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1 Abstract
Approximate  solutions  to  the  potential  equation  “2 U = 0  in  a  simply-connected  2-dimensional
domain  D  are  found  using  the  Method  of  Fundamental  Solutions  (MFS)  with  sources  placed  on  a
circle.  Previous research has shown that a few discrete points sources placed a large distance from
D can give good numerical accuracy. The discrete source distribution can be random, and a circular
source distribution is one which could be used for any domain.  Several domains are considered, and
an attempt is made to determine an optimal radius for the source distribution and number of sources
required  in  order  to  give  sufficient  accuracy.   Simple  configurations  for  D  give  results  whose
accuracy depends in an ordered and predictable way on the source radius and the number of sources.
With more complex domains the source radius and the number of sources have a crucial impact on
accuracy.  

2 Introduction
Previous  research  has  shown  that  when  using  meshless  discrete  sources  in  the  MFS,  the
configuration  of  sources  relative  to  the  domain  D  is  extremely  flexible.  In  [Mitic  2004]  it  was
shown that, within certain limits, the source distribution can be random, and in [Mitic 2003] it was
shown  that  sources  “at  infinity”  (i.e.,  a  large  distance  from  D  compared  to  the  size  of  D)  can
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produce  very  accurate  results  for  the  simple  domain  discussed  in  this  paper.   Fam’s  study  [Fam
2002] confirmed findings on source distributions near D, using extensions of the MFS. All of these
studies  show  that  previous  attempts  to  analyse  meshless  source  distributions  are  insubstantial.
Alwes [Alwes 2002], in an analysis of Poisson equations, considers a ‘natural’ radius for a circular
distribution of discrete sources of “5~10 times the diameter of D” (without any precise definition for
the term ‘diameter’ for a non-circular domain).  The results of [Mitic 2004] and [Mitic 2003] show
that  a  ‘natural’  radius  is  infinite,  although the  results  of  this  paper  indicate  that  for  some domains
ill-conditioning  precludes  the  use  of  very  large  radii.   Contrary  to  the  findings  of  Poullikkis
[Poullikkis 1998], sources do not have to be placed uniformly at a fixed distance from the boundary,
and a minimal number of boundary elements often suffices. 

The real motivation behind this study comes from [Mitic 2004].  If sources can be placed anywhere
outside  the  domain,  the  idea  that  the  same  class  of  sources  could  be  used  for  any  domain  is
plausible.   A circular  source  distribution  has  been chosen here  simply because it  is  easy to define.
Other  configurations  (for  example,  a  square)  should  also  work,  although  they  are  not  considered
here.  

3 Definitions and Conjectures
Given a circular source distribution, an optimal circle radius and an optimal number of sources need
to  be  found.   The  domains  here  are  all  simply-connected,  and  I  define  the  nominal  radius  of  a
domain  as  half  of  the  (straight  line)  distance  between any  two points  that  are  furthest  apart.   This
definition  does  not  need  to  be  rigourous  as  it  is  needed  for  no  more  than  a  general  guideline.
Results of equivalent accuracy can be obtained from radii that vary widely.

The  examples  in  this  paper  (and  others)  show that  a  circular  source  distribution  can  function  as  a
generic distribution for solving the type of potential problems considered in this paper.  In addition,
I conjecture the following:
1. The optimal radius of the circle is 10 times the 'nominal radius' of the shape enclosed
by the boundary.
2. The  optimal  number  of  sources  is  calculated  from the  number  of  boundary elements
on curved faces and one per boundary elements on straight line faces.

3.1 Boundary  Element   and   Circular  source
distribution functions
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Package  MeshlessCircle.m  contains  all  the  functions  necessary  to  do  the  boundary  element
calculations  in  this  paper.   (Change  the  path  to  the  actual  location  of  the  package  in  the  import
expression below to use the package.)

In[1]:= << "d:\\ims2004\\papers\\meshless methods\\MeshlessCircle.m"

In the following sections of this paper I discuss configurations of the domain D which provide some
evidence for the conjectures above.
The  top-level  function  in  MeshlessCircle.m  is  InteriorSolution,  which  calculates  the  potential  and
potential gradient at an interior point of D. Its full prototype is:

InteriorSolution[points, sources, types, boundaryCond, interiorPoints] .

