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Abstract

Abstract

This thesis explores quantum effects during strong field ionisation, with emphasis
on both classical and quantum phase-space interpretational tools. Specifically, this
involves investigating the presence of momentum gates during the enhanced ionisa-
tion of Hy . These structures cycle through the momentum space without following
the time-profile of the external field. By computing autocorrelation functions and
Wigner quasiprobability distributions, we establish that momentum gates may oc-
cur for static driving fields, and even for no external field at all. Their primary
cause is an interference-induced bridging mechanism that occurs if both wells in the
molecule are populated. Their cyclic motion in momentum space has a non-classical
evolution, as seen from the quantum Liouville equation. Additionally, we employ
the quantum trajectory method to seek another criteria for non-classicality.

Using an analytical method, we then compute the different eigenfrequencies gov-
erning the system in a field-free setting. This provides an in-depth understanding
that is applied to the time-dependent case. There, the frequency of the quantum
bridge, intrinsic to the molecule, is higher than that of the external field. This
leads the quasiprobability distribution to sometimes counter-intuitively flow in the
direction opposed to the electric-field gradient.

These ionisation mechanisms form an optimisation problem that can be con-
trolled using the appropriate molecular targets, driving fields and coherent super-
position of states. We investigate the impact of multiple parameters at once by
employing machine learning dimensionality reduction techniques. This allows us to
disentangle the different effects at play and establish a hierarchy of parameters for
controlling ionisation. The features encountered are explained with phase-space ar-
guments and optimal conditions are found for both static and time-dependent fields.
The conclusions presented throughout this thesis can in the future be expanded
towards multielectron systems, incorporating decoherence and multiple degrees of

freedom.
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Impact Statement

Impact Statement

The work presented in this thesis focuses on the understanding and control of elec-
trons in strong-fields in the timescale of attosecond (107! sec), which is one of the

shortest timescales accessible in nature.

Our methods will affect the strong field community by bringing into focus pow-
erful tools that are underused in the field. Phase space tools and quasiprobability
distributions are instrumental to the physical interpretation of our results and are
used to investigate non-classicality in strong field ionisation by, for instance, deter-
mining how bifurcations and different phase-space regions impact electron dynamics.
They also enjoy great success in many fields such as quantum information, quantum
optics and cold gases. This thesis brings this toolkit to the forefront of strong field

and attosecond science.

In addition, this thesis can inspire applications of machine learning in the study
of complex dynamical systems wherever they may arise. Machine learning methods,
which help develop insight into the behaviour of complex systems, have been suc-
cessfully utilised in a variety of research areas in physics, such as particle physics,
astrophysics, condensed matter physics or quantum optics. More generally machine
learning and artificial intelligence benefits in an immense variety of fields, such as
image recognition, finance, agriculture, robotics or medical diagnosis. Despite their
success, they are rarely present in strong-field and attosecond science, where they
could provide great value. For instance, this thesis specifically analyses enhanced
ionisation. This system depends critically on a wide range of parameters and their
joint influence is very difficult to study systematically. The vast majority of work in
this field focuses on a qualitative assessment of one parameter at a time. Yet, it is
an ideal problem for machine learning dimensionality-reduction techniques as they

are tailor-made to extract information from complex data sets.

Many of the conclusions found throughout this thesis can have powerful future
applications in other scientific domains and for greater commercial use. Molecu-
lar electron localisation, which was highlighted as critical by the techniques used,
is a key aspect of experimental and theoretical chemical reaction control. Thus,
this thesis contributes to studies on precise timing and manipulation of chemical
reactions and systems. Controlling electron release and coherent superpositions of

states are important aspects in many scientific areas such as quantum technologies
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and chemical reaction control. Finally, we focus on the steering of electron dynam-
ics in the attosecond domain, which would allow unprecedented access to molecular
ultrafast imaging. This potency could benefit a wide variety of industries outside
of theoretical physics, for example medical imaging. In addition, new devices, for
instance ultrafast electronics, could be pioneered by the control over the attosecond

timescale enabled through those strong field processes.
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1. Introduction

Chapter 1

Introduction

1.1 Phase space historical overview

The idea of phase space, in which one may depict all possible states of a dynamical
system evolving from any initial conditions by trajectories, is extremely powerful.
Each phase space trajectory represents the evolution of a system starting from spe-
cific initial conditions, with each point corresponding to the state of the system at
a specific time. The set of all phase space trajectories thus provides a mapping of
all possible ways in which a system may evolve. In particular, the phase space is
used for dealing with multidimensional systems, whose description would be much
less intuitive otherwise. Examples of such systems are encountered in a wide range
of areas, including physics, biology, chemistry and financial models (see [1] for a re-
cent review). In physics alone, phase space tools are typically used in, for instance,
statistical physics, quantum optics, collision theory, particle physics and nonlinear
dynamics, and widely employed phase space variables are, for instance, positions
and momenta, or angles and angular momenta. Its mathematical origin, dating
from 1838, can be attributed to Liouville [2], and its first application to mechanics
was made by Jacobi in 1842 [3]. However, the concept of describing the dynamics
of a system as a single trajectory moving through multidimensional space was de-
veloped many decades later by Poincaré [4] (for a historic review on the subject see
[5])-

The quantum phase space was introduced much later, by Wigner, together with
the quasiprobability distribution named after him [6]. Since then, quantum phase
space distribution functions, constructed using non-commuting operators, have be-
come widespread. A key advantage is that they allow one to employ complex-number
functions instead of dealing with operators. Furthermore, they provide valuable in-
sight in quantum-classical correspondence [7], within the constraints posed by the
uncertainty principle and its generalisations. However, there are different phase
space distribution functions, whose applicability may suit specific problems bet-

ter than others. This ambiguity stems from the fact that there are different rules
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for associating non-commuting operators to scalar variables [8, 9]; for pioneering
work exploring operator ordering in connection with quasiprobability distributions
see also [10, 11]. For instance, due to their smooth behavior, Husimi distribution
functions are popular in the context of nonlinear systems and classical chaos [12],
while Wigner quasiprobability distributions, due to the information they provide on
non-classical effects and quantum corrections, are widely used in quantum optics
[13, 14]. Other applications of the Wigner function include optical propagation in
waveguides [15], and the computation of angular momentum states [16], which can
also be used to model two-level atoms [17, 18, 19]. The Glauber-Shudarshan P func-
tions [20, 21] are also hugely popular in quantum optics, as they are very convenient

for normal-ordered products of creation and annihilation operators.

Quantum phase space distribution functions play a major role in quantum optics
[13, 14] and quantum information [22, 23]. This popularity has been triggered by the
description of the electromagnetic field modes as quantum harmonic oscillators, for
which distribution functions have been especially tailored (see, e.g., the discussion
in [8, 9, 20, 21]), and the central interest in the definition of non-classical states
of light [24]. Furthermore, due to being formulated in terms of density matrices,
quasiprobability densities are well suited for investigating decoherence and the influ-
ence of the environment [25, 26, 19]. Quasiprobability distributions have also been
explored in connection with logical gates [27, 28] and their classical simulation [29],

and coherent-state superposition [30, 31].

Other traditional areas in which the quantum phase space is widely used are those
dealing with large systems [32], such as chemical physics [33, 34], photochemistry
[35], and cold gases [36]. In this case, the huge number of degrees of freedom makes
a full quantum-mechanical treatment prohibitive. Therefore, crucial questions are
what degrees of freedom need full treatment and which ones can be approximated,
what kind of fluctuations and deviations from the classical picture are expected, and
whether there are semiclassical limits one can take into consideration without losing

essential information about the system’s dynamics.

In the study of complex molecular systems, for instance, it is common to apply
mixed classical-quantum methods, which describe less relevant degrees of freedom
classically, more relevant degrees of freedom quantum mechanically, and couple them
via effective potentials [37, 38]. One may also consider systems coupled to baths,
whose dynamics are simplified [39]. Alternatively, one may develop semiclassical
methods, in which swarms of classical trajectories are employed to construct quan-
tum propagators (see, e.g., [40, 41, 42, 43, 44] and the reviews [33, 45]). Further
approximations may then be applied, such as the smoothing of highly oscillatory
terms [7], and linearised semiclassical approximations, in which the main contribu-
tions stem from trajectories whose phase space coordinates are close enough [41].

Truncated Wigner approximations are also widely used to describe chemical reac-
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tions (for an early example see [41]).

Furthermore, there are many perturbative approximations which incorporate
quantum fluctuations around classical limits, such as the semiclassical or truncated
Wigner approximation (TWA). For an early discussion of phase space methods
in which stochastic evolution equations, including the TWA, are applied to Bose-
Einstein Condensates see [46]. The key idea is to embed quantum fluctuations in the
initial quasiprobability distributions, which are then evolved classically. This means
that quantum corrections appear only through initial conditions. Classical evolu-
tion is desirable for large systems as, typically, classical equations of motion scale
linearly with its degrees of freedom, while quantum methods scale exponentially.
The TWA has been explored in the context of Bose condensed gases perturbed from
thermal equilibrium [47] in a wide range of scenarios such as the evolution of macro-
scopic entangled states [48], quantum fluctuations in condensate oscillations [49],
non-classical effects arising from the splitting of condensates [50, 51| and vortices in
reflecting Bose-Einstein condensates [52]. It works for weakly perturbed systems.

In contrast, in strong-field laser-matter interaction and attosecond science, the
phase space picture and its tools have not become mainstream. This is actually

surprising for the following reasons:

o Classical and semi-classical trajectory-based methods have been used as in-
terpretational tools for quantum effects since over two decades, and helped
establish the key paradigms in the field. Therein, laser-induced rescattering
and recombination of an electron with its parent ion play a vital role by pro-
viding an intuitive interpretation of many strong-field phenomena (see, e.g.,
[53, 54, 55] and the special issue [56]). If recombination with a bound state
occurs, the kinetic energy acquired by the electron in the continuum is re-
leased in form of high-order harmonic radiation, while rescattering will lead
to high-energy photoelectrons. If the returning electron rescatters elastically,
high-order above-threshold ionisation (ATI) will occur [57, 58]. Alternatively,
if, upon recollision, it passes on part of its kinetic energy to the core, it may
release other electrons, leading to nonsequential double and multiple ionisa-
tion [59, 60]. This orbit-based picture has been hugely successful in describing
the physics of the problem, with far reaching consequences. For instance, the
shapes of the high-harmonic and high-order ATI spectra, with a long plateau
followed by sharp cutoffs whose energy positions are a multiple of the pon-
deromotive energy U, [54, 58], proportional to the driving-field intensity, can
be explained using the laser-induced rescattering picture. Furthermore, be-
cause ionisation and recombination occur at very specific times within a field
cycle, they can be used for steering subfemtosecond electron dynamics, for
generating attosecond pulses or bursts of electrons (see, e.g. [61, 62], and the

special issue [63]), and for subfemtosecond imaging of matter [64, 65, 66]. For
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a given energy, there is usually more than one quantum mechanical pathway
along which the electron may interact with the core, so the corresponding
transition amplitudes interfere. Quantum interference has many attosecond
imaging applications, using high-order harmonic generation or photoelectrons

(for reviews see, e.g., [67] or [68]).

o The interaction between the continuum and bound states is of vital importance,
as strong-field ionisation and laser-induced rescattering or recombination play
a key role in explaining strong-field phenomena [54, 55, 57, 59, 58, 68, 69].
Yet, tools that could provide rigorous and/or accurate information about non-

classicality or boundaries of bound-continuum dynamics are underused.

Still, some groups have explored phase space dynamics in a strong-field context.
This includes stabilisation [70, 71, 72, 73], strong-field ionisation [74, 75, 76, 77, 78],
high-order harmonic generation [79, 80, 81, 82, 83|, laser-induced core dynamics [84,
85], rescattering [86, 87, 79, 88, 80, 89], nonsequential double ionisation [90, 99, 100,
101, 102, 103, 104, 105, 106, 91, 92, 93, 94, 95, 96, 97, 98], or in connection with
initial-value representations in strong fields [107, 108, 109, 110, 77]. Furthermore,
the growing interest in free-electron lasers (FELs) means that the tools employed
in quantum optics are being explored in the X-ray and extreme ultraviolet (XUV)
regime [111, 112]. Examples range from seminal work unifying quantum and classical
descriptions of electron dynamics in FELs [113, 114] to providing a road map for
quantum signatures therein [115]. They include the development of quantum models
whose radiation holds the promise of having better quality than that of classical
FELs [116, 117, 118, 119, 115].

Overall, the use of phase space has been twofold: either the classical phase
space was employed to delimit bound-continuum boundaries, highlight regular or
chaotic behavior, and analyse different rescattering regimes, or quantum phase space
distributions have been employed to assess classical or non-classical behavior and
provide initial conditions for other methods. Often the intuitive picture obtained by
classical methods is compared with the outcome of ab-initio computations or other

approaches.

1.2 Phase space use in attoscience

Historically, the phase space has been applied to a variety of phenomena in atto-
science, along the following research lines: Free-electron lasers and stabilisation,
tunneling, rescattering in one-electron systems and correlated multielectron dynam-
ics. These research lines often overlap, and a key common aspect is to try to under-
stand and control attosecond electron dynamics in greater depth. They are briefly

discussed below.
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1.2.1 Free-electron lasers and stabilisation

Phase space tools have been first used in attosecond science and related fields in the
1980s, in the context of free-electron lasers (FELs) [113, 114]. These seminal papers
aimed at bridging a gap that existed between fully quantum electrodynamic descrip-
tions of electrons in a FEL and widespread classical descriptions of these dynamics.
This was an important milestone as the classical description of electrons in a FEL
are expected to become inaccurate in the XUV /X ray regime, for which quantum
fluctuations are important [113, 114]. For that purpose, Wigner quasiprobability
distributions were used and it was shown that, in the classical limit, the former
descriptions were recovered. Following that, there have been phase space studies to
determine the boundary between classical and quantum behaviour [116, 117, 118,
119, 115]. These studies have been motivated by the prospects of developing a Quan-
tum FEL, which should exhibit a narrower linewidth and better temporal coherence
than its classical counterpart [120]. In particular, one- [117] and three-dimensional
[118] quantum models based on Wigner functions were presented. In [119], the phase
space was used to establish a quantum regime, in which the system may be approx-
imated by a two-level atom by averaging over fast oscillations. Recently, quantum
effects in the FEL electrons and its gain were studied using Wigner quasiprobability

distributions and the quantum Liouville equation [115].

Further work in the high-frequency regime, in the 1990s, addressed the question
of non-classical behavior in atomic stabilisation. Atomic stabilisation stems from the
breakdown of Fermi’s golden rule for computing ionisation probabilities in strong
laser fields. Roughly speaking, stabilisation is the suppression of ionisation with
increasing field strength. In the 1990s, it has generated a great deal of controversy,
from its definition, to the physical mechanisms behind it and its existence altogether
(for reviews see [121, 122, 123, 124]). In this context, the Kramers-Henneberger
frame, in which the field time dependence is embedded in the binding potential, is
widely used. For high driving-laser frequencies, one may define a double-well effec-
tive potential, known as the Kramers-Henneberger potential. Wigner quasiproba-
bility distributions were employed to assess under what conditions stabilisation was
classical or quantum [70]. They were compared to classical-trajectory computations
and exhibited regions that were attributed to coherent superpositions of a few bound
states of the effective Kramers-Henneberger potential, thus highlighting the role of
quantum interference [71]. Further work explored how quantum effects in stabilisa-
tion depend on the pulse shape and on the effective Kramers-Henneberger potential
by using Wigner and Husimi distributions [72]. Much later work relates stabilisation
to trapped trajectories and elliptic islands in a chaotic region via a classical phase

space analysis, and highlights a hidden short-time nature of stabilisation [73].
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1.2.2 Tunneling

In the low-frequency regime, phase space quantum distribution functions have been
employed to assess tunneling ionisation dynamics since the early 2000s. Tunneling
is crucial for strong-field and attosecond physics, and the question of with what
velocity, and at what point in space an electron reaches the continuum, as well as
whether one may define finite tunneling times, has attracted a great deal of attention
(see, e.g., [125, 127, 128, 129, 130, 131, 132, 133, 134, 126] for a wide range of
approaches and points of view). Since the phase space allows for an intuitive view

of the classical-quantum correspondence, it is ideally suited to such questions.

Early studies of tunneling ionisation in phase space observed a tail for the Wigner
quasiprobability distribution of a system in a static or quasi-static, low-frequency
field. This tail has been associated with tunnel ionisation as it crosses from a bound
phase space region to the continuum through classically forbidden regions [135]. Its
slope has been employed to define a tunnel trajectory, which was first computed
by [74] using an analytical model of a zero-range potential in a static field. Fur-
ther work, a decade later, [79] investigated how the slope of the Wigner function
behaved with regard to the potential being short or long range. Both publications
focused on the agreement between the tail of phase space quantum distributions
and a classical-trajectory picture, which were shown to match far away from the
core. Nonetheless, quantum interference fringes associated with tunneling events at
different times were observed in both publications. Close to the core, the tail of the
Wigner function follows the separatrix and crosses into the continuum either via over
the barrier or tunnel ionisation [77]. Recently, Wigner quasiprobability distributions
have been employed to reconstruct the tunnel exit, which is an important parameter
in determining the tunneling time [136]. Further work by the same group addresses
the influence of quantum interference and over-the-barrier ionisation on classical-
quantum correspondence when an electron is freed into the continuum [137]. For
systems with more than one centre, such as in diatomic molecules, Wigner quasiprob-
ability distributions have been employed in the context of enhanced ionisation [75,

76]. More details on the subject is presented is section 1.3.

Tunneling dynamics in strong fields has also been looked at in the context of
initial-value representations (IVRs) [138, 77]. In initial-value representations, the
boundary problems that arise in semiclassical theory are replaced by averages over
initial phase space coordinates, which are used to construct wave packets. These
wave packets are then evolved in time, guided by ensembles of classical trajectories.
IVRs are employed in many areas of science, for instance quantum chemistry, chaos
and nonlinear dynamical systems, and are very powerful approaches due to their
scalability and absence of cusps and singularities. For key references see, e.g., [40,
41, 42, 43, 44] and the reviews [33, 45]. However, there has been considerable debate

whether these approaches can be used to model tunnel ionisation, as they employ
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ensembles of real classical trajectories to construct wave packets [139, 140, 141, 142].
Tunneling may manifest itself in position space, as transmission, or in momentum
space, as above-the-barrier reflection, and it not being accounted correctly will cause
semiclassical IVRs to degrade for longer times [142]. Nonetheless, because the top
of a potential barrier can be approximated by an inverted harmonic oscillator, tun-
neling has been found to work well near this threshold [135]. To deal with this, one
may either focus on rescattering only and place the initial electronic wave packet
away from the core [107, 108], or employ short times and IVRs with effective po-
tentials that account for quantum corrections, such as the Coupled Coherent State
(CCS) method [77]. Phase space has also been employed to develop path integral
approaches [143] that incorporate the residual potentials and the driving field on
equal footing, such as the Coulomb Quantum Orbit Strong-Field Approximation
(CQSFA) [144, 145, 146, 147] and the semiclassical two-step (SCTS) model [148,
149, 150], with emphasis on quantum interference and photoelectron holography.

For a review see [68].

1.2.3 Rescattering in one-electron systems

Because most strong-field phenomena can be explained as laser-induced rescattering,
one must understand how it manifests itself in phase space. Although structures
associated with rescattering have already been identified in [74], closer scrutiny hap-
pened only in the 2010s. In [151], distinct interference patterns in Wigner quasiprob-
ability distributions have been associated with different types of intra-cycle electron
scattering and above-threshold ionisation. This has been extended in [87] in order
to assess lower impact velocities, and to compute the bound-state population using
phase space criteria. Therein, phase space signatures of channel closings have also
been identified. Further work has investigated the connection between rescattering
and entanglement [88].

Rescattering in phase space has also been studied in relation to other phenom-
ena. For instance, in [79], a phase space analysis of rescattering in conjunction
with high-order harmonic generation (HHG) was performed employing Wigner and
Husimi distribution functions. It was shown that the rescattering wave packet ex-
hibits a chirp, which can be extracted from the Wigner quasiprobability distribu-
tion at the position of rescattering. The HHG temporal profile given by the Wigner
function strongly resembles that obtained by other means such as windowed Fourier
transforms. Recent work has focused on a systematic analysis of the orbit-based
rescattering picture for tunneling, rescattering and HHG using Wigner functions
with spatial windows in reduced-dimensionality models, and effective Wigner func-
tions for multidimensional systems in order to facilitate the interpretation of more
intricate dynamics [89].

Different types of orbits and their role in HHG [107] and ATI [108] have also been
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investigated using initial-value representations. It was found that irregular orbits
play an important role in forming the HHG plateau. Furthermore, phase space
tools have been employed to identify regions of dominant, integrable Hamiltonians,
which led to HHG spectra with excellent agreement with ab-initio methods [109,
110]. A key challenge in modeling HHG is that it is a coherent process that relies
on the periodicity of the field. This implies that any dephasing associated with the
degradation of the time evolution determined by the IVR will affect the harmonic
spectra. This will play a key role if the wave packet is initially bound as tunnel
ionisation will be important in this case (for discussions see [77, 152]).
Subsequently, a purely classical perspective into how the presence of the Coulomb
potential affects recollisions in strong fields, as related to the high-harmonic spectra,
is provided in a series of publications [80, 81, 83]. Therein, classical phase space
arguments have been used to show that Coulomb focusing enhances delayed rec-
ollisions and increase their energy. These recollisions occur along periodic orbits
whose energy are higher than the standard cutoff energy value of 3.17U,, [81], where
U, is the ponderomotive energy. Nonetheless, in [80], a fully classical method that
considers the Coulomb potential in the continuum is employed to explain why the
standard cutoff law works. A set of periodic orbits stemming from a resonance with
the field are linked to laser-induced recollision, whose maximal energy approaches
the standard HHG cutoff in the high-intensity limit. Good agreement with the
ab-initio solution of the time-dependent Schrodinger equation is observed. Further
work explores the extension of the cutoff upon macroscopic propagation [83]. The
phase space has also been employed by us in [82] to extract different instantaneous

configurations and time scales for HHG in inhomogeneous fields.

