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Abstract  

Background 

Consumption of nicotine, alcohol and cannabis commonly co-occurs, which is thought to partly 

stem from a common heritable liability to substance involvement.  

Methods 

To elucidate its genetic architecture, we modelled a common liability, inferred from genetic 

correlations among six measures of dependence and frequency of use of nicotine, alcohol and 

cannabis.  

Results 

Forty-two genetic variants were identified in the multivariate genome-wide association study on 

the common liability to substance involvement, of which 67% were novel and not associated with 

the six phenotypes. Mapped genes highlighted the role of dopamine (e.g., dopamine D2 gene), 

and showed enrichment for several components of the central nervous systems (e.g., 

mesocorticolimbic brain regions) and molecular pathways (dopaminergic, glutamatergic, 

GABAergic) that are thought to modulate drug reinforcement. Genetic correlations with other 

traits were most prominent for reward-related behaviours (e.g., risk-taking, cocaine and opioid 

use) and mood (e.g., depression, insomnia).  

Conclusions 

These genome-wide results triangulate and expand previous preclinical and human studies 

focusing on the neurobiological substrates of substance involvement, and help to elucidate the 

genetic architecture underlying the use of common psychoactive substances.  
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Background 

Substance use constitutes a significant burden for public health(1), and considerable research 

efforts are made to better understand its aetiology. Substance involvement (i.e., regular use, 

problematic use/dependence) is typically not restricted to just one class of substance, as 

dependence of accessible psychoactive substances such as nicotine, alcohol and cannabis often 

co-occurs(2). This co-occurring pattern of use has been shown to be particularly detrimental to 

the individual and to society as a whole(3).  

Aetiological models posit that the use of multiple substances stems from a common liability to 

substance involvement(4,5) – a latent continuous trait accounting for the shared risk of developing 

dependence to different substances. Based on findings from genomic(6–8) and behavioural 

genetic studies(9,10), it is assumed that this common liability includes a genetic component. 

Indeed, genetic correlations between use of different classes of psychoactive substances are 

substantial, as estimated in twin (up to rg~0.89(11–13)) and genome-wide association (GWA) 

studies (up to rg~0.70(7,14–16)). The underlying molecular mechanisms of this common heritable 

liability to substance involvement are, however, not fully understood. While it has been shown 

that genotypic variations contribute to the common heritable liability to substance use(17), an 

investigation into the specific genome-wide effects has yet to be conducted. Furthermore, 

although increasingly large GWA studies have identified growing numbers of genetic risk variants 

associated with individual substance use phenotypes(7), it remains unclear as to whether 

associated risk variants reflect shared (common) or non-shared (substance specific) risk across 

different phenotypes indexing substance involvement. Some identified genetic variants likely 

operate through substance-specific pharmacological pathways, as is the case for variants affecting 
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nicotinic receptors (e.g. genes coding for nicotinic acetylcholine receptors, such as CHRNA3-

CHRNA5(18)) or alcohol metabolism (e.g. variants in the alcohol dehydrogenases gene family, such 

as ADH1B(7,15), ADH1C(14,15)). Other variants may affect common pathways, such as variants 

associating with two or more classes of psychoactive substances (e.g. BDNF(7,19,20), 

PDE4B(7,20,21) or DRD2(7,15,18,20,22)) or behavioural phenotypes (e.g., the top variant 

identified for cannabis use disorder, which also associates with ADHD and risk-taking(23)). 

The aforementioned genetic overlap complicates research on causes and consequences of 

substance use, and distilling shared (common) from non-shared (substance specific) genetic risk 

is pivotal to the interpretation of genome-wide discoveries. One way of scrutinizing putative 

pleiotropic variants is to explicitly model the genetic overlap among different phenotypes indexing 

substance involvement, using multivariate methods such as genomic structural equation 

modelling (genomic SEM(24)). Applying this method has already been helpful in characterising 

shared genetic influences across dimensions of psychopathology(24–31) and cognition(32–35). In 

addition to assessing shared effects of suspected pleiotropic variants, genomic SEM also has the 

potential to identify novel genetic variants not previously identified in univariate GWA studies on 

individual phenotypes(29). This is expected, since shared risk is thought to be expressed indirectly 

via the common liability, resulting in inherently small effects, which hampers detection of 

pleiotropic variants in univariate GWA analyses. A multivariate GWA can therefore boost discovery 

of shared variants directly associated with a common heritable liability. While genetically informed 

methods using polygenic scores have already explored risk factors involved in the common liability 

to substance involvement(36,37), a multivariate GWA of the shared and non-shared genetic 

architecture can further deepen our understanding of biological pathways underlying the use of 
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multiple substances. Indeed, leveraging genetically informed methods would allow us to revisit 

long-theorized biological pathways underlying dependence, and to triangulate evidence from 

behavioural genetic(11), brain imaging(38) and preclinical studies(39) focusing on the role of 

genetics and neural substrates of substance use. Together, such triangulated findings would help 

researchers and clinicians to better understand biological and developmental pathways involved 

in risk of initiating and developing dependence to commonly used and abused psychoactive 

substances.  