The arguments are:

points: a sequence of points that determines the boundary elements of D;
sources: a list of source coordinates;
boundaryCond: a list of boundary condition values, one for each boundary element;
types: a  list  of  boundary  condition  types,  either  "Dirichlet"  (potential

specified) 
or "Neumann" (potential gradient specified), corresponding to 
boundaryCond;

interiorPoints: a list of interior points at which to calculate the potential and 
potential gradient.

The  source  locations  are  generated  using  the  function   sourcesC[r,c,n],  which  returns  a  list  of  n
coordinates,  uniformly  distributed  around  a  circle  of  radius  r  and  centre  c.   The  function
ShowSources[sources,  points,   pointSize]  displays  the  sources  and  the  boundary  (pointSize  =  0.02
gives a reasonable display).

The  bulk  of  the  work  in  using  these  functions  lies  in  generating  the  quantities  points  and
boundaryCond.   The  other  inputs  are  trivial,  but  sometimes  lengthy  expressions.   All  of  them are
essentially  geometric,  and  have  no  bearing  on  the  actual  computation  of  potental  and  potental
gradient  other  than  to  act  as  raw  data.   Therefore,  all  of  the  input  expressions  except  for  the  first
(section  4)  for  the  examples  that  follow  have  been  transferred  to  a  subsidiary  notebook,
InputExpressions_Mitic.nb.   In  the  cases  where  this  has  been  done,  cross-references  to  and  from
InputExpressions_Mitic.nb are provided. 
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4 Linear flow in a rectangular domain
This was discussed at length in [Mitic 2004] in the context of randomly-distributed sources, and this
specific  case  appears  in  [Cartwright  2001].   The  domain  D  is  rectangular  with  Dirichlet  boundary
conditions (U = 0 and U = 2) imposed on the two vertical  parts of the boundary and the Neumann
boundary  conditions  Q = 0  imposed  on  the  two  vertical  parts  of  the  boundary  (Figure  1  below).
This  problem  has  10  boundary  elements,  and  represents  linear  heat  flow  in  the  x-direction.   The
results are as expected: the potential varies linearly from 0 to 2, with zero vertical flux, and constant
horizontal  flux  whose  value  is  2 ê H0 - 2L = -1.   Excellent  accuray  is  achievable  using  a  circular
source distribution, but this problem is really too simple to expose any problems with the meshless
method.   The  radius  of  the  circle  of  sources  does  not  matter.   The  minimum  value  tried  was
marginally more than the nominal radius (half the diagonal, 1ÅÅÅÅ2  

è!!!5 ) and the maximum was 'infinite'
(about 100,000).  The number of sources was also unimportant.  As more sources are used, accuracy
improves  up  to  a  point  when  ill-conditioning  prohibits  further  gain  in  accuracy.   Surprisingly,
acceptable results could be obtained using only one source, but this configuration is bound to lead to
trouble for more complex domains!  The error for the calculated values of the potential and x- and
y-components of the flux using 10 sources (as per conjecture) with a radius of 11 (about 10 times the
nominal radius of the domain) was less than 0.001%.  Hence the conjecture above is easily satisfied.

Figure 1: 

Linear Flow
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points = 880, 0<, 8.5, 0<, 81, 0<, 81.5, 0<,
82, 0<, 82, 1<, 81.5, 1<, 81, 1<, 80.5, 1<, 80, 1<<;

r = 4; c = 81, 0.5<; pts = 10;
sources = sourcesC@r, c, ptsD;
types =
8"Neumann", "Neumann", "Neumann", "Neumann", "Dirichlet",

"Neumann", "Neumann", "Neumann", "Neumann", "Dirichlet"<;
b = 80, 0, 0, 0, 0, 0, 0, 0, 0, 2< ;
ShowSources@sources, points, 0.02D
InteriorSolution@points, sources, types, b, 81.5, .5<D
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80.500002, −0.999997, 3.33067 × 10−16<
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5 An Elliptical domain with Dirichlet 
boundary condition
This problem is taken from [Kythe 1995].  The potential  at a point Hx, yL  on the curved part  of the
domain  is  given  by  UHx, yL = x2 + y2,  and  there  is  zero  flux  across  the  straight  sides.   (Figure  2,
below).   Curved surfaces (particularly concave ones) are a good test of this meshless method, and
this is a relatively simple case because of the Dirichlet condition on the curved part of the boundary.

