. In another study [33], the authors proposed
a fixed-time protocol based on output feedback. Finite-time
convergence analysis is nontrivial for bearing-only control.
The authors in [26], [34], [35] proposed several finite-time
bearing-only (FTBO) coordination protocols. However, the
convergence time is affected by the initial states. The designed
control inputs are not smooth as they contain signum func-
tions and fractional power feedback. Besides, unknown and
actuator faults were not considered in the vehicles’ dynamics,
which may not provide reliable performance in real-world
applications. In other words, how to design FTBO formation
control with smooth control inputs, exogenous disturbances,
and actuator faults remains an open problem.

Motivated by the advancements and challenges in bearing-
only formation tracking problems, in this paper, a novel fault-
tolerant FTBO protocol is proposed for multi-vehicle networks
with exogenous disturbances and actuator faults. This bearing-
based controller can minimize the sensing requirements of
each vehicle compared with traditional position-based method
(see [3], [11], [13], [36]). Different from most works related
to finite-time control strategies (see [30], [32]), the multi-
vehicle formation can be accomplished within a given finite
time that can be predefined by users by implementing the
designed algorithm. Then, in comparison with [31], the ex-

ogenous disturbance and the actuator failures are considered
in the multi-vehicle system. Via Lyapunov stability analysis,
a sufficient condition is presented to show that the formation
error will converge to a bounded set if a bounded exogenous
disturbance appears in the vehicle dynamics. Besides, we also
extend the proposed results to deal with linear time-invariant
(LTI) dynamics, which is more practical compared to first-
order and second-order systems that are often considered
in the bearing-only coordination problems. To the best of
authors’ observation, such a novel protocol design has not been
reported by researchers in the literature. The contribution of
this paper can be summarized as:

• A bearing-only formation coordination protocol is pro-
posed for multi-vehicle networks. In contrast to tradi-
tional position-based coordination strategies, the coordi-
nated movement of each vehicle only requires the neigh-
boring bearings, which significantly reduces the sensing
requirements.

• A novel GD coordination law is proposed to realize the
desired geometric pattern within a prespecified converge
time that can be selected by users. Different from most
studies in the area of bearing-only control, the proposed
method can also be used to deal with LTI dynamics.

• Exogenous disturbances and actuator faults are consid-
ered in the protocol design. It has been proved that the
formation tracking error will converge to a bounded set
for unknown exogenous disturbances and actuator faults.

II. PROBLEM FORMULATION

A. Notations and Preliminaries

Consider n networked mobile vehicles (which include nl
leaders and nf followers) in Rd (n ≥ 2, d ≥ 2 and nl+nf =
n). The configuration of the vehicles can be denoted as p =
col(p1, · · · , pn). Let the undirected graph G = (V, E) denote
the communication among the vehicles. Vl = {v1, . . . , vnl

}
denoted leaders’ set, and Vf = {vnl+1, . . . , vn} denotes
followers’ set, respectively, and V = Vl ∪ Vf . The edge set
is denoted by E ⊆ V × V . The edge (i, j) ∈ E indicates that
vehicle i can obtain the relative bearing from vehicle j, such
that vehicle j is a neighbor of i. Let Ni = {j ∈ V : (i, j) ∈ E}
be the neighbor set of vehicle i. Since the graph is undirected,
we have (i, j) ∈ E ⇔ (j, i) ∈ E [37].

Let Hki ∈ Rm×n (m is the number of the undirected edges)
be the incidence matrix of the oriented graph (undirected graph
G with orientation), where

[H]ki =

 1, i is the head of k,
−1, i is the tail of k
0, otherwise.

The relative edge vector and bearing vector of pj with
respect to pi can be defined as

eij := pj − pi, gij :=
eij
‖eij‖

,
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where ‖ · ‖ denotes the Euclidean norm of a vector or the
spectral norm of a matrix. Define

Pgij := Id − gijgT
ij ∈ Rd×d ,

where Id ∈ Rd×d denotes the identity matrix. It is obvious
that Pgij ≥ 0 , P 2

gij = Pgij , and Null(Pgij ) = span{gij}.
Then, we can imply that ∀x ∈ Rd, x is parallel to gij if and
only if Pgijx = 0. This property is significant to design the
controller via bearing measurement [19], [20]. Then we have

ġij =
Pgij
‖eij‖

ėij .

It can be seen that g>ij ġij = e>ij ġij = 0 due to the fact that
Pgijgij = 0.

Let the edge (i, j) correspond to the kth (k ∈
{1, 2, · · · ,m}) directed edge in oriented graph. For kth di-
rected edge, we can redefine the edge and bearing vector as

ek := eij = pj − pi, gk :=
ek
‖ek‖

.

Similarly, we have g>k ġk = 0 and e>k ġk = 0. Then, we can
conclude that e = col(e1, · · · , em) = (H

⊗
Id)p = H̄p.