To unravel the genetic architecture underlying consumption of nicotine, alcohol and 

cannabis, here we conduct a multivariate GWA analysis on their common heritable liability. To 

model the common liability, we include phenotypes indexing clinical (diagnosis of dependence) as 

well as quantitative (frequency of use) measures of use of nicotine, alcohol and cannabis. More 

specifically, we conduct a multivariate GWA of the common heritable liability, with the aim to 

a. identify putative genetic variants associated with the common liability (i.e., 

shared/pleiotropic variants) and variants specific to the use of different classes of 

substances (i.e., non-shared) 

b. characterize the functional features of genetic variants associated with the common liability 

c. assess the genetic correlations between the common liability with other complex traits 

d. evaluate the validity of the causal claims imposed by a common liability model of substance 

involvement 
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Methods 

GWA summary datasets 

We screened GWA summary statistics of addiction-related phenotypes for the most commonly 

used and misused psychoactive substances, namely nicotine, alcohol and cannabis. For each 

substance class, we included one clinical (diagnosis of dependence) and one quantitative 

(frequency of use) measure. The following summary statistics were included, derived from 

samples of individuals of European ancestry: Alcohol use disorder (n=28,757)(14), cannabis use 

disorder (n=358,534)(23), nicotine dependence (n=244,890)(40), frequency of cigarette 

(n=245,876)(7), alcohol (n=513,208)(7) and cannabis use (n=24,798(41)). Additional details of 

each of the included summary statistic files can be found in the Supplement and in sTable 1 

(Supplement).  

 

Genomic model of the common heritable liability to substance involvement 

We first estimated the genetic correlations (rg) among the individual phenotypes using genomic 

structural equation modelling (genomic SEM(24)) version 0.0.3. The method uses an extension of 

LD-score regression(42) and accounts for sample overlap across studies through the LD-score 

intercept. In confirmatory factor analysis, we fitted a series of structural equation models. Given 

our aim to estimate SNP effects that underly the involvement with multiple common psychoactive 

substances, we started with a single latent factor model onto which the six substance use 

indicators loaded (Figure 1b). This model has been shown to be a powerful model for SNP 

discovery(24) and has been proposed by previous studies modelling genetic correlations between 

phenotypes indexing liability to addiction(17). We tested a number of competing single factor 
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models and estimated fit indices (i.e., common liability model with and without factor loading 

constraints; with and without correlated residuals). In addition, we assessed if the model can be 

improved by the use of a bi-factor model, a hierarchical model and a two-factor model (shown in 

sFigure 1). The Diagonally Weighted Least Squares (DWLS) estimator was used and model fit was 

assessed based on the Comparative Fit Index (CFI), the standardized root mean square residual 

(SRMR) and the Akaike Information Criterion (AIC), an index that balances fit with parsimony. 

 

Multivariate genome-wide association analysis  

For the multivariate GWA on the common heritable liability to substance involvement, the 

summary statistics for the individual substance use phenotypes were restricted to single 

nucleotide polymorphisms (SNPs) contained in the 1000 genomes phase 3 reference sample (with 

a minor allele frequency (MAF) > 1%) and SNPs that were present in all GWA summary datasets 

included in the analysis. Genomic control was applied to all summary statistics showing evidence 

of uncontrolled confounding (LD score intercept > 1), by multiplying standard errors by the LD 

score intercept. To identify lead SNPs after conducting the GWA on the common liability, we 

selected LD-independent SNPs (r2<0.1 within 250 kb) based on genome-wide significance (p<5x10-

8).  

To determine whether the effects of the identified lead SNPs are likely to act through the common 

liability, we applied the heterogeneity test as implemented in Genomic SEM. The resulting Q-

statistic (QSNP) is a χ2distributed test statistic, with significant QSNP estimates (p<5x10-8) indicating 

that the SNP effect does not act entirely through the common liability. Based on QSNP, we selected 

only SNPs that did not show evidence of heterogeneity (QSNP p>5×10-8) before conducting 
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functional follow-up analyses of SNPs associated with the common liability. Positional mapping 

and expression quantitative trait loci (eQTL) mapping were used to map lead SNPs to genes. 

PhenoScanner(43) was used to explore previously identified associations of lead SNPs (cf. 

Supplement for further details). 