1.2.4 Correlated multielectron processes

In addition to one-electron problems, since the early 2000s, the phase space has
been used to explore non-trivial features in correlated multielectron processes. This
extends from laser-induced nonsequential double ionisation (NSDI) [59], which is
the archetypical example of electron-electron correlation in intense laser fields [90],
to the temporal profile of autoionisation dynamics in Helium [85]. For instance,
in [90] Wigner quasi-probability distributions associated with the centre-of mass
coordinates of a two-particle system have been compared to the outcome of a mean-
field theory in order to identify signatures of rescattering and electron-electron in-
teraction. NSDI has also been modeled for the Helium atom using IVRs beyond
reduced-dimensionality models [153, 154]. In particular an alternative version of
the Coupled Coherent States (CCS) method that incorporates the exchange sym-
metry of fermionic particles, the fermionic CCS, has been successfully applied in
this context [154].

A whole line of research has been devoted to investigating NSDI in a fully clas-
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sical framework. In NSDI, an outer electron reaches the continuum, is brought back
by the field and transfers part of its kinetic energy to an inner electron. These recol-
lision dynamics are quite rich and can be interpreted using tools from phase space,
the theory of non-linear dynamical systems, and effective Hamiltonians for each of
the electrons involved. These reduced, integrable Hamiltonians were first defined in
[105, 106] for NDSI. Subsequently, the role of multiple recollisions on the efficient
energy transfer in NSDI has been investigated using symplectic maps and similar ap-
proaches to those used in kicked Rydberg atoms, and a road map has been provided
for identifying different NSDI mechanisms in [91, 92]. Further work by the same
group has focused on an in-depth analysis of recollision excitation with subsequent
ionisation (RESI) in terms of resonances and their proximity to periodic orbits [95,
96]. In particular, a sticky region in phase space arises due to the interplay of the
external field and the binding potential. This region traps trajectories before ionisa-
tion, leading to time delays for the second electron. A detailed analysis of the types
of periodic orbits, resonance conditions and distinct sources of chaos is provided
in [96]. Interestingly, if reduced-dimensionality models are used, oscillations in the
RESI yield as functions of the laser intensity are reported and attributed to reso-
nances. However, these oscillations are washed out if more degrees of freedom are
incorporated, due to chaotic transverse dynamics and additional resonances. These
oscillations are distinct from those attributed to quantum interference in RESI [155,
156, 157, 158]. Further work is related to NSDI in bichromatic, linearly polarised
fields [94], and the dynamics of recollisions in fields with circular polarisation [93,
97, 98]. In [93] it is shown that, in contrast to previous assumptions, recollisions
may occur in circularly polarised fields, by analysing the system’s dynamics in a
rotating frame. The physical mechanism is similar to that leading to ionisation in
Rydberg atoms in microwave fields. A decade later, this topic is revisited and sev-
eral associated time scales are analysed in detail [97, 98]. In particular, a recollision

mechanism taking place over many field cycles is reported.

One may also employ classical models and dynamical systems tools to determine
modified threshold laws for correlated multielectron ionisation that account for the
presence of an external field [99]. This approach starts by identifying similarities
with its field-free counterpart [159], considering the two or more electrons in an ex-
cited compound and identifying the relevant subspaces for which correlated double
and multiple ionisation may occur. This information can then be used to construct
effective reduced Hamiltonians for the subspace of interest, identify existing symme-
tries and possible electron escape configurations, and determine which of the latter
will prevail. This has been done for nonsequential double [100, 103], triple [101]
and multiple [102] ionisation. One can also use this method as guidance for defin-
ing effective reduced-dimensionality quantum models, so that the actual dynamics

are preserved as faithfully as possible, without introducing artificial constraints or
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correlations [104].

Another manifestation of electron-electron correlation is autoionisation. Thereby;,
the quantum interference between a direct and a quasi-resonant pathway is of ex-
treme importance. Wigner quasi-probability distributions in the time-energy domain
are used to study this interference and disentangle these pathways in a transient pro-
cess [85]. They provide an advantage over other methods used in time-frequency
analysis, for exposing non-classical behavior in a much more explicit way. A fur-
ther issue is that, in classical-trajectory models, autoionisation manifests itself as
an artifact that renders the system unstable. These problems have been overcome
in [86, 160], which employ quasiprobability densities and phase space arguments to
develop classical-trajectory models that do not exhibit these shortcomings and are
consistent with their quantum-mechanical counterparts. Wigner quasi-probability
distributions in the time-energy domain are also used to analyse interfering reso-

nances [161] during the photoionisation of Xenon.

1.3 Enhanced ionisation

A peculiar and well-known effect that occurs for stretched molecules in strong, low-
frequency fields is enhanced ionisation. It consists of a sharp increase in the ion-
isation rate around specific inter-nuclear separations, typically a few times larger
than the equilibrium distance. Since its first prediction [162], enhanced ionisation
has been calculated and measured in myriad systems. These include diatomic [163,
164] molecular species such as Hy [165, 166, 167, 168, 76, 75|, I, [169, 170, 171, 172],
and Cly [173], tri- [168, 174, 175] and polyatomic molecules [176, 177]. It has also
been used as a means to highlight electron nuclear coupling of degrees of freedom in
photoelectron holography [178]. Physically, enhanced ionisation has been partially
attributed to a narrower effective-potential barrier for the uphill well due to the
presence of a neighbouring, downhill centre.

To better visualise this mechanism, the effective potentials of one-dimensional
models of Hy in static fields are shown in Figure 1.1. The addition of an external
electric field increases the energy of the upfield potential barrier and decreases that
of the downfield potential barrier. Comparing Fig. 1.1 (a) and (b) displays how this
energy difference increases with the internuclear distance. It also brings forward the
possible physical configurations of the stretched molecule. Indeed, in Fig. 1.1 (a) the
central saddle is lower than the Stark saddle (an explanation of saddles is found in
Chapter 2.1). In short, even if the wavepacket tunnels through the central barrier,
it will remain trapped in the downfield well and the ionisation rate is suppressed.
On the other hand, in Fig. 1.1 (b), once the wavepacket has tunnelled through
the central barrier it can easily escape to the continuum. Because increasing the

internuclear distance also increases the width of the central barrier, at very high
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Figure 1.1: The effective potentials of a one-dimensional molecular model of Hy in
a static external field of strength Ey, = 0.0534 a.u. are shown using inter-nuclear
separations of R = 4 a.u. and R = 8 a.u.. The Stark and the central saddles are
indicated by the labels S and C in the figure, and the field-free potentials are given
by the dashed red lines.

internuclear distances the ionisation rate is again suppressed. That is why, for
specific internuclear distances, when compared with a companion atom of similar
ionisation potential, the barrier between the two centers becomes narrower and
there is an increase of at least one order of magnitude in the ionisation rate. This
narrowing implies that tunnel ionisation will be enhanced for the uphill well. This
explanation is strongly based on the quasi-static picture, in which one assumes that
the joint influence of the binding potential and the instantaneous driving field form
an effective potential barrier. Discussions on the validity of this picture, together
with the assumption that the electron tunnels from the uphill well, can be found in

[179, 180, 181], and its experimental confirmation has been reported in [182].

Another cause for enhanced ionisation are coupled charge resonant states. Charge
resonance occurs when two states produce very similar charge distributions. Nearly
degenerate coupled charge-resonant states that occur for large inter-nuclear separa-
tions facilitate a strong population transfer to the continuum [162, 166, 183]. On
the other hand, for extended systems, multielectron and non-adiabatic effects play
an increasingly important role [177, 184, 185](for a recent review see [186, 187]).
Loosely speaking, non-adiabaticity implies that the electron probability density as
a function of time does not “follow" the field gradients, and instead may be related
to population trapping, resonances, multielectron effects and coupling of different
degrees of freedom. This type of behaviour has also raised a great deal of debate in
the context of the attoclock [188, 129, 189, 190].

One should note, however, that even simple, one-electron systems with only
two wells may exhibit non-adiabatic behaviour. For instance, in [191, 75|, multiple
ionisation bursts that have been identified theoretically do not follow the time profile
of the field. This behaviour was attributed to strongly coupled charge resonant
states and the system responding non-adiabatically to time dependent fields [76]. In
[191, 76], a phase-space analysis has been performed using Wigner quasiprobability
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distributions. Thereby, intriguing structures that cycle through momentum space
in a quarter of the field cycle have been identified: the momentum gates. As they
allow a rapid transfer of population, such gates have been associated to quarter-cycle
ionisation bursts, and thus to non-adiabatic following of the time-dependent field
[76].

1.4 Structure of the thesis

This thesis is organised as follows. After the overview of phase-space usage in
attosecond science and the introduction to enhanced ionisation presented in Chapter
1, we will establish the theoretical frameworks and methods used throughout this
work. While chapters will sometimes use different specific tools or frameworks, they
are all brought together in Chapter 2, separated by specific sections.

We then in Chapter 3 study enhanced ionisation in stretched molecules. After es-
tablishing the system dynamics and the connection between phase-space regions and
ionisation rates, we use the Wigner quasi-probability distribution and various initial
wavepackets and internuclear distances to investigate momentum gates (structures
cycling through the momentum space that do not follow the time-profile of the ex-
ternal field, see sec. 1.3) and their cause. Employing static fields to properly isolate
this quantum bridging phenomenon, we focus on its non-classical nature by apply-
ing classical phase space arguments (and their limits) and the quantum Liouville
equation.

We then aim to expand on the visualisation and interpretation of these quan-
tum effects in Chapter 4 by propagating quantum trajectories with the Quantum
Trajectory Method (QTM). In order to perform field derivatives on an unstructured
grid, we discretise the density. At the start of the chapter we will introduce im-
provements to the density approximation and boundary conditions. We will then
apply this improved method to atomic tunnel ionisation and enhanced ionisation,
emphasising both its interpretational strengths and its computational shortcomings.

From this, we move on to Chapter 5 where we identify the time scales of the
quantum bridge and its interplay with the external time-dependent field. This chap-
ter is split into two parts. First, we isolate the effect in a field-free setting allowing
the use of analytical methods to obtain the eigenfrequencies at play and their link
to the autocorrelation function oscillation frequencies. Following that, we can un-
derstand the interplay taking place with the external time-dependent field, whose
frequency is lower than that of the quantum bridge.

In Chapter 6, we aim at steering the pathways behind enhanced ionisation. As
seen in previous chapters, the interplay between the external field and the quantum
bridge is essential for controlling enhanced ionisation and depends on a multitude

of parameters. For that reason we will be using machine learning dimensionality
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reduction techniques, t-distributed Stochastic Neighbor Embedding (t-SNE) and
Principal Component Analysis (PCA), to investigate the entire parameter space
simultaneously. This chapter is again separated in two parts. First we perform
an initial qualitative analysis of our system in a static field to serve as a proof of
concept of the presented dimensional reduction technique. Following that, we apply
the t-SNE to the complete time-dependent field case and use the results to guide
our qualitative phase-space analysis.

Finally, in Chapter 7 we conclude the thesis with a summary of its main results.
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Chapter 2

Theoretical framework and
methods

Throughout this chapter we will present an overview of the various tools and meth-
ods used throughout this thesis. We focus on simplified, reduced-dimensionality
models in which a single spatial dimension is taken into consideration. They provide
a transparent, yet accurate picture of the system’s dynamics for linearly polarised
fields. We also use atomic units (see Appendix A). We employ both classical and
quantum-mechanical phase-space tools. We describe both a numerical and analyti-
cal method of wavepacket propagation. We will finish of this chapter by giving an
introduction to the Quantum Trajectory Method (QTM) and an overview of two

machine learning dimensionality reduction techniques.

2.1 Classical phase space dynamics

The following classical phase-space approach is used to determine bound and contin-
uum phase space regions and identify fixed points under different conditions. This is
crucial when looking at signatures of strong field tunneling and over-the-barrier ion-
isation and is done by employing key concepts of the theory of dynamical systems,
some of which are briefly stated here. For a more detailed and rigorous discus-
sion please see e.g., [192]. Classically, the phase space dynamics are described by

Hamilton’s equations

L a-[_-Icl(pa ZL‘)

T=p= o (2.1.1)
. aVveﬂf N aHd(pv ':C)
p= -t = (2.1.2)

where x and p are the position and canonically conjugate momentum, respectively.

The classical Hamiltonian H is defined by

2

Ha(p,z) = % + Vig(2) (2.1.3)
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Figure 2.1: Phase portrait for the one-dimensional system defined as an atom with
a soft-core potential (2.1.5) in a static field of strength Fy = 0.0534. a.u.[left panels],
together with the corresponding effective potential [right panels]. The Stark saddle
has corresponding energy Eg = —0.46, which is also the energy of the separatrix.
The latter is depicted by the solid line in phase space, while the dashed red and
green lines illustrate solutions for energies £ = —0.67 a.u. and £ = —0.3 a.u.,
respectively. The bound region is depicted by the shaded area.

where

Vet = V() + V. (2.1.4)

Vo is the effective potential determined by the external electric field acting on the
electronic wave packet. The physical picture of a time-dependent effective poten-
tial corresponds to the length gauge and the dipole approximation, which are used
throughout this thesis. Thereby, V; is the potential energy determined by the laser
field, which for a field without spatial dependence, reads V; = z&(t).

Solutions of Eqgs. (2.1.1) and (2.1.2) which stay the same for all times, that is,
for which © = p = 0, are fixed points. For conservative Hamiltonian systems of
the form (2.1.3) one may show that fixed points are centres or saddles. In phase
space, these fixed points are located at (xf,ps) = (x5,0), where z is the value of
the coordinate = for which the effective potential Vg is stationary. Centres and
saddles are given by the minima and maxima of the effective potential, respectively.
Centres are attractive and surrounded by closed orbits, while saddles are semi-stable
and help delimit qualitatively different dynamical regions in phase space. For that

reason, phase space trajectories crossing saddles are called separatrices.

This is exemplified in Figure. 2.1 for a model atom in a static field, i.e. £(t) = Ej.
Similar pictures have been provided in [193, 74]. The binding potential V(z) is

chosen to be soft-core .

Vie(z) = T E

: (2.1.5)

where )\ is known as the softening parameter and A = 1 is chosen throughout. This
removes the singularity at z = 0 of the true Coulomb potential, yet remains long-
range [194, 195, 196]. This parameter is typically chosen such that the ionisation
energy coincides with the ground state of the potential [197]. This soft-core potential
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and variations of it will be often used throughout this thesis.

The figure shows two fixed points according to the definition provided above: a
centre at the origin, and the Stark saddle to the left, whose positions are determined
by the minimum and the maximum of the effective potential Veg(x), respectively.
The figure also shows a separatrix, which corresponds to the stable and unstable
manifolds of the Stark saddle. It is associated with the minimum energy to undergo
over-the-barrier ionisation. The closed region to the right of the saddle is bound:
trajectories within it will propagate along closed orbits. If the particle starts on the
left of the Stark saddle, or if it has an energy higher than that of the separatrix, it
will be free. This clearly shows that the particle’s energy is paramount to defining
the continuum regions; the particle being close to the core is not sufficient for de-
scribing its dynamics. For a time-dependent field in the parameter range considered
throughout this thesis, namely low frequencies and high driving-field intensities, one
may assume that the system behaves quasi-statically. This means that one may use
the approximation that the phase space configurations discussed for static fields and
shown in Fig. 2.1 hold for each instant of time. They will change instantaneously,
such that an electron reaching the continuum at different times and propagating
in the field will be exposed to a wide range of transient bound and continuum re-
gions. This implies that the time should be included as an additional variable in an

extended phase space.

2.2 Wavepacket propagation

In order to facilitate the phase-space analysis and interpretation, in this work we
will use a simplified, one-dimensional model as well as the full solution of the time-
dependent Schrédinger equation (TDSE),

i0,|W(t)) = H|W(t)), (2.2.1)
where the length-gauge Hamiltonian reads
N
H = 5+ Ver(2) (2.2.2)

with Vig(z,t) being defined as above and the hats denoting operators. Depending
on the problem at hand, we choose different initial potentials Vig(z). The evolution
of the wavepacket is given by solving the TDSE in the position space, which reads
. 102
Zat\ll(x,t) = —5@ +‘/eff(x,t) \I](.I',t), (223)
where W(x,t) is the time-dependent wave function. We solve the TDSE numeri-

cally using the split-operator method [198]. Therein, propagation steps are split
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up between the potential and kinetic operator and treated in coordinate and mo-
mentum space respectively. Unless stated otherwise, the time step, length grid and
momentum grid precision used are respectively dt = 0.1 a.u., dx = 0.2 a.u. and

dk = 0.05 a.u..

Throughout this work, we will approximate the initial wave function by Gaussian

wave packets

@@JD—(ﬂ@«D)—(Z)amp{—;@%—%f+4pﬁx—q@} (2.2.4)

of width v centred at vanishing initial momentum p, = 0 and initial coordinate
qo, or coherent superpositions thereof. Gaussian wave packets are widely used in
several areas of knowledge, and have the advantage of facilitating computations and
often allowing analytic treatments. This is very helpful from the interpretational
viewpoint. The width of ¥(z,0) (v = 0.5 a.u.) has been calculated such that the
ground-state energy of a field free single-centre soft-core potential with A = 1.0 is

minimised. This ground state energy is F,. = —0.67 a.u..

The time-dependent wave function will be used to calculate the time dependent

autocorrelation function
qw:/wuﬁwmmm, (2.2.5)

which is given by the overlap integral between the initial and time propagated wave
function. The autocorrelation function is a relevant quantity that provides insight
into the resulting wave function time dynamics and will be employed to assess the

behaviour of the system in time-dependent electric fields.

2.3 Quantum distribution functions

Wigner quasiprobability distributions, within the constraints posed by the uncer-
tainty principle, permit the study of position-momentum correlations (for reviews
see, e.g., [199, 1]). Wigner functions have been widely employed in quantum optics
and quantum information, and more sparsely in strong-field and attosecond physics.
See for instance studies of ionisation [74, 191, 76, 77], rescattering [79, 87] and en-
tanglement [88] in this context. One should also note that quantum distribution
functions may be defined using any two variables corresponding to incompatible
observables, such as time and frequency. For instance, Wigner-type time-energy
distributions were employed to study HHG [200], different regimes in ATT [201] and

autoionisation [85].

The time-dependent wave function is used as input in the Wigner quasiproba-
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Figure 2.2: Wigner quasiprobability distribution for the one-dimensional system
defined as an atom with a soft-core potential (2.1.5) in a static field of strength
Ey = 0.0534. a.u. The initial wavefunction used is a Gaussian wavepacket of width
~v = 0.5. The snaphots shown are taken at times (a) t = 0, (b) t = 15 and (c¢) t =
25. The separatrix is depicted by the solid white line in phase space.

bility distribution
1 oo .
W(x,p,t) = — / AV ( + €, 1) (2 — €, 1)e27, (2.3.1)
T J—0

where £ is a dummy variable. This function is real, normalised, and provides mo-
mentum and position resolution within the constraints posed by the uncertainty
principle. Additionally, its marginals correspond to physical probability distribu-
tions for each conjugate variable, respectively. However, it exhibits both positive
and negative values, hence the name “quasiprobability”. This, among other fea-
tures, makes its interpretation as a probability distribution difficult [199]. On the
other hand, its deviations from probability densities can be used to indicate non-
classicality [19]. For instance, a widespread definition used in quantum optics is to

seek regions for which W (z,p,t) is negative and classify them as non-classical [202].

To illustrate the phase space signatures of ionisation, we propagate a Gaussian
wavepacket of width v = 0.5 using the TDSE following the method described in
section 2.2. In Fig. 2.2 we show the resulting Wigner quasiprobabilty distribution
as well as the associated classical separatrix. Quantum mechanically there will
always be an uncertainty for the initial wavepacket, which manifests itself as a phase
space spread in Figure. 2.2 (a). The initial quasiprobability distribution is positive
throughout phase space. For a static field and ionisation from a single centre, the
Wigner function always follows or is partly contained by classical separatrices [77].
This happens to its bound part as well as the signature semiclassical tail seen in
Figure 2.2 (b) associated either with over-the-barrier or tunnel ionisation discussed
in [74] (see also [193] for a seminal discussion of such features in the context of
quantum localisation). It follows the separatrix and crosses from the bound to the
continuum region around the Stark saddle (the saddle formed by the interplay of
the field and the potential). For longer times, shown in Figure. 2.2 (c), the tail
moves to lower momenta and the quasiprobability distribution exhibits interference
fringes associated with the quantum interference between different ionisation events.

Under many circumstances this even means that the electron reaches the continuum
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with non-vanishing momenta, although it follows an equienergy curve and thus the
field gradient. This oscillating behaviour around the separatrix has been identified
in other areas of research as the semiclassical limit of the Wigner function’s time
evolution [135].

