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Abstract

This work derives from a recent advance in mathematical modelling based on Object-Oriented 
principles.  Its principal idea is to automate model-generation by defining a rule-based system.  
Objects within a problem domain can be created, and then iteratively linked in a well-defined 
manner, until precise goals are achieved.  In general, the goal is to generate an equation of state 
for the system.  The iterative process uses queue management principles usually associated 
with Workflow systems, but eliminates human intervention.  The result is a flexible and 
extendible system that can, given object definitions and rules for progressing the workflow, 
generate equations of motion automatically within the context of Newtonian particle mechan-
ics.  I refer to this methodology as Object-Workflow in this paper.

Modelling with Object-Workflow

The following example shows a simplified version of how Object-Workflow works.  Consider a particle P1

suspended vertically from a light spring S1.  The particle moves in SHM in a gravitational field G1, with a

coordinate system C1.  These objects  are placed in an Active  List,  which is  processed iteratively by taking

suitable pairs  and linking them to produce new objects  (Forces F1,F2,F3,  an equation of  motion E1,  and a

solution Sol1).  Objects which are no longer needed in the model transfer to a Complete List.  The following

table  shows the  steps  in  this  iteration.   The Workflow rules  determine which objects  to  link at  each stage,

and the Link rules determine the result of that link. 

Stage Active List Complete List Next link...

1 {C1, P1, G1, S1} {} P1+G1 => F1

2 {C1, P1, S1, F1} {G1} P1+S1 => F2

3 {C1, P1, F1, F2} {G1, S1} F1+F2 => F3

4 {C1, P1, F3} {G1, S1, F1, F2} P1+F3 => E1

5 {C1, E1} {G1, S1, F1, F2, P1, F3} E1 => Sol1

6 {C1, Sol1} {G1, S1, F1, F2, P1, F3, E1}
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In  this  work I  rely  heavily  on domain knowledge to  model  particle  mechanics  using  lists  and rules.   This

approach  counters  current  research  into  mathematical  modelling,  which  centres  on  problem  formulation,

communication  skills  and  teamwork  [8].  Some  authors  have  attempted  to  formalise  rules  for  modelling

given  scenarios,  but  none  provide  a  significant  insight  into  either  general  principles  or  specific  heuristics.

Recent  attempts  include  [2,5,15].   Ramsden  [16]  provides  evidence  that  domain  knowledge  is  not  only

necessary when applying mathematical techniques, but must be integrated into a context: a correspondance

with the lists and rules of Object-Workflow is apparent. 

In  [14]  I  used  evidence  from  the  biennial  ICTMA  (International  Conference  on  Teaching  Modelling  and

Applications) conferences to argue that the modelling community had only recently realised the potential  of

computer  algebra  in  modelling.  The  1997  conference  [9]  contained  a  significant  number  of  papers  on

computer algebra, in contrast with previous conferences. ICTMA8 papers indicate that using computer tools

has shifted attention away from mathematical modelling methodologies and towards routine use of computer

methods.  Some ICTMA8 papers hint  at  the ideas that  I  implement in this  paper:   [7] -  through attempts to

isolate and connect key elements of a problem domain, and [10] - in providing evidence that a diagram is an

aid to problem solving.

Process-Driven Mathematics and Prior work on Model Characteristics

The  idea  of  using  a  sequence  of  processes  to  define  an  overall  objective  is  not  new  in  mathematics  or

computing.  In object modelling, defining class methods goes part way to finding individual processes, but

does  not  necessarily  combine  them.   See  (e.g.)  [17  or  11].   Similarly,  school  mathematics  in  the  1960s

depended on flow diagrams to teach ideas in algebra (e.g., [18]). Abidin [1] provides a later manifestation of

this idea by computerising flow diagrams, although he fails to abstract properties and methods in the prob-

lem domain. Furse's Mathematics Understander [6] remains a nearest equivalent to this research in terms of

mathematical automation.  