 

Pathway enrichment analysis of genetic variants associated with the common liability 

To identify the most likely biological pathways underlying the common heritable liability to 

substance involvement, we used Data-driven Expression-Prioritized Integration for Complex Traits 

(DEPICT(44)) and Pathway SCoring ALgorithm (PASCAL)(45). DEPCIT was used to test for tissue/cell 

type enrichment of a set of LD-independent SNPs (r2<0.05 within 500 kb) outside genome-wide 

significance (p<5×10-5). PASCAL was used to test for enrichment of all SNPs, using three gene sets 

(BIOCARTA, KEGG, REACTOME) curated by the Molecular Signatures Database (MSigDB(46)) and 

gene sets defined by DEPICT. Prior to running the analyses, the GWA on the common liability was 

filtered according to the QSNP statistic, retaining only SNPs operating through the common liability 

(QSNP p>5×10-8). Results were corrected for multiple testing using false discovery rate (FDR) 

correction (controlled at 5%). Further details regarding the application of the two methods can be 

found in the Supplement (sMethods). 

 

Genetic correlations between the common liability and other complex traits 

Bivariate LD score regression analyses were performed in Genomic SEM, to estimate the genetic 

correlations between SNPs operating through the common liability (i.e., SNPs with QSNP p>5×10-8) 

and 35 other traits related to physical features (e.g., height, body mass index), personality (e.g., 
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risk-taking, neuroticism), social variables (e.g., socioeconomic status, education) and mental 

health (e.g., schizophrenia, depression). A complete list of the included GWA summary statistics 

can be found in sTable 1 (Supplement). FDR correction (controlled at 5%) was used to adjust for 

multiple testing. 

 

Evaluation of the causal claims implied by the common liability theory 

Mendelian Randomization (MR) analysis was used to evaluate key causal claims imposed by the 

common liability theory, including that the common liability has direct effects on all its indicators 

(cf. Supplement for further details on model assumptions). Inverse variance weighted (IVW) MR 

implemented in TwoSampleMR(47) package was applied to all analyses. The genetic markers 

instrumenting the common liability were selected based on genome-wide significance (p<5×10-8) 

and Qsnp, retaining only SNPs that operated through the common liability (Qsnp p>5×10-8). To 

facilitate comparability of the MR estimates, the beta estimates for the included SNPs were 

standardized by dividing the z-scores by the square root of the sample size before conducting MR 

(cf. Supplement). 
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Results 

Genomic model of the common heritable liability to substance involvement 

The correlations among the individual cigarette, alcohol and cannabis use phenotypes are 

presented in the heatmap in Figure 1a (cf. Supplement, sTable 2 for estimates). Genetic 

correlations varied widely between the individual substance phenotypes, ranging from rg=-0.01 to 

rg=0.74 (mean rg=0.40; SD=0.21). From the eight assessed structural models (cf. sFigure 1, 

Supplement), we proceeded with the single factor model as depicted in Figure 1b, which showed 

evidence of a good model fit (CFI=0.97, SRMR=0.07, AIC=46.8, cf. sTable 3). In this model, equality 

constrains were imposed on paths belonging to the same pattern of substance use, i.e., equal 

weights across measures of dependence, and equal weights across measures of frequency of use. 

Correlated residuals were included to allow for within-substance class associations. Both an 

unconstrained common liability model with correlated residuals (CFI=0.97, SRMR=0.05, AIC=47.7, 

sTable 3) and the bifactor model showed similar fit to the data (CFI=0.97, SRMR=0.05, AIC=47.7, 

sTable 3). However, we decided to retain the constrained model, as (i) it more parsimoniously 

reflected the data among the tested models, evident by the lowest AIC and (ii) constraining 

loadings across substances ensured that the common factor reflected a common liability rather 

than predominantly one substance above others. 

For the selected common factor model, all standardized factor loadings are presented in Figure 

1b, showing that the constrained loadings were estimated to be 0.39 for frequency measures of 

substance use and 0.79 for substance dependence measures. On average, the common factor 

accounted for 38.81% (range 15.21%-62.41%) of the genetic variance in the six substance use 

phenotypes.  
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Genetic variants associated with the common heritable liability 

6,500,152 SNPs were included in the GWA of the common liability. Since our SNP estimates were 

derived from overlapping samples, we used the formula developed by Mallard et al.(48) to derive 

the effective samples size (cf. sMethods, Supplement), which was estimated to be N=187,062. The 

Manhattan and Q-Q (quantile-quantile) plot of the common liability GWA are shown in Figure 1c 

and sFigure 2 (Supplement), respectively. The main results for all GWA analyses, including the 

multivariate analysis on the common liability and the six univariate analyses on the individual 

substance use phenotypes are summarised in sTable 5-7 and sFigure 2 (Supplement). In brief, the 

GWA on the common liability identified 3,509 genome-wide (p<5×10-8) SNPs, tagging 55 LD-

independent SNPs. After removing SNPs showing significant heterogeneity (QSNP p<5×10-8), 42 

SNPs operating through the common liability remained (cf. SNPs highlighted in blue in the 

Manhattan plot, Figure 1c). Of the 42 SNPs, 28 (66.67%) were novel, i.e., have not been associated 

with any of the individual substance use phenotypes. Positional mapping showed that the top five 