To investigate the time evolution of the Wigner function as well as a more re-
strictive definition of its non-classicality, we will use the quantum Liouville equation

[13].

(6 L P 0  dVeg(z) 0

ot Mor  dv ap> W(z,p,t) = Q(z,p, 1), (2.3.2)

where z o i
Q(z,p,t) = i (=1)'(h/2)% & Veg(z) 0%
)y s — (2l T 1)! dx2+1 8p2l+1

W(z,p,t) (2.3.3)

are the quantum corrections to the classical Liouville equation. The quantum Liou-
ville equation (also known as Moyal equation) may also be written more compactly
as oW
GL (W e t), Hrp. 1)) (2:3.4)
where H(z,p,t) is the system’s Hamiltonian and {{-}} give a Moyal bracket [203,
204]'. In the classical limit (setting i = 0), Egs. (2.3.2) and (2.3.4) become the clas-
sical Liouville equation, such that Q(x, p,t) = 0 and the right-hand side of Eq. (2.3.4)
will be given by a Poisson bracket. In this case, the Wigner quasiprobability dis-
tribution will evolve like a classical entity. This is a useful tool for distinguishing
between regimes in which quantum interference is present, but evolves classically by,
for instance, following classical separatrices, and those truly quantum regimes with
no classical counterpart. A widespread approach in quantum optics and cold gases,
known as the truncated Wigner approximation (TWA), is to consider the classical
Liouville equation with stochastic quantum corrections. This correction is required
many times in order to deal with large systems. The TWA was first used in the
context of Bose-Einstein condensates in [46]; for reviews see [36, 32|, and is closely
related to the linearised semiclassical IVR [41, 33]. Nonetheless, in some instances
it may be nontrivial to compute a classical limit for the quantum Liouville (Moyal)

equation (see [7] for an early discussion).

A direct inspection of Eq. (2.3.3) shows that the quantum corrections vanish for
binding potentials up to the second order in z. This includes linear potentials such

as the interaction Hamiltonian in Veg(z) and harmonic potentials.

By computing the value of Q(z, p,t) from Eq.2.3.2, we aim to determine zones of
non-classical time evolution of the Wigner function. In order to test this, shown in
Fig. 2.3 are the quantum corrections of a harmonic oscillator as well as anharmonic

oscillators

' Moyal brackets map non-commuting operators to functions in phase space and have been used
in a wide range of problems; for instance, non-Hermitian Hamiltonian systems [205].
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p [a.u]

x [a.u.]

Figure 2.3: Quantum corrections for the harmonic oscillator (left panel), anharmonic
oscillator following Eq. (2.3.5) with A = 0.2 (middle panel) and A = 0.8 (right panel),
at times from top to bottom ¢t = 0.5 (a), t =2 (b) and t = 5 (c)

Vi(z) = 0.52% + A\ (2.3.5)

with increasing levels of anharmonicity. As expected from Eq. (2.3.3) the quantum
corrections are mostly absent when using the displaced harmonic oscillator. Not
only do the quantum corrections appear when using an anharmonic oscillator, but
they also increase with A, the amount of anharmonicity.

There are however very faint quantum corrections for the harmonic oscillator at
high momentum regions. When looking at the Wigner function for the harmonic os-
cillator (not shown) we note that the quasiprobability distribution is absent in these
regions with faint quantum corrections. Since these are derived computationally
with derivatives, this suggests a computational limitation when the quasiprobabil-
ity distributions is near zero. Indeed, in Fig. 2.4, when the quantum corrections
are multiplied by the absolute value of the Wigner function, the corrections are as
expected completely absent for the harmonic oscillator. In conclusion, one must
make sure the region with quantum corrections is one where the Wigner function is

present in order to avoid computational errors.

2.4 The quantum trajectory method

Throughout Chapter 4 we will be using the quantum trajectory method (QTM)
with the aim to analyse and understand non-classicality in strong field enhanced
ionisation. In contrast to the more standard classical or semiclassical trajectory
based methods used in strong field physics (see for example [53, 54, 55, 33, 45,
138, 77, 144, 145]), here the ezact equations of quantum mechanics are solved in a

similar fashion to Bohmian mechanics. These trajectories are highly non-classical,
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Figure 2.4: Quantum corrections scaled with the absolute value of the Wigner
function for the harmonic oscillator (left panel), anharmonic oscillator following
Eq. (2.3.5) with A = 0.2 (middle panel) and A = 0.8 (right panel), at times from top
to bottom t = 0.5 (a), t =2 (b) and t =5 (c)

as a single Bohmian trajectory can be related to an ensemble of classical trajecto-
ries [206, 207]. The trajectories in QTM are equivalent to Bohmian trajectories,
although they are computed differently as explained later in this chapter. For a
detailed overview of quantum trajectories in this context, see [208]. In the following
section we will go through an introduction of the key equations of the QTM as well
as its implementation using a discrete representation of the density, starting from

Madelung’s derivation of the hydrodynamic equations [209]:

In the one-dimensional time dependent Schrodinger equation (TDSE),

00 (x, ) — (—;CZ; + V(x)) U(a,t), (2.4.1)

the complex valued time dependent wave function W(z,t) is written in polar form

iS(xz,t)

U(x,t) = R(z,t)e” 7, (2.4.2)

where S(z,t) is the phase and R(z,t) the amplitude, both real. The probability
density is defined by p(x,t) = [R(x,t)]?. By inserting the polar form into the TDSE
one obtains the hydrodynamic equations of motion, which are two coupled partial

differential equations: the quantum Hamilton-Jacobi equation

ot - 2m

—0S(z,t) 1 [88(%75)
ox

] +V(2) + Qla,t), (2.4.3)

where

n2 o' t) 1[0 (0]
Q(z,t) == [p(m) b [p(x’t)] ] (2.4.4)
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is the quantum potential, and the continuity equation

8‘);’ t_ —aax[p(x, Do, 1], (2.4.5)

where the flow velocity of the probability fluid

1 95(z,t)

v(:c,t):m e (2.4.6)

constrains the velocity of the quantum trajectories, forcing them to follow specific
lines determined by the gradient of the phase. The fact that this physical system is
composed of both a wavefunction and a quantum particle guided by that wavefunc-
tion is a postulate [210].

From a computational perspective, the essence of QTM [208] is to propagate
the trajectories directly instead of first solving the TDSE. This is different from
Bohmian mechanics, where the TDSE is computed first conventionally and Bohmian
trajectories are then propagated using the wavefunction. The former avoids the
difficulties of increased dimensionality that arises when computing the wavefunction

on a fixed grid. Taking the gradient on both sides of the quantum Hamilton-Jacobi

equations and writing the total derivative as % = % —I—U%, one obtains a Newton-like
equation of motion
d*x

where the force is split into a classical and quantum contribution. All non-local
effects come into play via the quantum potential, named as such from having no
classical analog. We then obtain a Lagrangian version of the quantum Hamilton-

Jacobi equation and the continuity equation:

dSEla;,t) _ 27171 [35;(;”] —V(z) — Q(x, 1) (2.4.8)
d,O(dfz, t) _ e t)avg;, t) (2.4.9)

The quantum trajectories can therefore be propagated without directly evaluat-
ing the wavefunction at each time step, and instead using Eq. (2.4.7). This however
requires calculating field derivatives on unstructured grids, which is an especially
relevant issue when looking at larger systems, such as molecules, and so a number

of techniques have been implemented to attempt to overcome these issues [208].

2.4.1 Discrete approximation

Here, an approach that parameterised the density developed by [211] and expanded

by [212, 213] is summarised. An expression for the quantum force and quantum

45 of 163



2. Theoretical framework and methods

potential is derived from the discrete approximation of the density

pln) = p-(xn) = py(2n), (2.4.10)

written for simplicity as p_(z,) = m and py(z,) = m, where N
is the number of trajectories and z,, the position of the nth trajectory such that

T < Ty < ...<ZIN.

The derivative of a function in 1D is approximated using the finite difference
method [214] at = = z,, by either

o (1) ~ O(Tni1) — o) ~ () — Sp(xn—l)7 (2.4.11)

Tn1 — Tn Tp — Tn-1

called respectively the forward and backward scheme. To conserve information from
the neighbouring trajectories in both directions, p'(z,t) is calculated using either

the forward scheme on p_(xz,) or the backward scheme on py(z,). Both yield

(2t 1 1
plrt) - , (2.4.12)
p(x,t)  (Tnpr —2n)  (Ty — Tpo1)
which is then used in the quantum potential [211]. This gives
B’ 1 1 ?
Qo(zp,t) = — — ), (2.4.13)

8m | (Tny1 —n) (T — Tp1)

P (1)
p(z,t)

neglected as it does not influence the quantum force, only the potential. However

which is then later used to derive the quantum force. Here the term has been
the quantum potential is crucial when calculating the energy and all phase related
phenomena. This is shown by the work of [212, 213]. Again a forward or backward
scheme can be used to calculate the second derivative. Using first a forward scheme,

followed by a backward scheme for the first derivative, one obtains

g ¢ (Tni1) = ¢ ()

n) = , 2.4.14
@' (n) P (2:4.14)
P(@nt1)=p(@n) _ o(@n)—p(®n-1)

" L) = Tn4+1—Tn Tn—Tn-1 d 2415
#w) — n (2415
p(x,1) _ P+ (@ng1) 1 _ 1 _ 1
p(z,t) P(@n) (Tnpr —2n)?  (Tnp1r —20)? (Tngr — 20) (00 — Tp1)
+p+(xn+1) 1
P+($n) (xn—‘rl - xn)(xn - xn—l)
(2.4.16)

This ratio is used to obtain the quantum potential,
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I 1

To propagate the trajectories the quantum force Fj is used

Q) 0 & 9 R
Fy(x,,t) = — i ;Q(:ci,t) = —a—xni:;ﬂ(xi,t) (2.4.18)

Starting from the ’; ((;’;)) part and keeping only terms with deriving x,, (all others will

go to zero after the partial differentiation), we obtain

"il (p’(:}:i,t)>2: "il L 1 2

i\ p(Ti 1) iy (@i —x)? (T — @)? (w1 — ) (@ — i)
1 2 1
_(1771 — Tp-1)? N (Tn — Tn-1)(Tn-1 — Tn-2) " (Tng1 — @0)?
1 2 1
" (Tn — Tn-1)? - (Tnt1 — Tn)(n — Tn1) " (Tnt1 — Tn)?
2

(xn+2 - $n+1)(xn+1 - xn)

This leads to the force

Fy(nt) = — 2= 2 ’f (p’(%t)>2

a %axni p(x;,t)

=n—2

. h2 2 Tp—1 — Tp—2 2
Cdm (= 201)? (T — 2 1)2(T 1 — Tp9)?
Tny1 — 21771 + Tp-1

(Zni1 = 2n)* (@0 = Tnn)?

(xn+1 - xn)?)
Tpta — Tn
N +2— ot 2]
(1771—4—2 - xn-l—l) (xn—l-l - xn)
R [ 2 N 1
dm [ ( —n)®  (Tpg2 = Tng1)(Tngr — 7p)?
. 1
(xn-‘rl - xn)2(xn - xn—l)
2 1

+<xn - xn—l)g - (xn - xn—l)Q(xn—l - xn—?)‘|
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F (. 8) h? 1 1 2 N 1
T - _
R 4m (:En-‘,—l - l‘n)2 (xn+2 - xn—&—l) (xn—‘rl - In) (xn - xn—l)

_ 1 ( 1 B 2 . 1 )1
(@0 = 2p-1)? \(@n1 — 20) (0 —2p1)  (Tpo1 — Tp2)

We will be able to effectively propagate quantum trajectories by either using

these expressions or by improving them for greater accuracy in Chapter 4.

2.5 Analytical propagation

When looking at a field-free system in Chapter. 5, we will supplement our numerical
results with the insight of interpretational power of the analytical model in [215].
It provides an alternative quantisation condition for wavepacket dynamics in hyper-
bolic double well potentials of arbitrary height or width. A short summary of the
method along with the relevant equations for Chapter 5 are described below.

We will consider the evolution of a time-dependent wave packet W(z,t) using
the basis of eigenstates 1, (z) that solve the time-independent Schrodinger equation
(TISE)

Hip(x) = Eyiby(2), (2.5.1)
with the Hamiltonian defined by
P
H=—+V(x). (2.5.2)

- 2m

The binding potential
sinh*(z/d)
Vot
cosh’(z/d)

is a double well (bistable) potential where V{ specifies the depth of the potential

Vi(z) = (2.5.3)

and d its peak location. In the eigenbasis of the TISE,
U(z,t) => A, exp(—iE,t/h)Y,(z), (2.5.4)
where

A, = /\Il(x, 00 (z)d (2.5.5)

are overlap integrals between the initial wavepacket ¥(x,0) and eigenfunctions i, (z)
of the hyperbolic double well. The 1D time-independent Schrodinger equation
(TISE) for the potential given in Eq. (2.5.3) reads as

d*(z)
dz?

+ <6d2 + Uﬁ%) Y(z) =0, (2.5.6)
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with dimensionless parameters z = x/d, Uy = 2mV,/h*, ¢ = 2mE/h*. Note that
the potential V() has even parity, which implies the existence of even/odd parity

wavefunctions.

The Schrodinger equation is then reduced to Heun’s equation. Indeed it was
shown [216] that for even parity wavefunctions the above equation may be reduced
to the Heun confluent differential equation by introducing the new variable £ =
1/cosh® z (with 0 < € <1 as —o0o < z < +00), that is,

d2

= f+1 ~vy+1\ d
a2

poov _
H(&) + <a+§+§_1 d—SH(g)jL <£+£_1> H(¢) =0, (2.5.7)

where the even-parity solutions to TISE are of the following form:

¢even(€) = 55/2€a£/2H(O‘7 67 s 57 7, g)? (258)

with @ = —dy/Uy < 0, 8 = —idy/e > 0 and others given by v = —1, v =
P+ BB+1)), 0 =pn+v=5(F+7+2), = jlala+2)+2a8 BB +1),
n=5B+1)—pn—30B+7+p8).

Furthermore, following the similar procedure as above but using the exchange
of variables ¢ = tanh (z/d) (with —1 < { <1 as —00 < z < +00) it may be found
[216] that

2
o 67%42]—](_@7 _7767 _577]+ %7C2) (259)

Yoaa(Q) = ¢ (1= ¢%)
where H(—a, —v, 5, —0,m + %2, (?) is again a Heun’s function, only mapping a@ —
—a, f = —v,y = 6,0 > =6, n —>n+ %2. Note, that in contrast to x — &,
the x — ( transformation intrinsically constrains the wavefunctions to be odd in
x-space.

Using the quantisation condition provided in [215], we obtain the eigenvalues E,,
(and hence eigenfrequencies wy,) and find the eigenfunctions given by Egs. (2.5.8)

for these allowed energies.

We then formulate the initial wavepackets to be placed in a hyperbolic double
well. We would like to benefit from the relatively simple forms of the eigenfunctions
in &-spaces and to devise the simple purely even initial wavepackets in £-spaces. In
this way the intricate? overlap integrals from z-spaces can be evaluated in é-spaces
by introducing the appropriate weight function ¢(§) to the integrals. In £-space,
noting that d¢/dz = —2sinh (z)/cosh® (z) we obtain

d

dr = —5e =gt = —al& d)de. (2.5.10)

2For example, the even-parity eigenfunctions from Eq. (2.5.8) when evaluated in 2-space become
U(x) = (1/cosh?(x/d))P/2e(1/20sh (/D) H (@, B,,6,m,1/ cosh? (x/d))
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We will utilise an even-parity, delocalised initial wavepacket ¥(¢,0) = ¥pre(, ¢, )
which explicitly reads

gcﬂefcg

%\/1}7] (209; 20Q + & —20) ['(2c¢9)

YpLe(é,c, Q) = ; (2.5.11)

with 0 < Q < 1 specifiying the location of the peak; ¢ > 0 specifying the width of the
wavepacket; | F. 1(a, b, c) denoting regularised confluent hypergeometric function and
['(u) complete gamma function. The z-space peaks location of the even delocalised
wavepacket can be retrieved from 2 by inverting the x — £ mapping to produce
& = 4d cosh ™ (1/\/@)

The overlap integrals Eq.(2.5.5) A, are therefore evaluated analytically for n=0,24,..

from

Ao = [ il e Den©ale, dyde. (2.5.12)

2.6 Dimensionality reduction

When dealing with a system of multiple parameters, it can be very useful to look at
the entire parameter space at once. The main challenge to overcome when studying
the effect of a large number of parameters simultaneously is how to visualise the
results. To do so throughout Chapter 6 we will be using the following machine
learning dimensional reduction techniques. Indeed, each data point will exist in a
high-dimensional space (the number of dimensions equal to the number of parameter
used), and ideally we would like to project our results down to a two-dimensional

space.

2.6.1 Principal Component Analysis

Data sef.
(a) ® (b) x Minimised (c)
X2 i
Py variance
° ./}x
o o & ’/
° ® Average point "'. —=0-0-000----0- 9 ---0>
° ) PC1
’
L) l X1
e/ L]
)
N
QO

Figure 2.5: Schematic representation of a 2-dimensional data set reduction to 1-
dimension using PCA. (a) Original data set in red along with the variable average
represented in orange. (b) Mean-centered data set along with the first principal
component minimising the average squared distances. (c¢) Data set recast onto the
first principal component.

Principal Component Analysis (PCA) is a common way to reduce the dimensions

of our data while keeping the overall trends and patterns. A schematic representation
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of PCA is shown in Figure 2.5.

The essence of PCA is to compute the principal components of a collection of
points. The principal components are a sequence of unit vectors. The ¢—th principal
component is chosen such that its direction minimises the average squared distance
from the data points to the principal component line, while being orthogonal to the
previous ¢ — 1 vectors. In other words, the first principal component can be defined
as the direction that maximises the variance of the projected data. We can then use
the first two principal components to perform a change of basis on the data.

From the definition above, the principal components are the eigenvectors of the

data’s covariance matrix. They are obtained from the following steps:

1. We consider our data to be in the form of a matrix X with n rows and k
columns. The k columns represent the different parameters of our data, while

the rows n represent the different data points computed.

2. We standardize (subtract the mean and divide by standard deviation) the
initial variables such that they contribute equally to the analysis. This is

critical because PCA is sensitive to the variance of the initial variables.
3. Compute the covariance matrix of the standardized data.
4. Compute the eigenvectors and eigenvalues of the covariance matrix.

5. Recast the data along the first two principal component axes.

2.6.2 T-Distributed Stochastic Neighbor Embedding

Another dimensional reduction technique is the t-Distributed Stochastic Neighbour
Embedding (t-SNE). It is an unsupervised machine learning technique, meaning it
will find overall trends and patterns without any prior knowledge on the origin of
the data. A detailed explanation of the workings of the t-SNE method can be found

in [217]. Tt is summarised here and divided into three steps:

1. Defining a probability distribution p;; of picking a pair of points (z;, z;) in our
original high dimensional space such that neighbouring points lead to a higher
probability. This is done by defining the conditional probability p;; of a point
x; being picked after choosing z; by

exp(—||z; — x[|*)/207
Sz exp(—|lzi — w|[*/207)

Dilj = (2.6.1)
The conditional probability is represented by a Gaussian distribution of the
Euclidean distance between points x in high dimensional space. The Gaussian
is centred at x;, has standard deviation o;, and is normalised in order to handle

clusters of different densities. The conditional probability p;; = 0.
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From these conditional probabilities we create the joint distribution p;

_ Dijj +DPjli

= (2.6.2)

where n is the number of data points. The symmetric property of the pairwise
similarities (p;; = p;;) helps simplify the calculation at the third stage of the
algorithm. The joint distribution is one of the major improvements between
the SNE and the t-SNE.

2. Creating a random dataset of points y in the target dimension and calculating,
similarly to step 1, the joint probability distribution g;; of picking a pair of
points (y;,1;) -

(L+ [y —yl1*)~

o 2.6.3
T = o+ o= ) (26.3)

However, instead of a Gaussian distribution, g;; is represented by the Student’s
t-distribution with one degree of freedom (equivalent to a Cauchy distribu-
tion), which is much more heavy-tailed. The Cauchy distribution is chosen
instead of a Gaussian in order to prioritise preserving local structure. Indeed,
for data that is intrinsically high-dimensional, pair-wise distances can never
all be preserved. By using a heavy-tail distribution, we compromise by allow-
ing dissimilar points in high dimension to be modelled too far apart in the
low dimensional map. Additionally, because intermediate distances in high
dimensional space become extreme in the target dimension, this helps prevent
crowding in the final distribution. Incidentally this is another improvement
from the SNE.

3. Modifying the dataset y in the target dimension such that ¢;; is as similar as

possible to p;;. This is done by defining a cost function C

C =KL(P||Q) = Zprlogp” (2.6.4)

chosen to be the Kullback-Leibler divergence (KL divergence) [218] between
the two distributions. The KL divergence is a measure of how different two
distributions are to one another. We then minimise the cost function C' using
the gradient descent method. This involves taking a stochastic sampling of

the cost function and obtaining the gradient

= 42 (Pis = 4:3) (i — y) (L + |lys — w5l*) (2.6.5)

for a small batch of samples. The gradient is then scaled by the learning

rate (often referred to as step size) and used to modify the target dataset
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y. This procedure is then repeated over many steps, which approximates the
true gradient and successfully minimises the cost function. For a more detailed

explanation of the stochastic gradient descent method see [219].
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Figure 2.6: 3-dimensional plot of four Gaussian clouds in (a) along with its 2-
dimensional t-SNE projection in (b) and PCA projection in (c). The four clusters A
B C D are shown by different colors, red, yellow, light blue and dark blue respectively.
Cluster D is four times more dispersed than clusters A B and C. The distance
between clusters A and B is two times shorter than that between C and D and four
times shorter between B and C.

