
67

A Calculus for Amortized Expected Runtimes

KEVIN BATZ∗, RWTH Aachen University, Germany

BENJAMIN LUCIEN KAMINSKI, Saarland University, Saarland Informatics Campus, Germany and Uni-

versity College London, United Kingdom

JOOST-PIETER KATOEN∗, RWTH Aachen University, Germany

CHRISTOPH MATHEJA, Technical University of Denmark, Denmark

LENA VERSCHT∗, RWTH Aachen University, Germany

We develop a weakest-precondition-style calculus à la Dijkstra for reasoning about amortized expected runtimes

of randomized algorithms with access to dynamic memory — the aert calculus. Our calculus is truly quantitative,

i.e. instead of Boolean valued predicates, it manipulates real-valued functions.

En route to the aert calculus, we study the ert calculus for reasoning about expected runtimes of Kaminski

et al. [2018] extended by capabilities for handling dynamic memory, thus enabling compositional and local

reasoning about randomized data structures. This extension employs runtime separation logic, which has been

foreshadowed by Matheja [2020] and then implemented in Isabelle/HOL by Haslbeck [2021]. In addition to

Haslbeck’s results, we further prove soundness of the so-extended ert calculus with respect to an operational

Markov decision process model featuring countably-branching nondeterminism, provide extensive intuitive

explanations, and provide proof rules enabling separation logic-style veri�cation for upper bounds on expected

runtimes. Finally, we build the so-called potential method for amortized analysis into the ert calculus, thus

obtaining the aert calculus. Soundness of the aert calculus is obtained from the soundness of the ert calculus

and some probabilistic form of telescoping.

Since one needs to be able to handle changes in potential which can in principle be both positive or negative,

the aert calculus needs to be — essentially — capable of handling certain signed random variables. A particularly

pleasing feature of our solution is that, unlike e. g. Kozen [1985], we obtain a loop rule for our signed random

variables, and furthermore, unlike e. g. Kaminski and Katoen [2017], the aert calculus makes do without the

need for involved technical machinery keeping track of the integrability of the random variables.

Finally, we present case studies, including a formal analysis of a randomized delete-insert-�nd-any set

data structure [Brodal et al. 1996], which yields a constant expected runtime per operation, whereas no

deterministic algorithm can achieve this.

CCS Concepts: • Theory of computation→ Probabilistic computation; Invariants; Program speci�ca-

tions; Pre- and post-conditions; Program veri�cation; Denotational semantics; Separation logic.

Additional Key Words and Phrases: quantitative veri�cation, randomized data structures, amortized analysis

∗Batz, Katoen, and Verscht are supported by the ERC AdG 787914 FRAPPANT.

Authors’ addresses: Kevin Batz, RWTH Aachen University, Germany, kevin.batz@cs.rwth-aachen.de; Benjamin Lucien

Kaminski, Saarland University, Saarland Informatics Campus, Germany and University College London, United Kingdom,

kaminski@cs.uni-saarland.de; Joost-Pieter Katoen, RWTH Aachen University, Germany, katoen@cs.rwth-aachen.de;

Christoph Matheja, Technical University of Denmark, Denmark, chmat@dtu.dk; Lena Verscht, RWTH Aachen University,

Germany, lena.verscht@rwth-aachen.de.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART67

https://doi.org/10.1145/3571260

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
HTTPS://ORCID.ORG/0000-0001-8705-2564
HTTPS://ORCID.ORG/0000-0001-5185-2324
HTTPS://ORCID.ORG/0000-0002-6143-1926
HTTPS://ORCID.ORG/0000-0001-9151-0441
HTTPS://ORCID.ORG/0000-0001-6823-7918
https://orcid.org/0000-0001-8705-2564
https://orcid.org/0000-0001-5185-2324
https://orcid.org/0000-0001-5185-2324
https://orcid.org/0000-0002-6143-1926
https://orcid.org/0000-0001-9151-0441
https://orcid.org/0000-0001-6823-7918
https://doi.org/10.1145/3571260
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571260&domain=pdf&date_stamp=2023-01-11

67:2 Batz, Kaminski, Katoen, Matheja, and Verscht

ACM Reference Format:

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena Verscht. 2023. A

Calculus for Amortized Expected Runtimes. Proc. ACM Program. Lang. 7, POPL, Article 67 (January 2023),

30 pages. https://doi.org/10.1145/3571260

1 INTRODUCTION

Amortized analysis [Tarjan 1985] is a well-established method to analyze the runtime complexity
of algorithms, in particular of those who manipulate dynamic data structures such as dynamically-
sized lists, self-balancing trees, and so forth. The essence of amortized analysis is to average the
runtime of a single operation Op over a long sequence of Op’s. Why is this useful? Suppose Op has
large worst-case runtime and small “normal-case” runtime. A worst-case analysis of Op would tell us
that Op performs poorly. However, when executing a long sequence of consecutive Op’s, it may be
that the worst case inevitably occurs only very seldomly. The large runtimes of the small number of
worst cases thus amortize over the large number of small runtimes of the normal cases. On average,
the runtime of a single execution of Op is thus actually small. Amortized analysis hence yields
results that are more realistic than worst-case analyses. Notice that amortized analysis is not the
same as so-called average case analysis. The latter assumes a probability distribution over all possible
inputs to Op and averages Op’s runtime over this distribution.

One popular technique for amortized analysis is the potential method (aka physicist’s method) [Cor-
men et al. 2009; Tarjan 1985]. We will introduce this method in some detail in Section 5 and plot out
how to make it probabilistic. For that, we will develop a calculus for reasoning about the amortized
runtime complexity of randomized algorithms. Various randomized algorithms use dynamic data
structures such as randomized meldable heaps, randomized splay trees and randomized search
trees. An amortized analysis gives a detailed account of the expected runtime of a randomized
algorithm and extends (read: re�nes) existing runtime analysis techniques for probabilistic pro-
grams [Avanzini et al. 2019; Kaminski et al. 2018; Ngo et al. 2018]. For instance, an amortized
analysis of the complexity of the randomized delete-insert-�nd-any set data structure [Brodal et al.
1996] yields a constant expected runtime per operation, whereas no deterministic algorithm can
achieve this. The aim of this paper is to develop a systematic, calculational method for carrying out an
amortized runtime analysis of randomized algorithms on source code level. Our method is in the spirit
of weakest-precondition style reasoning. That is to say, we present a syntax-oriented technique to
determine the amortized expected time of randomized algorithms by applying backward reasoning.
Our technique yields amortized upper bounds on the expected runtime complexity.
Our starting point is the ert-calculus for reasoning about expected runtimes of probabilistic

pointer programs by Haslbeck [2021], which extends the ert-calculus of Kaminski et al. [2018] by the
principles of separation logic [Ishtiaq and O’Hearn 2001; Reynolds 2002]. The main challenge here is
that classical separation logic connectives do not admit a frame rule — the key to compositional and
local reasoning — for runtime over-approximations. Based on a suggestion in [Matheja 2020, Chapter
9], Haslbeck [2021] investigated runtime analogues to these separating connectives, separating
sum and (its adjoint) separating monus, thus obtaining a real-valued “logic” — runtime separation
logic (RSL) — upon which the ert-calculus is built.

Haslbeck [2021] has mechanized the ert-calculus in Isabelle/HOL and has proven various prop-
erties such as the validity of the frame rule. In addition to Haslbeck’s results, we further prove
soundness of ert by establishing a strong correspondence to a simple operational cost model de�ned
in terms of Markov decision processes (MDPs) [Puterman 2005]. This resembles the approach
adopted for quantitative separation logic (QSL) [Batz et al. 2019], a version of separation logic to
reason about the correctness (not the runtime) of probabilistic pointer programs. The treatment
of rewards in the operational model is rather di�erent, however, as time may elapse at arbitrary

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

https://doi.org/10.1145/3571260

A Calculus for Amortized Expected Runtimes 67:3

steps in a program execution. This contrasts the situation for QSL where rewards corresponding to
post“conditions” are only collected in states indicating successful program termination. The proof
principle to establish the correspondence between RSL and the operational MDP interpretation is
new and relies on Bellman equations [Puterman 2005] and Blackwell’s theorem [Blackwell 1967].
In a second step, we extend ert to aert — a calculus for reasoning about amortized expected

runtimes using the potential method. We show that aert recovers what is essentially the telescoping
property of the classical potential method in the probabilistic setting. That is, for probabilistic
program � and potential function c :

amortized expected runtime of�
︷ ︸︸ ︷
aertc J�K (0) = ert J�K (c) − c

︸ ︷︷ ︸
expected runtime of� + expected change of the potential caused by�

This result enables us to derive a frame rule for local reasoning about amortized expected runtimes.
As indicated above, an integral part of the potential method is reasoning about di�erences in
potential when performing an operation. Such di�erences can potentially become negative. This
seems rather innocent, but technically it is not. Existing weakest precondition reasoning rules for
probabilistic programs restrict random variables to be non-negative (at least for loops) [Kozen 1985;
McIver and Morgan 2005]. This is for a good reason as it avoids issues with integrability of expected
values. Extensions which can handle signed random variables [Kaminski and Katoen 2017] are
technically involved. (Indeed a naïve approach would have been to extend the classical ert calculus
with RSL and with these signed random variables.) This paper shows that this complicated machin-
ery is not needed to treat amortization. Another interesting result is that our framework recovers a
classical result from amortized complexity analysis over sequences of programs (Theorem 5.5).

We illustrate our amortized runtime calculus on a few examples such as a randomized dynamic
list as well as an analysis of the insert-delete-�nd-any set data structure from [Brodal et al. 1996].
The latter example is of interest as it only has a constant amortized runtime per operation under
randomization. To the best of our knowledge, our analysis is the �rst such analysis using the
potential method and on source code level.
To summarize, the main contributions of this paper are:

• a compositional, weakest-precondition-style calculus to reason about amortized expected
runtimes of randomized algorithms that features local reasoning,
• invariant-based reasoning for loops and proof rules enabling the separation logic-style
veri�cation of such runtimes,
• soundness of our methods by providing a close correspondence to an operational model
based on countably-branching Markov decision processes, and
• a source-code-level analysis based on the potential method for amortized complexity on the
insert-delete-�nd-any data structure [Brodal et al. 1996].

Structure of the paper. Section 2 introduces our model programming language, where Section 2.3
de�nes its operational semantics. Section 3 studies and explains runtime separation logic. In
Section 4, we present the ert calculus for expected runtimes alongside, where Section 4.4 features
its soundness proof. We present the aert calculus for reasoning about amortized expected runtimes
in Section 5. We consider related work in Section 6. Proofs and details on the case studies are found
in an extended version of this paper, which is available online [Batz et al. 2022b].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:4 Batz, Kaminski, Katoen, Matheja, and Verscht

2 PROBABILISTIC POINTER PROGRAMS

We will employ an imperative model language à la Dijkstra’s guarded commands language adapted
from [Batz et al. 2019] with three main features: (1) probabilistic choices, (2) a customizable runtime
model, and (3) statements for accessing and manipulating dynamic memory.

2.1 Program States

Program states have two components: (1) a stack assigning values to program variables and
(2) a heap modeling the dynamic memory which stores values at (dynamically) allocated locations.

Stacks. A stack s is a mapping from variables taken from a �nite set Vars to values taken from a
set Vals; in our case values are natural numbers, i.e. Vals = N. Hence, the set of stacks is given by

Stacks = { s | s : Vars→ Vals } .

Heaps. A heap h maps �nitely many memory locations taken from the set Loc = N>0 to values;
the value 0 is not a valid location and represents the null pointer. Hence, the set of heaps is given by

Heaps = { h | h : ! → Vals, ! ⊆ Loc, ! �nite } .

For a given heap h : ! → Vals, we denote by dom (h) its domain, i.e. dom (h) = !. We write h1 ⊥ h2
to indicate that the domains of heaps h1 and h2 are disjoint, i.e.

ℎ1 ⊥ ℎ2 i� dom (ℎ1) ∩ dom (ℎ2) = ∅ .

For heaps h1 and h2 with disjoint domains, i.e. h1 ⊥ h2, their union h1 ★ h2 is given by

h1 ★ h2 : dom (h1) ∪ dom (h2) → Vals, ℓ ↦→

{
h1 (ℓ), if ℓ ∈ dom (h1)

h2 (ℓ), if ℓ ∈ dom (h2) .

If the domains of h1 and h2 are not disjoint, h1 ★ h2 is unde�ned.
We denote by h∅ the empty heap with dom (h∅) = ∅. Moreover, {ℓ ↦→ E} denotes the heap h

that consists of a single memory location ℓ which stores value E , i.e. dom (h) = {ℓ} and h(ℓ) = E .
Note that h★ h∅ = h∅ ★ h = h for any heap h, whereas {ℓ ↦→ E} ★ {ℓ ↦→ F} is always unde�ned.

Program states. The set States of program states consists of all stack-heap pairs, i.e.