SNPs (rs10750025, rs4953149, rs281287, rs202665, rs35023999) operating through the common 

liability lay mostly outside coding regions, located close to DRD2, LINC01833, SEMA6D, SCUBE1 

and ANKK1, respectively. Further inspection through eQTL mapping indicated that the 

aforementioned SNPs acted as eQTLs for positionally mapped genes, highlighting their putative 

role in the common liability via gene expression (cf. sTable 8, Supplement). A search in the 

PhenoScanner database(43) indicated that the five lead SNPs operating through the common 

liability have previously been linked to a number of behavioural phenotypes, such as neuroticism, 

irritability, smoking status or time spent in front of the computer (cf. sTable 9, Supplement). Of 

note, 13 of the 55 SNPs associated with the common liability still showed heterogeneous effects 
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across the individual substance use phenotypes (QSNP p<5×10-8, highlighted in red in the 

Manhattan plot, Figure 1c). Those SNPs can be considered as false discoveries, which may result 

from a single or a subset of SNPs with large effects on the individual substance use 

phenotypes(35). Among all 6,500,152 SNPs included in the common liability GWA, 2,356 (0.04%) 

showed heterogeneous effects. 

For comparison, we also evaluated the GWA results of the individual substance use phenotypes, 

focusing on significant variants (p<5×10-8) from the original GWA studies that showed 

heterogenous effects (QSNP p<5×10-8). The results are summarized in Figure 2 and further 

discussed in the Supplement. In brief, a number of variants appeared to be specific with respect 

to the class of substance, as found for alcohol [e.g., rs1229984, a variant on the alcohol 

dehydrogenase 1B gene (ADH1B)] and cigarette use (e.g., rs76474922 and rs58379124, variants 

located on the nicotinic receptor genes CHRNA5 and CHRNB3, respectively). Only two SNPs were 

associated with cannabis use phenotypes, of which one variant (rs7783012, FOXP2) appeared to 

operate via the common liability (QSNP p>5×10-8). 

 
 
 

Pathway enrichment analyses of genes associated with the common heritable liability 

Testing for tissue and cell type enrichment in DEPICT revealed 22 pathways associated (with FDR 

controlled at 5%) with the common liability (Figure 3A), which were all part of central nervous 

system tissues. In PASCAL (Figure 3B), 481 pathways were significantly (FDR controlled at 5%) 

enriched for the common liability, of which the top pathways related to broader categories of 

neurotransmitter functioning (e.g., neural system, transmission across chemical synapses). 

Overall, the pattern of regional enrichment and neuronal signalling pathways highlighted the role 
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of a widespread network of brain areas involved in the common liability, in line with theories 

suggesting that genetic risk to addiction is not solely the manifestation of altered limbic reward 

processes(49).  Since the highlighted pathways were most prominently enriched for the common 

liability, and less so for individual substance use phenotypes, the aforementioned brain circuits 

may tap into somewhat distinct features characterizing the common liability. A more detailed 

discussion on the pattern of enrichment is provided in the Supplement and estimates obtained 

from DEPCIT and PASCAL are included in sTable 11-12 (Supplement). 

 
 
Genetic correlations between the common liability and other complex traits  

Using the input from the QSNP-filtered GWA of the common liability and the GWA summary 

statistics for 41 traits (cf. sTable 1 in Supplement for details), we found significant correlations 

with 36 complex traits after correction for multiple testing (Figure 4). As expected, the largest 

positive correlations were present between the common liability and its “constituents”, i.e., the 

cigarette, alcohol and cannabis use phenotypes used to derive the common liability (mean 

rg=0.68). Among the other traits, the largest genetic correlations were present for cocaine and 

opioid dependence (both rg=0.60), number of sexual partners (rg=0.49), ADHD (rg=0.48) and risk 

tolerance (rg=0.41). Moderate genetic correlations were also present for a number of traits 

relating to mood, including insomnia (rg=0.35) and depression (rg=0.34). No significant (FDR 

controlled at 5%) associations were found with birth weight, openness, obsessive-compulsive 

disorder, anorexia and cortical surface area. 
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Evaluation of the causal relationships implied by a common liability model 

Figure 5 displays the results from Mendelian Randomization (MR) analyses, assessing paths 

running from the common liability to the individual substance use phenotypes. Using 42 QSNP-

filtered LD-independent SNPs from the common liability GWA, the MR findings provide support 

for a causal interpretation of the initial descriptive common liability model (cf. Figure 1b) – that 

is, the common liability increases the risk of use and dependence of nicotine, alcohol and 

cannabis. More specifically, the loadings obtained from the genomic factor model of the 

common heritable were recovered using genetic markers instrumenting the common liability. As 

shown, the standardized causal effects obtained in MR were comparable to the factor loadings 

of the indicators (highlighted in red in Figure 5), as evident for measures of dependence [mean 