Figure 2: 

Elliptical Domain with Dirichlet Boundary Condition

The numerical accuracy obtained is,  on the whole, insensitive to changes in the number of sources
and the source radius.  Sufficient accuracy may be obtained, as in the reactangular domain, by using
8  sources  (0.8  times  the  number  of  boundary  elements)  with  a  radius  of  10  (about  10  times  the
nominal  radius  of  the  domain,  1ÅÅÅÅ2  

è!!!5  again).   The  'infinite  radius'  calculation  also  gives  correct
results,  despite  increased  ill-conditioning.   The  results  for  the  potential  and  flux  (x-  and
y-components)  at  the  interior  point  H1.0, 0.5L  with  radius  10000  (8  sources)  are
81.02718, 0.60582, -0.30291<,  which  agree  closely  with  results  from  much  smaller  radii.   In  this
case  it  does  not  seem  worth  using  too  large  a  radius  in  order  to  minimise  any  inaccuracy  due  to
ill-conditioning.

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 5.
The numerical output is the calculated potential and flux (x- and y-components) at the interior point
H1.0, 0.5L.

6 Proc. IMS2004

Published by Positive Corporation Ltd., Hampshire, England



-2 2 4 6

-4

-2

2

4
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Out[11]= 81.02717, 0.605895, −0.30289<

6 A Triangular domain with a boundary 
condition discontinuity
Cartwright  [Cartwright  2001] presents  a  problem in  which there is  a discontinuity  in the boundary
conditions at the corners of the domain.  This problem has a Neumann boundary condition defined
on the hypotenuse of a triangle and Dirichlet boundary conditions on the other two sides (Figure 3,
below).  This necessitates additional complications for traditional BEM (boundary element method)
calculations,  but  not  for  meshless  methods.   The  method  proposed  in  this  paper  still  gives  correct
results. The nominal radius of the domain may be taken as half the length of the hypotenuse of the
triangle,  1ÅÅÅÅ2  

è!!!2 .   With the radius  of the circle  of sources  set  to  10 times the nominal radius of the
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domain  and  using  a  number  of  sources  equal  to  the  number  of  boundary  elements,  results  for  the
potential  and  flux  at  an  interior  point  are  accurate  to  within  0.5%.   The  calculation  is  very
insensitive both to the number of sources used and to the radius of the source circle.  The case where
the latter only just encloses the domain is accurate for a radius of 1.3 or more.  The results are not
accurate for a smaller radius than 1.3.  It appears that there is no upper bound for the radius, so the
"sources  at  infinity"  concept  of  [Mitic  2004] applies.   At  least  6  sources  are  required to  solve this
problem.   The  "solutions"  obtained  using  5  sources  are  accurate  to  within  2%,  but  are  completely
wrong  with  fewer  sources.   As  for  the  radius,  there  appears  that  there  is  no  upper  bound  for  the
number of sources, subject to ill-conditioning limiting accuracy at some stage.  100 sources works.
I  have  used  a  constant  element  BEM   to  check  my  results  for  this  problem,  and  conclude  that
Cartwright's results are wrong!

Figure 3: 

Triangular Domain

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 6.
The numerical output is the calculated potential and flux (x- and y-components) at the interior point
(0.25,0.25).  
The  corresponding  Constant  Element  BEM  solutions  are  respectively
81.01468, 0.198341, 0.198341<.
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1.04419, 0.176777, 0.176777

7 A Circular Cylinder heat transfer 
problem
This problem [Kythe 1995] presents a stringent test of the hypotheses proposed in this paper.  The
problem models  heat  flow  through  the  walls  of  a  pipe,  maintaining  a  constant  temperature  on  the
inner  and  outer  faces  of  the  pipe.   The  diagram below (Figure  4)  shows  the  cross-section  through
one quarter  of the pipe,  with the boundary condition Q = 0 on the straight  faces to ensure that  the
flow is entirely radial.  Concentrating on calculating the value of U  at an interior point, an analytic
solution is available.  With inner temperature Tin and outer temperature Tout, and corresponding radii
rin  and rout, the temperature Tr  at radius r is Tr = Tin + HTin - ToutL LogI rÅÅÅÅÅÅÅÅrin