States = { (s, h) | s ∈ Stacks, h ∈ Heaps } .

Given a program state (s, h), we denote by s(4) the evaluation of an arithmetic expression 4 in
stack s, i.e. the value that is obtained by evaluating expression 4 after replacing every occurrence of
every variable G in 4 by its assigned value s(G). Analogously, we denote by s |= i that the boolean
expression i evaluates to true in stack s. We require that both arithmetic and boolean expressions
are pure, meaning that they only depend on variables in Vars and not on the heap. Evaluating an
expression thus never causes any side e�ects, such as dereferencing an unallocated location.

We write s [G ← E] for stack s in which the value of variable G has been updated to E ∈ Vals, i.e.1

s [G ← E] = _~.

{
E, if ~ = G

s(~), if ~ ≠ G .

1We use _–expressions to construct functions: _b. n stands for the function that, when applied to an argument U , evaluates

to n in which every occurrence of b is replaced by U .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:5

Likewise, we write h [ℓ ← E] for the heap h in which the value stored at location ℓ has been
updated to E . Formally, if ℓ is allocated in h, i.e. if ℓ ∈ dom (h) (otherwise h [ℓ ← E] is unde�ned),

h [ℓ ← E] = _ ℓ ′.

{
E, if ℓ ′ = ℓ

h(ℓ ′), if ℓ ′ ≠ ℓ .

2.2 The Heap-Manipulating Probabilistic Guarded Command Language

We now present the syntax of our model programming language and brie�y discuss its intuitive
semantics and runtime model; a formal semantics and runtime model are provided in Section 2.3.

Syntax. Programs written in the heap-manipulating probabilistic guarded command language,
denoted hpGCL, are given by the context-free grammar

� −→ tick (4) (time consumption) | G := 4 (variable assignment)
| G := alloc (4) (memory allocation) | ⟨4⟩ := 4′ (heap mutation)
| G := ⟨4⟩ (heap lookup) | free(4) (memory deallocation)
| {� } [?] {� } (probabilistic choice) | if (i) {� } else {� } (conditional choice)
| � # � (sequential composition) | while (i) {� } (while loop)

where G ∈ Vars, 4, 41, . . . , 4= are arithmetic expressions over variables that evaluate to values in
Vals = N, and i is a Boolean expression over variables. Moreover, ? is an arithmetic expression
over variables that evaluates to a rational probability, i.e. s(?) ∈ [0, 1] ∩ Q holds for all stacks s.

Intuitive semantics. Assignments, sequential composition, conditionals, and loops are standard.
The probabilistic choice {�1 } [?] {�2 } executes �1 with probability s(?) and �2 with probability
1 − s(?). tick (4) does not a�ect the program state but takes 4 units of time; see below.

The remaining statements access or manipulate the dynamic memory. G := alloc (4) allocates a
block of 4 consecutive, previously unallocated, and nondeterministically chosen memory locations,
initializes their contents with zero,2 and assigns to G the �rst of those locations; attempting to
allocate an empty block, e. g. via G := alloc (0), only assigns a nondeterministic value to G but does
not a�ect the heap. Since we have an in�nite reservoir of locations, memory allocation never fails.
The mutation statement ⟨4⟩ := 4′ changes the value at location 4 to 4′. Mutation can fail: If

location 4 is not allocated, we encounter unde�ned behavior (most likely a crash) due to a memory
fault. The lookup statement G := ⟨4⟩ assigns the value stored at location 4 to variable G if location
4 is allocated and otherwise causes a memory fault. Finally, the deallocation statement free(4)
disposes of location 4 if allocated and causes a memory fault otherwise.

Runtime model. Our ultimate goal is to reason about (amortized) expected runtimes of hpGCL
programs. To deal with a variety of runtime models, we do not assign particular runtimes to
individual statements. Rather, we model runtime using tick statements; executing tick (4) takes 4
units of time (where 4 is evaluated in the current program state). All other hpGCL statements have
a runtime of zero with one exception: whenever we encounter a memory fault, this constitutes
for us unde�ned behavior — anything can happen, including non-termination. Hence, our runtime
model for memory faults is that they have unbounded, i.e. in�nite, runtime.

Modi�ed variables. We denote byMod (�) ⊆ Vars the set of variables that are potentiallymodi�ed
by program � , i.e. occur on the left-hand side of a variable assignment G := 4 in � .

2Similarly to C’s calloc.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:6 Batz, Kaminski, Katoen, Matheja, and Verscht

2.3 Formal Operational Semantics

We give operational semantics to programs by (1) de�ning a small-step execution relation −→ de-
scribing how (and how probable) statements manipulate program states, (2) constructing a Markov
decision process (MDP) based on −→, and (3) introducing a reward function modeling runtimes. Ex-
pected runtimes of program executions will then be the expected rewards of a corresponding MDP.

Con�gurations. The set of program con�gurations is given by

Conf =
(
hpGCL ∪ {term, fault }

)
× Stacks × Heaps ∪ {sink } .

A con�guration is an hpGCL program� , or term indicating fault-free termination, or fault , indicating
a memory fault, together with a program state (s, h). For technical reasons, we also add a sink

con�guration which we enter after program termination.

Execution relation. The steps of our operational semantics are given by an execution relation

−→ ⊆ Conf × Prob × Vals × Conf ,

where Prob is the set of transition probabilities3 and Vals are the allocation values which are chosen

nondeterministically; if the step is not an allocation, we default to 0. Hence, 2
E
−→
?

2′ (denoting

(2, ?, E, 2′) ∈ −→) indicates that our program performs one step from 2 to 2′ with probability ? while
allocation value E has been chosen. To avoid cluttering, we omit ? if ? = 1 and E if E = 0. −→ is given
by the inference rules in Figure 1 which match the intuitive semantics of Section 2.2. E. g., the rule
for G := alloc (4) chooses a location E from 4 consecutive unallocated locations. These locations
are added to the heap with their content initialized to 0. In particular, allocation never fails (steps
into (fault , . . .)) and causes in�nite branching over all such memory locations E .

Markov Decision Processes. We formalize the expected runtime of programs as expected rewards
of MDPs. While we broadly adhere to Baier and Katoen [2008, Chapter 10], we consider MDPs
with in�nitely many states, in�nite branching (actions), and (non-discounted) rewards. A thorough
discussion of such MDPs is found in [Puterman 2005, Chapter 7]. Intuitively, an MDP is a transition
system that assigns to every state one or more4 probability distributions (distinguished by an action)
over successor states. Moreover, whenever we leave a state, we collect a reward.

De�nition 2.1 (Markov Decision Process). A Markov decision processM is a tuple

M = (S,Act, prob, finit, rew) ,

where S is a countable set of states, Act is a countable set of actions, prob : S × Act × S → [0, 1] is
the transition probability function5, finit ∈ S is the initial state, and rew : S → R∞≥0 assigns to every
state a reward that is collected when leaving a state. △

Consider until further notice a �xedMDPM = (S,Act, prob, finit, rew). Our goal is to determine the
maximal expected reward collected over all possible paths that start in finit. For that, we �rst resolve
the nondeterminism, arising from multiple actions being enabled, by a scheduler S : S+ → Act

which chooses an action for every history of states. We denote by Sched the set of all schedulers.

3Formally, we set Prob = ([0, 1] ∩ Q) ∪ {1 − 1/2}, where 1 − 1/2 ≠ 1/2 is a formal value that allows us to represent two

distinguishable steps from a con�guration 2 both to the same con�guration 2′ , each with probability 1/2.
4due to nondeterminism
5i.e., (1) for all states f ∈ S and actions 0 ∈ Act, dist(f, 0) =

∑
f ′∈S prob(f, 0, f

′) ∈ {0, 1} and (2) for all f ∈ S there

exists an action 0 ∈ Act such that dist(f, 0) = 1. We call the actions 0 with dist(f, 0) = 1 the enabled actions of state f .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:7

tick (4) , s, h −→ term, s, h term, s, h −→ sink sink −→ sink fault , s, h −→ sink

{�1 } [?] {�2 } , s, h −−−−→
s (?)

�1, s, h {�1 } [?] {�2 } , s, h −−−−−−→
1−s (?)

�2, s, h

G := 4, s, h −→ term, s [G ← s(4)] , h if (i) {�1 } else {�2 } , s, h −→

{
�1, s, h if s |= i

�2, s, h if s ̸ |= i

G := alloc (4) , s, h
E
−→




term, s [G ← E] , h★ h′ if s(4) = = > 0 and h ⊥ h′

and h′ = {E ↦→ 0} ★ . . .★ {E + = − 1 ↦→ 0}

term, s [G ← E] , h if s(4) = 0 and E ∈ Vals

G := ⟨4⟩, s, h −→

{
term, s [G ← h(E)] , h if s(4) = E ∈ dom (h)

fault , s, h if s(4) ∉ dom (h)

⟨4⟩ := 4′, s, h −→

{
term, s, h [E ← s(4′)] if s(4) = E ∈ dom (h)

fault , s, h if s(4) ∉ dom (h)

free (4), s, h −→

{
term, s, h′ if h = h′ ★ {s(4) ↦→ E} for some E ∈ Vals

fault , s, h otherwise

while (i) {� } , s, h −→

{
� # while (i) {� }, s, h if s |= i

term, s, h if s ̸ |= i

�1, s, h
E
−→
?

�′1, s
′, h′

�1 # �2, s, h
E
−→
?

�′1 # �2, s
′, h′

�1, s, h
E
−→
?

term, s′, h′

�1 # �2, s, h
E
−→
?

�2, s
′, h′

�1, s, h
E
−→
?

fault , s, h

�1 # �2, s, h
E
−→
?

fault , s, h

Fig. 1. The inference rules determining the execution relation −→ of our operational semantics. Here, 2
E
−→
?

2′

indicates a step from 2 to 2′ with probability ? in which allocation value E has been chosen. To avoid clu�er,

we omit ? and E if they equal their default values ? = 1 and E = 0. Hence, 2 −→ 2′ means 2
0
−→
1
2′.

Once a schedulerS is �xed, a path is a sequence f0f1f2 . . . of states starting in f0 = finit such
that there is non-0 probability (under the distribution determined byS) of moving from f= to f=+1.
Formally, the set Paths== (S) of paths of length = ∈ N induced by schedulerS is given by

Paths== (S) = { f0 . . . f=−1 | f0 = finit, ∀8 ∈ {1, . . . , = − 1} : prob(f8−1,S(f0 . . . f8−1), f8) > 0 } .

The total probability of taking a path f0 . . . f=−1 and the total reward collected along that path are
then obtained by multiplying transition probabilities and summing up rewards, that is,

prob(f0 . . . f=−1) =

=−1∏

8=1

prob(f8−1,S(f0 . . . f8−1), f8) and rew(f0 . . . f=−1) =

=−2∑

8=0

rew(f8) .

The total expected reward ExpRew (M) of MDPM is then the maximal6 (over all schedulersS and
path lengths=) accumulated reward collected along all paths of length= and induced by schedulerS
weighted by each path’s probability. Formally, ExpRew (M) is given by

ExpRew (M) = sup
S∈Sched

sup
=∈N

∑

c∈Paths== (S)

prob(c) · rew(c) .

6since the reward is used for modeling the runtime

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:8 Batz, Kaminski, Katoen, Matheja, and Verscht

The Operational Markov Decision Process. We will now construct an MDP

M J�, s, hK =
(
Conf, Vals, prob, (�, s, h), rew

)

whose expected reward captures the expected runtime of executing program � on state (s, h).
We call M J�, s, hK the operational MDP of � and (s, h). This MDP’s set of states are the program
con�gurations Conf, its action set are the allocation values Vals, and its initial state is the con�gura-
tion (�, s, h). The transition probability function prob is obtained from the execution relation −→ in
Figure 1 by accumulating the probability of all steps from 2 to 2′ which choose the same value E , i.e.

prob : Conf × Vals × Conf, (2, E, 2′) ↦→
∑

? : 2
E
−→
?

2′

? .

By construction of our execution relation, prob is a well-de�ned transition probability function:

(1) for all 2 ∈ Conf and E ∈ Vals, we have
∑

2′∈Conf prob (2, E, 2′) ∈ {0, 1} and
(2) for all 2 ∈ Conf, there exists E ∈ Vals such that

∑
2′∈Conf prob (2, E, 2′) = 1.

(2) follows from the fact that in −→ every con�guration has a successor (sink −→ sink if necessary).
Finally, the reward function rew re�ects our runtime model, where collected reward corresponds

to accumulated runtime: we collect reward 4 whenever we execute tick (4) and reward∞whenever
we encounter a memory fault. Executing any other hpGCL statement consumes no runtime and
thus reward 0 is collected. Hence, the reward function rew is given by

rew : Conf→ R∞≥0 , 2 ↦→





s(4), if 2 = (tick (4) , s, h) or 2 = (tick (4) #�, s, h)

∞, if 2 = (fault , s, h)

0, otherwise.