MR estimate: 0.79 (0.10 SD)] and measures of frequency of substance use [mean MR estimate: 

0.33 (0.12 SD)]. The hypothesized structural model also asserts absence of causal effects 

between indicators belonging to a different class of substance (e.g., cannabis dependence → 

alcohol dependence), which was in line with our MR results. Finally, reverse causation (effects of 

the specific substance use indicators on the common liability to substance involvement) was 

indicated for three of the indicators. Further discussion on the interpretation of reverse 

causation in this context is included in the Supplement, together with the full set of MR results 

(cf. sTable 13). 
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Conclusions 

To dissect shared from non-shared genetic liability to use and dependence of nicotine, alcohol and 

cannabis, we conducted a multivariate genome-wide association (GWA) study of a common 

heritable liability to substance involvement. The modelled liability constituted primarily a common 

liability to problematic substance use, as measures of dependence dominated in this model. The 

top genetic variant operating through the common liability (rs10750025, located on the dopamine 

receptor D2 [DRD2] gene) provides support for the role dopamine in risk of addiction. Functional 

follow-up of common liability-associated genes further highlighted the role of widespread 

neuronal signalling pathways and neurotransmitter functioning beyond dopamine, such as 

GABAergic and glutamatergic pathways. Brain areas implicated in the common liability to 

substance involvement spanned limbic and cortical areas involved in reward, motivation, memory 

and cognitive control. The genetic overlap between the common liability and other complex traits 

was most prominent for other measures of addiction (e.g., cocaine and opioid use), as well as 

impulsive behaviours (e.g., risk-taking, ADHD) and mood (e.g., depression, insomnia). For cigarette 

and alcohol use, risk genes not operating via the common liability translated into specific 

pharmacogenomic pathways, such as nicotinic acetylcholine receptor functioning. Distinct 

pathways for cannabis use were, however, not identified.  

 

Shared and non-shared genetic risks involved in risk of nicotine, alcohol and cannabis involvement 

In line with existing evidence, we found substantial genetic correlations between measures of 

cigarette, alcohol and cannabis use. This allowed us to model the common heritable liability to 

substance involvement, which explained substantial variance (average=39%) in genetic liabilities 
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to individual substance use phenotypes. Since more variance was explained for measures indexing 

dependence (62%) than measures of frequency of use (15%), the common liability captures mostly 

a problematic substance use pattern (cf. Supplement for further discussion on this finding).  

DRD2 was identified as the lead gene operating via the common liability – a pathway believed to 

be a common mechanism by which addictive substances exert their acute pleasurable effects. 

DRD2 in particular is a frequently studied gene implicated in addictive behaviours, given its central 

role in modulating the dopamine reward system that mediates the reinforcing effects of addictive 

substances. Indeed, DRD2 has been identified in numerous genome-wide studies on 

cigarette(7,8), alcohol(7,8,20), cannabis use(8) and problematic substance use(50). Other notable 

genes linked to the common liability are further discussed in the Supplement.  

Our results also highlight the role of neural signalling pathways involved in the common heritable 

liability to substance involvement, particularly synaptic functioning and a range of 

neurotransmitter systems beyond dopamine (GABA, glutamate, serotonin). Indeed, while 

dopaminergic mechanisms have been the traditional focus in addiction research, a growing body 

of research is now assessing the role of wider-ranging and interconnected neurotransmission 

systems in addiction vulnerability, involving GABAergic, glutamatergic and serotoninergic 

projections that contribute to modulating reward reinforcement and drug-seeking behaviour(51–

53). In line with this, enrichment analysis implicated the central nervous system and a network of 

brain areas in the common liability, including circuits involved in the processing of information 

related to reward (limbic structures), motivation (basal ganglia), memory (hippocampus) and 

cognitive control (frontal lobe areas).  Since the discussed pathways were most prominently 

related to the common liability, rather than the individual substance use liabilities, the identified 
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pathways may reflect common neural substrates characterizing addiction vulnerability (cf. 

Supplement for a more detailed discussion on substance-specific risk). 

Finally, it is assumed that the brain reward pathways partly link to addictive behaviours via some 

intermediate complex behaviours, such as risk-taking, sensation seeking or impulsivity. While this 

remains to be formally tested, this idea corroborates with our findings of genetic correlations 

between the common liability and maladaptive behaviours, including ADHD, risk-taking and 

cocaine and opioid dependence. We also found large genetic correlations between the common 

liability with internalising symptoms, including depression and insomnia. This is in line with recent 

evidence of a link between a polygenic index for addiction and a number of traits indexing 

impulsivity and externalizing behaviours in drug-naïve children(50). 