Define the scale of the formation in the system as

s(t) =

√√√√ 1

n

n∑
i=1

‖pi − p̄‖2 =
‖p− 1n

⊗
p̄‖√

n
,

where p̄ = 1
n (1n

⊗
Id)
>p denotes the centroid of the forma-

tion.
Let p∗ = col(p∗1, · · · , p∗n) and g∗ = col(g∗1 , · · · , g∗m) denote

configuration and bearing vector of the goal formation (G, p∗).
The bearing Laplacian matrix B ∈ Rdn×dn is introduced to
characterize the properties of a formation. The block of B can
be written as [20]

[B]ij =


0d×d, i 6= j, (i, j) /∈ E ,
−Pg∗ij , i 6= j, (i, j) ∈ E ,∑
k∈Ni

Pg∗ik , i = j, i ∈ V.

It is easy to see that B ≥ 0, B1dn = Bp∗ = 0, and B =
H̄>diag(Pg∗k)H̄ . The partition of B by leaders and followers
is shown as

B =

[
Bll Blf
B>lf Bff

]
(1)

where Bff ∈ Rdnf×dnf and Bll ∈ Rdnl×dnl . In this paper,
it is necessary to ensure that the target formation is unique.
Hence, we present the following result.

Lemma 1. [20] The desired formation can be uniquely
determined by the bearing vectors {g∗ij}(i,j)∈E and the states
of the fixed leaders {p∗i }i∈Vl ⇔ Bff is full rank.

For a better understanding of the construction of the desired
formation, an illustrative example is provided in Fig. 1, where
the leaders are denoted by solid circles and the followers are
denoted by hollow circles. The interaction topology shown
in Fig. 1 (a) cannot guarantee the uniqueness of the target
formation. However, the target formation can be determined
uniquely by implementing the interaction topologies in Fig. 1

Fig. 1. Examples of non-unique target formation (a) and unique target
formation (b and c) determined by bearing vectors.

(b) and (c).

B. Problem Statements
In this paper, we focus on developing a collaboration

protocol for networked agents in the presence of exogenous
disturbance. Thus the single-integrator dynamics of the ve-
hicles are considered for simplicity. Suppose the leaders are
fixed (ṗi = 0, ∀i ∈ Vl), and the dynamics of the followers is

ṗi(t) = ui(t) + ωi, i ∈ Vf . (2)

where ωi ∈ Rd is the exogenous disturbance of vehicle i ∈ Vf .

Remark 1. Although the dynamics of most robotic systems
(e.g., wheeled mobile robots and quadrotor UAVs) are non-
linear and coupled, the input–output feedback linearization
technique [38] can be exploited to transform the dynamics
of the robots to a single-integrator system at any operating
point. This technique has been widely applied to mobile robots
[39], [40]. Hence, this work particularly focuses on designing
control protocols for multi-vehicle formation based on the
linearized model with external disturbances.

Let δi = pi − p∗i and δ = col(δ1, · · · , δn) denote the
formation error, the assumptions are given as follow:

Assumption 1: The exogenous disturbance is upper-bounded
i.e., ‖ωi‖ ≤ fi, where fi is a positive constant.

From Assumption 1, we can easily conclude that ‖ω‖ ≤
F =

∑n
i=nl+1

fi, where ω = col(ωnl+1
, · · · , ωn).

Assumption 2: In the single-integrator system with exoge-
nous disturbance, the formation scale s(t) is upper-bounded
from the initial scale. i.e., s(t) ≤ s(0) = s0, ∀ t ≥ 0.

Assumption 3: The target formation is unique, i.e., Bff > 0.
Assumption 4: There is no collision between each vehicle

during the task.
From Assumption 4, we can deduce that there exists τ > 0

such that ‖pi − pj‖ > τ , ∀i, j ∈ V
We now demonstrate the problem statement of this paper in

a precise form. Suppose the dynamics of each mobile vehicle
with exogenous disturbances is guaranteed by system (2).
To ensure a superior performance of the formation tracking
mission, the main objectives can be described as: i) Developing
a novel finite-time controller for each vehicle i ∈ Vf based on
bearing vectors {gij(t)}j∈Ni

and exploring the convergence of
the formation error δ. ii) Providing the fault-tolerant analysis
of the finite-time protocol in the presence of actuator failures
in the hardware. iii) Extending the capacity of the designed
controller to deal with LTI systems with exogenous distur-
bances, which is more general in practical robotic platforms.
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III. MAIN RESULTS

Formation tracking algorithms can be used effectively for
swarm robots to converge to the desired pattern in a distributed
manner. In this section, we first introduce a finite-time forma-
tion control protocol with bearing-only measurements. Then,
we provide the stability analysis to guarantee the performance
of the formation protocol under external disturbances and actu-
ator faults. Thus it can be implemented safely by practitioners
in extreme environments.

A. Controller Design with Exogenous Disturbance

In this section, the robust formation tracking problem with
exogenous disturbance and bearing measurements is consid-
ered. The coordinated protocol of each follower is designed
as

ui(t) = (a+ b
µ̇

µ
)
∑
j∈Ni

(gij(t)− g∗ij(t)), i ∈ Vf . (3)

where a > 0 and b > 0 are two gains, and µ : R+ → R+ is a
time-varying scaling function defined as

µ(t) =


Th

(T − t)h
t ∈ [0, T )

1, t ∈ [T,∞),

(4)

where h is a parameter to be specified. By using the right-hand
derivative of µ(t) at t = T as µ̇(T ), we have

µ̇(t) =


h

T
µ(1+ 1

h ), t ∈ [0, T )

0, t ∈ [T,∞).
(5)

µ(t) is important in the controller since it ensures the bearing-
only formation task can be finished in finite time T which can
be predefined by users.