Put together, we de�ne the expected runtime of hpGCL program� on initial program state (s, h) as
the expected reward ExpRew

(
M J�, s, hK

)
of the operational MDP of � and (s, h).

3 RUNTIME SEPARATION LOGIC

We will now study runtime separation logic (RSL), a real-valued “logic” in the spirit of [Batz et al.
2019], suitable for use in reasoning about upper bounds on expected runtimes of randomized
algorithms that manipulate dynamic data structures. Its key ingredient are two separating con-
nectives, ⊕ and −−⊖, which replace the standard separation logic connectives ★ and −−★ . Though
rediscovered independently by us, RSL has been proposed for future investigation by Matheja
[2020] and then investigated by Haslbeck [2021], with almost-exclusive focus on its meta-theory.

3.1 Runtimes

Classical program veri�cation employs logical predicates which evaluate to true or false for reason-
ing about program correctness. Our goal is to reason about a program’s expected runtime, i.e. the
average (possibly unbounded) number of time units it takes to execute the program. To this end,
we use genuine quantities, which map states to numbers instead of truth values.

De�nition 3.1 (Runtimes). The set of runtimes is given by

T =
{
5

�� 5 : States→ R∞≥0
}
.

We use metavariables 5 , 6,D, and variations for runtimes. Together with the order

5 ⪯ 6 i� ∀ (s, h) ∈ States : 5 (s, h) ≤ 6(s, h)

the set of runtimes forms a complete lattice.
We call a runtime 5 �nite if ∀ (s, h) ∈ States : 5 (s, h) < ∞ and denote this by 5 ≺ ∞. △

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:9

Table 1. Standard separation logic atoms and their semantics.

i (s, h) |= i i� . . .

emp dom (h) = ∅

4 ↦→ − dom (h) = {s(4)}

4 ↦→ 4′ dom (h) = {s(4)} and h(s(4)) = s(4′)

For any constant A ∈ R∞≥0, we simply write A for the constant runtime _(s, h). A . Similarly, we write
G for the runtime _(s, h). s(G). We write size for the runtime corresponding to the number of
allocated memory locations on the heap, i.e. size = _(s, h). |dom (h) |.

3.2 Truth vs. Runtimes

It is not overly helpful, in general, to think of runtimes as many-valued truth values. However, if
one subscribes to the fairly widespread conception that truth is something desirable and falsehood
is something undesirable, then one could make the following analogy: In the world of runtimes
— usually — a runtime of 0 is something desirable, higher numbers are less and less desirable, and∞ is
something undesirable. In that sense, one can well draw a connection between the undesirable false
and∞ on the one hand, and less well a connection between the desirable true and all �nite runtimes.
This analogy is to some extent also re�ected in our runtime model of the heap-manipulating hpGCL
constructs: Memory faults (certainly undesirable!) cause in�nite runtime.

3.3 Gatekeeper Brackets

We can turn Boolean predicates i : States→ {true, false} into runtimes in a way that preserves
the above analogy: The gatekeeper bracket HiI (reminiscent of Iverson brackets) of a predicate i is
de�ned as the function

HiI : States→ {0, ∞}, HiI(s, h) =

{
0, if (s, h) |= i

∞, if (s, h) ̸|= i.

HiI can be understood as a gatekeeper which checks whether the documents we present to them
(i.e. the current state (s, h)) are in accordance with their internal guidelines (i.e. the predicate i).
In the desirable case that our documents check out (i.e. if (s, h) |= i), they will let us pass with
zero further delay: HiI(s, h) = 0. In the undesirable case that our documents do not check out
(i.e. if (s, h) ̸|= i), the gatekeeper will hold us up for in�nitely long: HiI(s, h) = ∞.

3.4 Separation Logic Atoms

We will often specify memory-safety constraints using the standard (Boolean) separation logic
atoms collected in Table 1 (cf., [Ishtiaq and O’Hearn 2001; Reynolds 2002]). The empty heap predicate
emp speci�es that no memory location is allocated; the predicate 4 ↦→ − speci�es that exactly one
location, namely 4 , is allocated on the heap, and the points-to predicate 4 ↦→ 4′ speci�es also that
precisely location 4 is allocated on the heap and moreover that it stores content 4′. For a separation
logic atom U , we write HUI to obtain its gatekeeper bracket.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:10 Batz, Kaminski, Katoen, Matheja, and Verscht

3.5 Standard Connectives on Runtimes

3.5.1 Addition. We de�ne standard mathematical operations (addition, multiplication, minimum,
etc.) on runtimes pointwise, e. g. 5 + 6 = _(s, h). 5 (s, h) + 6(s, h). Addition (+) aggregates undesir-
ableness, namely the runtime 5 and the runtime 6. In that sense, addition can be thought of as the
runtime analogue to logical conjunction aka logical and (∧) which also aggregates undesirableness,
namely falsehood: If either 0 or 1 are false, 0 ∧ 1 aggregates this falsehood and becomes itself false.
This interpretation is also compatible when using gatekeepers: Hi ∧kI = HiI + HkI.

3.5.2 Monus. The (pointwise) monus operation 6 ·− 5 = max{6 − 5 , 0} can be read as �rst carving
out the runtime 5 from the runtime 6 and then measuring only the remaining runtime. Monus is the
adjoint of addition, satisfying 6 ⪯ D + 5 i� 6 ·− 5 ⪯ D. Consequently, monus is the runtime analogue
to logical implication (→) in that U ·− V corresponds to V → U . Keeping in mind that non-zero
runtime is undesired, implication also carves out undesirableness, namely falsehood: For 0 → 1,
whatever falsehood 0 carries is carved out from 1. Indeed, if 0 is false, then we carve out all the
falsehood from 1 (since we are in a Boolean realm). Thus, there cannot remain any falsehood and
0 → 1 is true in this case. Dually, if 0 is true, then there is no falsehood to be carved out from 1.
Thus, there remains only whichever falsehood 1 already carries and 0 → 1 is just 1 in this case.

Compatibility for gatekeepers is given by Hi → kI = HiI ·− HkI when using the convention
∞ ·− ∞ = 0. Even∞ ·− ∞ = 0 �ts with our intuition of carving out undesirableness:∞ is the most
undesired, and∞ ·− ∞ would thus carve out all undesirableness out of the most undesired. What
remains is no undesirableness whatsoever: 0.

3.5.3 Minimum. The minimum of two runtimes, denoted 5 ⊓ 6, is the runtime analogue of logical
disjunction (∨). Applied to arbitrary runtimes, we can read 5 ⊓ 6 as a preference for smaller, i.e.
more desirable, runtimes, thus re�ecting that we ultimately wish to reason about as tight as possible
upper bounds. In particular, we prefer a �nite runtime over an in�nite one indicating undesired
behavior. Analogously, 0 ∨ 1 prefers the more desirable (more true) truth value. Compatibility for
gatekeepers is given by Hi ∨kI = HiI ⊓ HkI.

3.5.4 Multiplication. We typically use runtime multiplication 5 · 6 in two restricted forms: Firstly,
we write ? · 5 for the runtime 5 scaled by some probability ? ∈ [0, 1]. Throughout this paper, we
adapt the convention that 0 · ∞ = ∞ · 0 = 0. Secondly, we write [i] · 5 to specify a conditional
runtime 5 that only amounts to 5 if the predicate i holds and otherwise to 0. Here, the Iverson
bracket [i] (de�ned as [i] (s, h) = 1 if (s, h) |= i and [i] (s, h) = 0 otherwise) acts as a logical
guard that “activates” the runtime 5 if and only if i holds. Conditional runtimes [i] · 5 can also be
expressed with gatekeeper brackets, since [i] · 5 = H¬iI ⊓ 5 = 5 ·− HiI.

3.6 Separating Connectives on Runtimes

To enable local reasoning about expected runtimes of randomized heap-manipulating programs,
we derive quantitative versions of separation logic’s characteristic connectives — the separating
conjunction i ★k and the separating implication i −−★ k . We will obtain them from our runtime
analogues for conjunction and implication, namely addition 5 + 6 and monus 6 ·− 5 .

3.6.1 Separating Addition. Recall from [Ishtiaq and O’Hearn 2001] that

(s, h) |= i ★k i� ∃ h1, h2 with h = h1 ★ h2 : (s, h1) |= i and (s, h2) |= k ,

i.e. the separating conjunction i ★k is true for a state (s, h) if, among all partitionings of the heap h

into h1 and h2, there exists one such that i is true for (s, h1) and k is true for (s, h2). Notice that the
“and” aggregates undesirableness (falsehood, cf. Section 3.5.1), whereas the ∃ quanti�er, by choosing
a heap partitioning, optimizes globally for the most desirable outcome (truth).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:11

Towards connecting runtimes 5 and 6 in a similar fashion aggregating as little undesirableness
as possible, it is natural to replace the falsehood aggregator “and” by its runtime analogue +. As for
the ∃ quanti�er which governs the choice of partitioning, it is natural to replace this with a min, so
that we aggregate as little runtime as possible. This leads us to the following de�nition:

De�nition 3.2 (Quantitative Separating Addition [Haslbeck 2021; Matheja 2020]). The quantitative
separating addition 5 ⊕ 6 of two runtimes 5 , 6 ∈ T is de�ned as

5 ⊕ 6 = _(s, h). min
h1,h2
{ 5 (s, h1) + 6(s, h2) | h = h1 ★ h2 } . △

Example 3.3. We typically use 5 ⊕ 6 to cut o� parts of the heap (speci�ed by 5) before evaluating
the runtime in 6. For example, to evaluate H7 ↦→ 3I ⊕ size, we �rst attempt to cut o� the single
memory location 7 such that H7 ↦→ 3I evaluates to 0 and then measure the number of locations in
the remaining heap. As a truly quantitative example, size ⊕ size = size. △

3.6.2 Separating Monus. Recall from [Ishtiaq and O’Hearn 2001] that

(s, h) |= i −−★ k i� ∀h′ with h′ ⊥ h : (s, h′) |= i implies (s, h★ h′) |= k,

i.e. the state (s, h) satis�es the separating implicationi−−★k i� for every well-de�ned heap extension
h′ of h (i.e. h′ ⊥ h) speci�ed by i (i.e. (s, h′) |= i), the combined state (s, h★h′) satis�esk . In other
words,k must hold for the worst (for satisfyingk) heap extensions admitted by i .

As we saw in Section 3.5.2, the “implies” carves out the undesirableness (falsehood) of its left
operand from its right one, whereas the ∀ quanti�er, by considering every heap extension, optimizes
globally for the least desirable outcome (falsehood). Towards connecting runtimes 5 and 6 in a
similar fashion carving out as little undesirableness as possible, it is natural to replace “implies”
by its runtime analogue ·−. As for the ∀ quanti�er which optimizes for falsehood, it is natural to
replace this with a quantitative analogue that also optimizes for most undesirable: sup,7 so that we
aggregate as much runtime as possible. This leads us to the following de�nition:

De�nition 3.4 (Quantitative Separating Monus [Haslbeck 2021]). The quantitative separating
monus 5 −−⊖ 6 of two runtimes 5 , 6 ∈ T is de�ned as

5 −−⊖ 6 = _(s, h). sup
h′
{6(s, h★ h′) ·− 5 (s, h′) | h′ ⊥ h } ,

where∞ ·− ∞ = 0. △

Example 3.5. We typically use 5 −−⊖ 6 to extend the heap before evaluating 6 on the extended
heap. For example, to evaluate H7 ↦→ 3I −−⊖ size, we �rst extend the heap h by {7 ↦→ 3} and then
count the number of allocated locations. If location 7 is not allocated in h, the result is |dom (h) | +1;
otherwise, H7 ↦→ 3I is∞ for every heap extension and the overall result is “something” ·− ∞ = 0.△

3.6.3 Properties of ⊕ and −−⊖. Haslbeck [2021, Chapter 4] showed that the separating addition ⊕
and the separatingmonus−−⊖ enjoymost desirable properties of the classical separating connectives
collected by Reynolds [2002]. In particular, ⊕ and −−⊖ are adjoint, i.e. for all runtimes 5 , 6,D ∈ T,

D ⪯ 5 ⊕ 6 i� 6 −−⊖ D ⪯ 5 .

Adjointness immediately yields themodus ponens property: subtracting and adding the same runtime
5 from and to a runtime 6 overapproximates 6, i.e. 6 ⪯ 5 ⊕ (5 −−⊖ 6). Moreover, (T, ⊕, HempI)
forms a commutative monoid, i.e. ⊕ is associative (5 ⊕ (6 ⊕ D) = (5 ⊕ 6) ⊕ D), HempI is the neutral
element (5 ⊕ HempI = HempI ⊕ 5 = 5), and ⊕ is commutative (5 ⊕ 6 = 6 ⊕ 5). Many properties of
standard addition naturally carry over to the separating addition. For example, ⊕ is monotone and

7Not a max as there are potentially in�nitely many extensions h′ .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:12 Batz, Kaminski, Katoen, Matheja, and Verscht

multiplication distributes over ⊕, i.e. ? · (5 ⊕ 6) = ? · 5 ⊕ ? · 6. Furthermore, standard addition and
separating addition are sub-distributive: 5 + (6 ⊕ D) ⪰ (5 ⊕ 6) + (5 ⊕ D).