 

Implications for the aetiology of substance involvement 

Bi-directional MR was used to evaluate key causal claims imposed by the common liability, namely 

(1) the common liability has direct effects on all its indicators (i.e., the individual substance use 

phenotypes) and (2) there is no reverse causation (a third claim typically made by strict latent 

factor is further discussed in the Supplement). 

Overall, MR findings provided support for assumption (1), as causality ran from the common 

liability to all of the individual substance use phenotypes. While effects in the reverse direction 

were also present for three indicators – at odds with assumption (2) – this may reflect 

unaccounted pleiotropy (cf. Supplement for further discussion on this point). Together, since the 

common liability was identified as a shared cause of all substance use phenotypes, the results 

suggest that a common liability to substance involvement may usefully capture most relationships 
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between substances. Embracing such conceptualization would have important implications for 

intervention. First, targeting modifiable features of the common liability should reduce risk of 

addiction to nicotine, alcohol and cannabis. For example, pharmacological treatments targeting 

dopamine, glutamate and GABA function may reduce craving and the euphoric/rewarding 

responses to cigarettes, alcohol and cannabis(54–59). Second, interventional targeting of only one 

specific class of substance (e.g., nicotine) unlikely leads to reductions in use of another class (e.g., 

alcohol). This conclusion is somewhat inconsistent with previous evidence in rodents showing 

reductions in alcohol use following the administration nicotinic treatments (e.g. 

varenicline(60,61)), although evidence from RCTs in humans is mixed(62,63) and efficacy may not 

translate into the long-term(64). Finally, while our MR analyses included overlapping sample, risk 

of bias is limited when using partly overlapping samples as shown in recent work(65). 

 

Future directions 

To maximize power for genome-wide discovery, the common liability to substance involvement 

modelled in this work included only commonly used substances (i.e., nicotine, alcohol and 

cannabis) that are typically available as quantitative and clinical measures in large-scale genotyped 

samples. As such, our model including one common liability to substance involvement may not 

generalize to broader liability models of addiction. An important goal for future work would thus 

be to extend this multivariate analysis to a broader array of addiction phenotypes (e.g., initiation, 

tolerance, craving, withdrawal, relapse) characterizing different classes of psychoactive 

substances(e.g., cocaine, opioid use), once well-powered GWA data becomes available. Such 

efforts will allow exploration of more fine-grained structural models. Furthermore, multivariate 
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approaches as employed here are not just important in terms of GWA discovery, but also essential 

to reducing biases; in our study, a substantial proportion of GWA-significant SNPs associated with 

the individual substance use phenotypes appeared to be mediated by the common heritable 

liability. As such, future GWA studies powerful enough to detect small genetic effects will likely tag 

an increasing number of SNPs with horizontal pleiotropic effects when examining addiction 

phenotypes (i.e., direct effects on several phenotypes). As such, modelling heritable latent factors 

as done in this study, and/or accounting for its contribution as recently proposed(66,67) is 

therefore paramount when using genetically informed causal inference methods that are sensitive 

to the presence of heritable confounding. 

Taken together, our results confirm that a common heritable liability partially explains the high co-

occurrence of use and abuse of nicotine, alcohol, and cannabis. Functions of the implicated genes 

converged on broad central nervous system pathways beyond the dopaminergic pathways long-

hypothesised in risk of addiction. 

 

Data access 

Summary statistics of the common liability GWA analysis are accessible on GWAS catalog 

(https://www.ebi.ac.uk/gwas/) at the accession number XXXX. References to all publicly available 

summary statistic files included in this work are listed in sTable 1. 

 

Code availability 

The code used to conduct the analyses presented in this work is available on GitHub 
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URLs 

MsigDB data (https://www.gsea-msigdb.org/gsea/index.jsp) 

PASCAL (https://www2.unil.ch/cbg/index.php?title=Pascal) 

G:Profiler (https://biit.cs.ut.ee/gprofiler/page/r/)   

PhenoScanner (https://github.com/phenoscanner/phenoscanner)  

TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/)  

GenomicSEM (https://github.com/MichelNivard/GenomicSEM) 

DEPICT (https://data.broadinstitute.org/mpg/depict/) 

Neale Lab UKBB summary statistics (http://www.nealelab.is/uk-biobank/) 

GWAS ATLAS (https://atlas.ctglab.nl/)  
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==================================== FIGURE 1================================== 