Throughout Chapter 6 we will be mainly using t-SNE dimensional reduction
while also comparing those results with a PCA projection. The reason behind us-
ing both distributions is that they have very different strengths and limitations
and therefore provide complementary information on the initial multi-dimensional

dataset. For instance, PCA is deterministic while the t-SNE is stochastic and uses

(b) t-SNE projection (c) PCA projection
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Figure 2.7: Projection of a handwritten digits dataset from 64-dimensions down to
2-dimensions. The four sub-figures in (a) show examples of different possible data
points. Each data point is an 8x8 pixel image of a handwritten digit. The total
dataset is composed of 1797 datapoints. The t-SNE projection is presented in (b)
while the PCA projection is shown in (c¢). The colour of each point represents their
label value. The handwritten digits dataset is taken from the UCI Machine learning
repository, sklearn.datasets.load__digits.

hyperparameters. This means every t-SNE run can yield different results. Indeed

the gradient descent uses stochastic sampling and brings the learning rate and step

53 of 163



2. Theoretical framework and methods

number as hyperparameters. Another hyperparameter is the early exaggeration. In
order to provide more space between clusters in the target dimension, the probabil-
ities p;; of Eq. (2.6.2) are multiplied by the exaggeration value during the first 99
gradient descent steps. Finally, a highly relevant hyperparameter is the perplexity,
which comes from choosing different standard deviations o; of p;;. The perplexity
measures the effective number of neighbours of a point x;. The value o; is thus
chosen such that the Gaussian probability distribution has the predetermined per-
plexity. Using different perplexities changes the target number of neighbours for
each point and can lead to very different results. As such it must be chosen with
care. For an effective visualisation and discussion of the effect of the perplexity see
[220].

Another major difference between PCA and t-SNE is that t-SNE focuses on
preserving the local structure of the data. On the contrary PCA preserves global
properties while potentially losing low-variance deviations between neighbours. As
shown in Figure 2.6, as opposed to PCA you cannot visualise the size and distance
between clusters in a t-SNE projection. Indeed the clusters in Figure 2.6 (b) have
equal size and distance between them while the PCA projection in (c) correctly maps
the distance between the clusters and the increased spread of cluster D. The t-SNE
algorithm expands dense clusters, and contracts sparse ones, evening out cluster
sizes. Consequently, global properties such as the distance between clusters cannot

be gleaned from the t-SNE projection. On the other hand, PCA is a purely linear
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Figure 2.8: 3-dimensional plot of a trefoil knot from two different perspectives in
(a) along with its 2-dimensional t-SNE projection in (b) and PCA projection in (c).
The data points are marked by different colours to serve as a guide.

technique, while t-SNE is a highly non-linear algorithm. Consequently it can better
handle linearly non-separable data. An example of this is shown in Figure 2.7, where
both t-SNE and PCA are used on a complex dataset of handwritten digits. Each
data point in the example is a 8x8 pixel image of a handwritten digit, as shown in
Figure 2.7 (a). Consequently the t-SNE and PCA algorithms are applied to reduce
the 64-dimensional dataset to a 2-dimensional dataset in Figures 2.7 (b) and (c).

While the t-SNE projection contains various clusters successfully corresponding to
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the different digits, the PCA algorithm struggles to create distinct clusters. In Figure
2.8 the t-SNE successfully represents the trefoil knot as three interlinked shapes of
equal size, while PCA loses the intrinsic topology.

In conclusion, by comparing both projections we can guarantee the accuracy of

the t-SNE results and gain the most information about the original dataset.
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Chapter 3

Quantum Bridges in Enhanced

Tonisation

In this chapter, we will perform a phase-space analysis of strong-field enhanced
ionisation in molecules, with emphasis on quantum-interference effects. Indeed, in
H3 multiple ionisation bursts have been identified [191, 75] that do not follow the
time profile of the external field. In [191, 76], a phase space analysis performed
with Wigner quasiprobability distributions revealed intriguing structures that cycle
through the momentum space in a quarter of a field cycle: the momentum gates
(see section 1.3). However, the physical reason for the behaviour of momentum
gates remains unknown. It is not clear whether momentum gates could occur under
a different set of circumstances, such as with static fields, or what role quantum
interference and other types of nonclassical behaviour play in this context. In order
to address these questions we will apply methods that make use of phase space,
such as the Wigner quasiprobability distribution. A major advantage is that they
provide information not only about the electron’s initial coordinate, but also about

its initial momentum distribution and their subsequent evolution.

We will start this Chapter with section 3.1 by giving an overview of the system
dynamics, looking at both the different phase space configurations as well as their
effect on the ionisation rate. Following that, in section 3.2, we will perform a study
of momentum gates for both initially delocalised and localised states, providing
more information on their effect and their quantum bridging mechanism. Finally,
in section 3.3, using both the autocorrelation function and the quantum Liouville
equation, we investigate the temporal evolution of the system and its non-classical

nature. We will close this chapter with a brief conclusion and discussion.
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3.1 System dynamics

3.1.1 Phase space configuration

Our system is a one-dimensional single-electron molecule whose wave function W (z, t)
is obtained by solving the TDSE numerically in a fixed grid using the split-operator
method. Therein, propagation steps are split up between the potential and kinetic
operator and treated in coordinate and momentum space respectively. Unless stated
otherwise, the time step, length grid and momentum grid precision used are respec-
tively dt = 0.1 a.u., dx = 0.2 a.u. and dk = 0.05 a.u.. More details are given in

section 2.2.

The external laser field E(t) is taken to be static, i.e., E(t) = Ey. This reflects
to some extent the instantaneous configurations that will occur for a low-frequency

field and will be essential in interpreting the results in Chapters 5 and 6.
The molecular binding potential V' (z) is given by

V(z) = Vola — R/2) + Vilz + R/2), (3.1.1)

Where each potential well V; = Vj. is chosen be the soft-core potential defined
in Eq. (2.1.5), and R is the internuclear distance. This is a good approximation
for large internuclear distances, which is the parameter range at which enhanced
ionisation occurs. Indeed previous computations [186] and experiments [191, 182]
have shown that enhanced ionisation requires R to be at least a few times larger

than the equilibrium value, which for Hj is around 2 a.u..

The corresponding effective potential Vig is shown in Figure 3.1 (a) and (b)
for varying values of internuclear distance R, along with the binding potential V' (x)
(dashed lines). In the field-free case we now have two centres located in the molecular
wells as well as a central saddle in between them, labelled C. A non-vanishing field
breaks this symmetry and causes the appearance of a second saddle, the Stark saddle
(see Figure 2.1), labelled S.

We now identify and analyse the bound and continuum regions in phase space,
shown in Figure. 3.1 (c) and (d). In the field-free case (see dashed lines), the
separatrices are symmetric with regard to the central saddle. They form a closed
curve around the two molecular centres, consisting of homoclinic trajectories. With
the presence of a static field, the additional saddle means that, by extension, our
system admits two separatrices in phase space, which are asymmetric with regard
to the a reflection about x = 0. They have energies Fc and Eg, the energy of the
central and Stark saddle respectively and their interplay will influence the ionisation

dynamics. We define the energy difference between these two saddles as

AE = E¢ — Es. (3.1.2)
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V(x)[a.u.]

(d)

pla.u.]
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Figure 3.1: Effective potentials for the one-dimensional homonuclear molecular mod-
els described by the potential (3.1.1), using inter-nuclear separations of R = 4 a.u.
[left] and R = 8 a.u. [right] and a static field £ = 0.0534 a.u. [upper panels],
together with the corresponding phase portraits [lower panels]. The Stark and the
central saddles are indicated by the labels S and C in the figure, their respective
energies by Fg and F¢ and the field-free separatrices and potentials are given by
the dashed red lines. The arrows indicate the direction followed by a trajectory.
The energy between the two saddles AF is defined in Eq. (3.1.2). The shaded areas
indicate the phase space regions for which the wave packet is bound. The colours
of these regions match those of the respective separatrices.

AFE is either negative [Fig. 3.1 left panels| or positive [Fig. 3.1 right panels] and
characterises two different phase space configurations. If the downfield potential
maximum is higher in energy than the upfield maximum (AE < 0), then the sepa-
ratrix associated with the Stark saddle (in blue) encapsulates entirely the homoclinic
separatrix related to the central saddle (in green). Thus, even if an electronic wave
packet tunnels through the central barrier, it would be trapped in the downhill cen-
tre. This means that it would still need to tunnel through a wider Stark saddle
in order to reach the continuum. In contrast, if the energy of the central saddle is
higher than that of the Stark saddle (AE > 0), the electron would only need to
tunnel through the central saddle to reach the continuum. The optimal scenario
occurs if the energy of the central saddle is high enough to allow direct ionisation
into the continuum, but still leads to an effective potential barrier narrower than
that of a single atom with similar ionisation potential.

In addition, in order to ensure the robustness of those conclusions, the phase

space configurations were investigated using a wide range of inter-nuclear distances
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and field strengths. Most notably, using a 1D Coulomb potential model

1

Voo(z) = Tl (3.1.3)

The results are shown in Fig. 3.2 and in both cases we find the same bifurcation,

i.e., the separatrices go from nested to open around a critical internuclear distance.

p[a.u.]

-10 =5

0 5 -10 -5 0 5
x[a.u.] x[a.u.]

Figure 3.2: Phase portrait of the one-dimensional homonuclear molecular models
described by the Coulomb potential (3.1.3), using inter-nuclear separations of R = 4
a.u. and R = 8 a.u. and a static field £ = 0.0534 a.u. The field-free separatrices and
potentials are given by the dashed red lines. The shaded areas indicate the phase
space regions for which the wave packet is bound. The corresponding effective
potentials can be found in Fig. 1.1.
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Figure 3.3: Schematic representation of the phase space configurations for a 1D
model molecule computed with the soft-core potential given by Eq. (2.1.5) (left
panel) and singular potential given by Eq. (3.1.3) (right panel). Different colors
indicate the varying phase space configurations dependent on the parameter regions.

To study the previous point more systematically, in Fig. 3.3 we show how the
different configurations vary with regard to the field strength and internuclear sepa-
ration (vertical and horizontal axis, respectively). In the parameter range of interest
(large internuclear distances and field strengths up to 0.07 a.u.), the qualitative be-
havior is the same for both potentials. The tests performed above confirm that the

potential shapes will not alter the following conclusions.
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3.1.2 Initial wavepacket

In this Chapter, enhanced ionisation will be studied using three different initial
states: Localised around the downfield well Wyoun(,0), localised around the up-
field well Wy, (z,0), or delocalised symmetrically between both wells W, (z,0).
The localised wavefunctions are approximated by Gaussian wavepackets defined in
Eq (2.2.4) considering gy = —R/2 for Ugown(x,0) and g9 = R/2 for V,,(z,0). Within
the approximations used those describe coherent states.

The delocalised wave function is taken to be the symmetric coherent superposi-

tion N 0) 4+ U 0
U (2,0) = Ltown(®0) + Wup(2, 0) (3.1.4)
2(1+7,)
where J, is the overlap integral
9, = / W (2, 0) Wy (2, 0)d. (3.1.5)

This wavepacket is known as a stationary cat state [13].
For the symmetric, delocalised state given by Eq. (3.1.4), the Wigner function
(see Eq. 2.3.1)), reads
~ Waown(,p,0) + Wiy (2, p,0) + Wine(z, p,0)

Wcat(xap> 0) - 2(1 —|—j ) ) (316)

where

W;(x,p,0) = 71Texp [’y(x + R/2)* — pj] : (3.1.7)

The index j = down indicates a Wigner function centred at (qo,po) = (—R/2,0),
i.e., the downfield well, while j = up refers to a centre at (qo,p0) = (R/2,0), i.e.,
the upfield well. The term

2

2
Win (2, p,0) = —exp [—va — pv] cos[pR) (3.1.8)

is peaked at the origin and gives a series of interference fringes parallel to the x axis,
whose extrema occur for p = nm/R. Even and odd values of the integer number n
give maxima and minima, respectively. If the wave packet is initially localised in the
downfield or upfield well, the initial Wigner function will be given by Wyown(z, p,0)

or Wyp(z,p,0), respectively, and the interference term is absent.

3.1.3 Ionisation rates

The ionisation rate I' from an initial time ¢ = 0 to a final time ¢t = T, is calculated

(PO L
r=-—1 <‘?(0)‘2>T, (3.1.9)

using
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Figure 3.4: ITonisation rate as a function of the inter-nuclear distance R, calculated
in a ‘box’ from z,;, = —100 a.u. to xyma = 100 a.u., final time 7,,; = 150 a.u.
and field strength £ = 0.0534 (intensity I = 10" W /cm?) using different starting
wave packets: delocalised (red), localised upfield (orange) and localised downfield
(purple). The vertical line indicates the inter-nuclear separation for which the phase-
space configuration changes.

where

20 = [ T ()0 (2, ) (3.1.10)

This definition of ionisation rate was used in the seminal paper [162] in the context
of enhanced ionisation of molecules. Note that, numerically, the limits of the above
integral will be finite (typically z = —100 to = = 100 a.u.). Instead of an absorber,
the grid size is taken to be twice as large as the ‘box size’ set by the above stated
limits. The integration is performed over the box size and due to irreversible ionisa-
tion, Eq. (3.1.10) will be less than unity and decrease with time. Thus, it will be a
good measure of the probability density that has reached the integration boundaries.
Since the box size over which the integration is performed is only a fraction of the

total grid size, the norm will decrease and reflections will be minimised.

The ionisation rate as a function of the inter-nuclear distance, plotted in Fig. 3.4,
shows the effect of the different phase-space configurations. If the initial wave packet
is delocalised, or centred around the upfield potential minimum, a very strong peak is
present. The ionisation rate starts to increase dramatically when the inter-nuclear
distance reaches the value at which the phase-space configuration changes. For
this critical value of R, which, for the chosen external field, is R. = 5.2 a.u. (see
thin vertical black line), the outer separatrix “opens” and no longer traps the wave
packet. The ionisation rate then reaches a peak at R = 6.8 a.u., and drops for larger
inter-nuclear separations. This happens because the two centres become further
apart, thus hindering tunnel ionisation via the central saddle. If a downfield initial
wave packet Waoun(,0) is taken, the ionisation rate is suppressed by two orders of

magnitude.

This, along with the fact that the ionisation rate with an upfield wave packet is

about double that of a delocalised wave packet, suggests that around the opening
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Figure 3.5: Ionisation rate I' on a logarithmic scale over time of an H; molecule
of inter-nuclear distance R = 6.8 a.u. in a static field of strength £ = 0.0534 a.u..
The starting wavepacket is either delocalised (red), localised upfield (orange) or
downfield (purple). The vertical lines are set at times ¢t = 70 a.u., t = 87 a.u. and
t = 150 a.u. and relate to Fig. 3.6

of the separatrix ionisation comes mainly from the upfield population. This cor-
responds exactly to the hypothesised point of maximum enhancement, where the
energy of the saddle is high enough for the tunnelling electron not to be trapped
by the downfield centre (e.g. after R. = 5.2 a.u.) but low enough for the effective

potential barrier to be narrower than that of a single atom (e.g. before R =9 a.u.).

(@) (b) (c)
2.5%10° 3*10* 1.2*%103
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©
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Figure 3.6: Ionisation rates with a static field of strength ' = 0.0534 for a delocalised
starting wavepackets and with grid size = —100 to z = 100 over inter-nuclear
distance for different final ionisation times, from left to right, t = 70 (a), t = 87 (b)

and t = 150 (c)

The overall ionisation rate is however not a sufficient tool in order to understand
the dynamics of ionisation close to the core. This is because there is a time delay
between events at the core and at the boundary, where the information about the
ionisation rate is taken. The ionisation rate over time, shown in Fig. 3.5 is compared
with the ionisation rate as a function of the inter-nuclear distance plotted in Fig.

3.6 (a)-(c) for different final times 7'
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Using the saddle separatrix in Fig. 3.1 (b) we can approximate the time delay
between the ionisation bursts and events happening near the core. By estimating
that starting at © = —15 a.u. the wavepacket follows closely the saddle separatrix
(see section. 3.2) and using its average velocity, we see that the region of interest
of the momentum gates seen in [76] occurs around ¢ = 70, or Fig. 3.6 (a). This
suggests that important effects at the core happen before the main ionisation burst
seen in Fig. 3.5 at t = 90. However, from Fig. 3.6 (b), we see the main features of
the ionisation rate in Fig 3.4 build up over time, mainly after the region of interest.

The ionisation rate is a stationary feature that takes time to develop. In order
to study the events happening near the core at a much shorter time scale, we will
use throughout this thesis the Wigner quasiprobability (Eq. 2.3.1) distribution and
the autocorrelation function (Eq. 2.2.5).

3.2 Quantum bridging via momentum gates

3.2.1 Momentum gates for initially delocalised states

Using the Wigner quasiprobability distributions, we provide a more detailed expla-
nation for enhanced ionisation and its causes. In Fig. 3.7, we plot such distribu-
tions for different inter-nuclear separations computed using initial delocalised states
Ueat(2,0). The inter-nuclear distances used in the left, centre and right panels, re-
spectively, have been chosen such that (i) the two separatrices are nested and closed
(R = 4.0 a.u.), (ii) the outer separatrix has just opened (R = 6.8 a.u.), and (iii) the
separatrix including the central saddle is completely open and the two centres are
well separated (R = 14.0 a.u.).

The initial Wigner functions W (x,p,0) are given by Eq. (3.1.6), and behave
as predicted, with Gaussian shaped quasiprobability densities centred at the origin
(z,p) = (0,0) and at each potential well (x,p) = (+R/2,0). There are also inter-
ference fringes near the central saddle, with extrema at (z,p) = (0,n7/R), which
become finer for larger values of R. This pattern is less distinguishable for small
inter-nuclear distances [Fig. 3.7(a)] due to the strong overlap of the Gaussians that
form W (x, p,0), but becomes clearer as this overlap decreases [see, e.g., Fig. 3.7(a’)].
For R = 14 a.u., the central fringes and the Gaussians located in the uphill and down-
hill potentials are very well defined, with little overlap. With time propagation, the
Wigner functions become asymmetric, flowing from the upfield to the downfield well
in the molecule. Semiclassically, the expected behaviour (shown in Figure. 2.2) is
that the Wigner quasiprobability density follows the classical separatrices and form
a tail that can be associated with over-the-barrier or tunnel ionisation, as well as
with an oscillatory behaviour around the separatrix, as shown in section 2.3. It can
be seen clearly on the left of the downfield well, for ¢ > 20 (third to last row in
Fig. 3.7).

63 of 163



3. Quantum Bridges in Enhanced Ionisation
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Figure 3.7: Wigner quasi probability distribution at different instants of time, cal-
culated for a model H; molecule in a static laser field of strength E = 0.0534
a.u. (intensity 7 = 10W/cm?®) using an initially delocalised (cat) state given by
Eq. (3.1.4), with v = 0.5. In the left, middle and right columns, the inter-nuclear
separation is taken as R =4 a.u., R = 6.8 a.u. and R = 14 a.u., respectively. The
temporal snapshots are given from top to bottom. Panels (a), (a’) and (a”) [first
row] have been calculated for ¢ = 0 a.u., panels (b), (b’) and (b”) [second row] for
t = 8 a.u., panels (c), (¢/) and (¢”) [third row] for ¢ = 12 a.u., panels (d), (d’) and
(d”) [fourth row] for ¢ = 16 a.u., panels (e), (¢/) and (¢”) [fifth row] for t = 20 a.u.,
panels (f), (f') and (f”) [sixth row] for t = 24 a.u., panels (g), (g') and (g") [seventh
row] for ¢ = 30 a.u. The thin white lines in the figure give the equienergy curves
(including the separatrices).
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However, there are very peculiar features that do not follow the separatrices,
form at much earlier times and occur in the region around the central saddle [see,
for instance, Fig. 3.7(b), (b’) and (b”)]. They consist of a strong quasiprobability
flow from one centre to the other. This transfer occurs mostly along lines of approx-
imately vanishing phase-space slope, i.e., of nearly constant momentum, and are the
momentum gates reported in Refs. [75, 76]. They are visible for the whole range of
inter-nuclear separations in Fig. 3.7, although they manifest themselves in different

ways.

The interference fringes around the central saddle act as a quantum bridge and
facilitate this transfer for positive quasiprobability densities. The flow is significant
if the overlap of the left and right peaks with the central interference structure is
large, as shown in the left and central columns of Fig. 3.7. Therein, the Wigner
function exhibits a clockwise movement, whose period depends on the inter-nuclear
separation. Figs. 3.7(b) and (b’) show the start of this motion, with a strong right-
left flow for momenta below that of the central saddle. This momentum gate then
moves upward in phase space until a subsequent bridge is established, and the bulk

of the Wigner function is transferred back.