3.7 Runtime Specifications

Pure runtimes. A runtime 5 is pure if it does not depend on the heap, i.e. 5 (s, h) = 5 (s, h′) for all
h, h′ ∈ Heaps. Examples of pure runtimes include 5, G + ~, and HG = ~I, but not size or HempI.

In a separating addition 5 ⊕ 6 where 5 is pure, heap portions that would increase 6 will always
be evaluated in 5 (thus not at all), since ⊕ tries to minimize the overall runtime. In particular, we
have 5 ⪯ 5 ⊕ 6 and 0 ⊕ 6 ⪯ 6, where 0 ⊕ 6 is the runtime analogue to the smallest intuitionistic
extension true ★ i of predicate i (cf. [Reynolds 2002]). Notice that 5 ⪯ 5 ⊕ 6 does not hold for
arbitrary 5 : E. g., size � size ⊕ HG ↦→ − I, since the LHS can become 1 unit bigger than the RHS.

To explicitly prohibit such e�ects, we denote by 5 the runtime 5 (5 arbitrary) that is required to

be evaluated in the empty heap (otherwise it is∞), i.e. we require 5 and the empty heap:

5 ≔ 5 + HempI .

If, additionally, 5 is pure, then 5 + 6 = 5 ⊕ 6 holds for all runtimes 6.

Example 3.6. Consider the runtime 5 given by

5 = H0 ↦→ 1I ⊕ H1 ↦→ 2I ⊕ H2 ↦→ 3I ⊕ H0 = 3I ⊕ 42 .

It evaluates to 42 for every state whose heap contains a circle 0 ↦→ 1 ↦→ 2 ↦→ 0 and nothing else;
otherwise, it evaluates to∞. We can think of 5 as having two components: the gatekeeper brackets
impose safety constraints to avoid unde�ned behavior (which would lead to∞) and 42 represents
the time units consumed if all safety constraints are met. △

Quanti�ers. In the Boolean case, ∃ optimizes for the most desirable (truth), whereas ∀ optimizes
for the least desirable (falsehood). In RSL, smaller runtimes are more desirable than larger ones.
The RSL analogue to ∃G : i is thus an in�mum, denoted by JG : 5 , which picks a value for G to
minimize runtime 5 . The RSL analogue to ∀G : i is a supremum, denoted by SG : 5 , which picks a
for G to maximize runtime 5 . To formally de�ne our runtime quanti�ers Jand S, we denote by

5 [G/4] = _(s, h). 5 (s [G ← s(4)] , h)

the “syntactic” replacement of every “occurrence” of variable G in 5 by expression 4 . We then de�ne

JG : 5 = _(s, h). inf { 5 [G/E] (s, h) | E ∈ Vals } and

SG : 5 = _(s, h). sup { 5 [G/E] (s, h) | E ∈ Vals } .

Further details on these quanti�ers are found in [Batz et al. 2021b, 2019]. To specify runtimes over
data structures of arbitrary sizes, we also de�ne runtime variants of iterating separating conjunctions
and inductive predicate de�nitions (cf. [Reynolds 2002]).

Separating sums. To specify runtimes evaluated in variably-sized contiguous memory blocks, we
use the iterative separating addition, called separating sum for short, given by

4′⊕

8=4

5 = _(s, h).

{(
5 [8/s(4)] ⊕

⊕4′

8=4+1 5
)
(s, h) if s(4) ≤ s(4′)

HempI(s, h) if s(4) > s(4′) ,

where 5 ∈ T and 4, 4′ are arithmetic expressions evaluating to values in N.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:13

Table 2. Rules for the ert–transformer. Here E is a fresh variable not occuring in 4 or 5 .

I ert JIK (f)

tick (4) 4 + 5 or equivalently 4 ⊕ 5

G := 4 5 [G/4]

G := alloc (4) SE :
(⊕4

8=1 HE + 8 − 1 ↦→ 0I
)
−−⊖ 5 [G/E]

G := ⟨4⟩ JE : H4 ↦→ EI ⊕
(
H4 ↦→ EI −−⊖ 5 [G/E]

)

⟨4⟩ := 4′ H4 ↦→ − I ⊕
(
H4 ↦→ 4′I −−⊖ 5

)

free(4) H4 ↦→ − I ⊕ 5

{�1 } [?] {�2 } ? · ert J�1K (5) + (1 − ?) · ert J�2K (5)

if (i) {�1 } else {�2 } [i] · ert J�1K (5) + [¬i] · ert J�2K (5)

�1 # �2 ert J�1K (ert J�2K (5))

while (i) {�′ } lfp 6. [¬i] · 5 + [i] · ert J�′K (6)

Example 3.7. Consider the following runtime 5 over the variables G,~, and 8:

5 =

~⊕

8=1

(
JI : HG + 8 − 1 ↦→ II ⊕ (I · I)

)
.

5 speci�es — read: is not∞ i� — that the heap is an array of length ~ and evaluates to the sum of
squares of the values stored in the array. The HG + 8 − 1 ↦→ II’s ensure the array structure and we
use RSL’s Jquanti�er to (“existentially”) refer to each location G + 8 − 1’s content I. △

Coinductive runtime de�nitions. We specify runtimes of linked data structures using coinductive
de�nitions, i.e. greatest �xed points gfp Ψ of recursive runtime equations of the form

5 = Ψ(5) where Ψ : T→ T monotone .

Given a coinductive de�nition 5 = Ψ(5), we just write 5 to refer to its solution gfp Ψ. For example,
a runtime list (4, 4′) speci�ying that the heap is a singly-linked list segment from 4 to 4′ is given by

list (4, 4′) = H4 = 4′I
︸ ︷︷ ︸
empty list

⊓︸︷︷︸
“or”

cf. Section 3.5.3

JI : H4 ↦→ II ⊕ list (I, 4′)
︸ ︷︷ ︸

lists of length ≥ 1

.

In words, a list speci�es either the empty list such that 4 = 4′ or a non-empty list in which 4 points
to some location I that is the head of a list segment to 4′. We can easily extend this de�nition to
obtain the size of the list from 4 to 4′, or∞ if the heap is not such a list by

listsize (4, 4′) = H4 = 4′I ⊓ (1 ⊕ JI : H4 ↦→ II ⊕ listsize (I, 4′)) .

4 THE EXPECTED RUNTIME CALCULUS FOR hpGCL

We now extend the expected runtime calculus of Kaminski et al. [2018] by RSL, thus enabling
capabilities for local reasoning about expected runtimes of programs that access andmutate dynamic
memory. This is inspired by the quantitative separation logic of Batz et al. [2019].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:14 Batz, Kaminski, Katoen, Matheja, and Verscht

The backward-moving expected runtime transformer

ert : hpGCL→ (T→ T)

is de�ned by induction on hpGCL in Table 2. The transformer is de�ned in such a way that

ert J�K (0) (s, h) =





“expected number of ticks
when executing � on (s, h)" , if � memory-safe on (s, h)

∞ , if � not memory-safe on (s, h).

— a fact we will make formally precise w.r.t. our operational MDP semantics in Section 4.4. More
generally, to achieve compositionality, ert J�K (5) (s, h) is a runtime that gives us the expected
number of ticks it takes to �rst execute the program � on (s, h) and then let time 5 pass, or∞ in
case � is not memory safe on (s, h). We refer to 5 as the postruntime. Let us go over the rules.

Time consumption. How long does it take to execute tick (4) and then let time 5 pass? 4 + 5 .
Since 4 is always pure, this is equivalent to 4 ⊕ 5 , which can be more handy for local reasoning.

Assignment, Sequential composition, Conditional and probabilistic choice, While loop. All these
cases have been treated in detail in [Kaminski 2019, Section 7.3, p.163–166]. The only di�erence is
that in [Kaminski 2019] each basic instruction consumes 1 unit of time whereas we have here (by
means of tick) a more �ne-grained runtime model.

In order to be somewhat self-contained, however, let us quickly go over the case for assignments
and probabilistic choice: How long does it take to execute G := 4 (on initial state (s, h)) and then
let time 5 pass? Executing G := 4 itself takes no time. But we need to evaluate 5 in the state that
is reached after the assignment, i.e. the �nal state (s [G ← s(4)] , h). This is precisely 5 [G/4] but
evaluated in the initial state (s, h). For the probabilistic choice {�1 } [?] {�2 }, we simply take the
weighted average of the expected time it takes to either execute �1 or �2 and then let time 5 pass.

Allocation. Again, G := alloc (4) itself takes no time, but we need to measure 5 in a state where
the heap has been extended by 4 contiguous memory locations, all initialized to store value 0.⊕4

8=1 HE + 8 − 1 ↦→ 0I describes precisely such an extension. By −−⊖ we impose this extension on 5 .
What is left is to handle the nondeterminism arising from the memory allocator’s choice of the �rst
new location E . As we do upper-bound (worst-case) reasoning, we resolve this nondeterminism via
a maximizing Sand measure 5 in the extended heap and in a stack where G has been updated to E .

Lookup. For G := ⟨4⟩, we �rst ensure via H4 ↦→ EI⊕ that 4 is indeed allocated. (If not, the whole
term becomes∞, indicating a memory fault.) In connection with the Jquanti�er, we moreover
select the value E that 4 points to. The ⊕ has now carved the memory location {4 ↦→ E} out from
the heap. Since we did not want to manipulate the heap, we reinsert {4 ↦→ E} via H4 ↦→ EI −−⊖ .
What is left is to measure 5 but in a stack where G has been updated to E .

Mutation. For ⟨4⟩ := 4′, we �rst ensure via H4 ↦→ − I ⊕ that 4 is actually allocated, but care
not about its stored value since we are about to overwrite it. The ⊕ has now carved location 4 out
from the heap. In order to overwrite the value stored at 4 with 4′, we insert {4 ↦→ 4′} into the
heap via H4 ↦→ 4′I −−⊖ . This insertion of location 4 cannot fail (become ∞) because we have
previously carved out precisely location 4 (unless 4 was not allocated in the �rst place, in which
case the whole term becomes∞ anyway). What is left is to measure 5 in the so-manipulated heap.

Deallocation. For free(4), we need to measure 5 in a heap where the location 4 has been carved
out. As demonstrated numerous times previously, such carving out is achieved by H4 ↦→ − I−−⊖ .

Theorem 4.1 (Healthiness Properties of ert). Let � be a program; � = {51 ⪯ 52 ⪯ . . .} be an
l-chain of runtimes; 5 , 6 be runtimes; and D ∈ T be a constant runtime. Then the following hold:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:15

(1) l-continuity: ert J�K (sup �) = sup ert J�K (�)

(2) Monotonicity: 5 ⪯ 6 implies ert J�K (5) ⪯ ert J�K (6)

(3) Sub-additivity: ert J�K (5 + 6) ⪯ ert J�K (5) + ert J�K (6)

(4) Constant propagation: ert J�K (D + 5) ⪯ D + ert J�K (5)

Remark 4.2 ((Non-)l-continuity of ert). l-continuity is actually somewhat unexpected. The
weakest preexpectation transformer of Batz et al. [2019] who deals with determining (minimal)
expected values of essentially the same hpGCL is indeed not l-continuous due to the unbounded
nondeterminism arising from memory allocation. Probably guided by this result, Haslbeck [2021,
Section 4.2, p.46] claims that the ert transformer is also not l-continuous. However, since ert is a
maximizer and suprema commute, ert does enjoy the bene�cial property of l-continuity.

4.1 Local Reasoning for Expected Runtimes

To enable local reasoning, the ert calculus features a frame rule for establishing upper bounds:

Theorem 4.3 (Frame Rule for RSL Haslbeck [2021]). For every � ∈ hpGCL and runtimes 5 , 6,

Mod (�) ∩ Vars(6) = ∅ implies ert J�K (5 ⊕ 6) ⪯ ert J�K (5) ⊕ 6 .

We call6 in the above theorem the frame. Combining the above frame rule with the RSL analogues of
Reynolds [2002]’s local rules for heap mutation, lookup, memory allocation, and auxiliary variable
elimination enables SL-style source-code level proofs for upper-bounding expected runtimes:

Theorem 4.4 (Local Rules for RSL following Reynolds [2002]). Let � ∈ hpGCL. Then:

(1) (mut): ert J⟨4⟩ := 4′K
(
H4 ↦→ 4′I

)
⪯ H4 ↦→ − I

(2) (lkp): ert JG := ⟨4⟩K
(
HG = II ⊕ H4 [G/~] ↦→ II

)
⪯ HG = ~I ⊕ H4 ↦→ II,

(3) (alc): if G does not occur in 4 , then

ert JG := alloc (4)K

(
4⊕

8=1

HG + 8 − 1 ↦→ 0I

)

⪯ HempI .