Since there exists the unknown exogenous disturbances in
the system. The goal is to discuss the robustness of the FTBO
controller (3). Before we show the main theorem and associate
proof, the following lemmas should be introduced

Lemma 2. [22]: If Assumption 4 holds, we have

p>H̄>(g∗ − g) ≤ 0 (6)

(p∗)>H̄>(g∗ − g) ≥ 0 (7)

(p− p∗)>H̄>(g∗ − g) ≤ 0 (8)

Lemma 3. [22]: If Assumption 4 holds, we have

p>Bp ≤ 2p>H̄>(g − g∗) max
k
‖ek‖ (9)

Lemma 4. Suppose z : R→ R≥0 is a continuously differen-
tiable function, if

ż(t) ≤ −az − b µ̇
µ
z + ε, t ∈ [0,∞) (10)

where a, b, and ε are positive and bh > 1 . Then, it follows
that

z(t)

{
≤ µ−be−atz(0) + ε(t), t ∈ [0, T )

≤ ε/a, t ∈ [T,∞)
(11)

where

ε(t) = (
T − t
bh− 1

− Tµ−b

bh− 1
)ε. (12)

Proof. On one hand, if t ∈ [0, T ). Let h = µbz, we have

ḣ = µbż + bµb−1µ̇z = µb(ż + b
µ̇

µ
z). (13)

From (10), we can get

ḣ ≤ µb(−az + ε)

= −ah+ µbε
(14)

That is to say

h ≤ e−at(h(0) + ε

∫ t

0

µb(τ)eaτdτ)

≤ e−ath(0) + ε

∫ t

0

µb(τ)dτ

(15)

then it can be obtained that

z ≤ µ−b(e−atz(0) + ε

∫ t

0

µb(τ)dτ)

≤ µ−b(e−atz(0) + (
T bh

(bh− 1)(T − t)bh−1

− T

bh− 1
)ε)

= µ−be−atz(0) + ε(t).

(16)

On the other hand, if t ∈ [T,+∞), we have

ż ≤ −az + ε (17)

Hence, we can conclude that z ≤ ε/a. This completes the
proof.

Lemma 5. if a and b are two unit vectors. Let α ≥ β ≥ 0,
then

‖αa− βb‖ ≥ β‖a− b‖.

Proof. It can be easily found that

‖αa− βb‖2 − (β‖a− b‖)2 = α2 − β2 − 2αβ cosφ+ 2β2 cosφ

= (α− β)(α+ β − 2β cosφ)

≥ 2β(α− β)(1− cosφ)

≥ 0,

where φ is angle between a and b. We finish the proof.

Now, we would like to give the following analysis of the
robustness of the multi-vehicle network under the proposed
control protocol.

Theorem 1. Consider the single-integrator system with the
exogenous disturbance. Under Assumption 1-4 and protocol
(3), let K = 2ns0, by choosing γ =

√
K/aλmin(Bff ) and

bhλmin(Bff ) > 2K, (18)

the formation error δ converges to the bound set S

S =

{
δ : ‖δ‖2 ≤ 4γ2F 2K

aλmin(Bff )

}
.
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in finite time. Furthermore, the control input u is C1 smooth
and uniformly bounded over the time interval [0,∞).

Proof. By implementing the protocol (3), the dynamics of (2)
can be written in a compact form as

ṗ = (a+ b
µ̇

µ
)

[
0 0
0 Idnf

]
H̄>(g∗ − g) + ω. (19)

The Lyapunov function can be constructed as V = 1
2‖δ‖

2.
The derivative of V can be described as

V̇ = δ>ṗ

= (a+ b
µ̇

µ
)δ>

[
0 0
0 Idnf

]
H̄>(g∗ − g) + δ>ω

= (a+ b
µ̇

µ
)δ>H̄>(g∗ − g) + δ>ω

= (a+ b
µ̇

µ
)(p− p∗)>H̄>(g∗ − g) + δ>ω.

(20)

From Lemma 2 and 3, we can substitute (9) in (20). Since
Bp∗ = 0 and δ = [0, δ>f ], we have

V̇ = (a+ b
µ̇

µ
)(p− p∗)>H>(g∗ − g) + δ>ω

≤ (a+ b
µ̇

µ
)p>H>(g∗ − g) + δ>ω

≤ −(a+ b
µ̇

µ
)

1

2maxk‖ek‖
p>Bp+ δ>ω

≤ −(a+ b
µ̇

µ
)
λmin(Bff )

2maxk‖ek‖
‖δ‖2 + δ>ω.

(21)

For all vehicles in the system, from Cauchy inequality, we
have

n2s(t)2 = n

n∑
k=1

‖pk − p̄‖2

≥ (‖pi − p̄‖+

n∑
k∈V,k 6=i

‖pk − p̄‖)2

≥ ‖pi − p̄‖2

(22)

From (22) and Assumption 2, we can obtain

‖ek‖ = ‖pi − pj‖
= ‖(pi − p̄)− (pj − p̄)‖
≤ ‖pi − p̄‖+ ‖pj − p̄‖
≤ 2ns(t) ≤ 2ns0 = K.