Furthermore, the presence or absence of enhanced ionisation is directly linked
to the interplay of the semiclassical tail and the population transferred via the
quantum bridge. If the separatrices are nested (left panels of Fig. 3.7), the bulk
of the quasiprobability distribution remains trapped by the inner separatrix and
tunnels back to the upfield centre. This trapping can be clearly seen on the left-
hand side of Fig. 3.7(b), in which the inner separatrix hinders the Wigner function
to reach the Stark saddle. Significant tunnelling via this saddle may only occur after
population has built up in the downfield centre, at later times [see Fig. 3.7(d) and
(e)]. There is also some “spilling” of the Wigner function for larger absolute values
of p, when the two separatrices become close in phase space. This spilling can be

seen at the bottom of Figs. 3.7(b) and (e), but it is not a highly probable pathway.

If, on the other hand, the two separatrices are no longer nested, population
trapping will no longer occur. Thus, the tail near the Stark saddle will build up
already for t = 8 a.u.[Fig. 3.7(b’)]. This will add up to the contributions from
the tail that forms for higher absolute values of momenta, when the separatrices’
energies are close [Fig. 3.7(c)]. Figs. 3.7(d’) to (g') show that, for later times, direct
transfer via the quantum bridges will feed into both tails, which will cause enhanced
ionisation. Particularly striking is Fig. 3.7(f"), which shows a direct quasiprobability
leak from the uphill centre to the continuum via the quantum bridge, at a higher
energy than that determined by the Stark saddle.

For larger values of R, there is far less quasiprobability transfer, but the bridges
can be clearly seen due to the three phase-space regions of the Wigner functions

being well separated (see right columns in Fig. 3.7). For instance, for R = 14
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a.u., at t = 8 a.u. [Figs. 3.7(b”)], a horizontal bridge forms near zero momentum,
and right-left population transfer occurs. Subsequently, the central fringes move
downwards. If a negative (positive) quasiprobability density is located near the
central saddle, the bridges are weakened (strengthened) [see e.g., Figs. 3.7(¢”) and
(f”) in contrast to Figs. 3.7(b”), (d”), and (g")]. If the central bridge is weakened,

other bridges may occur for higher, albeit constant momenta.

Field-free Wigner function

The above-mentioned cyclic evolution of the momentum gates is even present for
the Wigner function of a field-free H; molecule, shown in Figure 3.8. For smaller
inter-nuclear distances, e.g. R = 6 a.u., the quasiprobability density “wobble”
from a positive to a negative gradient. There is a flow from one centre to another,
facilitated by the quasiprobability maximum at p = 0. The frequency of this change
in the gradient increases with the inter-nuclear distance. For larger inter-nuclear
distances, where the overlap region is separated from the two centres, the flow from
one centre to another is a lot weaker and is characterised by links between different
interference fringes. First, a simultaneous flow occurs in the positive (negative)
momentum region towards the upfield (downfield) centre, see Fig. 3.8(d). Following
that, a bridge between the potential well populations and the saddle population

emerges near p = 0, see Fig. 3.8(e).

p [a.u.]

X [a.u.]

Figure 3.8: Wigner function computed using the same initial state as in Fig. 3.7,
but considering a field-free Hy” model molecule. The left and the right columns
have been calculated for inter-nuclear separations of R = 6 a.u. and R = 14 a.u.,
respectively. The labels (a) and (d) refer to t = 0, (b) to t =5, (¢) to t =12, (e) to
t =15, and (f) to t = 20.
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Figure 3.9: Wigner quasi probability distribution computed for a Hj molecule of
inter-nuclear separation R = 6.8 a.u. in a static laser field of strength £ = 0.0534.
In the columns from left to right a delocalised Gaussian initial wavepacket of width
v=0.2 [a.u], vy = 0.8 [a.u.] and v = 0.5 [a.u.], respectively. The first two columns
use the soft-core potential expression in Eq. (2.1.5), while the right-most column
uses Eq. (3.2.1). The labels (a), (a’) and (a”) refer to ¢t = 0, (b), (b’) and (b") to
t =15, and (c), (¢/) and (¢”) to t = 24.

Different binding potential shape

The quantum bridges reported here are also quite robust with regard to the shape
of the binding potential and of the initial wave packet. This is shown in Fig. 3.9,
in which we present Wigner quasiprobability distributions computed using initial
Gaussian states of different widths, v = 0.2 [left column| and v = 0.8 [middle
column]| for the same parameters employed in Fig. 3.7. [middle column|. Although
there are differences in their shapes, the quantum bridges keep the same features
and exhibit the same time dependence. In the right-most column we employ the
regular width v = 0.5, but use a different soft-core potential, which is the limit of
the improved potential in [221] for large internuclear distances. Explicitly, this is
given by using Eq. (3.1.1) with
Z

Vo() = ———2——

2 1
7+

: (3.2.1)

where Z = 1 is the charge of the ion core. The results obtained using the improved
potential are practically indistinguishable from those in Fig. 3.7 [middle column].

This shows that the quantum bridges are a universal feature in the regime of interest.
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3.2.2 Momentum gates for initially localised Wigner func-

tions

p [a.u.]

Figure 3.10: Wigner quasi probability distribution computed for a Hj molecule
in a static laser field of strength £ = 0.0534 using a Gaussian initial wave packet
U,p(2,0) of width v = 0.5 centred around the upfield potential well. The left, centre
and right columns correspond to the inter-nuclear separations R = 4 a.u., R = 6.8
a.u. and R = 14 a.u., respectively. The first, second, third and fourth row have
been calculated for ¢t = 6.0 a.u. [panels (a), (a’) and (a”)], t = 12.0 a.u. [panels (b),
(b’) and (b”)], t = 20.0 a.u. [panels (c), (¢) and (¢”)] and ¢t = 30.0 a.u. [panels (d),
(d’) and (d")].

To expand on the roles of the quantum bridges and their cyclical motion, in
the two subsequent figures we employ a similar system, but with localised initial
wave packets. In this case, the central interference fringes in the initial Wigner
function given by Eq. (3.1.8) are absent. For a wave packet W,,(z,0) placed at
the upfield potential well, the dynamics and nature of the bridges are different
from those observed in the delocalised case. If the potential wells are not close
enough, the quantum bridge does not form and there is no enhanced ionisation. We
see this for R = 14 a.u. (right panels of Fig. 3.10), where the tail marking the
escape path follows the separatrix associated with the uphill centre [Fig. 3.10(b")].
Subsequently, it deviates from this curve when the escaping electron is slowed down
by the downfield centre [Fig. 3.10(d”)], but no shortcut to the continuum is provided.
This is radically different from the R = 4 a.u. case, displayed in the left column of
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Fig. 3.10, where both the momentum gates and the clockwise motion of the Wigner
function are present. Because the separatrices are nested, the population flowing to
the downfield centre via the momentum gate is trapped. It then travels back via
a positive momentum gate to the upfield centre. Finally, for R = 6.8 a.u. (middle
column of Fig. 3.10), we present the optimal configuration. Indeed the potential
wells are close enough to allow the creation of the quantum bridge. However, because
the separatrices are open, the population escapes directly through the semiclassical
path, following the separatrices, and does not flow back to the upfield centre. The
quantum bridges provide a “shortcut” to several pathways for the quasiprobabilities
to reach the continuum. A clear example is provided in Fig. 3.10(d"), which shows
a tail starting along the central saddle and being guided by the quantum bridge
towards the Stark saddle. Escape happens via several equienergy curves, not only
the inner separatrix.

In this context, it is noteworthy that the dynamics and the nature of the bridges
are different from those observed in the delocalised case. Whilst we do see multiple
tails enhanced by tunnelling from the upfield well, the clockwise motion observed
in Fig. 3.7 is much less clear. This quasiprobability transfer from one centre to the
other, displayed in the last row of the figure, is only obvious when the separatrices
are nested, i.e., for R < R, [see left panels in Fig 3.10]. In this case, population
trapping will hinder enhanced ionisation. However, for R > R., there will be no
such trapping. Furthermore, the clockwise motion of the Wigner function will be
strongly suppressed, with no feedback loop to the upfield centre. This makes the
upfield localised configuration more efficient for enhanced ionisation than using a
delocalised initial state.

In Fig. 3.11, we present the Wigner probability distributions for an initial down-
field wavepacket. In this case, the previously observed quantum bridges are absent
throughout and the escape pathway mainly follows that of a single atom [77], i.e.,
along the separatrix determined by the Stark saddle. Only if the two separatrices
are nested and energetically close, i.e., for R < R,, is there some upfield quasiprob-
ability flow, as shown in the first column of the figure. This is however not sufficient
to form a bridge between both centres. Nested separatrices mean that ionisation will
be strongly suppressed, which can be inferred by the very faint tails of the Wigner

function in the continuum region.

3.3 Temporal evolution and non-classicality

We can now focus on the cyclical evolution of the momentum gates. This evolution
can be quantified directly using autocorrelation functions Eq (2.2.5). In Fig. 3.12,
we plot their absolute values computed for an initial delocalised state W (z,0)

and the same parameters used in Fig. 3.7. As the quasiprobablity distribution
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p [a-q.]

X [a.u]

0 5-20 -15

Figure 3.11: Wigner quasi probability distribution computed for a Hf molecule in
a static laser field of strength F = 0.0534 using a Gaussian initial wave packet
U gown (2, 0) of width o = 0.5 centred around the downfield potential well. The left,
centre and right columns correspond to the inter-nuclear separations R = 4 a.u.,
R =6.8 a.u. and R = 14 a.u., respectively. The first, second, third and fourth row
have been calculated for t = 6.0 a.u. [panels (a), (a’) and (a”)], ¢ = 12.0 a.u. [panels
(b), (b") and (b")], t = 20.0 a.u. [panels (c), (¢) and (¢”)] and ¢ = 30.0 a.u. [panels
(d), (d') and (d")].

shifts towards the downfield centre, the autocorrelation function decreases before
increasing again as the population returns to the upfield centre. It then reaches its
starting position, completing a period of T" = 29 a.u. for R = 4 a.u., T' = 18.3
a.u. for R = 6.8 a.u. and T = 8.4 au. for R = 14 a.u. This is confirmed by
comparing the Wigner functions for R = 4 a.u. at ¢t = 0 and t = 30 [Figs. 3.7(a) and
(g), respectively|. The quasiprobability densities in the bound phase-space region are
nearly identical. Significant differences between both Wigner functions occur only in
the continuum region, for which there are tails along equienergy curves in the latter
time. Interestingly, there is a single frequency associated with the cyclic motion
of the Wigner function, which increases with the internuclear distance. This is not
obvious as a Gaussian wavepacket is a coherent superposition of many eigenfunctions

of the system, which are associated with more than one bound-state energy.

In contrast, Fig. 3.13 shows that, for initially localised wavepackets, this clock-

wise motion is not always present and the autocorrelation function may not be
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Figure 3.12: Absolute value of the auto-correlation function of a H; molecule in

a static laser field of intensity £ = 0.0534 a.u. using a delocalised starting wave

packet with inter-nuclear distances of R = 4 a.u. (red dashed), R = 6.8 a.u. (blue)
and R = 14 a.u. (green dotted).
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Figure 3.13: Absolute value of the auto-correlation function of a H;" molecule in a
static laser field of intensity £ = 0.0534 a.u. using a localised starting wavepacket
with inter-nuclear distances of R = 4 a.u. upfield (green dotted) and downfield (blue
dotted) or R = 6.8 a.u. upfield (green) and downfield (blue).

periodic. In this case, periodic behaviour only occurs for R < R, i.e., when the sep-
aratrices are nested and the outer separatrix causes the population to be trapped.
For instance, for R = 4 a.u., despite starting in a localised state, the autocorrela-
tion function oscillates with a similar frequency both in the upfield and downfield
case. The amplitude of that oscillation however is a lot greater if an initial upfield
wavepacket Uy, (2, 0) is taken, and resembles that obtained using a delocalised start-
ing wavepacket. This cyclic behaviour however changes if the separatrices are no
longer nested, i.e., R > R.. For the optimal inter-nuclear distance R = 6.8 a.u., if
the initial wavepacket is located downfield, the oscillation is very faint, practically
absent. For an initial upfield wavepacket W,,(z,0), the autocorrelation function
decays practically monotonically. Thus, the electron escapes out of the upfield po-

tential while its return is blocked, maximising ionisation enhancement
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In order to understand the non-trivial, sometimes periodic behaviour discussed
above, to first approximation one may resort to classical arguments. For that pur-
pose, it is helpful to consider the periodic bound orbits of a classical electron moving
in the effective potential (2.1.4) that arises in the presence of a static field. Such
orbits have well-defined energies, and their dynamics are governed by Hamilton’s
equations. This explains the clockwise evolution of the momentum gates, which
agree with the directional arrows in Fig 3.1.

Periodic motion implies closed orbits, whose classical period T, can be computed

with the integral
1
T :f = da, (3.3.1)
sep P()

over a closed equienergy curve in phase space. As we are interested in the highest
possible energy a bound electron may have, we consider the closed path to be along
the separatrix. These estimates can be used as long as the inter-nuclear distance is
small enough so that the phase space configuration contains homoclinic trajectories
which circle both centres [see Fig. 3.1(a)]. This condition holds for inter-nuclear
distances R < R., since in that case the separatrices are nested.

We obtain a maximum and minimum value for 7, following the path along the

outer and inner separatrices, respectively. Using the period 7; obtained from the

Initial state R=14 R=45 R=5
Tcl Tq Tcl Tq Tcl Tq
Vo 31.9-38.7129.0 || 39.5-51.4 | 29.8 || 50.1 - 51.9 | NA
Weat 319 -38.7 | 288 || 39.5-51.4 | 28.3 || 50.1 - 51.9 | 26.1
W down 31.9-38.7129.0 | 39.5-51.4|29.7| 50.1-51.9 | NA

Table 3.1: Comparison of the period T in a.u. obtained from the classical estimates
(T) given by Eq. (3.3.1) and from the absolute value of the auto-correlation function
(T,) of a Hy molecule in a static laser field of strength £ = 0.0534 a.u. (intensity
I = 10"W/cm®) computed for with different inter-nuclear distances of R = 4 a.u.,
R =4.5a.u. and R =5 a.u. using different initial states (delocalised (cat), localised
upfield and downfield) with width v = 0.5 a.u. Cells labelled NA refer to systems
with non-periodicity.

autocorrelation function of the same system, we can compare the classical evolution
estimates to the empirical results. These results are summarised in Table 3.1, with
the classical estimates being far above the empirical values in all cases. Furthermore,
the period T, increases with the inter-nuclear distance, while the opposite trend is
observed for T} (see also the discussion of Fig. 3.12, for a wider range of internuclear
separations). Throughout, the values of T, obtained for initial delocalised states
are slightly lower. At R = 5 a.u., while the separatrices are still nested, the phase
space configuration is very close to the bifurcation discussed in Sec. 3.1 that will
lead to an open outer separatrix. If the initial wave function is in a localised initial

state, the oscillation no longer takes place and the system resembles that of the open
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configuration, seen in the middle column of Figs. 3.10 and 3.11, and in Fig. 3.13.
Classically, an oscillation is still expected as the orbits remain closed. All this

indicates that the evolution of the Wigner function is non-classical.

pla.ul

X [a.u.]

Figure 3.14: Phase space map of the quantum corrections Q(z,p,t) [Eq.( 2.3.2)] of
a Hy molecule. (a) and (b) are a field-free delocalised wave packet of inter-nuclear
distance R = 6 a.u. at times ¢ = 5 and ¢t = 13 respectively. (c) and (d) both
use an H; molecule in a static laser field of strength F = 0.0534 a.u. (intensity
I = 10"W/cm?), inter-nuclear distance R = 6.8 a.u. and time ¢ = 24, and use an
initial wave packet localised downfield and upfield respectively. (e) and (f) use a
delocalised starting wave packet in the same static field. (e) has R = 4 a.u. and
t = 29.5 while (f) has R = 14 a.u. and ¢t = 26. The separatrix of the system is
shown by the white line.

To further expand on this, we now present in Fig. 3.14 the quantum corrections
Q(z,p,t) to the classical Liouville equation [Eq. (2.3.2)]. If the Wigner function has a
fully classical time evolution, Q(z, p,t) vanishes everywhere. As seen in Figure 3.14,
this is not the case. Spots in phase-space that are non-zero indicate where and when
the evolution of the Wigner function is non-classical.

From Fig. 3.14(a) and (b), we see that this non-classical evolution is not due
solely to the electric field, as it is present in the field-free case. By comparing those
results to the Wigner quasi-probability density in Fig. 3.8 (¢) and (d), the areas
around which Q(x,p,t) = 0.2 a.u. follow the probability density. This is not true
around the central saddle, where the evolution is practically classical. This is ex-
pected, as, in this region, the potential barrier may be approximated by an inverted
harmonic oscillator. Since such a potential does not contain terms higher than up
to the second order, Q(x,p,t) = 0 holds. One should bear in mind, however, that
Wigner quasiprobability distributions do show non-local behaviour near separatrices
[135].

From adding a static field, we can draw additional conclusions. The quantum
corrections are located around the well, close to the region where the quantum
bridges occur. If the wave packet is initially placed in the downfield well, the correc-

tions are much weaker, but are still present, as shown in Fig 3.14(c). This supports
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the observations in the second column of Fig. 3.11, which shows a faint residual tail

towards the upfield centre.

x [a.u.]

Figure 3.15: Phase space map of the quantum corrections Q(z,p,t) [Eq. (2.3.2)] of
a HF molecule of inter-nuclear distance R = 6.8 in a static laser field of strength
E =0.0534 a.u. (intensity I = 10W /cm?). The left column uses a localised upfield
starting wave packet, while the right column (") a delocalised one. Those are shown
at times from top to bottom: ¢ = 5 for (a) and (a’), t = 10 for (b) and (b’), and
t = 24 for (c) and (¢’). The separatrix of the system is shown by the white line.

The more intensely non-classical regions (Q(z,p,t) > 0.2 a.u.) are located at
the quantum bridge, whether it is in the positive or negative momentum region
[as seen in Figures 3.14 (d), (e) and (f)]. This also explains why those are absent
from Fig 3.14 (c). By starting the initial wave packet downfield and because the
inter-nuclear distance is too large, the quantum bridge is very faint. Most striking
is the very bright (Q(z,p,t) > 0.4 a.u.) region in Fig 3.14 (d). A comparison with
the second column of Fig 3.10(d") shows that it occurs at the quantum bridge that
passes through the downfield centre.

In Fig. 3.15, we compare the evolution of the quantum corrections for an initially
delocalised wave packet W.(x,0) and a localised upfield wave packet W,,(z,0).
There we see that the very high quantum corrections shown in the previous figure
build up over time, and are only present when the downfield potential well starts
to be populated. The early evolution of both systems, shown in Figure 3.15(a) and
Figure 3.15(a’), are radically different. For an initially delocalised wave packet, the
quantum bridge as well as the quantum corrections surrounding that bridge are
present even at ¢t = 5 a.u.. They fluctuate in time, as seen in Figs. 3.15(b’) and (c’).
On the other hand, for an initial upfield wave packet, the quantum corrections form

a steady uphill downhill flow. This supports the argument that there is a quantum
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mechanism providing a shortcut for the electron to reach the semiclassical escape
pathway. In both cases, the escape into the continuum appears to be governed by
classical dynamics. Indeed the quasi probability flow follows an equienergy curve (as
would classical trajectories) far from the core. This is expected as the interaction

Hamiltonian is linear in the coordinate x and will be dominant in that region.

3.4 Conclusion

In this Chapter, we have performed a detailed analysis of strong-field enhanced ion-
isation using reduced-dimensionality models of diatomic molecules and phase-space
methods, such as Wigner quasiprobability distributions and the quantum Liouville
equation. Our studies show that enhanced ionisation stems from the interplay of at
least two qualitatively different ionisation pathways, with an optimal phase-space
configuration chosen to minimise population trapping and maximise direct down-
field population transfer. One of these pathways follows the field gradient and leads
to tails along separatrices that “spill” into the continuum, while the other does not
obey field gradients or classical barriers in phase space. The former pathway may be
associated with quasi-static tunnelling mechanisms [74, 77] as well as the semiclassi-
cal limit of Wigner quasi-probability distributions [135], with oscillatory tails around
separatrices and equienergy curves. The latter pathway has been first identified in
[191, 76| for oscillating driving fields. It consists of a cyclic motion performed by
the Wigner function in phase space and the emergence of momentum gates, along
which there is a direct quasiprobability flow from one well to the other. Therein,
momentum gates were explained as resulting from strongly coupled states and the
non-adiabatic response to the time-dependent field gradients.

We find, however, that this pathway occurs also for static fields, and even in the
absence of driving fields altogether. By employing different types of initial bound
states for the electronic wave packet, we show that the primary cause of the momen-
tum gates in [191, 76] is quantum interference. If both wells are occupied, quantum
interference will create a bridge that will support a direct intra-molecular quasiprob-
ability flow. For initially delocalised (cat) states, quantum bridges are present from
the start, while if the electron is initially located in the upfield molecular well they
may build up with time. For that, it is necessary that enough quasiprobability den-
sity reaches the lower well. This can only happen if the molecular centres are close
enough in order to guarantee a significant overlap between the quasi-probability
density around the central molecular saddle and that located at the wells. For that
very reason, the quantum bridges weaken for increasing inter-nuclear separation.