(4) (aux): For all 5 , 6 ∈ T and all ~ ∈ Vars not occurring in � ,

ert J�K (5) ⪯ 6 implies ert J�K
(

J~ : 5
)
⪯ J~ : 6 .

4.2 Invariant-Based Reasoning for Loops

Recall that ert JloopK (5) for loop = while (i) { body } is de�ned as

lfp 6. [¬i] · 5 + [i] · ert JbodyK (6)
︸ ︷︷ ︸

≔Φ5 (6)

,

where we call Φ5 the ert-characteristic functional of loop w.r.t. postruntime 5 . For upper-bounding
expected runtimes of loops — given as least �xed points — we have an invariant-based proof rule:

Theorem 4.5 (Park Induction for RSL). Let loop = while (i) { body } and � , 5 ∈ T. Then

Φ5 (�) ⪯ � implies ert JloopK (5) ⪯ � .

We call such � an ert-invariant. Park induction can simplify the veri�cation of loop runtimes
signi�cantly: to obtain an upper bound on the expected runtime of the entire loop, it essentially
su�ces to upper-bound ert JbodyK (�), i.e. the expected runtime of one (arbitrary) loop iteration.
Notice that the above proof rule is complete since lfp 6. Φ5 (6) is necessarily an ert-invariant.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:16 Batz, Kaminski, Katoen, Matheja, and Verscht

4.3 Example: The Lagging List Traversal

We demonstrate the applicability of the ert calculus. Consider the program �:

while (~ ≠ 0) { tick (1) # {~ := ⟨~⟩ } [1/2] { skip } }

� traverses a null-terminated list segment beginning at ~. Every iteration costs 1 unit of time.
The program then either traverses the next edge of the list (left branch), or forgets to do so (right
branch), each with probability 1/2. Using the frame rule, the local rules for lookup and auxiliary
variable elimination, and monotonicity of ert we prove that

� ≔ 2 · J� : list (�, ~) ⊕ listsize (~, 0)

is an ert-invariant of � w.r.t. postruntime 0, which, by Theorem 4.5, implies that � upper-bounds
the expected runtime of � , where list (�, ~) is only needed for strengthening the loop invariant.
Hence, when executed on a heap consisting of a null-terminated list containing the element ~, the
program� is memory-safe and takes, in expectation, a runtime of at most 2 times the size of the list
segment beginning at ~.

4.4 Soundness of the ert Calculus

We will now show that the ert calculus is sound in that it characterizes a program’s expected
execution time de�ned in terms of expected rewards of operational MDPs in Section 2.3. Formally,
we show that, for every hpGCL program � and initial state (s, h), we have

ert J�K (0) (s, h) = ExpRew
(
M J�, s, hK

)
,

where the post-runtime 0 indicates that no time is consumed after termination of � .
We will prove a more general claim for arbitrary post-runtimes 5 ∈ T instead of the �xed

post-runtime 0. To account for 5 in our operational semantics, we �rst extend the reward function
rew of our operational MDPs M J�, s, hK such that we collect a reward of 5 (s′, h′) whenever �
successfully terminates as indicated by an execution step from con�guration (term, s′, h′) to sink :

rew : Conf→ R∞≥0, 2 ↦→





s(4), if 2 = (tick (4) , s, h)

5 (s, h), if 2 = (term, s, h)

∞, if 2 = (fault , s, h)

0, otherwise.

We denote by M J�, 5 , s, hK the operational MDP introduced in Section 2.3 but with the above
reward function. Our expected runtime calculus is then sound in the following sense:

Theorem 4.6 (Soundness of ert). For all � ∈ hpGCL, runtimes 5 ∈ T, and program states (s, h),

ert J�K (5) (s, h) = ExpRew
(
M J�, 5 , s, hK

)
.

Our soundness theorem clari�es what the expected runtime calculus actually computes: as long
as no program execution of � on initial state (s, h) leads to a memory fault, ert J�K (0) (s, h) is
the expected execution time measured in units of time consumed by tick (4) statements; if some
program execution of � on initial state (s, h) does lead to a memory fault, we cannot give a �nite
bound on the expected runtime and have to conclude ert J�K (0) (s, h) = ∞.
Towards a proof of our soundness theorem, a runtime transformer is a function of the form

rt : hpGCL ∪ {term, fault } → (T→ T)

that maps the terminated programs to the postruntime, i.e. rtJtermK(5) = 5 , and memory faults to
an in�nite runtime, i.e. rtJfaultK(5) = ∞.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:17

We then lift the partial ordering ⪯ on runtimes in T to an order on runtime transformers, i.e.

rt ≤ rt′ i� ∀� ∈ hpGCL ∪ {term, fault } ∀ 5 ∈ T : rtJ�K(5) ⪯ rt′J�K(5) .

Clearly, we can naturally extend the expected runtime calculus ert : hpGCL → (T → T) to a
runtime transformer. We denote the resulting extended expected runtime calculus by eert, i.e.

eert = _� _5 .





5 , if � = term

∞, if � = fault

ert J�K (5) , otherwise.

Analogously, our operational semantics induces a runtime transformer oprt that maps every
program, runtime, and state to the expected reward of the corresponding operational MDP, i.e.

oprt = _� _5 _(s, h). ExpRew
(
M J�, 5 , s, hK

)
.

To prove our soundness theorem, it then su�ces to show eert ≤ oprt and oprt ≤ eert.
We will leverage that our runtime transformers eert and oprt satisfy the well-established opti-

mality equations for MDPs, also known as Bellman equations (cf. [Puterman 2005]). Formally, a
runtime transformer rt is Bellman compliant if and only if for all � ∈ hpGCL, 5 ∈ T, and (s, h),8

rtJ�K(5) (s, h) = rew (�, s, h) + sup
0∈Act

∑

(�, s, h)
0
−→
?
(�′, s′, h′)

? · rtJ�′K(5) (s′, h′) .

In words, the runtime computed by a Bellman compliant runtime transformer is the reward
collected for leaving the current con�guration (�, s, h) plus the runtimes of all direct successor
con�gurations (�′, s′, h′) weighted by the probability moving to con�guration (�′, s′, h′); if there
is a nondeterministic choice between di�erent actions (i.e. we can choose a distribution over
successor con�gurations), then we take one that maximizes the overall runtime.
A long established result on MDPs (even those with countable state spaces and actions) is that

their expected rewards satisfy the Bellman equations [Puterman 2005, Theorem 7.1.3]. Hence:

Lemma 4.7. oprt is Bellman compliant.

In fact, the same holds for the (extended) expected runtime calculus:

Lemma 4.8. eert is Bellman compliant.

Proof. By structural induction on the rules of our execution relation (Figure 1). □

Equipped with two Bellman compliant runtime transformers, we now prove that eert ≤ oprt and
oprt ≤ eert. The �rst inequality can be proven directly by structural induction:

Lemma 4.9. eert ≤ oprt.

Proof. By construction, we have

eertJtermK(5) = 5 ⪯ oprtJtermK(5) and eertJfaultK(5) = ∞ ⪯ oprtJfaultK(5) .

It then su�ces to show that by induction on the structure of hpGCL programs that, for all � ∈
hpGCL and all 5 ∈ T, we have eertJ�K(5) ⪯ oprtJ�K(5). □

We do not directly show the converse direction, i.e. oprt ≤ eert, since we can invoke a more general
result for MDPs that goes back to Blackwell [1967]:

8Textbooks typically restrict the supremum to the set of actions that are enabled in the given con�guration. To simplify

notation, we take the supremum over all actions Act = Vals and agree on the convention that
∑
∅ . . . = 0.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:18 Batz, Kaminski, Katoen, Matheja, and Verscht

Lemma 4.10. For every Bellman compliant runtime transformer rt, we have rt ≥ oprt.

Proof. Since all runtimes in T are non-negative and our execution relation never gets stuck, the
MDPs induced by our operational semantics are positive models (cf. beginning of [Puterman 2005,
Chapter 7.2]). The claim is then a special case of [Blackwell 1967, Theorem 2]. □

Notice that a variant of Blackwell’s theorem is also found in the textbook of Puterman [2005,
Theorem 7.2.2]. However, Puterman considers only positive bounded models, even though the proof
of his theorem does not seem to rely on having a bounded model. Finally, we conclude:

Proof of Theorem 4.6. By Lemma 4.8, eert is a Bellman compliant runtime transformer. By
Lemma 4.10, this implies oprt ≤ eert. Moreover, by Lemma 4.9, we have eert ≤ oprt. Hence,
eert = oprt. Now, for any hpGCL program � , runtime 5 ∈ T, and state (s, h), we have

ert J�K (5) (s, h) = eertJ�K(5) (s, h) (� ∈ hpGCL, by construction of eert)

= oprtJ�K(5) (s, h) (eert = oprt as shown above)

= ExpRew
(
M J�, 5 , s, hK

)
. (de�nition of oprt) □

5 THE AMORTIZED EXPECTED RUNTIME CALCULUS

In amortized analysis, instead of analyzing the worst-case runtime of � , we average the runtime
of � over a whole sequence �= = �1 # . . . # �= of = consecutive executions of � . One technique
for amortized analysis is the potential method, whose core idea is to make frequently occurring
low “normal-case” runtimes of � mildly larger and in return be able to make the seldomly occurring
worst-case runtimes a lot smaller, thus smoothing out seldomly occurring runtime-peaks in the
sequence �= . Key ingredient to achieve such smoothing is a potential function:

De�nition 5.1 (Potential Functions [Sleator and Tarjan 1985; Tarjan 1985]). A potential function is
a function c of type States→ R≥0. Note that c ∈ T with c ≺ ∞. △

The potential function needs to be chosen so that each time � has small runtime, the potential
is mildly increased. Each time � has large runtime, on the other hand, the potential should be
drastically decreased. The amortized runtime of � is then �’s actual runtime plus the change in
potential. Indeed, then the amortized runtime of � in the cheap case is �’s small runtime plus a
mildly positive change in potential — overall still a small number. The amortized runtime of the
expensive case, on the other hand, is �’s large runtime plus a large negative change in potential —
overall, again (hopefully), a small number. Why did the potential do the trick?
Let us denote the runtime of executing �8 by rt8 and the potential attained afterwards by c8 .

The amortized runtime of executing sequence element �8+1 is then rt8+1 + c8+1 − c8 . Summing the
amortized runtimes over the whole sequence gives

=∑

8=0

(

rt8+1 + c8+1 − c8

)

=

=∑

8=0

(

rt8+1

)

︸ ︷︷ ︸
actual runtime of the sequence

+

non-negative
︷︸︸︷
c= − c0︸︷︷︸

assumed to be 0

. (†)

It is now easy to see that if we start with initial potential c0 = 0, then the amortized runtime of the
whole sequence overapproximates the actual runtime of the sequence. Indeed, we could recover the
actual runtime by subtracting from the amortized runtime the (non-negative) �nal potential c= .
As we are concerned with expected (amortized) runtimes of randomized algorithms, we would

need to take expected changes in potential into account and telescoping is not as obvious anymore.
Moreover, changes in potential may become negative. In fact: they should! Otherwise, we have no

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:19

Table 3. Rules for the aert–transformer w.r.t. potential c .

I aert0 JIK (^)

tick (4) 4 + -

� is atomic and not tick ert J�K (- + c) − c

�1 # �2 aertc J�1K (aertc J�2K (-))

if (i) {�1 } else {�2 } [i] · aertc J�1K (-) + [¬i] · aertc J�2K (-)

{�1 } [?] {�2 } ? · aertc J�1K (-) + (1 − ?) · aertc J�2K (-)

while (i) {�′ } lfp . . [¬i] · - + [i] · aertc J�′K (.)

chance of compensating for expensive operations. In the following, we present an ert-style calculus
that can capture amortized expected runtimes and we prove that it essentially satis�es the above
telescoping property, so that it also over-approximates true expected runtimes.

5.1 The Calculus

Let us �x a potential function c and de�ne a set of amortized runtimes relative to c .

De�nition 5.2 (Amortized Runtimes). The set Ac of amortized runtimes with respect to potential
function c , c-runtimes for short, is de�ned as

Ac = {- : States→ R ∪ {∞} | ∀(s, h) ∈ States : −c (s, h) ≤ - (s, h) } .

We denote amortized runtimes by -,., / and variations. We extend ⪯ from E to Ac naturally by

- ⪯ . i� for all (s, h) ∈ States : - (s, h) ≤ . (s, h) .

(Ac , ⪯) forms a complete lattice with least element −c . △

The backward-moving amortized expected runtime transformer

aertc : hpGCL→ (Ac → Ac)

is de�ned by induction on hpGCL in Table 3 and manipulates c-runtimes, which can in principle
become negative (as negative as −c), instead of ordinary runtimes. Like ert, the aert transformer is
de�ned in such a way that

aertc J�K (0) (s, h) = ∞ if � is not memory-safe on (s, h) .