The essential relations between elements in the particle mechanics problem domain were explored in [12]. I

presented a formal class hierarchy for particle mechanics, with a Mathematica implementation to manipulate

those  classes  and  generate  solutions  to  problems.  The  rationale  behind  that  paper  was  the  realisation  that

there is a uniformity in objects, interactions, overall structure and processes within a given problem domain.

In [13] I described an interface for generating a model in particle mechanics which was user-driven: the user

had to make all  decisions about which objects to link,  and when. The user received no overall  strategy for

progressing the algorithm.  In this paper I provide the overall strategy which were lacking in previous papers.

Object Modelling

In [14] I suggested a simple list-based implementation of the object domain.  In this paper, I remove the idea

of  a  class  hierarchy,  retaining  only  properties  of  objects,  constructors,  and  functions  describing  how  they

interact with other objects.  Strictly, my "objects" are not objects in a true O-O sense: there is no inheritance

or polymorphism. Modelling proceeds by maintaining lists of objects, which represent queues, and using list

operations and replacement rules.  This queueing aspect provides the parallel with Workflow.  The software

implementation comprises each of the subsections below. 
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■ "Objects"

Shlaer  [17] and Coad  [3]  give  a  useful  definition  and  guide  for  finding  classes  and  objects.  A  class  is  an

abstraction  of  the  real  world,  members  of  which  have  the  same  characteristics  and  conform  to  the  same

rules.  An  object  is  an  element  of  a  class.  In  the  domain  of  particle  mechanics,  abstractions  like  particles,

strings,  planes etc.  are always treated in the same way when solving problems.  They are classes.  We don't

need to formalise them in this analysis, but we do need to define the properties and behaviour of the objects

within classes.  The characteristics of elements in the problem domain are abstracted by simply listing them.

Producing such a list  requires domain knowledge and experience,  but  forces you to think about  significant

properties of elements in the problem domain. 

■ Objects and Persistence

I classify objects in the particle mechanics domain as either Persistent (they interact throughout the lifetime

of the model) or Transient (they take no active part in the model after their first interaction). The persistent

objects in this paper are: Particle, Coordinate System, Solution. Particles are particularly important because

they determine distinct phases of the workflow. The transitory objects used are:  Force, String, EquationOf-

Motion,  Gravity.   For  example,  two  forces  may  combine  to  produce  a  resultant  force,  which  effectively

replaces  the  original  two  forces.   In  addition  a  NULL  object  is  defined,  with  Zero  persistence.   A  NULL

object  results  from  two objects that  should not  interact,  and leaves the original  objects  unchanged. Persis-

tence is a fixed property of the object, so each class is either Persistent or Transitory.

The  Gravity  object,  although  classified  as  Transitory,  falls  uncomfortable  near  to  Persistent.   Its  main

purpose is to define a weight when linked to a Particle. It needs to link with all Particles before it's no longer

needed, so it is persistent for a limited number of interactions.  This contradiction is resolved by applying a

set of dedicated queue management rules that create all  necessary weights before any other links are done.

The  function  CreateAMKObject  creates  an  object  using  the  object  model  in  [20]  to  "remember"  object

properties. 

■ Queues and Queue Management

The  principal  queue  is  QActive,  the  Active  queue.   It  contains  objects  that  currently  interact  with  other

objects  in  the  model.   When  such  interactions  have  ended  for  particular  objects,  they  are  transferred  to

QComplete.  This queue is a parking area for objects that are no longer required to progress the model.  A

Gravity  object  needs  special  treatment.    All  Particle  and  Gravity  objects  are  transferred  initially  to  the

QInitial  queue.   QInitial  is  then  processed  using  ProcessInitialQueueRules,  which  creates  weights  for  all

masses concerned, and then transfers the Gravity object to the QComplete queue.  PopulateQueues handles

these queue allocations. Two other queues have a minor role.  All solutions end up in the QEnd queue and

QHold is the repository for the CoordinateSystem object. The CoordinateSystem object keeps track of which

forces are "connected" to which masses (see  the Principle of Adjacency in [14]). 