The quantum bridges perform a clockwise motion in phase space, and follow a
single dominant frequency, which can be inferred directly using autocorrelation func-

tions. For initial cat states, this motion extends over many cycles. This frequency is
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strongly dependent on the internuclear separation and is barely affected by changes
in the width of the initial wave packet. Since Gaussian wavepackets are coherent su-
perpositions of eigenstates of this specific system, this hints at a resonant behaviour
within the molecule. The frequency can also be estimated using classical arguments
which however require closed separatrices allowing access to both centres. This con-
dition is unfortunately met only for inter-nuclear separations R < R., i.e., smaller
than that required for enhanced ionisation. Furthermore, the quantum corrections
to the Liouville equation are quite large near the quantum bridges. This implies
that the classical estimates presented in this work must be viewed with care. Still,
they provide the correct direction of evolution for the Wigner functions, and yield
reasonable agreement with the empirical quantum values. Away from the molecule,
the quantum corrections vanish and the temporal evolution of the Wigner function
is essentially classical.

Depending on the phase-space configuration around the two molecular wells, the
quantum bridges may aid or hinder enhanced ionisation. For instance, for R < R,,
there are two nested separatrices and thus significant population trapping. Hence,
the downfield population will be forced back to the upfield centre by the quantum
bridge’s clockwise motion and no enhanced ionisation will occur. In contrast, for
larger inter-nuclear distances the outer separatrix will open. This implies that the
quantum bridge may strongly connect the population of the upfield centre to the
semiclassical escape pathway, thus providing a “shortcut” that will result in en-
hanced ionisation. This makes the initial upfield configuration so efficient: in that
case, once the quantum bridge has been built, for optimal values of R it may not
be able to resume its periodic motion in the uphill direction. This explains why an
initial wave packet localised upfield and an inter-nuclear distance of R = 6.8 a.u.
leads to the highest ionisation yield: The return is blocked by both the inter-nuclear
distance and the lack of population initially in the downfield centre. An initial cat
state is less efficient as the strong overlap stimulates the clockwise motion uphill.
However, the quantum bridges will still feed the tails that built around various
equienergy curves.

These conclusions lead us to two research lines explored in the following Chapters:
Investigating the non-classical evolution around the quantum bridges, expanding on
the results found from the quantum Liouville equation (Chapter 4) and the other
focusing on the frequencies involved in the momentum gates phenomenon (Chapter
5).
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Chapter 4

Ionisation dynamics using the
Quantum Trajectory Method

From the investigation of the quantum Liouville equation, we brought forward in
Chapter 3 the non-classical evolution of the momentum gates in enhanced ionisa-
tion. In this Chapter we aim to expand on this notion by investigating the quantum
bridging mechanism with the quantum trajectory method (QTM), see section 2.4.
The hydrodynamic formulation of quantum mechanics introduces quantum trajecto-
ries: They evolve following a velocity field, and the phase and amplitude of the wave
function can be retrieved from them. This separates them from Bohmian trajecto-
ries, where the wavefunction is needed first to propagate them. The main limitation
of QTM is the need to compute field derivatives on unstructured grids. As seen in
Chapter 2.4, one such method parameterises the density. The trajectories can then
be propagated using a Newton-like quantum equation of motion and the wave func-
tion does not need to be calculated at every time step to propagate every trajectory.
This technique is also compelling because of its interpretative uses. Indeed, such
a trajectory-based method will be best at visualising quantum phenomena such as

quantum bridges in enhanced ionisation.

This Chapter is organised as follows. In section 4.1 we present our improve-
ments to the discretisation of the density method found in [211, 212, 213]. First
by using a central difference approach to the density approximation, and next by
changing the expression of the quantum potential for the boundary trajectories.
This leads to better accuracy and means fewer trajectories are needed to model the
same phenomenon. We then use this new method in section 4.2 to study the tun-
nelling dynamics through different atomic binding potentials. This includes using
the quantum potential as a criteria for non-classicality. Following these results in
section 4.3 we apply this technique to the enhanced ionisation model investigated
in Chapter 3 and unfortunately reach the limits of our model. We end the Chapter

with a conclusion in section 4.4
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4.1 Accuracy improvements

4.1.1 Density approximation

1

—————. However it also
N(xn_xn—l)

The value for the density used in [211] is p_(z,) =

admits in its derivation of the quantum potential

1 1

p—(xp) = N —zn 1) p+(@n) = N — 20 (4.1.1)

In order to improve the accuracy of the approximation, using both p_ and p, we

define a central difference approach:

Tn+1 — Tp—1
2N (i1 — Tp)(y — Tpo1)

plx,) = (4.1.2)
The density p_ and p are compared in the study of the ground state of the

harmonic oscillator

1
Vio = §mw2(aj — 20)* (4.1.3)

shown in Fig. 4.1 (a)-(b). To obtain the ground state, the trajectories are adjusted
by setting the velocity to zero at every time step, a method also used in [212]. The
central difference approach as expected better matches the density obtained from
the TDSE, especially for the trajectories near the boundary. This is more evidently
shown in Fig. 4.1 (¢)-(d), where the density p defined using a central difference
scheme is more accurate by 1.5 x 1072 at the boundary trajectories. Moreso, the
largest difference between the QTM density p and the analytical TDSE solution
using only 31 trajectories is still smaller than the largest difference using the density
p— and 101 trajectories. This means fewer trajectories are needed to obtain results
of matching accuracy.

The value of the density for the boundary trajectories is of upmost importance
when studying rare events such as tunnelling. While the quantum potential does not
influence the position of those trajectories, it does play a major role in obtaining their
phase and their energy. For this reason the boundary conditions on the quantum

potential are scrutinised in the following section as well.

4.1.2 Boundary conditions

With the Qcr potential defined in Eq. (2.4.17), there is a glaring issue at the bound-
ary points, where either x,, o, 41 or Z,,_1 do not exist (for n =1, N — 1 and N).
This is resolved in [212] by setting virtual points infinitely away to the left and to
the right. This will for example set the ratio 1/(z,, — x,—1) = 0 for the n = 1 trajec-
tory. While this is an acceptable method for the n = 1 and n = N — 1 trajectories,

it fails for n = N. In the following derivation we aim to obtain an equally valid
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Figure 4.1: (a)-(b) Comparing the p with the p_ density of the harmonic oscillator
potential from Eq. (4.1.3) with parameters m = 1 a.u., xp = 0 a.u. and w = 1 a.u.
with the analytical solution from the TDSE using 31 trajectories in column one or
101 trajectories in column two propagating using a time step dt of 10™* a.u.. (c)-(d)
Plotting the difference with the TDSE analytical solution.

expression for the quantum potential that is well defined at the boundary trajecto-
ries. We start from the expression of the discrete second derivative ¢”(x,,) obtained
in Eq. (2.4.15) using a forward scheme followed by a backwards scheme. Instead,
we use the backward scheme first, followed by the forward scheme to calculate the

second derivative. This gives

y ¢ (2n) — ¢ (xn1)
n) = 4.1.4
¢ (Tn) P— (4.1.4)
P(@nt1)=pEn) _ @(Tn)=p(@n—1)
1" . _ Tn+4+1—Tn Tn—Tn—1 , 4.1.5
@ (@) o (4.1.5)
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which, can then be used in the second derivative of the density

Fet) pleas) 11 1
p(z,t) Pp—(Tn) (Tn = 2n1)?  (Tn—2n1)?  (Topr — 20)(Tn — Tn1)
p—(Tn+1) 1
@) (@ast — 20) (@ — T0n)’

(4.1.6)
This leads to an alternative expression for the quantum potential @) q;:

Ol 1) h? 1 1 N 1
alt\Tn, = T -
lt 4m (xn - xn—l)(xn—l - xn—2) (xn - xn—l)Q (xn+1 - xn)Q

1 1 1 1 2
N (Tns1 — Tn)(Tn — Tn1) 2 ((InJrl — Tn) - (Tn — xnl)) ] .
(4.1.7)

Since both forms of the quantum potential in Eq. (2.4.17) and Eq. (4.1.7) are equiv-
alent, we can combine them to obtain an expression for the quantum potential that
uses information from both the forward and backward trajectories and is not unde-
fined at the boundaries. The quantum potential for the centred trajectories (from 3
to N — 2) takes the form of the average of both expressions. The trajectories 2 and
N — 1 use the Qcr and @, respectively. Trajectories 1 and N respectively use the
Qcr and @,y form setting z,,_; and x,,1 to —oo and +o0. The complete expression

is presented below.
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The quantum potential () then equally uses information from the forward and back-
ward trajectories. This is shown by calculating the energy of individual trajectories

in the ground state of the harmonic oscillator

_r
E, = 3 + V(z,) + Q(z), (4.1.9)

as well as the average energy of the system

(E) = ]1, X_jl QP—m + V(z,) + Q(z,)] - (4.1.10)

These results are shown in Table. 4.1 using the quantum potential Qcr in
Eq. (2.4.17) and the improved quantum potential @ in Eq. (4.1.8) defined above,
using a varying number of initial trajectories. While the individual energy for all
trajectories between n = 1 and n = N — 1 is of 0.5 a.u., the energy of the boundary
trajectory n = N is severely different from the ground state energy of the harmonic
oscillator. This affects the average energy of the system, reaching only 0.48 a.u.
instead of 0.50 a.u. for N = 31 trajectories,. This inaccuracy is suppressed when
using more trajectories, as the average energy for N = 101 becomes 0.495 a.u..

The advantage of using () instead of QQcg is two-fold. First, the individual energy
of the boundary trajectory is no longer inaccurate. This allows us to investigate the

quantum potential of the boundary trajectory, which will be relevant when looking
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Energy N =31 N =101
of
trajectory | Qcr | Q | Qcr | @
n=1 0.50 | 0.50 || 0.500 | 0.500
n=N-—1 | 049 | 0.50 || 0.500 | 0.500
n=N 0.00 | 0.49 || 0.000 | 0.500
Average 0.48 | 0.50 || 0.495 | 0.500

Table 4.1: Table of the individual energy [Eq.(4.1.9)] of the n =1, n = N — 1 and
n = N trajectory (where N is the total number of trajectory) as well as the total
average energy [Eq.(4.1.10)] using either 31 or 101 trajectories, comparing results
obtained using the quantum potential Qcr and Q).

at rare events such as tunneling, and the dynamics of enhanced ionisation on an
ultrashort timescale. Second, this means that fewer trajectories are needed to obtain
a precise average energy. Indeed, the average energy using QQcr and 101 trajectories
is still less precise than the average energy found using ) and only 31 trajectories
(0.495 versus 0.500). This, combined with the central difference approach density,
means fewer trajectories will be needed to model the same phenomenon. Being
able to model a system using the smallest number of trajectories greatly reduces
computational time. Consequently both p from Eq.(4.1.2) and @ from Eq.(4.1.8)
will be used throughout the rest of this Chapter.

4.2 Tunneling with QTM and non-classicality

Using the improved expression for the quantum potential described above, we aim
to apply this method to atomic tunneling dynamics. We will be using the effective
potential from Eq. (2.1.4) with a soft-core potential Vi.(z), see Eq.(2.1.5) and a
static external field

E(t) = Ej. (4.2.1)

To check whether the following observations hold for various model potentials
and investigate the effect of the soft-core potential tail on the system dynamics, we
will use as the binding potential V'(z) a truncated soft-core potential, defined below
as

V() = Vie(2) Tr(2), (4.2.2)

where the truncated function is the following

1, if |z| < ay,
Tr(z) = { cos” (F520), if ap < |2] < L, (4.2.3)
0, if |z| > L.

The parameters ag and L are chosen following [222, 206]. We will be using two
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different truncated potentials: Try(x) which eliminates the potential tail but keeps
the core region unaltered, while potential Try(z) is of extreme short range. Fig.4.2

shows the shape of the different potentials near the core.

E[s.u]

0.2~

L x[a.u.]
20

(a) (b)

Figure 4.2: (a) Comparison of the different potential energy in a field free system
or (b) comparison of the effective potential energy Vig(z) with a static field of
strength £ = 0.05 a.u. for the following potentials: soft-core potential (Eq. 2.1.5)
[black-dashed line], truncated soft-core potential Try(x) (Eq. 4.2.2) with parameters
ap =5, L = 50 [red-dotted line] and truncated soft-core potential Tro(z) (Eq. 4.2.2)
with parameters ap = 1, L = 5 [blue-solid line].

The initial trajectories are prepared in the ground state of their respective bind-
ing potentials. The ground state of quantum trajectories is here defined as the state
where the force, sum of the classical Fz and quantum Fg force, acting on all trajec-
tories is zero. These initial positions are obtained using the same relaxation method
as in section 4.1. We then see how the time dependent energy E,, [Eq. (4.1.9)] of
various individual trajectories compares to the effective potential energy Veg(x).

These results are presented in Figure 4.3 for the soft-core potential and both
truncated soft-core potentials. For all binding potentials, the initial positions of
several ground state trajectories (and specifically shown here the first and fourth
trajectories in [column 1] and [column 2]) are already out of the classical region and
resting in the tunnelling region. While this makes the start of the tunnelling process
non-trivial, in Fig. 4.3 (a), (a’) and (a”) we see a clear tunnel exit as the bound-
ary trajectory crosses the effective potential. The time evolution of the quantum
trajectories using the soft-core potential [first row] and the Trq(z) potential [second
row] are near identical. This suggests that the long range effects of the soft-core tail
are minimal within this scope. Removing long-range effects all-together with po-
tential Tro(x) [third row| has more drastic effects. The boundary trajectory energy
becomes superior to the effective potential at ¢ = 10 for Tr(z) as opposed to t = 15
for Tro(x). The dynamics of the fourth trajectory involve more intense oscillations,
especially with the soft-core potential [first and second row|. Its energy even briefly
crosses that of the effective potential at ¢ = 23. These variations can be attributed to
fast changes in the quantum potential. Meanwhile, the trajectories around the core

have a near constant energy well above that of the effective potential, despite their
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Figure 4.3: Evolution of time dependent energy of an individual trajectory
Eq.( 4.1.9) [Red dots] and the corresponding classical potential [Blue line], in a
soft core potential (Eq. 2.1.5) [Top row], truncated soft-core potential 1 (Eq. 4.2.2)
with parameters ay = 5, L = 50 [Second row| and a truncated soft-core potential
2 (Eq. 4.2.2) with parameters ay = 1, L = 5 [Third row]| (using 101 trajectories)
under the influence of a static laser field of strength Fy = 0.05 a.u.. The individual
trajectories chosen are the first, downfield one [panels (a), (a’) and (a”)], the fourth
trajectory in the tunneling region [panels (b), (b’) and (b”)] and the fiftieth trajec-
tory at the centre of the core region [panels (c), (¢’) and (c¢”)].

momentum being negligible. This “extra” energy is also traced back to the quantum
potential. The influence of the quantum potential is non-local, and strongest when
trajectories are clustered together, which is especially true for the core trajectories.

We now analyse the phase space dynamics, see section 2.1, of the first two tun-
neling trajectories, as well as the evolution of their quantum potential. In Fig. 4.4(a)
we see how the ionised trajectories initially do not follow any specific energy curve
in phase space. As we saw in Chapter 3, this is associated with a non-classical
evolution. However as they ionise and separate from the core, starting at position
x = —10 a.u., their behaviour becomes analogous to that of a classical trajectory. In
Fig. 4.4 (b), where the trajectory’s individual quantum potential is shown depending
on its position, we can see that from z = —10 a.u. their quantum potential tends to
zero. On the other hand, the absolute value of the quantum potential around their
starting position near the core grows very large.

As the quantum potential carries the non-classical contributions, and it reaches
zero when the trajectories follow equi-energy curves in phase-space, we now aim to
examine the evolution of the quantum potential around the momentum gates inves-
tigated in Chapter 3. Conceivably this will be another criteria for non-classicality,

and will emphasise the quantum bridging phenomenon.
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Figure 4.4: (a) Phase Space representation of the evolution of the first (in blue)
and second (in red) QTM trajectory in a soft core potential (using 101 trajectories)
under the influence of a static laser field of strength Fy = 0.05 a.u.. The dotted
lines are the two corresponding equal energy curves of e = —0.51 a.u. (blue) and
e = —0.32 a.u. (red). (b) Value of the quantum potential of the first (in blue) and
second (in red) trajectory in the same conditions as (a) as they evolve with time.

4.3 Quantum potential in enhanced ionisation

Having set the background for atomic tunneling dynamics using quantum trajecto-
ries, we can now apply this method to enhanced ionisation, focusing on the dynamics
of the trajectories at the quantum bridge. To this end we will use the molecular

binding potential

V(z) = Vie(r — R/2) + Vie(x + R/2), (4.3.1)

Where V. is the soft-core potential defined in Eq. (2.1.5), and R is the internu-
clear distance. An initially localised upfield set of trajectories is displayed in phase
space in Figure 4.5. Early in the ionisation process, before the formation of the
quantum bridge in Fig. 4.5(a), trajectories cross the bound phase space region and
follow a path parallel to the separatrix. The corresponding quantum potential in
Fig. 4.5(c) is as expected high for the core trajectories, and low (but non-negligible)
for the escaping population. We now finally look at the behaviour of the quantum
trajectories around the presence of the quantum bridge. Their dynamics are er-
ratic, individual trajectories rapidly switching from negative to positive momenta.
This is reflected by the snapshot in Fig. 4.5(b). The same uncontrolled behaviour
is present in the quantum potential, the escaping trajectories having a highly os-
cillating quantum potential. Unfortunately, this is quite likely due to limitations
with this computational method. Indeed, from the expression of the calculated nu-

merically quantum potential, when trajectories are squeezed together too closely
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Figure 4.5: [First row] Phase space representation of the evolution of each individual
101 quantum trajectories (in blue) in a molecular soft core potential [Eq. (4.3.1)]
with internuclear distance R = 6.8 a.u. under the influence of a static laser field
of strength Ey = 0.0534 a.u. for (a) t = 5 a.u. and (b) t = 20 a.u.. The red and
blue dashed lines are the two separatrices, see section 2.1. These conditions matches
those of Figure 3.10 (a’) and (c’) from Chapter 3. [second row] Value of the quantum
potential of 101 trajectories in the same conditions and the effective potential (red
line) for (¢) t =6 a.u. and (d) ¢t = 20 a.u..

their propagation becomes unstable. The is the case as soon as trajectories reach
the downfield potential well. The issue worsens when using an initially delocalised

wavepacket, or propagating the trajectories for longer time periods.

4.4 Conclusion

In this Chapter, we have attempted to apply the QTM propagation using a dis-
cretised density method to expand on the non-classical evolution of the momentum
gates and their quantum bridging mechanism. This is first done by improving the
method in [211, 212, 213] to more accurately display the quantum potential of
the boundary trajectory. When investigating atomic tunneling in a static field, we
provide a link between the ionisation dynamics and the evolution of the quantum
potential for individual trajectories. Core trajectories having a high quantum poten-
tial, tunneling trajectories having a oscillating quantum potential and trajectories
following the semiclassical escape pathway with a quantum potential tending to zero.
Those trajectories also follow classical phase space equi-energy curves.

However, one should note that the beginning of numerical issues of this method
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arise around the peak density (where the trajectories are the most compacted), or
when the quantum potential encounters rapid change. This makes using these tra-
jectories in double well potentials numerically challenging (confirming observations
from [213]). Unfortunately, this means we were unable to provide clear conclusions
on the evolution of quantum trajectories in momentum gates.

In the following Chapter, we will instead focus on the non-classical frequency
of the momentum gates by isolating the phenomenon, fully discern the frequencies
involved analytically, and understand the behaviour observed for time-dependent
fields.
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Chapter 5

Time scales of quantum bridges

In this Chapter we will investigate the frequency of momentum gates and their
interplay with the external field. Momentum gates, which have been first identi-
fied in the context of strong-field enhanced ionisation in position-momentum phase
space using Wigner quasiprobability distributions [76], are lines of approximately
constant momentum through which there is a direct intra-molecular quasiprobabil-
ity flow from one molecular centre to the other. They have been attributed to the
non-adiabatic effect of a transient electron localisation at one of the wells due to the
presence of a strong laser field. In Chapter 3 we have shown that a time-dependent
field is not a necessary prerequisite for the momentum gates to occur and that the
strong quasi-probability transfers may occur through a “quantum bridge”. These
are highly non-classical, cyclic structures that form due to quantum interference.
The aim of this Chapter is to provide an analytical justification for the behaviour
found numerically in Chapter 3 and to expand our conclusions to a time-dependent
external field system. We will do this by separating this Chapter into two parts. In
part 5.1, we focus on a field-free system to isolate the quantum bridging phenomenon
and quantify its evolution for different initial wavepackets. Using this model enables
the analytical method described in section 2.5. In section 5.1.1 we obtain the au-
tocorrelation function as well as the eigenfrequencies involved. We also check the
correspondence of the numerical method of Chapter 3 and the analytical method of
[215] throughout. Following that, in section 5.1.2, we focus on the system’s phase-
space evolution using the Wigner quasiprobability distribution. Finally, we extend
these conclusions by adding a static field in section 5.1.3. Then, in part 5.2, using
these conclusions along with the system explored in chapter 3, we investigate the
presence and effect of momentum gates in a time-dependent field. This is done
with various initial states and internuclear distances. Finally, we end this chapter
with a conclusion on the behaviour of momentum gates and their interplay with

time-dependent fields in section 5.3.
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V(x) (a.u)

x (a.u)

Figure 5.1: Plot of the hyperbolic double-well potential [Eq. (5.1.1)] with parameters
Vo =74.785 a.u., d =1 a.u. used throughout this section.