Let us brie�y go over the rules de�ning aert.

Time consumption. Executing tick (4) and then letting (amortized) time - pass takes 4 +- units
of time and cannot change the potential. We cannot go for 4 ⊕ - because ⊕ is unde�ned on Ac .

All other atoms. We have aertc JatomK (-) = ert JatomK (- + c) − c . E. g., for G := 4 , this gives
- [G/4] + c [G/4] − c . Here, we can see how the change in potential is propagated through the
program at the level of atoms.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:20 Batz, Kaminski, Katoen, Matheja, and Verscht

Composite constructs. De�ned like ert, but we need to compose the terms of aert components.

Theorem 5.3. aertc is l-continuous, i.e. for all � ∈ hpGCL and l-chains � = {-1 ⪯ -2 ⪯ . . .},

aertc J�K (sup �) = sup aertc J�K (�) .

Continuity of the aert transformer follows from continuity of the ert transformer and the following
central theorem, which formalizes the telescoping principle of Equation (†) for expected runtimes:

Theorem 5.4 (Telescoping for aert). For all � ∈ hpGCL and - ∈ Ac , we have

aertc J�K (-) = ert J�K (- + c) − c .

In some sense, the above theorem tells us that the following almost (modulo some technical
particularities of the alloc statement which we omit here) holds:

aertc J�K (0) ≈ ert J�K (0) + “expected potential after executing �” − c (‡)

The reason is that ert J�K (c) can (again: almost) be decomposed into ert J�K (0) plus the expected
value of c after executing � .

If� is an entire sequence of operations, we can now relate the right-hand-sides of (†) and (‡): the
“actual runtime” corresponds to ert J�K (0), the expected potential after executing � corresponds
to c= , and the initial potential c0 corresponds to c . Again, this explanation breaks slightly for
programs featuring dynamic memory allocation, but Theorem 5.4 holds also for those programs
and allows us to prove soundness of the aert transformer in the following overapproximating sense:

Theorem 5.5 (Soundness of aert). For every � ∈ hpGCL, we have

ert J�K (0) ⪯ aertc J�K (0) + c .

Proof. ert J�K (c) − c = aertc J�K (0) (by Theorem 5.4 where - = 0)

implies ert J�K (0) − c ⪯ aertc J�K (0) (ert J�K (0) ⪯ ert J�K (c) by monotonicity of ert)

implies ert J�K (0) ⪯ aertc J�K (0) + c □

A further handy decomposition of aert is so-called constant propagation also known from the
non-RSL ert calculus of Kaminski et al. [2018]:

Theorem 5.6 (Constant Propagation for aert). For all � ∈ hpGCL and all constant const ∈ T,

aertc J�K (- + const) ⪯ aertc J�K (-) + const .

Example 5.7 (aert Reasoning). Consider Op = { tick (G) } [1/2] { G := 0 } # G := G + 1. This oper-
ation either consumes G units of time or resets G to 0, each with probability 1/2. Furthermore, each
invocation of Op increases G . Let us now perform both aert as well as ert analyses.
For aert, we choose as potential function c = G . We will then make program annotations as

shown in Figure 2. The left one of these annotations are the aert annotations and they can be read
(best from bottom to top) as follows: 0 is the postruntime. 1 is the result (after simpli�cations) of
aertc JG := G + 1K (0) = 0 + G [G/G + 1] − G = 1. The resulting 1 is also the postruntime to consider
for both branches of the probabilistic choice. 1 − G is the result (again, after simpli�cation) of
aertc JG := 0K (1). Likewise for the other branch of the probabilistic choice. Finally, at the very top,
1 is the result of combining (and simplifying) the two outcomes of the branches of the probabilistic
choice according to the rule for aert— in this case: 1 = 1

2
· (G + 1) + 1

2
· (1 − G). The same annotation

style applies to the ert annotations on the far right.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:21

aert : ert :

((1 ((G
2

{ {

((G + 1 ((G

tick (G) tick (G)

((1 ((0

} [1/2] { } [1/2] {

((1 − G ((0

G := 0 G := 0

((1 ((0

} }

((1 ((0

G := G + 1 G := G + 1

((0 ((0

Fig. 2. aert reasoning (le�) and ert reasoning (right).

We can read o� that the amortized expected time to perform a single Op is 1. Moreover, The-
orem 5.6 immediately yields aertc JOpK (const) = const + 1 and from there it is easy to prove by
induction that aertc JOp=K (0) = =. From there, in turn, we obtain by Theorem 5.5 that

ert JOp=K (0) ⪯ aertc JOp=K (0) + G = = + G .

This was relatively easy and gives us a very clear upper bound on the expected time it takes to
execute a sequence of = Op’s, namely = + G which is = if potential G was 0 initially.

Obtaining the same insight solely via ert reasoning would have been harder. First, we can read o�
that ert JOpK (0) = G

2
. But what about ert JOp=K (0)? For = = 2, we get ert JOp # OpK (0) = 3G

4
+ 1

4
.

For = = 3, we get 7G
8
+ 5

8
. For = = 4, we get 15G

16
+ 17

16
. Seeing a pattern here is less easy than it was

for aert, especially for the constant part of the term.

5.2 Local Reasoning for Amortized Expected Runtimes

To enable local reasoning, the aert calculus also features a frame rule for upper bounds:

Theorem 5.8 (Frame Rule for aert). Let � ∈ hpGCL and 5 , 6 ∈ T. Then

Mod (�) ∩ Vars(6) = ∅ implies

aertc J�K ((5 ⊕ 6) − c) ⪯
(
(aertc J�K (5 − c) + c) ⊕ 6

)
− c .

Proof. aertc J�K ((5 ⊕ 6) − c) = ert J�K (5 ⊕ 6) − c (by Theorem 5.4)

⪯ (ert J�K (5) ⊕ 6) − c (by Theorem 4.3)

=
(
(ert J�K (5) − c + c) ⊕ 6

)
− c

=
(
(aertc J�K (5 − c) + c) ⊕ 6

)
− c (by Theorem 5.4) □

While this rule may look quite involved, it is still helpful: (1) postruntimes during reasoning are
often of the form − c and (2) the heavy lifting, i.e. the aert-reasoning, is still done more locally,
namely on 5 − c instead of (5 ⊕ 6) − c .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:22 Batz, Kaminski, Katoen, Matheja, and Verscht

5.3 Compositional Reasoning about Nested Data Structures

The aert calculus is parameterized in a potential function c , which must be chosen carefully
with respect to the data structure that is analyzed. On a �rst glance, having to �x a potential
function for aert-based reasoning might hamper compositionality. For example, assume we have
already analyzed the amortized expected runtime of a data structure, say �1, using some potential
function c1. Furthermore, suppose a second data structure, say �2, internally uses �1 as a sub-
component, and its analysis requires a slightly di�erent potential function, say c1 ⊕ c2, to account
for additional potential of other elements of �2. Naively, we then have to analyze the aert of �1

again, this time with respect to the extended potential c1 ⊕ c2. However, this need not be necessary.
Instead, we can re-use our existing analysis of �1 with respect to potential c1 to analyze the
amortized expected runtime of �2 with respect to the extended potential c1 ⊕ c2.

More precisely, we can – under mild conditions for c1 and c2 – re-use an existing upper bound
on aertc1

J�K (-) to obtain an upper-bound on aertc1⊕c2
J�K (-). The following theorem leverages

the frame rule for aert and monotonicity to enable such compositional reasoning:

Theorem 5.9. Let c1, c2 be potentials with c1 ⪯ c1 ⊕ c2. Then, for all � ∈ hpGCL and - ∈ Ac1
,

Mod (�) ∩ Vars(c2) = ∅ and - + (c1 ⊕ c2) ⪯ (- + c1) ⊕ c2

implies aertc1⊕c2
J�K (-) ⪯ (aertc1

J�K (-) + c1) ⊕ c2 − c1 ⊕ c2 .

Proof. Notice that all of the above expressions are well-de�ned. Then, consider the following:

aertc1⊕c2
J�K (-)

= ert J�K (- + (c1 ⊕ c2)) − c1 ⊕ c2 (by Theorem 5.4)

⪯ ert J�K ((- + c1) ⊕ c2) − c1 ⊕ c2 (by monotonicity of ert (Theorem 4.1) and assumption)

⪯ ert J�K (- + c1) ⊕ c2 − c1 ⊕ c2 (by frame rule for ert (Theorem 4.3))

= (aertc1
J�K (-) + c1) ⊕ c2 − c1 ⊕ c2 (by Theorem 5.4) □

In the above proof, the assumptionsMod (�)∩Vars(c2) = ∅ and- +(c1⊕c2) ⪯ (- +c1) ⊕c2 enable
framing the potential c2; we remark that the latter assumption immediately holds if both potentials
do not depend on the heap. Moreover, the assumption c1 ⪯ c1 ⊕ c2 ensures that aertc1⊕c2

J�K (-)
is well-de�ned. We use the above compositionality theorem to analyze a load-balancing approach
on top of an already analyzed amortized data structure in Section 5.5.2.

5.4 Reasoning about Loops

As aert for loops is also de�ned via a least �xed point of a function Ψ- , similarly to ert, we obtain
an invariant-based proof rule for upper-bounding amortized expected runtimes:

Theorem 5.10 (Park Induction for aert). Let loop = while (i) { body } and -, � ∈ Ac . Then

Ψ- (�) ⪯ � implies aertc JloopK (-) ⪯ � .

Example 5.11. Consider the loop in Figure 3 with clearly non-constant expected runtime. For
every < ∈ N, let nextpow2 (<) be the smallest power of 2 greater than- or equal to <, and let
pow2 (<) be the predicate that evaluates to true i�< is a power of 2. Using the potential function
c ≔ 2 · G − nextpow2 (G) and the aert loop invariant � = [2 = 0] · 2, the amortized expected
runtime of the loop is shown to be constant. Annotations are best read from bottom to top: - ≔ 0

is the postruntime. Somewhat di�erently from Example 5.7, 0 is not copied to the loop body, but
instead, invariant � is employed and pushed through the loop body (possibly with simpli�cations
and overapproximations), obtaining [2 = 0] + 1. We have now overapproximated aertc JbodyK (�)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:23

⪰(([2 = 0] · 2 (Ψ0 (�) ⪯ � hence aertc JloopK (0) ⪯ �)
Ψ(([2 ≠ 0] · 0 + [2 = 0] · ([2 = 0] + 1)

while (2 = 0) {

(([2 = 0] + 1 (obtain aertc JbodyK (�) ⪯ [2 = 0] + 1)

((1/2 · (0 + [2 = 0] · 2 + 2)

{

((0

2 := 1

(([2 = 0] · 2

}[1/2]{

(([2 = 0] · 2 + 2

if (pow2 (G)) { tick (G) } else { skip } #

(([2 = 0] · 2 + 2 − [pow2 (G)] · G

G := G + 1

(([2 = 0] · 2

} 88 [2 = 0] · 2 (we employ invariant � ≔ [2 = 0] · 2)

}((0 (0 is the post c-runtime)

Fig. 3. A probabilistic loop with constant amortized expected runtime. Here c = 2 · G − nextpow2 (G).

by [2 = 0] + 1. To resemble an overapproximation of the characteristic function Ψ0 applied to � , we
construct / = [¬i] · 0 + [i] · ([2 = 0] + 1). The �nal (topmost) annotation indicated that, indeed
� ⪰ / which in total con�rms � ⪰ Ψ0 (�), thus con�rming — by Theorem 5.10 — that � is an upper
bound for the total amortized expected runtime of the loop with respect to postruntime 0.

5.5 Case Studies

5.5.1 The Randomized Dynamic Table. A dynamic table is a dictionary data structure for main-
taining a table of elements in the heap. The data structure provides, amongst others, an operation
Insert(y) for inserting a new element with content ~ at the end of the table. We �rst describe a
well-known deterministic implementation of dynamic tables using �xed-size arrays that runs in
constant amortized time. We then employ our aert calculus to prove that a randomized variant of
this implementation runs in constant expected amortized time.
We can implement dynamic tables by means of �xed-size arrays: Maintain an array � of size

B ≥ 1 in the heap and keep track of the number of cells > currently occupied by some element. A
call to Insert(y) then behaves as follows. If > < B , then store ~ at �[>]—the �rst (i.e., with smallest
o�set) cell that is not occupied by some element yet—and increase > by one. In this case, we assume
a runtime of 1 for storing the value ~. Otherwise, i.e, if > = B , we need to allocate a new array �′ of
size B′ > B , copy all elements from � to �′, and store the new element E at �′ [>]. We then increase
> by one, deallocate the old array �, and set � to �′. In this case, we assume a runtime of B + 1 for
copying the elements from � to �′ and for storing the new element ~. A clear downsize of this
implementation is that Insert(y) has a non-constant worst-case runtime of B + 1.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:24 Batz, Kaminski, Katoen, Matheja, and Verscht

if (> = B) {

{ B′ := B + 1 } [1/B+1] { B′ := 2 · B } #

�′ := alloc (B′) #

ArrayCopy(A, s, A’)#

DeleteArray(A, s) #

� := �′#

B := B′

}#

⟨� + >⟩ := ~#

> := > + 1#

tick (1)

Fig. 4. Randomized Dynamic Table Insert RandInsert (~).