M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅLogH rinÅÅÅÅÅÅÅÅÅÅrout

L .  The correct temparature

at  radius  20 is  therefore  621.44.   In  this  case  the  nominal  radius  may be  taken as  
"####################302 +302

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2  ~ 21.
The calculation below shows the result of the "circle radius ~ ten times nominal radius with number
of sources ~ 0.8 times the number of boundary elements" combination.  The calculated U  value is
accurate to within 3%.  Unfortunately it is hard to improve on this figure.
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Figure 4: 

Circular Domain : Heat Transfer

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 7.
The numerical output is the calculated potential and flux (x-and y-components) at the interior point
H14.1421, 14.1421L, which is the mid-point of a circle of radius 20 in Figure 4.  The potential should
be constant on this line.
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Out[19]= 8601.521, −20.4227, −20.4227<

Correct  results  depend  on  the  number  of  sources.  Table  1  shows  the  variation  of  the  calculated
potential  at  radius  20  for  a  varying  number  of  sources.  Too  many  sources  gives  increasingly
inaccurate  results.  A  particular  problem  is  that  the  results  are  totally  inaccurate  if  the  number of
sources  is  approximately  equal  to  the  number  of  boundary  elements  (16  in  this  case).  Using  16
sources  gives  UH20L~506  and  using  15  sources  gives  UH20L~1226.  Using  roughly  0.8  times  the
number of boundary elements (12 or 13) for the number of sources gives tolerable accuracy for U ,
but not for Q. We are more successful using about 0.5 or 0.6 times the number of boundary elements
for the number of sources. No explanation is apparent yet for this alarming variation in results!
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Out[76]//DisplayForm=

SourcÑ
es

U H20L % error

4 635.69 2.3
5 628.21 1.1
6 631.19 1.6
7 622.34 0.1
8 605.38 2.6

10 606.07 2.5
12 599.59 3.5
20 589.34 5.2
30 604.65 2.7
40 604.65 2.7
50 604.65 2.7

100 604.65 2.7

Table 1: 

Heat Flow : Variation of Potential with Number of Sources

The following results (Table 2) are obtained by varying the radius of the circle on which the sources
lie, using 12 sources.  Clearly, increasing the radius improves the result, but only up to a point.  The
result  for "infinite radius" is surprisingly less accurate than for some smaller radii,  presumably due
to increased ill-conditioning.  

Radius U H20L % error
40 599.59 3.5

100 603.55 2.9
200 603.98 2.8
500 604.10 2.8

1000 604.11 2.8
5000 605.78 2.5

10000 605.78 2.5
50000 614.17 1.2

100000 635.87 2.3

Table 2: 

Heat Flow : Variation of Potential with Radius

One  further  interesting  experiment  is  to  investigate  the  stability  of  the  results  with  an  "infinite"
source radius, and varying the number of sources.  Many problems then disappear.  The problem is
much less sensitive to the number of sources used.  The results for the sources at radius 100000 (i.e.
"infinity") with 16 sources (i.e., one per boundary element) is typical: U ~635.6,  Qx~Qy~ -20.02.
The same accuracy is achievable with a range of sources from 5 to 100.
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8 Torsion of an Ellipse
This problem is taken from [Brebbia 1989], and concerns torsion of an ellipse.  The configuration is
as  shown  in  Figure  5,  with  a  Neumann  condition  defined  by  Q1(x,y)  on  the  elliptical  boundary,

where Q1Hx, yL = 75 x yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!25 x2+10000 y2
.  The nominal radius is "#################102 + 52 ~5.6.

 

Figure 5: 

Torsion of an Ellipse

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 8.
The numerical output is the calculated potential and flux (x- and y-components) at the interior point
H2, 2L.  The corresponding solutions from [Brebbia 1989] are given after the Mathematica outputs.
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Out[37]= 82.53575, 1.24581, 1.23106<
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Despite  the  complication of  boundary condition on the curved part  of the boundary (for  which we
need  to  apply  Q1  at  points  on  that  part  of  the  boundary),  this  problem  is  stable  with  respect  to
changes in both the source radius and the number of sources.  Results agree well with Brebbia and
Dominguez's values (potential  - 2.40, x-flux ~ 1.22 and y-flux ~ 1.22 ).  For example, the "infinite
radius  with  number  of  sources  =  number  of  boundary  elements"  configuration  gives  U ~2.461,
Qx~1.212  and  Qy~1.230.   Changing  the  radius  and  number  of  sources  makes  little  difference  to
the overall results.