Figure 1. Multivariate genome-wide association study of the shared genetic architecture of 

cigarette, alcohol and cannabis use  

 
Panel A. Heat map displaying the genetic correlations among the six substance use phenotypes. Shown are the genetic correlations between each 
of the cigarette, alcohol and cannabis phenotypes, with SNP-heritability estimates displayed down the diagonal. The mean genetic correlation is 
rg=0.4 [sd=0.21, median=0.34 and range (-0.01-0.74)]. Panel B. Genomic structural equation model fitted on the genetic covariation matrices of the 
individual cigarette, alcohol and cannabis use phenotypes. Squares represent observed variables (the measured cigarette, alcohol and cannabis 
use phenotypes). The circle represents the latent variable, i.e., the common heritable liability to substance involvement, derived through factor 
analysis of the genetic correlations between the individual substance use phenotypes. Single-headed arrows are regression paths constrained to 
be equal across measures of frequency of use and dependence. Panel C. Manhattan plot of the SNP effects obtained from the multivariate genome-
wide association analysis on the common liability. Labels are provided for the LD-independent genome-wide significant SNPs (i.e., SNPs above the 
horizontal line, with p<5×10−8) and gene names obtained through positional mapping. The x-axis refers to chromosomal position, the y-axis refers 
to the p-value on a -log10 scale. Genetic variants coloured in red index variants that showed heterogeneous effects across the individual cigarette, 
alcohol and cannabis use phenotypes (QSNP p<5×10−8), indicating that their effects operate not entirely through the common liability. Genetic 
variants coloured in blue index genetic variants that did not show heterogeneous effects across the individual cigarette, alcohol and cannabis use 
phenotypes (QSNP p>5×10−8), indicating that their effects are likely to operate through the common liability. 

 

 
==================================== FIGURE 2================================== 

 
Figure 2. Associations of genetic variants with the common liability (blue) and the individual 
substance use phenotypes (red) 
 
 
 
Plotted are the standardized beta coefficients (βstd)  and their confidence intervals (cf. Supplement for details and corresponding formula) obtained 
from the multivariate genome-wide association (GWA) analysis on the common liability (column 1) and the univariate GWA analyses on the 
individual substance use phenotypes (columns 2-7). Displayed are genetic variants associated (p<5×10−8) with at least one of the individual 
substance use phenotypes and/or the common liability. Bars coloured in grey index genetic variants that are not significantly associated (p>5×10−8) 
with their respective phenotype. Bars coloured in red index genetic variants that showed heterogeneous effects across the individual cigarette, 
alcohol and cannabis use phenotypes (QSNP p<5×10−8), indicating that their effects operate not entirely through the common liability. Bars coloured 
in blue index genetic variants that did not show heterogeneous effects across the individual cigarette, alcohol and cannabis use phenotypes (QSNP 
p>5×10−8), indicating that their effects are unlikely to entirely operate through the common liability. The complete set of estimates can be found 
in sTable 7. The asterisks (*) highlight genetic variants that were identified as LD-independent SNPs following clumping 
 
 

 

==================================== FIGURE 3================================== 

Figure 3. Pathway enrichment analyses of genes associated with the common heritable liability 
 
Shown are the results obtained from pathway enrichment analysis conducted in DEPICT and PASCAL. The common liability GWA results (filtered 
according to QSNP p<5×10−8) and the individual substance use GWA summary statistics were used as the input. The violet shading indexes the 
significance level corresponding to each tested pathway. The asterisk marks pathways that remained significant after correction for multiple testing 
(False Discovery Rate controlled at 5%). Panel A highlights results obtained from the tissue/cell type enrichment analysis done in DEPICT. Displayed 
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are the -log10(p-value) for all pathways that were significant (p<0.05) in at least one of the included GWA studies. Panel B depicts results obtained 
from pathway analysis done in PASCAL, using gene-sets curated by the Molecular Signatures Database (n=1077 sets) and DEPICT (n=14462 sets). 
For the common liability, n=478 pathways were significant after FDR correction for multiple testing. Displayed in the figure are the 15 most 
significant pathways per GWA study. The full set of results is listed in sTable 10-11 (Supplement). 
 

==================================== FIGURE 4================================== 

Figure 4. Genetic correlations between the common liability and other traits 
 
Shown are the genetic correlations (rg) between the common liability GWA (filtered according to QSNP p<5×10−8) and 41 other phenotypes, including 
35 other traits (highlighted in blue) and the six individual substance use phenotypes used to derive the common liability (highlighted in grey). The 
asterisk indexes significant genetic correlations after correction for multiple testing (false discovery rate controlled at 5%, corrected for 41 tests). 
The full set of results is reported in sTable 12 (Supplement). 
 

==================================== FIGURE 5================================== 

 
Figure 5. Mendelian Randomization analysis assessing causality between the common liability and 
the individual substance use phenotypes 
 
Shown are the standardized beta coefficients (βstd) obtained from Mendelian Randomization (MR) analysis assessing the effects of the common 
liability on the six individual substance use phenotypes. Included were 42 genome-wide significant genetic variants (p<5×10-8) operating through 
the common liability (QSNP p>5×10-8) as instruments for the exposure. The red dots indicate the standardized loadings per substance use phenotype 
on the common liability as estimated in the structural model shown in Figure 1B. The full set of MR results can be found in sTable 13. 
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Common 
 liability

Alcohol 
 (frequency)

Alcohol 
 (dependence)

Cigarette 
 (frequency)