However, by choosing the size B′ of the new array �′ carefully, we can do better in an amortized
sense—a prime example of amortized analysis [Cormen et al. 2009, Chapter 17]. For B′ = 2 · B , i.e., by
doubling the size of the array each time it is full, we achieve a constant amortized time for Insert(y).
We remark that, when increasing the list size by some constant by, e.g., choosing B′ = B + 1, the
amortized runtime of Insert(y) is not constant.
We now consider our randomized variant RandInsert (~) shown in Figure 4 on p. 24. Instead

of deterministically choosing B′ = 2 · B , our randomized implementation chooses B′ = B + 1 with
probability 1/B+1 and B′ = 2 · B with the remaining probability 1 − 1/B+1 in case > = B . Thus, for small
array sizes B , our randomized variant behaves with high probability like the deterministic variant
with non-constant amortized runtime, while in the limit behaving like the classical variant with
constant amortized runtime. Program ArrayCopy(A, s, A’) copies the array � of size B to �′ and
consumes B units of time. DeleteArray(A, s) deallocates the array � and consumes no time.

Using our aert calculus and the potential c = 2 · > ·− B , we prove in a fully calculational way that
our randomized variant is memory-safe and runs in constant amortized expected time. We have

aertc JRandInsert (~)K (0) ≤ 4 ⊕ H> ≤ B ∧ B ≥ 1I ⊕
B⊕

8=1

H� + 8 − 1 ↦→ − I , (1)

i.e., when invoked on an array with head � of size at least 1 and where the o�set > of the last
occupied cell is at most B , RandInsert (~) is memory-safe and runs in an amortized expected time
of at most 4. We emphasize that local reasoning simpli�es our amortized analysis signi�cantly:
The frame rule enables to specify memory-safety and expected runtimes of the sub-programs
ArrayCopy(A, s, A’) and DeleteArray(A, s) separately, and to employ these speci�cations in the
broader context of RandInsert (~).

5.5.2 The Load-Balanced Randomized Dynamic Table. To demonstrate the aert calculus’ capabilities
for compositional reasoning about nested data structures (cf. Section 5.3), we consider a variant of
the randomized dynamic table in Section 5.5.1 that internally uses two dynamic tables instead of
one for load balancing reasons, e. g., to enable parallel operations on the smaller tables. In particular,
our variant supports an operation BalancedInsert (~) for inserting a value ~. To ensure that the load

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:25

of the two internal dynamic tables is balanced in expectation, we �ip a fair coin to decide in which
of the dynamic tables the value ~ is to be inserted.

To model this operation in hpGCL, we take two copies RandInsert1 (~) and RandInsert2 (~) of the
program in Figure 4, where every variable G is replaced by a copy variable G1 and G2, respectively.
The operation BalancedInsert (~) is then given by the hpGCL program

{ RandInsert1 (~) } [0.5] { RandInsert2 (~) } .

We analyze the amortized expected runtime aertc1⊕c2
JBalancedInsert (~)K (0) using the extended

potential function c1 ⊕ c2, where, for 8 ∈ {1, 2}, the potential c8 = 2 ·>8 ·− B8 is a copy of the potential
used for analyzing RandInsert (~). We will apply Theorem 5.9 to reuse our existing analysis for
RandInsert (~) (c.f. Equation (1)) and the frame rule (Theorem 5.8) to account for the second dynamic
table. To this end, we �rst calculate for 9 = 1 and 9 ′ = 2 (and analogously for 9 = 2 and 9 ′ = 1):

aertc 9
JRandInsert9 (~)K (0)

⪯ aertc 9
JRandInsert9 (~)K

(

c 9 ⊕

B 9 ′⊕

8=1

H� 9 ′ + 8 − 1 ↦→ − I − c 9

)

(by monotonicity of aert)

⪯ (aertc 9
JRandInsert9 (~)K (0) + c 9) ⊕

B 9 ′⊕

8=1

H� 9 ′ + 8 − 1 ↦→ − I − c 9 (by Theorem 5.8)

⪯
(
4 ⊕ H> 9 ≤ B 9 ∧ B 9 ≥ 1I ⊕

B 9⊕

8=1

H� 9 + 8 − 1 ↦→ − I + c 9

)
⊕

B 9 ′⊕

8=1

H� 9 ′ + 8 − 1 ↦→ − I − c 9

(Equation (1))

⪯ 4 ⊕ H> 9 ≤ B 9 ∧ B 9 ≥ 1I ⊕
(B 9⊕

8=1

H� 9 + 8 − 1 ↦→ − I
)
⊕

(
B 9 ′⊕

8=1

H� 9 ′ + 8 − 1 ↦→ − I

︸ ︷︷ ︸
≕- 9

)

(c 9 does not depend upon the heap)

In other words, we can extend the bound for RandInsert9 (~) by a speci�cation involving the array
� 9 ′ not occurring in RandInsert9 (~). This gives us

aertc1⊕c2
J{ RandInsert1 (~) } [0.5] { RandInsert2 (~) }K (0)

= 0.5 · aertc1⊕c2
JRandInsert1 (~)K (0) + 0.5 · aertc1⊕c2

JRandInsert2 (~)K (0) (by Table 3)

⪯ 0.5 ·
(
(aertc1

JRandInsert1 (~)K (0) + c1) ⊕ c2 − c1 ⊕ c2
)

+ 0.5 ·
(
(aertc2

JRandInsert2 (~)K (0) + c2) ⊕ c1 − c1 ⊕ c2
)
(apply Theorem 5.9 twice)

⪯ 0.5 ·
(
(-1 + c1) ⊕ c2 − c1 ⊕ c2

)
+ 0.5 ·

(
(-2 + c2) ⊕ c1 − c1 ⊕ c2

)
(by above reasoning)

⪯ 0.5 · -1 + 0.5 · -2 (c1 and c2 do not depend upon the heap)

= 4 ⊕ H>1 ≤ B ∧ B1 ≥ 1 ∧ >2 ≤ B ∧ B2 ≥ 1I

⊕
(B1⊕

8=1

H�1 + 8 − 1 ↦→ − I
)
⊕

(B2⊕

8=1

H�2 + 8 − 1 ↦→ − I
)
.

That is, if both of the arrays�1 and�2 satisfy their respective speci�cations, then BalancedInsert (~)
is memory-safe and runs in constant amortized expected time.

5.5.3 The Insert-Delete-FindAny Problem [Brodal et al. 1996]. The Insert-Delete-FindAny problem
is to maintain a dictionary data structure storing numbers, which provides three operations:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:26 Batz, Kaminski, Katoen, Matheja, and Verscht

remove (G) #

if (;4= = 0) {

0=~ := 0 # A0=: := 0

} else {

if (G = 0=~) {

Sample # Rank

} else {

EG := ⟨G + 2⟩ # E0=~ := ⟨0=~ + 2⟩#

tick (1) #

if
(
EG < E0=~

)
{A0=: := A0=: ·− 1 }

}

} # free(G, G + 1, G + 2)

(a) Program delete (G).

add (~) #

{

0=~ := � # Rank

} [1/;4=+1] {

if (;4= ≥ 2) {

E0=~ := ⟨0=~ + 2⟩#

tick (1) #

if
(
~ < E0=~

)
{A0=: := A0=: + 1 }

} else {

0=~ := � # A0=: := 1

}

}

(b) Program insert (~).

Fig. 5. Programs delete (G) and insert (~).

• insert (~) inserts a new element with content ~ into the dictionary.
• delete (G) gets a pointer G to some element in the dictionary and removes this element.
• FindAny returns an arbitrary element 0=~ from the dictionary together with its rank, which
is de�ned as one plus the number of elements in the dictionary whose content is strictly
smaller than the content of 0=~, or returns 0 if the dictionary is empty.

We assume a runtime model that counts the number of comparisons of elements in the dictionary.
Brodal et al. [1996] provide randomized algorithms of the above operations using doubly-linked lists
that each run in constant amortized expected time. Remarkably, they prove that every deterministic
implementation is less e�cient in the sense that there is no deterministic implementation of the
above operations that achieves a constant amortized runtime.

We encode the algorithms provided by Brodal et al. [1996] in hpGCL and use our aert calculus to
prove on source-code level that these operations indeed run in constant amortized expected time.
The operations insert (~) and delete (G) are depicted in Figure 5. FindAny is realized by maintaining
the variables 0=~ and A0=: with the desired properties.We specify doubly-linked lists co-inductively:

dll (�, 4=3, ?A4, ;4=, BD22)

≔ H� = BD22 ∧ ?A4 = 4=3 ∧ ;4= = 0I

⊓
(
H;4= ≥ 1I ⊕ JE : [� ↦→ E, ?A4,−] ⊕ dll (E, 4=3, �, ;4= − 1, BD22)

)

In particular, J4=3 : dll (�, 4=3, 0, ;4=, 0) speci�es that the heap consists of a null-terminated
doubly-linked list (with head) � . Every element G of a doubly-linked list consists of three locations
in the heap: location G stores the successor element (or 0 if G is the last element), location G + 1

stores the predecessor element (or 0 if G is the �rst element), and G + 2 stores the content.
Let us now consider delete (G). Assume that the heap consists of a doubly-linked list � of length

;4= containing the element G . We �rst execute remove (G), which removes the element G from the
list without deallocating the locations associated to G , and decreases ;4= by one. Then, if the list
becomes empty, we set 0=~ and A0=: to 0. Otherwise, i.e, if the list is not empty, there are two

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:27

possible cases: Either G = 0=~, which means that we removed our current 0=~ element. We thus
need to �nd a new 0=~ together with its rank. This is realized by the programs Sample and Rank.
Sample �rst samples some element uniformly at random from the list with head � and stores the
result in variable 0=~ (requires no comparisons). Rank then computes the rank of the new 0=~ and
stores the result in variable A0=: (the number of comparisons required is ;4=). In the other case, we
have G ≠ 0=~. We check whether the rank of 0=~ needs to be updated by comparing the content of
G to the content of 0=~. Finally, we deallocate the pointers associated to the element G .

Let us now consider insert (~). Assume that the heap consists of a doubly-linked list � of length
;4=. We start by executing add (~), which allocates a new element with content ~, inserts this
new element at the front of the doubly-linked list with head �—thus becoming the new head—,
and increases ;4= by one. We then proceed randomly: With probability 1/;4=+1, we set 0=~ to the
new element � and compute its rank (which again takes ;4= comparisons). With the remaining
probability 1 − 1/;4=+1, we either keep the current 0=~ and check whether its rank needs to updated
if the list was not empty before (i.e., if ;4= ≥ 2), or set 0=~ to � and A0=: to 1 if the list was empty
before (i.e., if ;4= ≤ 1).
Now de�ne the potential c ≔ ;4= · (1 + [0=~ = G]). We prove

aertc Jdelete (G)K (0) ⪯ 1+HG ↦→ −,−,−I⊕ 0+H0=~ ↦→ −,−,−I⊕ 0+ J4=3 : dll (�, 4=3, 0, ;4=, 0)

i.e., if the heap consists of a doubly-linked list � of size ;4= containing the (not necessarily distinct)
elements 0=~ and G , then delete (G) is memory-safe and runs in an amortized expected time of at
most 1. Moreover, we show

aertc Jinsert (~)K (0) ⪯ 4 + [;4= ≥ 1] · (H0=~ ↦→ −,−,−I ⊕ 0) + J4=3 : dll (�, 4=3, 0, ;4=, 0)

i.e., if the heap consists of a doubly-linked list � of size ;4= containing the element 0=~ in case � is
non-empty, then insert (~) is memory-safe and runs in an amortized expected time of at most 4.

6 RELATED WORK

There is a plethora of research on the veri�cation of runtime bounds. We focus on literature most
closely related to our approach, speci�cally techniques for formal reasoning about (1) expected
runtimes of probabilistic programs and (2) amortized runtimes of non-probabilistic programs.