5.1 Insight from analytical model

Here we will apply the analytical model developed in [215] and introduced in sec-
tion. 2.5 to the tunneling dynamics of an electronic wave packet, with focus on
non-adiabatic temporal evolution. Indeed, it is ideally placed for an in-depth study
of how the initial electronic wavepacket influences this motion, and how it is related
to the system’s eigenfrequencies. Specifically, a hyperbolic double well potential has
several desirable properties for the molecular toy model. First, the limit V(z) — 0
as r — oo allows for the existence of continuum of a states for positive electron
energies. This is in contrast to the models of double-well potential by e.g. [223] or
[224] for which V(z) — oo as x — £oo. Second, it allows to faithfully model the
binding potential in the region of interest (i.e. close to the central barrier as seen
in Chapter 3). Third, the location of the (symmetric) wells and peak value of V' (z)
may be independently tuned. Finally, although other hyperbolic double-well models
such as those developed by [225] or [226] can reliably model the central potential
barrier, the one we are using leads to an impenetrable barrier by classical means.

This is important to rule out other population-transfer mechanisms.

5.1.1 Temporal evolution of the wavepacket

The hyperbolic binding potential

sinh*(z/d)

V(z) = —VOM,

(5.1.1)
where V;, specifies the depth of the potential and d its peak location, is used through-
out this section for the reasons explained above. It is represented in Figure 5.1. The
wavepacket, the eigenenergies and the eigenfunctions are calculated analytically as

discussed in section 2.5. The eigenfunctions corresponding to the potential in Fig-
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Figure 5.2: Plots of all the bound-state eigenfunctions for the hyperbolic po-
tential [Eq. (5.1.1)] with parameters Vy = 74.785, d = 1 shown in Figure 5.1.
The corresponding eigenenergies (displayed to three significant figures) are: E =
{—8.153, —8.141, —3.419, —3.298, —0.697, —0.441}.

ure 5.1 are shown in Figure 5.2.
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Figure 5.3: Comparison of behaviour of |a(t)|? calculated using a potential defined
by Eq.(5.1.1) and the analytical method (blue, solid line) described in Sec. 2.5 or the
numerical method (red, dashed line) in 2.2. In panel (a) ¢ = 4, 2 = 1/4 and in panel
(b) ¢ =7, Q = 1/4. The horizontal, black, dotted line in panel (b) corresponds to
parameters ¢ = 7, = 3/10, for which the initial wave packet very closely resembles
the ¢ (z) eigenstate, hence having only a minute time dependence. The parameters
of the potential [Eq. (5.1.1)] are Vj = 74.785 a.u., d = 1 a.u. which corresponds to

internuclear distance R ~ 2.28 a.u..

The even-parity, delocalised initial wavepacket ¥prg(&, ¢, §2), where
gcﬂ efcé

_ , (5.1.2)
(‘/E\/lFl (QCQ; 200 + L —20) ['(2c¢Q)

wDLE(ga Cy Q) =

admits two parameters, ¢ and €2, that respectively specify the width of the wavepacket
and the location of its peak. Indeed, the z-space peak locations can be retrieved
from 2 by inverting the  — ¢ mapping to produce x = £d cosh™* (1 / \/ﬁ) To infer

the time evolution of a wavepacket the autocorrelation function Eq. (2.2.5) will be
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obtained analytically using

alt) = /+°° V@, 0. 0)de = Y JA, Pexp (ZEh“t) |

—0o0

where A,, are the overlap integrals defined in Eq. (2.5.5). Therefore
1a(®))*= Y |Au*| A Pexp (i(Ey — En)t/R) . (5.1.3)

Any time dependence of |a(t)|* will stem from the differences in eigenenergies.
Note that if |A,|# 0 and |A,,|# 0 only for one pair of n and m with n # m then
la(t)|? will oscillate with a single frequency. Otherwise, the time evolution will be
more involved.

The results are presented here for two different sets of parameters, each corre-
sponding to a different limit behaviour. The absolute value squared of the autocorre-
lation function |a(t)|? is displayed in Fig. 5.3 for even-parity delocalised wavepackets
of different widths defined by Eq. (2.5.11) in the double well potential defined by
Eq. (5.1.1). They have been computed analytically using the method described in
section 2.5, and numerically using the method in Chapter 3. The agreement is ex-
cellent, with the analytical and numerical curves being practically indistinguishable
and the temporal behaviours depending critically on the width.

In Fig. 5.3(a) this behaviour is quite intricate with two main frequencies: wqy =
4.73 a.u. and wyy = 7.46 a.u.. This is due to the coupling of n = 0 with n = 2,
and n = 0 with n = 4 eigenstates (as Ay and A4 are small the n = 2 with n = 4
coupling may be safely neglected). In contrast, in Fig. 5.3(b), one can identify a
single frequency for |a(t)|?, namely wq = 4.73 a.u., which corresponds to only one
pair of states with non-vanishing overlap integrals: Ag and Ay. Finally, the straight
horizontal line in panel (b) corresponds to an initial wavepacket being very close to
an eigenstate. As expected, this leads to a constant |a(t)|> within the precision used
here. Minor discrepancies between the analytical and numerical results are related

to the former not including overlaps with scattering states.

5.1.2 Phase-space dynamics

Next we will investigate the wave packet’s phase space evolution, with emphasis on
the quantum bridges and their periodic motion. For that purpose, we will employ
the Wigner quasiprobability distributions given by Eq. (2.3.1). In the analytical
model W (x, p,t) may be calculated by numerical integration of Eq. (2.3.1), with the
temporal evolution of the wavepacket U(x,t) given by Eq. (2.5.4).

Throughout, we will focus on the scenario for which the quantum bridges are
strong, namely initially delocalised wave packets and intermediate internuclear sep-

arations. The results comparing the present analytical model and the numerical
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Figure 5.4: Comparison of Wigner quasiprobability distributions using the same
parameters as in Fig. 5.3(b) (¢ =7,Q2 = 1/4, R = 2.28) computed analytically (left
panels) and numerically (right panels) for the times (a) t = 0, (b) ¢ = 0.4 and (c)
t=1.0.

results in Chapter 3 are displayed in Figs. 5.4 and 5.5. Fig. 5.4 corresponds to an
initial wave packet leading to a single oscillation frequency in the autocorrelation
function, while in Fig. 5.5 a more involved scenario with superimposed oscillations
is explored. Overall, the agreement between the numerical and analytical results is
excellent, which once more shows that the present model is reliable and can be used

to determine the temporal evolution of the quantum bridges exactly.

In Fig. 5.4, we display the Wigner quasiprobability distribution computed using
the initial wavepacket in Fig. 5.3(b). The figure shows a quasiprobability flow from
one centre to the other, with a strong quantum bridge near p = 0. As the time
flows, there is a motion of frequency wsy = 4.73 a.u., which corroborates the state-
ment that only the overlap integral between the ground and second excited state is
relevant to the problem at hand. The plot corresponds to almost a whole period
of the autocorrelation function, and illustrate an oscillating behavior in the Wigner

quasiprobability distribution. The bridges become slanted, change slope and then
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Figure 5.5: Comparison of Wigner quasiprobability distributions using the same
parameters as in Fig. 5.3(b) (¢ =4,Q = 1/4, R = 2.28) computed numerically (left
panels) and analytically (middle panels) for the times (a), (a’) and (a”) t = 0; (b),
(b’) and (b”) t = 0.7; and (c), (¢’) and (¢”) t = 2.1. In the rightmost panels the
Wigner quasiprobability distribution is computed using the analytical model for the
partial coherent superposition in Eq. (5.1.4).

return to their original configuration at 7"~ 1.33 a.u. (not shown).

Fig. 5.5, in contrast, illustrates the phase-space evolution if we use the parameters
in Fig. 5.3(a). The quasiprobability flow behaves in a much more convoluted way,
with additional maxima near the quantum bridge and in both wells. For longer
times, there will also be tails in the Wigner functions moving away from the potential
wells, which indicate an overlap with a delocalised eigenstate, or in some cases

ionisation. These tails are visible in the bottom panels of Fig. 5.5.

From the autocorrelation function, we expect that the frequencies wyy and wyg
will play a role. This convoluted behavior will be discussed in the rightmost column
of Fig. 5.5, in which, instead of constructing Wigner quasiprobability distributions

using the full analytical wavefunction, we consider only a coherent superposition
Wao(z,t) = Agexp (—iEot/h) Yo(z) + Az exp (—iFEat/h) Pa(z), (5.1.4)

between the ground and second excited state, where the overlap integrals A, (n =
0,2) are given by Eq. (2.5.5). The partial Wigner quasiprobability flow mirrors the
overall behavior reported in the central column of Fig. 5.5 except for the substruc-

ture and the tails. It determines the existence of the quantum bridges and their
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Figure 5.6: (a) Comparison between the absolute value of the autocorrelation func-
tion |a(t)[?, see Eq. (2.2.5), calculated using the analytical method in section 2.5
in a field free system (red, dotted line) and numerical computations from section
2.2 using the hyperbolic potential [Eq. (5.1.1)] with Vj = 74.785 a.u., d = 1 a.u.
but with a static field of strength & = 0.01 a.u. (I = 3.51 x 10?W/cm?) (dark
blue solid line) and &, = 0.05 a.u. (I = 1.72 x 101W /cm?)(light blue solid line).
[Bottom row| Wigner quasiprobability distributions using the same parameters as
(a) at time ¢ = 0.7 a.u. using in panel (b) the analytical method in section 2.5 for a
field free system and in panel (c¢) the numerical method from section 2.2 for a static
field of strength &y = 0.05 a.u. (I = 1.7 x 10'W/cm?).

slopes, whose time evolution has the frequency wsy. This shows the dominance of
this specific coupling and is expected, as tunneling should be dominated by the lower
frequency. However, a modulation is introduced due to the non-vanishing overlap
between the ground and the fourth excited state and its higher frequency wy. Fur-
thermore, the tails are absent in the partial results. This is due to the missing
overlap integral with the fourth excited eigenstate, which is significantly broader
(see Fig. 5.2).

5.1.3 Static external field

Finally, we will verify that for this model potential the frequencies computed analyt-
ically are quite robust upon inclusion of an external static field. This is illustrated
in Fig. 5.6. Indeed, from the autocorrelation function in Fig. 5.6 (a), the inclusion
of a static field of strength Ey = 0.01 a.u. has negligible effect on the autocorrela-
tion function (and by extension the frequency of the quantum bridging mechanism).

Even a stronger external static field, £y = 0.05 a.u., maintains the overall pattern.
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This is also reflected in Fig. 5.6 (b) and (c), where we compare snapshots of the
Wigner quasiprobability distribution between a field-free system and with an addi-
tional static field Ey = 0.05 a.u.. The features attributed to the quantum bridges

prevail despite the inclusion of the static field.

5.2 Interplay of the time dependent external field

In molecular enhanced ionisation, it is paramount to understand the timescale of
formation of the quantum bridge as well as its cyclical motion, and how it relates
to the frequency of the time-dependent field. As seen in the previous section, the
quantum bridge and its frequency is inherent to the molecular system and due to
the coupling of different eigenstates. In this section, following the thorough analysis
of ionisation in static and vanishing fields, we can now finally disentangle the effects
shown by the Wigner function in a time-dependent field.

In the previous analytical calculations and their numerical counterparts, a parabolic
potential model was employed. This was done to facilitate the analytical investiga-
tion. For the remainder of the Chapter we will modify our system to numerically
look at a time-dependent field, solving the TDSE following the method in section 2.2,

and instead use the molecular binding potential V(x) given by
V(z) = Vielz — R/2) + Vie(z + R/2), (5.2.1)

where each potential well V. is chosen be the soft-core potential defined in Eq. (2.1.5),
and R is the internuclear distance.

The external laser field €(¢) is chosen as a linearly polarised monochromatic wave
E(t) = Epcos(wt), (5.2.2)

of strength Fy and frequency w.

The initial wavepacket chosen is a delocalised wavepacket

\I]down(wa O) + qjllp('r? 0)

Yearl,0) = 2(1+7,)

(5.2.3)

where J, is the overlap integral, Wgoun(,0) is a wavefunction localised around the
downfield well and ¥, (z,0) localised around the upfield well. The localised wave-
functions are approximated by Gaussian wavepackets defined in Eq (2.2.4). The
binding potential Eq. (5.2.1) and initial wavepacket Eq. (5.2.3) are identical to those
used throughout Chapter 3, and will allow direct comparison with the static field
results.

A key issue is how the periodicity of the external field will affect that of the

quantum bridges and their cyclic motion. These are shown in Figure 5.7 using a

95 of 163



5. Time scales of quantum bridges

initial delocalised state and inter-nuclear distances R = 4 a.u., R = 6.8 a.u. and
R =14 a.u..

p [a.u.]

x [a.u.]

Figure 5.7: Wigner quasi probability distribution of a model H; molecule in a
monochromatic laser field given by Eq. (5.2.2) of wavelength A\ = 800nm and
strength £ = 0.0534 a.u. (intensity I = 10"W/cm®) with inter-nuclear distance
R = 4 (left), R = 6.8 (middle) and R = 14 (right) at different instants of time:
t =0.25T [(a), (a') and (a”)], t = 0.30T" [(b), (b’) and (b")], ¢ = 0.35T [(c), (¢) and
(cM)], t = 0.40T [(d), (d") and (d")], t = 0.45T [(e), (¢') and (¢”)]and ¢t = 0.507°[(f),
(f') and (f”)] from top to bottom, where T is the laser period and 7" = 110.2 a.u. (or
T =271s).

The Wigner function is plotted over a quarter of the field cycle, from a field
crossing [top panels, denoted (a), (a’) and (a”)] to a maximum field amplitude
[bottom panels, denoted (f), (f') and (f’)]. Prior to that, we have allowed the Wigner
function to evolve over a quarter of a cycle, from the previous field extremum to

the crossing. This is evidenced by the tails on the left-hand side of the top panels.
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That way we can emphasise the influence of the changing field gradients on the

quasiprobability flow and still carry residual features from the previous evolution.

With the use of a time-dependent field come time-dependent separatrices. At
the field crossing [Fig. 5.7(a)], the separatrix is equal to that of the field-free case.
For both R = 4 a.u. and R = 14 a.u. the system is in the same configuration as
the static field case, closed and open separatrices respectively. However, for R = 6.8
a.u., the system changes phase-space configurations from nested [Fig. 5.7(b’)] to
open [Fig. 5.7(d")] separatrices in a quarter cycle and spends roughly half of the

time in each configuration.

The shift in momentum gate is again present, and follows the same clockwise
cycle discussed in previous sections. The quasiprobability distribution flows via the
positive momentum gate from the left to right potential well [see Fig. 5.7(a) and
Fig. 5.7(¢/)], and within the same quarter cycle follows the negative momentum
gate [see Fig. 5.7(d) and Fig. 5.7(¢’)] from the now downfield (right) to upfield (left)

potential wells, seemingly opposing the direction of the field.

There are however key differences, with regard to the static-field case. Depending
on the instantaneous phase-space configuration and on the interplay between the
field gradient and the momentum gates, the time-dependence of the field may aid
or hinder their clockwise motion and/or ionisation. For instance, in the first column
of Fig. 5.7, the bound part of the Wigner function moves to the right [Fig. 5.7(a)],
but is subsequently hindered by the field gradient to move back towards the left
[Fig. 5.7(b) and (c)].

If the inter-nuclear distance is such that that the phase-space configuration
changes from nested to open separatrices within half a field cycle, the dynamics
are more complicated. A good example is provided in the middle panels of Fig. 5.7,
for which there is initially a quantum bridge feeding directly into the tails on the left-
hand side [Fig. 5.7(a’)]. When the field changes direction [Fig. 5.7(b’)], its gradient
helps the clockwise motion towards the right. Nonetheless, because the separatrices
are nested there will be population trapping, and, consequently an enhancement in
the cyclic motion back to the left (upfield) centre, as shown in Fig. 5.7(c¢/). The
Wigner function will only “spill” towards the continuum and form tails to the right
when the separatrices open [Figs. 5.7(d") to (f')]. A remarkable feature in this opti-
mal configuration is that population trapping only occurs when it actually should,
i.e., at the times in which the quantum bridges are building up. As the peak-field
times are approached, the separatrices open and ionisation bursts occur. However,
they do not necessarily follow the field. For larger inter-nuclear distances (right
column in Fig. 5.7), the separatrices are always open but the quantum bridges are
rather weak. Therefore ionisation mainly occurs via the quasistatic pathway close

to the equienergy curves.

The time evolution of such gates is better studied by looking at the autocorre-
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Figure 5.8: Absolute value of the auto-correlation function shown in the [lower panel]
over a half-cycle of a monochromatic laser field given by Eq. (5.2.2) of wavelength
A = 800 nm and strength £ = 0.0534 a.u. (intensity I = 10"*W/cm®). The starting
wavepacket is delocalised in a model H; molecule with inter-nuclear distances of
R =4 au. (red dashed), R = 6.8 a.u. (blue) and R = 14 a.u. (green dotted). The
time profile of the laser field is indicated by the dashed red line in the [upper panel]
in arbitrary units.

lation function plotted in Fig. 5.8 over a half field cycle. Around the maximum and
minimum of the laser field, the oscillations of the Wigner function are similar both
in frequency and amplitude to those of the static case. Qualitatively, the situation
is the same. However, around the field crossing the population has an additional
shift, changing direction and following the laser field. It then continues its normal
rhythm following the momentum gates around the field minimum. For example,
for R = 6.8 a.u. the population escapes by the negative momentum gate up to
around ¢t = 5 a.u. or t = T/16, where T is the laser period and 7" = 110.2 a.u.
(or T'= 2.7 fs). The Wigner function then shifts to a positive momentum gate at
t =10 a.u. or t = T'/8 (despite the laser field still being in the same direction) going
back to its initial distribution. Then, at ¢ = 30 a.u. or t = T'/4, where the regular
cycle of the Wigner function would create a strong negative momentum gate, the
quantum bridge has near zero momentum [Fig 5.7(a’)] because the direction of the
laser field has changed and now counters this movement (instead of adding to it).
The autocorrelation function stays more or less constant instead of reaching the
minimum associated with a negative momentum gate (see Fig 3.12 for comparison).
The positive momentum gate before ¢ = 45 a.u. or t = 3T'/8, now following the
direction of the laser field, leads the population away from its initial distribution

[Fig 5.7(¢/)]. Finally the negative momentum gate (now countering the laser field)
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Figure 5.9: Wigner quasi probability distribution of a model H, molecule in a
monochromatic laser field given by Eq. (5.2.2) of wavelength A = 800nm and
strength £ = 0.0534 a.u. (intensity I = 10'*W/cm®) with inter-nuclear distance
R = 6.8a.u. and a starting wave packet localised upfield at different instants of
time: t = 0.137 (a), t = 0.337 (b), t = 0.45T (c), where T is the laser period and
T =110.2 a.u. (or T'= 2.7 fs).

shifts the population back to its initial position Fig 5.7(¢"), and the autocorrelation
function increases.

Finally, if the initial wave packet is localised upfield, i.e. ¥ = W,,(z,0), there are
significant differences from the static case. This is shown in Fig. 5.9, for the optimal
inter-nuclear distance of R = 6.8 a.u. During the initial quarter of a cycle,the
quantum bridge builds up and directly feeds the ionisation tails [Fig. 5.9(a)]. After
the field reaches a crossing and switches side, the wave packet will be located in the
downbhill (right) well. For the time intervals in which the separatrices are nested
[Fig. 5.9(b)], population trapping will still help a quasiprobability transfer against
the field gradient via the momentum gate. However, as the field peak is approached
and the separatrices are no longer nested [Fig. 5.9(c)], this pathway will be strongly
suppressed and quasi-static ionisation will prevail (see tails forming on the right-side
of the figure). At the subsequent crossing the field will change its direction again,
and the quantum bridge towards the left centre will rebuild. Hence, the stationary
quantum bridges discussed in Chapter 3.2.2 are no longer an advantage. Within
the timescale of a field cycle, the upfield wave packet does not become a cat state.
Longer times will make the interpretation difficult, as, apart from ionisation, there
will also be rescattering as an oscillatory field may drive the wave packet back to

the core. This will leave imprints in the Wigner functions [151, 87].