(23)

By average inequality, we have

γ−2

4
‖δ‖2 + γ2‖ω‖2 ≥ ‖δT ‖‖ω‖ ≥ δTω. (24)

Combine with (23), (21) can be written as

V̇ ≤ −(a+ b
µ̇

µ
)
λmin(Bff )

2K
‖δ‖2 + δ>ω

≤ −(a+ b
µ̇

µ
)(
λmin(Bff )

2K
‖δ‖2) +

γ−2

4
‖δ‖2 + γ2‖ω‖2

≤ −(a+ b
µ̇

µ
)(
λmin(Bff )

2K
− γ−2

4a
)‖δ‖2 + γ2‖ω‖2

(25)

By choosing

γ =

√
K

aλmin(Bff )
(26)

and following Assumption 1, we have

V̇ ≤ −(a+ b
µ̇

µ
)
λmin(Bff )

4K
V + γ2F 2. (27)

Therefore

V̇ ≤− aλmin(Bff )

2K
V − bλmin(Bff )

2K

µ̇

µ
V + γ2F 2

=− āV − b̄ µ̇
µ
V + γ2F 2,

(28)

where ā =
aλmin(Bff )

2K and b̄ =
bλmin(Bff )

2K .

In light of Lemma 4, we have

‖δ(t)‖2
{
≤ µ−b̄e−āt‖δ(0)‖2 + 2ε̄(t), t ∈ [0, T )

≤ 2γ2F 2/ā, t ∈ [T,∞)
(29)

where

ε̄(t) = (
T − t
b̄h− 1

− Tµ−b̄

b̄h− 1
)γ2F 2. (30)

Since
lim
t→T−

µ−b̄ = 0, (31)

it is easily to get
lim
t→T−

ε̄(t) = 0. (32)

From (31) and (32), it can be concluded that

lim
t→T−

‖δ(t)‖ = 0. (33)

Hence, we can obtain that the formation error δ converge to
the bound set S in finite time T from Lemma 4.

Next, we will discuss the continuity and boundary of u and
du/dt. By (19), we have

‖u‖ ≤ (a+ b
µ̇

µ
)‖H̄>‖‖(g − g∗)‖. (34)

By Lemma 5 and Assumption 4, we obtain

‖e− e∗‖ =

√√√√ m∑
i=1

‖gi‖ei‖ − g∗i ‖e∗i ‖‖2

≥

√√√√τ

m∑
i=1

‖gi − g∗i ‖2

≥
√
mτ‖g − g∗‖,

(35)

then it follows

‖g − g∗‖ ≤ 1√
mτ
‖e− e∗‖ ≤ 1√

mτ
‖H̄‖‖δ(t)‖. (36)

Combine (29) with (34), we have u is bounded if t ≥ T and

‖u‖ ≤ µ−(b̄− 1
h )e−āt‖H̄>‖‖H̄‖‖δ(0)‖

T
√
mτ

(Taµ−
1
h + bh). (37)

From (18), we have b̄− 1
h > 0. Combined with (29), (34),
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(37), we can conclude that

lim
t→T−

‖u‖ = 0. (38)

Hence, we finish the proof of the continuity and uniformly
boundness of u on [0,∞).

Next, we will focus on du/dt. We have

du

dt
=
bh

T 2
µ

2
h H̄>(g − g∗) + (a+ b

µ̇

µ
)H̄>ġ

=
bh

T 2
µ

2
h H̄>(g − g∗)

+ (a+ b
µ̇

µ
)H̄>diag(

Pgk
‖ek‖

)H̄ṗ

=
bh

T 2
µ

2
h H̄>(g − g∗)

+ (a+ b
µ̇

µ
)2H̄>diag(

Pgk
‖ek‖

)H̄H̄>(g − g∗).

(39)

It is easy to see that the continuity of (du/dt) can be guaran-
teed on [0, T ) and (T,∞) and‖diag(

Pgk

‖ek‖ )‖ is bounded. Hence,

there is a matrix Λ > 0 such that ‖H̄>‖2‖H̄‖‖diag(
Pgk

‖ek‖ )‖ <
Λ. According to (39), we can obtain∥∥∥du
dt

∥∥∥ = ‖H̄>‖2‖H̄‖‖diag(
Pgk
‖ek‖

)‖(a+ b
µ̇

µ
)2‖g − g∗‖

+
bh

T 2
µ

2
h ‖H̄>‖‖g − g∗‖

≤ [Λa2 + 2abΛµ
1
h + (Λb2 +

bh

T 2
‖H̄>‖)µ 2

h ]‖g − g∗‖.
(40)

Based on (18), we can get b̄− 2
h > 0. Similar to analysis for

‖u‖ in (37) and (40), we have

lim
t→T−

‖du
dt
‖ = 0. (41)

Hence, the continuity and uniformly boundness of du/dt can
also be guaranteed on [0,∞). Hence we complete the proof.