Reasoning about expected runtimes. Our ert calculus combines two existing approaches to enable
proving upper bounds on expected runtimes of randomized algorithms manipulating dynamic data
structures: the original ert calculus of Kaminski et al. [2018] and quantitative separation logic (QSL)
of Batz et al. [2019]. Developing a calculus based on a separating addition (our ⊕) was initially
proposed by Matheja [2020, Chapter 9.1]. Haslbeck [2021, Chapter 4] formalized this idea and
proved that one obtains a variant of QSL for reasoning about upper bounds. His calculus and its
properties essentially coincide with our ert with two exceptions: (1) ert allows the allocation of
arbitrarily large chunks of memory instead of �xed-sized ones; and (2) we prove soundness of ert
with respect to an operational semantics based on MDPs; earlier attempts to prove soundness by
Haslbeck [2021, p. 47] lead to technical issues which were not further pursued.
Ngo et al. [2018]; Wang et al. [2020] apply the potential method for automatic reasoning about

expected runtimes. The soundness theorem inNgo et al. [2018] relies on the soundness of the original
ert calculus of Kaminski et al. [2018]. Our more general calculus for RSL provides foundations for
proving their techniques sound when applied to probabilistic pointer programs. Wang et al. [2020]
presents a type-based analysis for deriving over-approximations of expected runtime. Their upper
bounds are proven sound w.r.t. a distribution-based operational cost semantics. Other approaches
for analyzing expected runtimes of probabilistic programs, such as [Brázdil et al. 2015; Celiku and
McIver 2005; Meyer et al. 2021; Monniaux 2001; Moosbrugger et al. 2021], neither support dynamic

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

67:28 Batz, Kaminski, Katoen, Matheja, and Verscht

data structures nor consider amortization. Recently, Leutgeb et al. [2022] de�ned a type-and-e�ect
system for a functional programming language that can automatically infer logarithmic amortized
bounds on randomized tree and heap structures. Our amortized calculus is a weakest-precondition-
style framework whose soundness w.r.t. an operational semantics is shown using a novel technique,
and which recovers a well-known interpretation of amortized expected runtime analysis at the
level of program semantics for arbitrary sequences of data structure operations.

Verifying amortized runtimes for non-probabilistic programs. Amortized runtime analysis builds
upon either the potential method (a.k.a. physicists view) or the banker’s view as already proposed
in Tarjan [1985], who already noted that these two views are equivalent. The paper Haslbeck and
Nipkow [2018] surveys existing veri�cation techniques for amortized runtimes. In particular, the
potential method has been formalized and applied in an interactive theorem prover by Nipkow
[2015]; Nipkow and Brinkop [2019]. Carbonneaux et al. [2014] developed a quantitative logic
similar to our ert transformer (for deterministic programs) based on potentials. Potentials are also
at the foundation of (automatic but not necessarily amortized) type-based runtime analyses, e. g.,
[Kahn and Ho�mann 2020; Rajani et al. 2021], pioneered by Ho�mann [2011]. A recent survey of
type-based analysis is given in Ho�mann and Jost [2022].
The banker’s view of amortized analysis has been integrated into separation logic by Atkey

[2011]. He introduced time credits, a dedicated resource modeling the remaining amount of time a
program may consume. With this view, one can naturally reason about time credits in the same way
as for heap allocated memory, e. g. by storing time credits in individual elements of dynamic data
structures. In contrast to many other runtime veri�cation techniques, Atkey proves his approach
sound w.r.t. a program semantics. The intricacies encountered when using time credits for reasoning
about asymptotic (amortized) complexities are discussed by Guéneau et al. [2018]. Charguéraud and
Pottier [2019] implemented time credits in a veri�cation tool and veri�ed the amortized complexity
of the Union-Find data structure. A variant of time credits, called time receipts [Mével et al. 2019],
enables reasoning about lower runtime bounds.
None of these works reason about amortized expected runtimes of randomized algorithms. To

enable this, we chose to use the potential method to formalize aert, since potentials are closely
related to expectations, which also map states to a quantity. Reasoning about potentials thus seems
natural if one is used to working with expectations and quantitative invariants. Some of our proof
rules exploit the above similarity to mix potentials and expectations, e.g. Theorems 5.8 and 5.9.

7 CONCLUSION

We have presented calculi featuring compositionality and local reasoning for the veri�cation of
(amortized) expected runtimes of probabilistic pointer programs. We have established soundness
results w.r.t. an operational semantics and demonstrated the applicability of our techniques.

Future work includes the runtime veri�cation of (randomized) splay-trees [Albers and Karpinski
2002; Fürer 1999; Sleator and Tarjan 1985] and skip lists [Pugh 1989], and mechanizing the aert-
calculus building upon the work by Haslbeck [2021]. Further promising directions for automated
aert reasoning include leveraging entailment checking techniques for quantitative separation logic
[Batz et al. 2022a] and generalizations of :-induction for probabilistic programs [Batz et al. 2021a].

ACKNOWLEDGMENTS

We thank Gerhard Woeginger on the fruitful discussions about amortized analysis. Furthermore, we
are grateful for the reviewers for their highly constructive feedback that, in particular, contributed
to the development of Theorem 5.9.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

A Calculus for Amortized Expected Runtimes 67:29

REFERENCES

Susanne Albers and Marek Karpinski. 2002. Randomized Splay Trees: Theoretical and Experimental Results. Inform. Process.

Lett. 81, 4 (2002), 213–221.

Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Log. Methods Comput. Sci. 7, 2 (2011).

Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen. 2019. Type-Based Complexity Analysis of Probabilistic Functional

Programs. In LICS. IEEE, 1–13.

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press.

Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer.

2021a. Latticed k-Induction with an Application to Probabilistic Programs. In CAV (2) (Lecture Notes in Computer Science,

Vol. 12760). Springer, 524–549.

Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-Pieter Katoen, Florian Keßler, Christoph Matheja, and Thomas Noll. 2022a.

Foundations for Entailment Checking in Quantitative Separation Logic. In ESOP (Lecture Notes in Computer Science,

Vol. 13240). Springer, 57–84.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021b. Relatively complete veri�cation

of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang. 5, POPL

(2021), 1–30.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

Separation Logic — A Logic for Reasoning about Probabilistic Programs. Proc. ACM Program. Lang. 3, POPL (2019),

34:1–34:29.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena Verscht. 2022b. A Calculus for

Amortized Expected Runtimes - Extended Version. CoRR (2022). to appear.

David Blackwell. 1967. Positive dynamic programming. In Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability, Vol. 1. University of California Press, 415–418.

Tomás Brázdil, Stefan Kiefer, Antonín Kucera, and Ivana Hutarová Vareková. 2015. Runtime Analysis of Probabilistic

Programs with Unbounded Recursion. J. Comput. System Sci. 81, 1 (2015), 288–310.

Gerth Stølting Brodal, Shiva Chaudhuri, and Jaikumar Radhakrishnan. 1996. The Randomized Complexity of Maintaining

the Minimum. Nord. J. Comput. 3, 4 (1996), 337–351.

Quentin Carbonneaux, Jan Ho�mann, Tahina Ramananandro, and Zhong Shao. 2014. End-to-end veri�cation of stack-space

bounds for C programs. In PLDI. ACM, 270–281.

Orieta Celiku andAnnabelleMcIver. 2005. Compositional Speci�cation andAnalysis of Cost–Based Properties in Probabilistic

Programs. In Proc. of the International Symposium on Formal Methods (FM) (Lecture Notes in Computer Science, Vol. 3582).

Springer, 107–122.

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. J. Autom. Reason. 62, 3 (2019), 331–365.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. 2009. Introduction to Algorithms, 3rd Edition.

MIT Press.

Martin Fürer. 1999. Randomized Splay Trees. In SODA. ACM/SIAM, 903–904.

Armaël Guéneau, Arthur Charguéraud, and François Pottier. 2018. A Fistful of Dollars: Formalizing Asymptotic Complexity

Claims via Deductive Program Veri�cation. In ESOP (Lecture Notes in Computer Science, Vol. 10801). Springer, 533–560.

Maximilian Paul Louis Haslbeck. 2021. Veri�ed Quantitative Analysis of Imperative Algorithms. Dissertation. Technische

Universität München.

Maximilian Paul Louis Haslbeck and Tobias Nipkow. 2018. Hoare Logics for Time Bounds - A Study in Meta Theory. In

TACAS (1) (Lecture Notes in Computer Science, Vol. 10805). Springer, 155–171.

Jan Ho�mann. 2011. Types with Potential: Polynomial Resource Bounds via Automatic Amortized Analysis. Ph. D. Dissertation.

LMU Munich.

Jan Ho�mann and Ste�en Jost. 2022. Two decades of automatic amortized resource analysis. Math. Struct. Comput. Sci.

(2022).

Samin S. Ishtiaq and Peter William O’Hearn. 2001. BI as an Assertion Language for Mutable Data Structures. In Proc. of the

Symposium on Principles of Programming Languages (POPL). ACM, 14–26.

David M. Kahn and Jan Ho�mann. 2020. Exponential Automatic Amortized Resource Analysis. In FoSSaCS (Lecture Notes in

Computer Science, Vol. 12077). Springer, 359–380.

Benjamin Lucien Kaminski. 2019. Advanced Weakest Precondition Calculi for Probabilistic Programs. Dissertation. RWTH

Aachen University, Aachen. https://doi.org/10.18154/RWTH-2019-01829

Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2017. AWeakest Pre–expectation Semantics forMixed–sign Expectations.

In Proc. of the Annual Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 1–12.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM (2018), 30.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

https://doi.org/10.18154/RWTH-2019-01829

67:30 Batz, Kaminski, Katoen, Matheja, and Verscht

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162–178.

Lorenz Leutgeb, Georg Moser, and Florian Zuleger. 2022. Automated Expected Amortised Cost Analysis of Probabilistic

Data Structures. In Proc. of the International Conference on Computer-Aided Veri�cation (Lecture Notes inn Computer

Science). (to appear).

Christoph Matheja. 2020. Automated Reasoning and Randomization in Separation Logic. Dissertation. RWTH Aachen

University, Germany.

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Re�nement and Proof for Probabilistic Systems. Springer.

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In ESOP (Lecture

Notes in Computer Science, Vol. 11423). Springer, 3–29.

Fabian Meyer, Marcel Hark, and Jürgen Giesl. 2021. Inferring Expected Runtimes of Probabilistic Integer Programs Using

Expected Sizes. In TACAS (1) (Lecture Notes in Computer Science, Vol. 12651). Springer, 250–269.

David Monniaux. 2001. An Abstract Analysis of the Probabilistic Termination of Programs. In Proc. of the Static Analysis

Symposium (SAS) (Lecture Notes in Computer Science, Vol. 2126). Springer, 111–126.

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021. Automated Termination Analysis of

Polynomial Probabilistic Programs. In ESOP (Lecture Notes in Computer Science, Vol. 12648). Springer, 491–518.

Van Chan Ngo, Quentin Carbonneaux, and Jan Ho�mann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In Proc. of the Conference on Programming Language Design and Implementation (PLDI). ACM, 496–512.

Tobias Nipkow. 2015. Amortized Complexity Veri�ed. In ITP (Lecture Notes in Computer Science, Vol. 9236). Springer,

310–324.

Tobias Nipkow and Hauke Brinkop. 2019. Amortized Complexity Veri�ed. J. Autom. Reason. 62, 3 (2019), 367–391.

William W. Pugh. 1989. Skip Lists: A Probabilistic Alternative to Balanced Trees. In WADS (Lecture Notes in Computer

Science, Vol. 382). Springer, 437–449.

Martin Lee Puterman. 2005. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons.

Vineet Rajani, Marco Gaboardi, Deepak Garg, and Jan Ho�mann. 2021. A unifying type-theory for higher-order (amortized)

cost analysis. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.

John Charles Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of the Annual Symposium

on Logic in Computer Science (LICS). IEEE Computer Society, 55–74.

Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting Binary Search Trees. J. ACM (1985), 652–686.

Robert Endre Tarjan. 1985. Amortized Computational Complexity. SIAM Journal on Algebraic Discrete Methods (1985),

306–318.

Di Wang, David M. Kahn, and Jan Ho�mann. 2020. Raising expectations: automating expected cost analysis with types.

Proc. ACM Program. Lang. 4, ICFP (2020), 110:1–110:31.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 67. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Probabilistic Pointer Programs
	2.1 Program States
	2.2 The Heap-Manipulating Probabilistic Guarded Command Language
	2.3 Formal Operational Semantics

	3 Runtime Separation Logic
	3.1 Runtimes
	3.2 Truth vs. Runtimes
	3.3 Gatekeeper Brackets
	3.4 Separation Logic Atoms
	3.5 Standard Connectives on Runtimes
	3.6 Separating Connectives on Runtimes
	3.7 Runtime Specifications

	4 The Expected Runtime Calculus for hpGCL
	4.1 Local Reasoning for Expected Runtimes
	4.2 Invariant-Based Reasoning for Loops
	4.3 Example: The Lagging List Traversal
	4.4 Soundness of the ert Calculus

	5 The Amortized Expected Runtime Calculus
	5.1 The Calculus
	5.2 Local Reasoning for Amortized Expected Runtimes
	5.3 Compositional Reasoning about Nested Data Structures
	5.4 Reasoning about Loops
	5.5 Case Studies

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