Cigarette 
 (dependence)

Cannabis 
 (frequency)

Cannabis 
 (dependence)

Osteoblasts
Extraembryonic Membranes

Chorion
Arteries

Embryoid Bodies
Keloid

Spleen
Granulation Tissue

Cicatrix
Leukocytes

Synovial Fluid
Fibroblasts

Joints
Joint Capsule

Synovial Membrane
Keratinocytes

Penis
Islets of Langerhans

Foreskin
Adult Stem Cells
Fallopian Tubes
Abdominal Fat

Subcutaneous Fat  Abdominal
Enteroendocrine Cells

Glucagon Secreting Cells
Adipose Tissue  White

Subcutaneous Fat
Adipose Tissue

Esophagus
Genitalia  Female

Cervix Uteri
Adipocytes

Adnexa Uteri
Ovary

Gonads
Genitalia

Endocrine Glands
Endocrine Cells

Heart Atria
Atrial Appendage

Neural Stem Cells
Genitalia  Male

Prostate
Exocrine Glands

Cerebellum
Epidermis

Metencephalon
Rhombencephalon

Retina
Brain Stem

Parietal Lobe
Corpus Striatum

Neurosecretory Systems
Hypothalamus  Middle

Hypothalamo Hypophyseal System
Basal Ganglia
Hypothalamus

Frontal Lobe
Diencephalon

Temporal Lobe
Entorhinal Cortex

Parahippocampal Gyrus
Mesencephalon

Hippocampus
Limbic System

Cerebral Cortex
Cerebrum

Telencephalon
Prosencephalon

Visual Cortex
Occipital Lobe

Central Nervous System
Brain
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Common 
 liability

Alcohol 
 (frequency)

Alcohol 
 (dependence)

Cigarette 
 (frequency)

Cigarette 
 (dependence)

Cannabis 
 (frequency)

Cannabis 
 (dependence)

STK11 (serine/threonine kin...

reactome acetylcholine bind...

reactome presynaptic nicoti...

reactome highly calcium per...

cAMP binding

increased neuron apoptosis

abnormal motor neuron morph...

PATL1 (PAT1 homolog 1, proc...

SORBS2 (sorbin and SH3 doma...

abnormal midbrain development

DDX21 (DExD−box helicase 21...

abnormal neuron morphology

NUFIP2 (nuclear FMR1 intera...

abnormal medulla oblongata ...

abnormal long term depression

GATA1 (GATA binding protein...

ZNF106 (zinc finger protein...

RTN3 (reticulon 3 [Source:H...

LCA5 (lebercilin LCA5 [Sour...

enhanced long term potentia...

abnormal brain development

AKAP8 (A−kinase anchoring p...

impaired righting response

POU2F3 (POU class 2 homeobo...

LGI1 (leucine rich glioma i...

MOG (myelin oligodendrocyte...

ensg00000206456

ensg00000137345

abnormal locomotor activation

CLK3 (CDC like kinase 3 [So...

regulation of nervous syste...

axon terminus

seizures

learning

mitogen−activated protein k...

regulation of transmission ...

increased synaptic depression

GABRA1 (gamma−aminobutyric ...

regulation of synaptic tran...

regulation of neuronal syna...

perikaryon

neuron cell−cell adhesion

neuron projection terminus

voltage−gated cation channe...

postsynaptic membrane

CACNG2 (calcium voltage−gat...

absence seizures

outer membrane−bounded peri...

periplasmic space

abnormal locomotor behavior

ligand−gated ion channel ac...

ligand−gated channel activity

dendritic spine

neuron spine

ionotropic glutamate recept...

obsolete synapse part

synapse

abnormal inhibitory postsyn...

dendrite

presynaptic membrane

reactome transmission acros...

abnormal excitatory postsyn...

reactome depolarization of ...

reactome neuronal system
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Birth weight

BMI

Height

Income

Loneliness

Miserableness

Mood swings

Nervous feelings

Social isolation

Educational attainment

Intelligence

Car speeding propensity

Extraversion (IRT)

Irritability

Neuroticism

Openness

Risk tolerance

Sexual partners (number)

ADHD

Anorexia (diagnosis)

Anxiety

Autism (diagnosis)

Bipolar (diagnosis)

Depression (diagnosis)

Depressive symptoms

Insomnia

OCD (diagnosis)

Schizophrenia

Sleep duration

Cortical surface area

Cortical thickness

Cigarette use (age of onset)

Cocaine use (dependence)

Coffee intake

Opioid use (dependence)

Alcohol use (dependence)

Alcohol use (frequency)

Cannabis use (dependence)

Cannabis use (frequency)

Cigarette use (dependence)

Cigarette use (frequency)
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Alcohol (dependence)

Alcohol (frequency)

Cannabis (dependence)

Cannabis (frequency)

Cigarette (dependence)

Cigarette (frequency)
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