Remark 2. The time-varying gain µ̇
µ affects the tracking

performance of the controller. From (37) and (40), we discuss
the relationship between ‖u‖ and ‖δ‖, and then imply that
the continuity and uniformly boundness of the control input
u can be guaranteed by (18). That is to say, the decrease
of ‖δ‖ is faster than the increase of µ̇

µ if b and h are big
enough. Furthermore, the scaling function in (4) is designed
to guarantee the finite-time convergence of the controller. Since
there is no fractional power feedback or signum functions
in the proposed controller (different from [26], [34], [35]),
the control input remains C1 smooth. Besides, the desired
settling time is not related to the initial states and thus can
be predefined by users.

Following the analysis presented above, the procedure to
construct the protocol ui is given in Algorithm 1.

B. Fault-Tolerant Analysis

Based on the fact that actuator failures (e.g., the efficiency
and the output bias) of the controller could not be ignored

Algorithm 1 Finite-time bearing-only protocol design
1: Select nl leader vehicles and nf follower vehicles;
2: Set the target formation configuration p∗ and compute the

target bearing g∗;
3: Set the initial positions for fixed leaders and followers
4: Set the bidirectional communication graph and the ori-

ented graph among each vehicle;
5: if Assumption 4 is satisfied then
6: Compute the edge vectors and bearing vectors for each

connected vehicle;
7: Compute the bearing Laplacian matrix B as shown in

(1);
8: if Bff > 0 then
9: Set the finite time T ;

10: Select the positive control parameters a, b, and h;
11: if condition (18) holds then
12: Construct the control law ui given in (3);
13: else
14: Back to step 9;
15: end if
16: else
17: Back to step 4;
18: end if
19: else
20: Back to step 3;
21: end if

in some platforms. The fault-tolerant analysis of the proposed
controller is discussed in this subsection. We explore the ro-
bustness of the controller (3) with the exogenous disturbances
and the actuator failures.

The actuator failures ufi of each follower agent can be
expressed as

ufi (t) = ρi(t)ui(t) + b̃i(t), (42)

where ρi(t) ∈ (0, 1] represents the unknown efficiency factor
of the actuator channel, and b̃i(t) = [b̃i1(t), · · · , b̃id(t)]>
represents the unknown output bias of the actuator channel
following [14], [17], [41]. For both time-varying ρi(t) and
b̃i(t), we have the following assumption

Assumption 5: The unknown efficiency factor and unknown
output bias are bounded, and there exists a positive constant
ρ∗ and b̃∗ such that 0 < ρ∗ ≤ ρi(t) ≤ 1 and ‖bi(t)‖ ≤ b̃∗i .

From Assumption 5, we can easily conclude that ‖b̃(t)‖ ≤
b̃∗ =

∑n
i=nl+1

b̃∗i , where b̃(t) = col(b̃nl+1
(t), · · · , b̃n(t)).

Suppose the leaders are fixed, the dynamics of the followers
can be described as

ṗi(t) = ufi (t) + ωi i ∈ Vf . (43)

Now, we would like to present the following result of the
fault-tolerant analysis of the multi-vehicle network under the
proposed control protocol.

Theorem 2. Consider the single-integrator system with the
exogenous disturbance and actuator failures. Under Assump-
tion 1-5, let K = 2ns0, by choosing γ =

√
K/ρ∗aλmin(Bff )
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and
ρ∗bhλmin(Bff ) > 2K, (44)

the formation error δ converges to the bound set S

S =

{
δ : ‖δ‖2 ≤ 4γ2(F + b̃∗)2K

ρ∗aλmin(Bff )

}
.

in a finite time.

Proof. By implementing the protocol (3), the compact form
of (2) can be written as

ṗ = (a+ b
µ̇

µ
)

[
0 0
0 ρ̄(t)

]
H̄>(g∗ − g) + ω + b̃(t). (45)

Choosing Lyapunov function as V = 1
2‖δ‖

2. The derivative
of V can be described as

V̇ = δ>ṗ

= (a+ b
µ̇

µ
)δ>

[
0 0
0 ρ̄(t)

]
H̄>(g∗ − g) + δ>(ω + b̃(t))

≤ (a+ b
µ̇

µ
)ρ∗(p− p∗)>H̄>(g∗ − g) + δ>(ω + b̃(t)).

(46)
The last inequality can be obtained by Assumption 5. By
average inequality, we have

δ>(ω + b̃(t)) ≤ ‖δ>‖(‖ω‖+ ‖b̃(t)‖)
≤ ‖δ>‖(‖ω‖+ b̃∗)

≤ γ−2

4
‖δ‖2 + γ2(‖ω‖+ b̃∗)2

(47)

Choosing

γ =

√
K

ρ∗aλmin(Bff )
(48)

According to (21)-(23), (25), and (27), we can get

V̇ ≤− ρ∗aλmin(Bff )

2K
V − ρ ∗ bλmin(Bff )

2K

µ̇

µ
V

+ γ2(F + b̃∗)2

=− afV − bf
µ̇

µ
V + γ2(F + b̃∗)2

(49)

with af =
ρ∗aλmin(Bff )

2K and bf =
ρ∗bλmin(Bff )

2K .
From Lemma 4, we have

‖δ(t)‖2
{
≤ µbf e−af t‖δ(0)‖2 + 2εf (t), t ∈ [0, T )

≤ 2γ2(F + b̃∗)2/af , t ∈ [T,∞)
(50)

where

εf (t) = (
T − t
bfh− 1

− Tµ−bf

bfh− 1
)γ2(F + b̃∗)2. (51)

Similar to the analysis in Theorem 1, we can find that the
formation error δ converge to the bound set S in finite time
T from Lemma 4. This completes the proof.