9 A Motz problem
This  Motz  problem  presents  particular  difficulties  for  traditional  BEM  techniques  because of
discontinuities  in the boundary conditions.   Figure 6 shows a Motz configuration.   The problem is

solved by several techniques in [Fam 2002].  The nominal radius of the boundary is "#################142 + 72 ~8. 

Figure 6: 

Motz problem

The parameters of the computed solution are:

• 1 boundary element per boundary condition (5 in all);
• 5 sources;
• solutions calculated for interior points Hx, -7 ê 2L - x in @1.4, 7D.

Table 3, below, shows the results for U at the same points as were used in [Fam 2002] using a small
radius  and  an  "infinite"  radius.   For  comparison,  Fam's  results  using  the  Whiteman  BEM  are
reproduced.   It  is  hard to  draw conclusions  from these  results  other  than to  note  that  the  meshless
results  are  consistently  lower  than  the  Whiteman  BEM  results.   Fam presents  several  methods of
solution  for  this  problem,  and  the  meshless  results  given  here  are  comparable  with  all  of  Fam's
results.   There  is  no  guarantee  that  the  Whiteman  BEM  produces  "correct"  results,  although  I
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suspect that  they are more reliable than some others.   If  so, a small radius produces more accurate
results a large radius. 

x U Hcircular
point
sourcesL

Hradius = 10L

U Hcircular
point
sourcesL

Hradius
infiniteL

U HWhiteman
BEML

7 1030.3 1113.6 1000
5.6 957.4 1008.2 930
4.2 882.8 910 860
2.8 807.8 819.1 780
1.4 733.6 735.5 690

Table 3: 

Motz problem : potentials at Hx, −7 ê2L

InteriorPoints = 881.4, −7ê2<, 82.8, −7ê2<,
84.2, −7ê2<, 85.6, −7ê2<, 87.0, −7ê2<<;

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 9.
The  numerical  output  is  a  vector  of  calculated  potentials  at  the  set  of  interior  points  Hx, -7 ê 2L,
where x  is  as  in  Table  3.   Table  3  also  gives  the calculated  Whiteman BEM potentials  from [Fam
2002].  This is their simplest computation, but cannot be taken as an 'accurate' solution. 
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8757.336, 830.907, 906.641, 985.721, 1069.41<

10 Fluid Flow past a circular cylinder
Here we consider Zhang’s fluid flow problem in [Zhang 2001].  This is a standard configuration of
fluid  flow  past  a  circular  cylinder  (the  circular  arc  part  of  the  domain)  and  is  shown  in  Figure  7.
Domains such as this have caused problems in the past, and I think this is due to the concave part of
the boundary.  In Figure 7, U is the stream function. There are ‘natural’ boundary conditions on the
boundary  segments  OA,  AB  and  BC,  and  the  boundary  conditions  on  CD  and  DO  are  calculated
from the analytical solution, UHx, yL = y I1 - 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅy2+Hx-4L2L M with y=2 and x=0 respectively.
The nominal radius of the domain is è!!!!!!!!!!!!!!42 + 22 ~2.2.

The first  output  below is  the calculated  potential  at  (0,0).   The second output  below is  a  vector of
calculated potentials at a sequence of points on the line OC, as discussed in Section 10.1.
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Figure 7: 

Fluid Flow past a CircularCylinder

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 10.  
The numerical output is a vector of calculated potentials at a set of 19 interior points, equally spaced
on the line OC in Figure 7.
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Out[164]=

80.0789327, 0.189132, 0.28342, 0.36843,
0.448432, 0.525529, 0.600084, 0.671316, 0.73796,
0.798939, 0.853938, 0.90381, 0.950725, 0.997986,
1.04944, 1.10839, 1.17602, 1.24918, 1.31757<

For comparison, the corresponding exact solutions are:
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Out[45]= 80.0930796, 0.184615, 0.274249, 0.361538, 0.445946, 0.526829,
0.603448, 0.675, 0.740708, 0.8, 0.852809, 0.9, 0.943836,
0.988235, 1.03846, 1.1, 1.17692, 1.27059, 1.37945<

10.1 Comparison of calculated potentials on a 
diagonal with exact values
For  radius  r = 10,  the  calculated  potentials  agree  closely  with  the  exact  results  except  near  the
boundary x = -2.   For  larger  radii  (e.g.  r = 50,  which is  about  20 times the  nominal dimension of
the  region,  the  maximum  error  is  about  3%.   Increasing  the  radius  further  produces  more  error,
particularly near the vertical boundaries of the region.