Queues are managed using replacement rules. At each stage of the iteration PersistenceOrderRules  brings

Persistent objects to the front of QActive.  QActive is then processed by considering its first two elements,

linking  them,  and  transfering  them to  QComplete  if  they  are  transient.   If  they  are  persistent  they  stay  in

QActive.  The result of the link joins the end of QActive.  This process is applied repeatedly until only two

objects remain in the active queue: a Particle and a Force.  This pair is then linked to form an EquationOfMo-
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objects  queue:  pair  EquationOfMo

tion object and can then derive a solution from that.

■ Workflow

The concept  of  workflow is  well-established in  large business  software  applications,  and there  is  an  abun-

dance of software to support it.  The underlying principle of workflow is to progress an entity (e.g. a logical

case,  document,  person etc.)  through a  sequence until  an  appropriate  end point  is  reached.  Entities  usually

have  states,  which  change  as  the  entity  progresses.   Human  intervention  often  determines  what  the  state

changes to at any given stage in the process, and software is usually designed to support entity manipulation

as a result of a user input.  It is often convenient to represent the state of an entity by placing the entity in a

queue  which  mirrors  the  state.   Two  examples  of  widely-used  general  purpose  workflow  packages  are

Staffware [19] and the Automated Work Distributor (AWD) from Computer Sciences Corporation [4].  Both

can be configured to  suit  particular  situations.   Links to  workflow products  and research may be found on

www.workflowsoftware.com.

■ Overall Mathematica implementation

The Mathamatica  implementation can be seen in the package Miscellaneous`MMWorkflow`:   It  contains

functions  and rewrite  rules  to  create,  manipulate  and link  objects,  and to  control  the  modelling  process  by

maintaining queues.  In order to generate a model, the following steps are required:

1. Define  the  objects  in  the  problem  domain  using  CreateAMKObject.   These  definitions  must

account for the geometry of the system by first defining a CoordinateSystem object, whose coordinates are

used by other objects.

2. Initialise and populate the queues using PopulateQueues

3. Process QInitial, QActive and QComplete using ProcessInitialQueueRules

4. Process QActive using PersistenceOrderRules

5. Process  QActive  and  QComplete  using  ProcessActiveQueueRules.  This  is  the  main  processing

loop, and progresses the model to the stage where an equation of motion can be formed.

6. Process QActive and QComplete using ProcessActiveQueueRules2.  This produces the equation of

motion.

7. Process  QActive,  QComplete  and  QEnd using  ProcessActiveQueueRules1.   This  solves  the  equa-

tion of motion.

These processes are encapsulated in two functions:  GenerateEquation (stages 1-6) and GenerateSolution

(stage  7).   Encapsulating  the  model-generating  process  in  this  way  serves  to  emphasise  how  the  same

processes can be applied to any well-defined input list.  Mathamatica is a useful tool for this analysis mainly

because it provides extensive support for list processing and rewrite rules.  Two methods are used to display

information  about  the  queues.  ViewQueue  provides  the  names  of  the  objects  in  a  given  queue.   ShowAl-

lQueues  shows all  the queues side by side, in a semi-graphical format based on [21].  It  is  then possible to

compare the position of elements in the queues directly,  and the passage of any given element through the

queues is easy to trace. 

■ Multi-Particle systems

Multi-Particle  systems require  an element  of  geometry to  be present  in  either  the initial  formulation of  the

objects or in the rewrite rules.  The reason is to prevent a link between objects that violate the Principle of
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objects  prevent  objects  Principle

Adjacency.  For simplicity, each geometric part of the problem is processed separately.   For example, given

a  2-particle  {P1,  P2}  system  in  which  the  particles  are  connected  by  a  spring  S,  and  a  forcing  term  F  is

applied to P2 only, the {P1,S} sub-system is processed first, and then the {P2,S,F} sub-system.  An alterna-

tive method is  to incorporate a SubSystem  property for each object,  which links that  object  with a particle,

and prevents links with other particles. 

Examples in the Appendix

The  three  associated  notebooks  contain  examples  of  how  to  formulate  and  solve  simple  mathematical

models in Newtonian particle mechanics using Object-Workflow.  