Remark 3. The performance of the finite-time controller is
affected by the efficiency factor and the output bias of the
actuator channel. The formation error is closer to zero for
smaller output bias and larger control gain a, which can

reduce the effect of the actuator failures. From (50), it can
be obtained that the decrease of ‖δ‖ is faster for larger af ,
bf , and ρ∗. Hence, the convergence rate of the formation error
is determined by the boundary of the efficiency factor.

C. Extension to the LTI Systems with Exogenous Disturbance

Considering that some robotic platforms may have gen-
eral linear dynamics (e.g., after implementing geometry-based
robust feedback linearization techniques), in this subsection,
we aim to extend the results obtained from the previous
subsections to solve the robust formation coordination problem
with exogenous disturbance and bearing measurement for LTI
systems.

Suppose the leaders are fixed (ṗi = 0, ∀i ∈ Vl), and the
dynamics of the followers can be described by

ṗi(t) = Aipi + ui(t) + ωi, i ∈ Vf , (52)

where Ai ∈ Rd×d, and ωi ∈ Rd is the exogenous disturbance
of vehicle i ∈ Vf .

Under the protocol (3), the dynamic of (52) can be written
in compact form as

ṗ =

[
0 0
0 A

]
p+ (a+ b

µ̇

µ
)

[
0 0
0 Idnf

]
H̄>(g∗ − g) + ω,

(53)
where A = diag{Anl+1, · · · , An} ∈ Rnf×nf .

Let p = [p>l , p
>
f ]>, where pl = col(p1, · · · , pnl

) and
pf = col(pnl+1, · · · , pn) denote the positions of leaders and
followers. We have the following corollary.

Corollary 1. Consider the LTI system with the exogenous
disturbance. Under Assumption 1-4, if Ai is negative semi-
definite, and p∗i

>Ai = 0 for each follower vehicle i ∈ Vf , the
formation error δ converge to the bound set S

S =

{
δ : ‖δ‖2 ≤ 4γ2F 2K

aλmin(Bff )

}
.

in finite time by protocol (3), where K = 2ns0, and γ ≥√
aK/λmin(Bff ).

Proof. The Lyapunov function can be constructed as V =
1
2‖δ‖

2. The derivative of V can be expressed as

V̇ =δ>ṗ

=− (a+ b
µ̇

µ
)(p− p∗)>H̄>(g − g∗) + δ>ω

+ (p− p∗)>
[

0 0
0 A

]
p.

(54)

From (21), since Ai is negative semi-definite and p∗i
>Ai = 0

for each follower vehicle i ∈ Vf , we have

V̇ ≤− (a+ b
µ̇

µ
)
λmin(Bff )

2maxk‖ek‖
‖δ‖2 + δ>ω +

n∑
i=nl+1

p∗i
>Aipi

+ p>f Apf

≤− (a+ b
µ̇

µ
)
λmin(Bff )

2maxk‖ek‖
‖δ‖2 + δ>ω.

(55)
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Following similar steps in Theorem 1, we can imply that the
formation error δ converge to the bound set S in finite time
by protocol (3). This completes the proof.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To verify the effectiveness of the obtained results, Matlab
simulation results and hardware experimental results using real
mobile robots are shown in this section.

A. Formation Tracking Control Performance

We design the simulations to validate the effectiveness
and the continuous of the FTBO controller with exogenous
disturbance. Five UAVs, with two leaders and three followers,
are used in this task. These UAVs aim to attain a pentagon
shape desired formation in a 3D space via bearing-only mea-
surements in the presence of unknown exogenous disturbances
with the boundary 0.1. For the controller design, we choose
the parameters as a = 2, b = 8, h = 5, and T = 50 s.

By implementing Algorithm 1, the trajectories of the UAVs
during the formation forming mission are shown in Fig. 2.
The positions of the two fixed leaders (marked by blue and
green squares) in the x-y-z plane are selected as (2.5, 2, 0) and
(2.5, 5, 0), respectively. The initial positions of three followers
are selected as (2, 6, 4), (4, 1, 3), and (1, 3, 0.5) respectively.
The interaction topology between each agent is represented
by red solid lines. We adopt the yellow, pink, and dark green
dotted lines to denote the movements of the followers from
t = 0 s to t = 50 s. The formations of the UAVs are captured
at time instants t = 0 s, t = 5 s t = 15 s, and t = 50 s (From
(a)− (d) in Fig. 2), respectively. Fig. 3(a) shows the control
actions of the followers during the mission. From the curves
of the control inputs, it can be concluded that the controller
can converge to zero in finite-time smoothly. Fig. 3(b) reveals
that ‖δ‖ (represented by blue solid line) will converge to a
bound set at t = 50 s. The tracking errors of three followers
are denoted by the yellow, pink, and dark green dash lines. As
can be seen from all these figures, the bearing-only formation
tracking task has been accomplished by the proposed finite-
time protocol under unknown external disturbances.