In contrast to the number of nodes used by Zhang [Zhang 2001] to discretise the boundary  (ranging
from 26 to 104), I solved this problem using only 20 boundary elements and as few as 12 sources.
The discretisation was very crude but it sufficed: 3 boundary elements on OA, 8 on AB, 1 on BC, 4
on CD and 2 on DO.  The following results  show the calculated  potentials  at  the same 19 interior
points as Zhang. The parameters in this comparison are: 13 sources (one for each boundary element
on  the  straight  line  sides  and  one  for  each  boundary  element  on  the  convex  sides  and  none  for
concave  sides,  making  13+0+0),  with  source  radius  22  (10  times  the  nominal  radius).   The
percentage  errors  recorded below are considerably worse if  the source radius exceeds 20 times the
nominal radius.  This problem is less sensitive to the number of sources, but the number conjectured
appears to be optimal.

potExact = Map@uExact@#@@1DD, #@@2DDD &, intPointsD êê N;
perCentErrors = 100 HpotExact − calcPotentialsLê potExact

8−8.02602, −6.7199, −2.5103, 0.203486, 1.4191, 1.63932, 1.33876,
0.853842, 0.370855, −0.0507658, −0.435211, −0.831093, −1.24257,
−1.56965, −1.59213, −1.02109, 0.420308, 2.98827, 7.04065<

11 Saint Venant torsion
This torsion problem, originally from [Canas 1997] and analysed further in [Fam 2003] provides a
very  stringent  test  of  the  conditions  that  are  necessary  to  obtain  good  accuracy.   The  original
problem contains only Neumann boundary conditions.  The discussion in [Mitic 2004] showed that
a meshless BE method involving no Dirichlet boundary conditions could not converge, let alone to a
correct  numerical  value.   Hence,  in  order  to  solve  this  problem,  one  boundary  point  (point  B  in
Figure  8,  below)  is  "anchored"  by  imposing  an  arbitrary  Dirichlet  boundary  condition  U = 0.   In
order  to  do  this,  a  very  small  straight  line  portion  of  the  boundary  from H1, 0.01L  to  H1, -0.01L  is
extracted,  and  the  curved  portion  CBA  is  distorted  slightly  to  fit  with  the  inserted  straight  line
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portion.  This is the same boundary condition that Fam imposes, and its physical interpretation is to
stipulate that there should be no rigid body motion of the domain.

Figure 8: 

Saint Venant Torsion

The exact solution for the potential at a point X(x,y) in the doamin is given in [Canas 1997] as U(x,y)
= 2 sinq (r + 1/r) where q is the angle BOX in Figure 8 and r is the distance OX.  For four test points
{1,1}, {2,1}, {3,1} and {3,0} the corresponding exact solutions for the potential are 3.0, 2.4, 2.2 and
0.  The Mathematica  code uses two functions to define the geometry of the two circles concerned:
Y for the larger circle CDA and Ys for the smaller circle ABC.  The discretisation of the boundary
comprises 37 boundary elements, with 6 on the concave part ABC, the one straight line element at B
and the other 30 on CDA.