1-ParticleExamples.nb  develops  a  simple  example  of  a  vertical  projectile  in  stages:  construction  of  the

objects (Particle, Gravity, CoordinateSystem), processing the queues in turn, and then extracting the solution

to  the  equation  of  motion.   The  vertical  projectile  is  a  very  simple  problem,  but  is  not  easy  to  implement

using  the  Object-Workflow  method.   The  Spring-Particle-Gravity  system  is  a  particularly  comprehensive

illustration  of  the  Object-Workflow  method  as  it  uses  all  types  of  available  links.   The  example  of  the

particle subject to three forces illustrates a catch!  It is not sensible to attempt to solve the equation of motion

unless the forces are explicit functions (in this case of time).  Furthermore, if any of the forces are explicit

functions of something other than time (such as velocity), the method of solution will fail, as Dsolve[] would

be required.

2-ParticleExamples.nb  illustrates  a  general  treatment  for  multi-particle  problem  domains.   Dividing  the

problem into two 1-Particle problems is not necessarily the most efficient way: using the centre of gravity is

probably  better  in  this  case.   The  2-Particle-1-Spring  problem  shows  how  the  geometry  of  the  system

determines the direction of the tension in the spring with respect to the two particles.  The tension "pushes"

one particle and "pulls" the other.  This awkward property is built into the Particle-Spring link method.  

1-CompleteSolutionExamples.nb illustrates the use of  the functions GenerateEquation,  GenerateSolution

and GenerateEquationAndSolution  as wrappers for the entire modelling process.  All that is needed is to

construct the necessary objects and then call GenerateEquation to produce the equation of motion.  

Discussion

This  paper  demonstrates  that  there  is  a  common  overall  strategy  to  problem  solving  within  a  problem

domain, which can be implemented in terms of lists and rules.  There is a conceptual and a technical disadvan

tage to this treatment.  It requires much analysis to cast a problem domain in O-O terms (even loosely!), and

even more to implement definitions and rules that work.  This overhead is likely to be an advantage in large

systems where models are formulated repetitively. I would recommend further work as follows:

1. Implement the ideas already suggested for dealing with multi-particle problems, which is a generally

weak area.

2. Build a mechanism to simplify processes such as defining links and rules (possibly through a GUI)

3. Finding  an  alternative  to  the  concept  of  persistence,  which  can  be  hard  to  define  and  implement.

One  alternative  is  to  always  send  new objects  to  the  back  of  QActive,  which  could  defer  a  Particle-Force

link until a later stage      
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 stage

4.  Incorporate solution 'goals'  to initiate appropriate solution methods.   

A Proof of Convergence

Processing the Active queue relies on an iterative process of linking existing objects to create new objects.

If this process does not terminate, Mathematica will end up in an endless loop.  This proof demonstrates that

this situation cannot arise, and is based on the ProcessActiveQueue rewrite rules and the available links.

Consider a system with NP persistent objects and NT transitory objects.  Denote iteration step r by I(r), r = 1,

2, …  and the number of objects in QActive at step I(r) by N(r).     Then N(1) = NP +  NT.   Consider the

transition  S(r) to  S(r+1).  There are 6 cases when combining pairs in QActive:

Case 1:  Particle + Gravity  = Force:  N(r+1) = N(r) - 1

Case 2:  Particle + Spring  = Force:  N(r+1) = N(r) - 1

Case 3: Particle + Force  = Equation:  N(r+1) = N(r) - 1

Case 4: Particle + Force  = Null   (delayed interaction):  N(r+1) = N(r)  

    (the Particle is moved to the back of QActive)

Case 5: Force + Force  = Force:  N(r+1) = N(r) - 1

Case 6: Equation + Equation =  Equation:  N(r+1) = N(r) - 1

The transition S(r+1) to  S(r+2) cannot be case 4 because of the reordering of QActive in the previous stage

(in practice it will be case 5 if the length of QActive>2 or case 3 if the length of QActive=2).  

Therefore N(r+2) = N(r+1) - 1.   

Hence N(r+2) < N(r) for all r > 1.  

Therefore the ProcessActiveQueue iteration will terminate in at most  NP +  NT steps.
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