B. Fault-Tolerant Formation Tracking with Different Parame-
ters

In this section, four simulation case studies (with different
efficiency factors and output bias) are conducted to explore
the relationship between the fault parameters and the perfor-
mances of the controller in the presence of the exogenous
disturbance. The selection of ρ∗ and b̄∗ is presented in TA-
BLE I. ρi(t) and b̃i(t) are generated randomly at any time
t to satisfy Assumption 5 for each vehicle to simulate the
unknown actuator failures. Twelve UAVs, with three leaders
and nine followers, are used to complete the formation task
within the finite-time T = 50 s. The interaction topology
between these UAVs is shown in Fig. 4. These UAVs aim
to attain the desired formation as two equilateral triangles in
a 2D space via bearing-only measurements in the presence of
unknown exogenous disturbances with boundary 0.1.

 

Fig. 2. Trajectories of the networked UAVs at different time instants during
the formation forming mission. (a) t = 0 s; (b) t = 5 s; (c)t = 15 s and (d)
t = 50 s.

 

(a) (b)

Fig. 3. (a) Control actions of the follower UAVs along the X-axis, Y-axis and
Z-axis and (b) Time variation of the formation tracking error. The black dash
line denotes the computed bound.

Fig. 4. Interaction topology between each UAV.

In order to satisfy the conditions in Theorem 2, we set the
parameters as a = 2, b = 8, and h = 5 for all the examples.
By implementing the controller to (43), the trajectories and
the tracking errors of the mobile robots during the formation
forming mission are shown in Fig. 5 and Fig. 6 ((a) − (d)
represent the example 1-4). The positions of the three fixed
leaders (marked by three yellow stars) are selected as (−2, 0),
(0, 0), and (2, 0), respectively. We select the same initial
positions of the nine followers for all the examples. It can
be concluded from (a), (b), and (d) in Fig. 5 that different
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TABLE I
SELECTION OF ρ∗ AND b̄∗

ρ∗ b̄∗

Example 1 0.8 0.05
Example 2 0.5 0.05
Example 3 0.5 0.2
Example 4 0.3 0.05

 

Fig. 5. Trajectories of the followers for Example 1 (a), Example 2 (b), Example
3 (c), and Example 4 (d).

efficiency factors (ρ∗) affect the performance slightly if the
parameters a, b, and h are chosen appropriately to satisfy the
conditions in Theorem 2. We can also obtain that different
efficiency factors can affect the convergence rate of some
followers from (a), (b), and (d) in Fig. 6. From (b) and (c)
in Fig. 5 and Fig. 6, we can conclude that the bound set S
is expanded for large output bias (b̄∗). Hence, the tracking
error will increase, and the final formation shape will be
affected in a certain degree for large output bias. From all these
figures and analyses, it can be concluded that the bearing-only
fault-tolerant formation tracking task has been accomplished
by the proposed finite-time protocol under unknown external
disturbances.

C. Comparison and Discussion

In recent years, some bearing-based formation control meth-
ods have been developed in the literature. In [26], [34], [35],
the signum functions were used in the designed protocols to
ensure finite-time convergence. However, the controller be-
comes non-smooth, and the settling time depends on the initial
state. To overcome this limitation, an improved bearing-based
finite-time controller for double-integrator was considered in
a recent work [42]. However, the position measurements are
still required in the proposed algorithm, which increases the

 

Fig. 6. Tracking error of the followers for Example 1 (a), Example 2 (b),
Example 3 (c), and Example 4 (d). The black dash line denotes the computed
bound for each example.

 

Fig. 7. The performance of (a) the proposed controller and (b) the conventional
method proposed in [23].

sensing requirements in the hardware implementation. Com-
pared with those aforementioned works related to bearing-
based control protocol design, the proposed FTBO protocol
also facilitates robustness against exogenous disturbance and
actuator faults.

To highlight the superior robust performance of the FTBO
protocol proposed in this paper, we make a comparison
between the proposed controller and the conventional bearing-
only method proposed in [23], which adopts the same scal-
ing function µ(t) with different forms of the bearing-based
scheme. According to the conventional results, the conver-
gence rate of the traditional method relies on the initial
formation error, which is possible to affect the performance
of the controller under the exogenous disturbance and actuator
failures. In this comparison, four UAVs, with two leaders and
two followers, are used to attain the desired square formation
via bearing-only measurements in the presence of unknown
exogenous disturbances with the boundary 0.05. The boundary
of the efficiency factor (ρ∗) and the output bias (b̄∗) are chosen
as 0.3 and 0.05. For each controller design, we choose the
same interaction topology and the same parameters as shown
in Section A. The initial states of the leaders are set as [0, 0]
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Camera 

Robots 

Host computer 

Fig. 8. The experimental arena includes the overhead camera tracking system,
the base station and the small-scale mobile vehicles.

  

 

 

 

 

 

Bearing measurements  

from neighbours 𝑝𝑗 

 

Bearing information 𝑔𝑖𝑗 

Target 

formation 

𝑔𝑖𝑗
∗  

 

Controlled  

output 
Distributed FTBO 

protocol 

Feedback linearization 

algorithm 

Robot kinematics 

model 

Camara tracking system 

Fig. 9. The hardware control loop of the experiment.

and [6, 0]. The initial states of the followers are selected
randomly from [1, 11] × [1, 11]. 50 simulations are run for
both controllers.