The inputs for this problem may be found in InputExpressions_Mitic.nb, section 11.  
The outputs are:
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Out[124]=

83.03989, 2.45171, 2.34563, 0.000106812<

Table  4 shows how the solutions at the test points vary as the radius of the source circle increases
(in multiples of the nominal radius NR = 2)

Multiple of NR U H-1, 1L U H0, 1L U H1, 1L U H1, 0L
2 2.87939 2.33771 2.13252 0
5 2.81563 2.22689 1.86201 .0000026

10 3.03307 2.40686 2.22598 −.003098
20 2.98682 2.38379 2.21362 −.004883
25 2.86670 2.31885 2.15112 −.00146484
30 2.60928 2.20499 2.10248 0
50 2.28738 2.04742 1.99670 −.0011597

1000 1.72013 1.77242 1.81926 .00035095

Table 4: 

Saint Venant : Variation of calculated potential with Radius

Accuracy deteriorates rapidly as the sources radius increases, and the "infinite" radius case is clearly
inapplicable.  A  possible  explanation  is  the  dominance  of  Neumann  boundary  conditions  in  this
problem.
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Table 5 shows how the calculated solution for the potental varies with the number of sources used
for  a  given  source  radius,  20 = 10 NR.  The  results  appear  to  be  stable  over  a  large  range  for  the
number  of  sources.  There  is  no  point  in  using  too  many  sources  as  the  time  taken  to  do  the
computations increases with the number of sources, and ill-conditioning can affect the result. Using
other  radii  for  the  source  circle  does  not  present  such  a  clear  view.  For  example,  using  a  source
radius  of  10  (5  times  the  nominal  radius)  gives  accurate  results  for  20-30  sources,  but  very
inaccurate results (typically with errors of 20% or more) for other numbers.

Sources U H-1, 1L U H0, 1L U H1, 1L U H1, 0L
10 1.71881 1.77184 1.81905 0
15 2.35566 2.08144 2.01926 0
20 2.86701 2.32014 2.15302 .0000012
25 3.03535 2.40887 2.22655 −.0003443
30 3.04002 2.41376 2.23283 .0037384
40 3.03688 2.41066 2.22977 .0007057
50 3.03684 2.41060 2.22970 .0006561
60 3.03662 2.41039 2.22948 .0004387
80 3.03669 2.41049 2.22959 .0005169

100 3.03619 2.40996 2.22913 .00002098
150 3.03682 2.41059 2.22968 .0006628
200 3.03623 2.41002 2.22912 .000092506
500 3.03573 2.40947 2.22859 −.00048137

Table 5: 

Saint Venant : Variation of calculated potential with Number of Sources

These  investigations  show  that,  for  this  problem,  the  radius  of  the  source  circle  is  the  more
important factor for achieving good accuracy. This is also true of the circular cylinder heat transfer
problem,  but  the  optimal  radii  are  rather  different  (10  times  the  nominal  radius  in  the former case
and infinite in the latter). Discrepancies such as this make it hard to specify a generic pattern for the
source circle.

12 Conclusion
The  aim  of  this  study  was  to  find  a  generic  circular  source  determination  for  solving  the  BVP
“2 U = 0 with a wide variety  of domains and boundary conditions defined on those domains.  The
parameters  determinable  are  the  number  of  sources  and  the  source  radius.   The  conjecture  of  this
paper came about by trying many variations on these input parameters for all of the cases considered
here.  The result below are the only ones that can be applied in all cases.
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Optimal source circle radius = 10*Nominal radius of the domain.

Optimal number of sources = One for each boundary element on straight line portions of the
domain  +  one  for  each  boundary  element  on  convex  portions  of  the  domain   (with  none  for
concave portions of the domain).

Ideally  I  would  have  liked  an  "infinite  source  radius"  to  have  worked for  all  cases,  but  this  failed
totally for the Zheng fluid flow problem and the Saint Venant torsion problem.  In all other cases it
provided an ideal situation: use a very large radius, in which case the number of sources is relatively
unimportant  and  a  convenient  (but  not  the  only  one!)  value  to  choose  is  the  total  number of
boundary elements.  No reason is yet apparent for the different behaviour in the case of the Zheng
and  Saint  Venant  problems.   Choosing  the  optimal  source  radius  to  be  ten  times  the  domain's
nominal  radius  works,  but  the  number  of  sources  is  then  critical.   The  circular  cylinder  heat  flow
problem shows that the solution can then be extremely ill-conditioned with respect to the number of
sources  used.   One  must  be  cautious  in  accepting  the  conclusions  in  the  bold  in  this  section.   In
particular,  the formula for the optimal number of sources causes some concern.  It fits all the cases
discussed here, but there is no guarantee that it will fit others.  However, some of the cases here are
extreme, and will, I hope, provide a good sample for determining the parameters of the source circle.
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