The performances of the proposed protocol and the conven-
tional bearing-only protocol are demonstrated in Fig. 7(a) and
(b), respectively. The formation error is defined as ‖p − p∗‖.
The blue and red zones display the 50 times simulation results
of the protocols proposed in this paper and the conventional
strategy, and the blue and red solid lines represent the average
values. It can be obtained that the formation error of the
proposed protocol can converge to a small bound set under the
exogenous disturbance and actuator faults with any initial state
of the followers. However, under the conventional method, the
formation tracking error becomes large if the initial positions
of the followers are far away from the leaders. Hence, com-
pared to the conventional controller, the proposed approach
shows a better robust performance against the exogenous
disturbances.

D. Experimental Validation

In this section, we conduct lab-based experiments to further
verify the feasibility of the proposed method in real-world
applications.

For the validation purpose, we use wheeled mobile vehicle
Mona [43] as the robotic platform. As shown in Fig. 8,
the experimental platform includes a rectangular arena, a
digital camera, and a laptop that operates the proposed control
algorithm. The control loop of hardware is shown in Fig. 9.
For each mobile vehicle, the attached RF (Radio Frequency)
module is used to achieve inter-vehicle communication. Also,
the feedback linearization algorithm [38] is adopted to transfer
the robot kinematics model to a single-integrator system.
The relative bearing between the neighbors is detected by
the camera tracking system [44] and then transmitted to the
formation controller via the ROS (Robot Operating System)

 

t = 0 s t = 5 s 

t = 15 s t = 30 s 

Fig. 10. Progress of the formation tracking task being achieved by a group
of four unmanned ground vehicles.

 

(a)

 

(b)

Fig. 11. (a) Trajectories of the robots in the experiment and (b) time variation
of the formation tracking error.

communication framework. Then, the proposed distributed
FTBO formation protocol is implemented in each mobile
vehicle as the control input.

In the experiment, four mobile vehicles (including two
leaders and two followers) aim to achieve a square formation
in a given 2D arena. We choose T = 30 s as the desired
settling time. In the beginning, the four vehicles were ran-
domly placed in the arena. The positions of the mobile vehicles
during the experiment are shown in Fig. 10. The trajectories
and the formation tracking error are given in Fig. 11(a)
and Fig. 11(b), respectively. We emphasize that although the
camera tracking system may provide centralized measurements
to all the robots, in view of a distributed implementation, each
robot only used relative information from its neighbors. The
experimental results verified that the designed coordination
strategy fulfils the desired objectives in the presence of certain
real disturbances such as communication delays and actuator
noises.

To further explore the robustness of the FTBO algorithm
when the leaders are not fixed, we execute a case study with
four mobile vehicle followers and two virtual moving leaders
in a 2D space. The trajectories of the virtual leaders are
designed as

ṗi =

[
ṗix(t)
ṗiy(t)

]
=

[
0.02

0.02sin( 4π
65 t)

]
, i ∈ Vl, (56)

where Vl = {1, 2}. We set the target formation of the followers
as a square by bearing-only measurements in the presence of
unknown exogenous disturbances with the boundary 0.06. The
efficiency factor (ρ∗) and the output bias (b̄∗) are selected as
0.5 and 0.05, and the parameters in the controller are chosen
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t=50s 

t=0s 

t=100s 

(a)
 

(b)

Fig. 12. (a) The trajectories and (b) the formation tracking errors of the
followers with moving leaders.

as: a = 5, b = 5, and h = 4. The formation task is expected
to be completed within the finite-time T = 50 s.

The movements of the followers under the proposed proto-
col with moving leaders are illustrated in Fig. 12(a). The initial
position of each vehicle is labelled by t = 0 s in Fig. 12(a),
where the leaders are marked as two red stars. We use the dash
curves with four different colors to denote the trajectories of
four followers from 0 s to 100 s. Fig. 12(b) displays that the
tracking error of each follower during the formation task will
converge to a bounded set in the finite-time. Hence, it can be
obtained that the followers can converge to the target formation
within a finite-time (labelled by t = 50 s in Fig. 12(a))
when tracking the movements of the dynamic leaders, which
validates the effectiveness of the proposed control design. It
can be found that there exists a jump in the tracking error
at t = 50 s, which is caused by the switching gain in the
controller under the effect of the dynamic leaders.

V. CONCLUSION

In this paper, the finite-time formation tracking problem
with bearing-only measurements was addressed. A novel
gradient-decent control protocol was proposed to let the multi-
vehicle system achieve the target formation through measuring
relative bearings of their neighbors. Furthermore, the finite
convergence time of the multi-vehicle network with exogenous
disturbance was discussed and extended to LTI system. Fault-
tolerant analysis was also considered for these vehicles during
the formation task. It was validated that the bound of the
formation error could be guaranteed when there were external
disturbances and actuator failure in the vehicle dynamics.
Finally, numerical simulations and practical experiments were
provided to verify the obtained results. In the future, the
time delay and nonlinear dynamics will be considered in the
coordination protocol design.
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