5.3 Conclusion

Throughout this Chapter, the autocorrelation functions and Wigner quasiprobability
distributions exhibit a periodic motion that can be precisely determined using the
system’s eigenfrequencies. These dynamics are strongly dependent on the width
of the initial wavepacket, and the time-independent overlap integrals obtained for
an eigenfunction basis has greatly facilitated those studies. In addition to that,

the present phase-space studies support the conclusions from Chapter 3, that the
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intra-center quasiprobability flows caused by quantum interference and forming a
‘quantum bridge” have their time evolution determined by frequencies intrinsic to the
system, instead of a non-adiabatic response to an external driving field as proposed
in [76]. Moreover, for the specific, field-free case studied in section 5.1, we have
determined such frequencies exactly for a hyperbolic double-well, thus going beyond
the estimates in Chapter 3. This also sheds light on the behaviour observed for time
dependent fields. The frequency of the quantum bridge being higher than that of the
laser field, the quasiprobability distribution will sometimes counter-intuitively flow
in the direction opposed to the electric-field gradient. The strength of this return is
again dependent on the inter-nuclear distance. Remarkably, the frequencies obtained
in the present work are within the range of those observed in [76], which is around
four times that of a typical near-IR field (A ~ 800nm). We have also observed
that the quasiprobability flow into the continuum occurs in well-defined temporal
bursts, being strongest in the interval for which the separatrices open and there is no
population trapping. A key qualitative difference between static and time-dependent
fields is that, in the latter case, an initial wave packet localised upfield is no longer
preferable to a delocalised (cat) state. This happens because initial upfield states
foster the appearance of static quantum bridges, which will be suppressed for a whole
quarter of a cycle when the wave packet is upfield. In contrast, initial delocalised
states support cyclic bridges building up close to the central saddle, which may be
synchronised to the external driving field. Finally, the fact that enhanced ionisation
is an optimisation problem suggests that the ionisation mechanisms encountered and
analysed in this Chapter can be controlled by appropriate coherent superpositions

of states, targets and driving fields. This will be the focus of the following Chapter.
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Chapter 6

Classification and control of
enhanced ionisation with machine

learning

Manipulating coherent superpositions of quantum states and nonclassical pathways
has been a central question to many areas of science, such as coherent control [227,
228, 229] and quantum information [230]. Important applications include control-
ling chemical reactions [231] or electron dynamics in ultrafast molecular dissociation
[232, 233, 234, 235], creating quantum switches [236, 237, 230] and enhancing non-
classicality in extended systems such as light-harvesting compounds [238, 239]. In
this wide range of scenarios, decoherence must be kept at bay, so that the timescales
of interest are much shorter than the decoherence times. This brings one’s atten-
tion to how coherent superpositions of quantum states and nonclassical pathways
may be controlled in attoscience. Previous analyses in Chapters 3 and 5 focused
on understanding the physical mechanisms behind the quantum bridges, and were
restricted to a homonuclear molecular potential in the field-free setting, or under a
strong static or monochromatic laser field. The initial wavepacket was taken to be
an upfield or downfield localised Gaussian, or a symmetric coherent superposition
thereof known as a cat state [13]. Here, we focus on how the quantum bridges can be
manipulated by using different relative phases and wavepacket localisations in the
initial superposition state, molecular potentials of heteronuclear type, where each
well is weighted asymmetrically, and electric field configurations. This is a complex
task: with a wealth of tunable parameters, such as internuclear separation, rela-
tive phase and wavepacket localisation in the initial wave packet, differing nuclear
charges, laser intensity and frequency as well as the pulse shape, it necessitates opti-
misation techniques. Machine learning methods have been explored in a wide range
of scenarios in quantum physics (see the reviews [240, 241, 242] and the recent tuto-
rial [243]) and ultrafast photonics [244]. Recently, they have been employed in the

attosecond science context to control attosecond pulses [245], retrieve the structure
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of a large molecule from laser-induced electron diffraction patterns [246], track quan-
tum pathways within a spatio-temporal Feynman path integral framework [247] or
retrieve the molecular internuclear distance from holographic interference patterns
[248].

In this Chapter, we aim at controlling the pathways behind enhanced ionisation.
We begin with an overview of the methods used throughout the whole Chapter in
section 6.1, with a focus on the use of dimensionality reduction. Indeed we employ
machine-learning techniques for dimensionality reduction, such as the T-Distributed
Stochastic Neighbour Embedding (t-SNE) [217] and Principal-Component Analysis
(PCA) [249] to find overall trends and patterns that allow us to establish a hierarchy
of parameters and classify different regimes for strong-field ionisation. Following
that, in section 6.2 we employ a model molecule in a static field to both extend the
analysis of the effect of various parameters started in Chapters 3 and 5 and as a proof
of concept of the t-SNE dimensionality reduction technique. In section 6.3, we apply
the t-SNE on a time-dependent two-colour driving field, where the autocorrelation
function exhibits several distinct behaviours in time, including a stepwise profile in
which ionisation is switched on or off. Aided by a qualitative phase-space analysis,
we also provide a physical interpretation for these features. We end this Chapter

with a conclusion in section 6.4.

6.1 Method

6.1.1 System

We solve the TDSE following the method in section 2.2. The molecular binding

potential is given by
V(z) = Z.Vie(x — R/2) + Z\Vie(z + R/2), (6.1.1)

where R is the internuclear distance. The first and second term appearing on the
right-hand side of equation (6.1.1) shall be called the right and left potential wells,
respectively. The homonuclear case is recovered by setting Z, = Z, = 1. The
symbol Z is chosen in reference to the nuclear charge; however, in this toy model, Z;
is allowed to be a continuous variable. The external laser field £(¢) is either taken
to be static, that is €(t) = Fjp, or a time-dependent linearly polarised polychromatic
field such that

E(t) = Ey [cos(wt) + ricos(bwt + ¢)], (6.1.2)

where b is the frequency ratio between the first and the second driving wave, r; is
the field-strength ratio, ¢ is the relative phase between the two driving waves, and
w is the frequency of the fundamental.

The initial wavefunction is approximated by coherent superpositions of Gaussians
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wavepackets W(x,0) and U, (z,0)

W1 (2,0) = (2] W(0)) = (7;) exp {—gr(x —qu)? +ipol — qu)} (6.1.3)

of width 7;,, centred at vanishing initial momentum py, = 0 and initial coordinate
q = —R/2 localised around the left well or ¢, = R/2 localised around the right well.

We then introduce asymmetry between the initial left and right wavepackets.
As such, the initial state including a relative phase ¢ € [—m, 7] and a localisation

parameter « € [0, 1] is described by the generalised expression

Vav(z,0) + 1 — ae®®W,(z,0)
\/1 +24/a(l — a) cos(6)J,

The constant of normalisation in the denominator depends on the initial state over-

\I/a’g(l', 0) =

. (6.1.4)

lap Jo:

PN

V2(17) 2
Jo = /qf 2, 0) W, (z, 0)dz = 2 + 2 DY =@ /(20n+7) 6.1.5
Note that Uy g(z,0) = ¥y(x,0) and Yog(x,0) = ¥,(z,0) (up to a global phase),
whilst intermediate values of o produce coherent superpositions of varying weight. If
one considers @%70(95, 0) and \If%’ﬂ(x, 0), this will lead to even and odd cat states, see

Eq.(3.1.4), for which the wavepacket localisation in each centre are equally weighted.

6.1.2 Time evolution characterisation

In order to understand the system dynamics through the use of dimensionality re-
duction methods, we wish to characterise the electronic dynamics by a single value.
In section 6.2, we will employ the ionisation rate I' from time t = 0 to t = T" quan-
tified as Eq.(3.1.9) in Chapter 3. For the time-dependent case in section 6.3 we
choose to quantify the shape of the autocorrelation function (2.2.5), as it carries
more temporal information. A preliminary investigation showed that the autocor-
relation function can take three distinct shapes (Figure 6.1): ‘steps’, ‘constant’, and
‘other’, which represent different behaviours.

The classification of autocorrelation functions into the defined categories is per-
formed by a simple deterministic decision tree algorithm. First, we check whether a
function is ‘constant’, that is, if it does not fall below a given threshold value. Next,
we look for the steps. Steps are characterised by the intervals where the autocor-
relation function stays approximately constant, followed by a steep decline. Hence,
if we find a constant interval longer than some ‘critical length’, we categorise it as
a ‘step’. We define a constant interval as an interval where the difference of any

two values is smaller than a critical threshold, ‘¢’. If the function is not caught by
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Figure 6.1: Examples of the three potential outputs of the autocorrelation function
sorting algorithm. The parameters used vary greatly but are all within the range
shown in Table. 6.1.

these checks, it is classified as ‘other’. In the results presented in this Chapter the
threshold value is set to 0.8, the critical length is set to 100, while the critical € is

0.03. All of the autocorrelation function arrays used have 3000 elements.

6.1.3 Dimensionality reduction

The present problem depends on many parameters: The initial wavepacket locali-
sation «, its widths v, and ~, and relative phase ¢; molecular parameters like the
weights Z; and Z, and the inter-nuclear distance R; and many external electric-field
parameters such as ¢, 74, b and Ey. The main challenge to overcome when studying
the effect of a large number of parameters simultaneously is how to visualise the
results. Indeed, each data point will exist in a high-dimensional space (the number
of dimensions equal to the number of parameter used), and ideally we would like to
project our results down to a two-dimensional space.

In order to understand and visualise the effect of various field and molecular
parameters on the time evolution characteristic parameter, we will generate multi-
dimensional data points and project them to two-dimensions using both the t-SNE
and PCA projections described in Chapter 2.6.

While we will visualise our results using the t-SNE, we will have compared all pro-
jections to PCA. Indeed, t-SNE is stochastic, so each run can yield different results.
It focuses on preserving the local structure of the data and is a non-linear technique.
On the other hand, PCA is linear, deterministic, and preserves global properties
while potentially losing low-variance deviations between neighbours. Therefore by
comparing both projections we can guarantee the accuracy of the t-SNE results.
The PCA projections are presented in the Appendix B.

To obtain a data point, N — 1 parameters are randomly uniformly distributed
within the range shown in Table. 6.1. The electronic wavefunction is then evolved
using the TDSE (See Chapter 2.2) and we characterise the time evolution infor-
mation by a single value as described in the above section. In the case of a static
external field as studied in section 6.2 this is done by computing the ionisation rate
I' (Eq. (3.1.9)). For the time-dependent field in section 6.3 we quantify the shape
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H Static Field‘ a 0 ~ v R Z 7 E H

min 00 - 02 0.2 30 1.0 1.0 0.04
max 1.0 = 1.0 1.0 120 2.0 2.0 0.08
H Time-dependent Field ‘ a 0 v R Z. Z, E b H
min 00 - 02 02 40 1.0 1.0 0.04 05 00 -m
max 1.0 =~ 10 1.0 100 15 1.5 0.08 20 1.0 =«

Table 6.1: Table of all parameters used throughout this chapter with the minimum
and maximum value of the range they are randomly chosen from.

of the autocorrelation function (see section 6.1.2). The N — 1 parameters chosen
randomly as well as the single value characterising the time evolution form a data
point of size N.

In certain situations specific data points are removed from the final data set in
order to focus the visualisation on the matter at hand. For example in section 6.3.1,
only 1332 data points are used from the 500 000 originally computed using random
parameters. Indeed, in order to focus on the ‘step’ output of the autocorrelation
function, approximately 99% of data points with outputs ‘constant’ and 99.95% of
data points with output ‘other’ are removed.

The t-SNE is then used to reduce our N-dimensional data points to 2 dimensions,
projecting the data set onto the two axis y; and y,. Because the t-SNE is inherently
nonlinear, it is not possible to reverse-transform its output to the original dataset.
Therefore, these axes have no clear meaning with relation to the original dataset
and they act solely as two dimensions in which the results are visualized. The
data points will have clustered into different groups, the nature of which will be
understood by plotting the projection as a function of one of the input parameters.
This will allow us to determine which parameter or which combination of parameters
influence the ionisation rate or the autocorrelation function step, and to what degree.
The overall method described here and used throughout this chapter is summarised
schematically in Fig. 6.2. Finally, the PCA method is used to ensure that the
observed behaviour is neither a remnant of the stochastic nature of the algorithm,

nor due to the removing of data points from the data set.

6.2 Static fields

We will start with an analysis of enhanced ionisation in static fields. While the
ultimate goal of this chapter is to understand and control enhanced ionisation in

time-dependent fields, the purpose of this static field section is two-fold:

e Obtain an in depth understanding of how certain parameters influence the

system, and expand on the conclusions drawn in Chapters 3 and 5.
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Figure 6.2: Schematic outline of the methodology used throughout this Chapter.

« Establish the effectiveness of the t-SNE dimensionality reduction technique as
a method of simultaneous multi-parameter analysis. This will allow us to use

it as a primary tool in section 6.3.

6.2.1 Qualitative analysis

As a starting point, we will perform a qualitative investigation of how specific pa-
rameters influence the quantum bridges and the ionisation rate in a static field using
the generalised initial wavepacket given by Eq. (6.1.4). The static field in this chap-
ter is chosen in such a way that the left well is located downfield and the right well
upfield.

Initial electron wavepacket.

A conclusion from Chapter 3 was that a major predictor of enhanced ionisation is the
localisation of the initial electron wavepacket. However, only three configurations
were studied: localised around the right well, localised around the left well, and delo-
calised equally around both centres. Here we start with a more thorough analysis of
this parameter by considering it a continuous variable, «, see Eq. (6.1.4). As shown
in Fig. 6.3, the ionisation rate is linearly proportional to the electron localisation,
with @ = 0.0 (initially localised upfield) leading to the highest ionisation rate. This
can be understood as the downfield centre narrowing the effective-potential barrier
for the upfield centre, hence enhancing upfield ionisation.

In addition to a continuous localisation parameter, the state of the initial elec-
tron wavepacket is varied by a relative phase factor 0, see Eq. (6.1.4), between the
superposition of ¥, and ¥;. When using an equally delocalised wavepacket, o = 0.5,

the ionisation rate as a function of 6 (in rad) peaks around 6 = 2.4 and is minimal for
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Figure 6.3: Ionisation rate I' for an initial wave packet W, 4(x,0) with respect to
the localisation parameter o, comparing maximum 6 = 2.4 and minimum ¢ = —0.8.
The external static field has strength Ey = 0.06, and the molecular parameter used
are internuclear distance R =7, Z, = 1.0 and Z; = 1.0.

6 = —0.8. This has little overall influence on the ionisation rate as seen in Fig. 6.3.
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Figure 6.4: Ionisation rate I" for an initial wave packet ¥ 5 o(z, 0) with respect to the
wavepacket width v, comparing the effect of ~, (blue-dashed line) and ~; (red-dotted
line). Additionaly, the effect of the wavepacket width 7, for an initially localised
wavepacket Wy o(xz,0) is shown (green line). The external static field has strength
Ey = 0.06, and the molecular parameter used are internuclear distance R = 7,
Z,=1.0and Z; = 1.0.

Finally, the initial wavepacket widths 7, and ~;, see Eq. (6.1.4), are set to differ
from v = 0.5, which is the minimal ground-state energy of a field free single-centre
soft-core potential with softening parameter a = 1.0. The result of this change
is shown in Fig. 6.4 with both an initially localised upfield wavepacket (o = 0.0)
and an initially delocalised wavepacket (o« = 0.5). This has no major influence
on the ionisation rate. A slight increase in the ionisation rate is present when the
downfield wavepacket width ~; decreases below v, = 0.5 when a = 0.5. For an
initially localised upfield wavepacket (o« = 0.0), increasing the wavepacket width

above v, = 0.5 slightly decreases the ionisation rate.
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Figure 6.5: Contour plot of the ionisation rate I' as a function of Z; and Z, using
an external static field Ey = 0.06 with internuclear distance R = 7. The white
lines indicate the separatrix energy difference AFE, with the 0.0 line indicating the
transition from open separatrices (AE > 0) to closed separatrices (AE < 0).

Heteronuclear molecule Z;,

Finally, we expand our study to include heteronuclear molecules. We analyse the
ionisation rate while varying the value of molecular weights Z, and Z;, of Eq. 6.1.1.
The study of heteronuclear molecules is motivated by the enabling of a change in the
critical internuclear distance and in the dynamics of the quantum bridges. Fig. 6.5
shows the ionisation rate as a function of both charges Z, and Z; simultaneously.
There, a large region of suppressed ionisation is observed when Z, > 1.3. The effect
of Z; is a lot less pronounced, leading to high ionisation rates even at Z; = 2.0.
While open separatrices do not guarantee a high ionisation rate, closed separatrices
always suppress ionisation. To have a better understanding of the sharp decrease in
ionisation rate with respect to Z,, we look at the Wigner quasi-probability distri-
bution in Fig. 6.6. Comparing the bound region around the right molecular centre
in (a) and (b), as Z, increases, the right molecular well deepens greatly. This leads
the upfield population to stay trapped and greatly suppresses ionisation. On the
other hand, the increase of the left bound region in (c) due to an increase in Z; does
not greatly influence the ionisation rate. This is because in enhanced ionisation
the majority of the ionised population comes from the upfield centre, as shown in
Chapter 3. There is very little change to the upfield (right-hand-side here) centre

when increasing Z;.

Now, a more complete overview would go through the effect of Z; and Z, with
respect to various parameters, which would be slow and exhaustive. Instead we
propose in the following section to use the t-SNE to analyse the effect of multiple

parameters at once.
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L [a.u]

Figure 6.6: Wigner quasi-probability distribution of the ionisation from a static
field Ey = 0.06 with internuclear distance R = 7 for (a) Z, = 1.0 and Z; = 1.0, (b)
Z.=15and Z; = 1.0 and (c) Z, = 1.0 and Z; = 1.5. The snapshots are taken at
t=125a.u.

6.2.2 Proof of concept - machine learning techniques

We now aim to study the effect of multiple parameters on the ionisation rate, starting
with a limited number in order to fully understand the results and to focus on the
effect of the chosen parameters. Those are the internuclear distance R, the width
of the initial superposed gaussian upfield and downfield wavepackets 7, and ~,., the
phase difference 6 between them, and the localisation parameter of the wavepacket
a. The value of these parameters is chosen from a predetermined range described

in section 6.1.

Data points comprised of these five parameters as well as the ionisation rate are
projected onto two axis y; and ys using the t-SNE algorithm, shown in Figure 6.7.
We see that the projected data bring into focus the connection between the ionisation
rate, the internuclear distance and the electron localisation. These match the results
from Chapter 3 and section 6.2.1. That is, peak ionisation yield is present at and
around the peak internuclear distance of R = 6.8 a.u., shown in Figure 6.7(b),
and when the initial wavepacket is localised upfield, shown in Figure 6.7(c). The
low ionisation rate regions, seen in Figure 6.7(a), split into two distinct parts seen
in Fig. 6.7(b) which correspond respectively to regions of too low and too high
internuclear distance, studied in depth in Chapter 3. The ionisation rate falls linearly
as the electron localisation changes from localised upfield to localised downfield, as
seen in Fig. 6.3. The effect of the gaussian widths v and the phase difference 6 is a
lot weaker as seen by the patterns in Fig. 6.7(d)(e)(f).

We will now look at the full range of parameters. In addition to the previous
six, these following results will include the effects of the nuclear weight number Z,
and Z;, and the electric field strength Ej,. Because of these additional parameters,
we posit that there is no longer a clear internuclear distance peak, but instead a
larger range of optimal internuclear distances, dependent on Ey, Z,. and Z;. For that
reason the difference in energy between the central and Stark separatrix AFE will

also be analysed, but will not be an input parameter.

As seen in Figure 6.8(a), the algorithm successfully separates two clusters of low
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Figure 6.7: Plot of the 3000 6-dimensional data points that have been projected
onto two axis y; and y, using the t-SNE dimensional reduction technique described
in section 2.6. Each subplot has the projected data plotted as a function of an
initial input parameter. The initial input parameters include (a) the ionisation
rate I' (given in arbitrary units), (b) the internuclear distance R, (c) the electron
localisation «, (d) the phase difference between the left and right initial wavepackets
0, (e) the wavepacket width +; and (f) the right wavepacket width .. The external
field is taken to be static with FEy = 0.0534 and the molecular weights Z, = 1.0 and
Z; = 1.0, matching the results from Chapters 3.
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(I' < 0.002) and high (I" > 0.05) ionisation yield. Within the high ionisation cluster,
the data points are further distinguished by a very high (I" > 0.3) ionisation yield
region. From the distribution of other parameters in these two clusters, we can

determine which one leads to a high ionisation yield.

The strongest predictor of high ionisation rate is the nuclear depth factor Z,,
[see Fig. 6.8(b)], which in this configuration is associated to the upfield molecular
well. As shown in Figure 6.5, the ionisation rate falls of sharply as soon as Z, > 1.0.
While the value of Z, is originally chosen randomly in the range [1:2], the average
value of Z,. in the high ionisation yield cluster is 1.16, and 1.12 in the I' > 0.3 region.
Indeed, 90% of the I" > 0.3 ionisation yield data points have Z, < 1.25.

In Fig. 6.8(c), echoing the conclusions from Fig. 6.7 and Fig. 6.3, only 4% of the
high ionisation yield data points have the initial wavepacket of the electron localised
downfield, with o > 0.8. Similarly, 30% of the high ionisation yield cluster data
points are for an initial wavepacket localised upfield, with o < 0.2. This proportion
goes up to 72% for I' > 0.3.

From Fig. 6.8(d), the median initial field strength Ej, of the high ionisation
yield cluster is 0.07, despite the parameter being originally randomly chosen from a
[0.04:0.08] range. This means the majority of high ionisation yield data points have
a high field strength. Indeed, 82% of data points have Ey > 0.06 a.u. in that cluster
and 88% in the I' > 0.3 region.

As hypothesised earlier, the clear internuclear distance peak from Fig. 6.7 is now
less pronounced in Fig. 6.8 (e) as we are now also varying the molecular weights Z
and the field amplitude Ey. Still, 72% of data points within the very high, I" > 0.3,
ionisation yield region have internuclear distances R in the range 6 < R < 9. This
is surprising as the initial range for R is randomly taken from [3:12]. Therefore, one

would expect that one third of the data points would be in this range.

Finally, in Figure 6.8(f), we can deduce the effect of the separatrices on the
ionisation yield. Indeed if the separatrices are nested (see Fig. 3.1), meaning that
Eg > Eq, or AE < 0, then the ionisation rate is suppressed. In contrast, 99.5%
data points in the high ionisation yield cluster have AE > —0.5, and 86% of them
have AE > 0. This separation is present despite AFE not being used as an input

parameter.

In conclusion, the t-SNE enables us to visualise the effect of multiple parameters
simultaneously. All the conclusions drawn in section 6.2.1 are visualised in Fig. 6.8.
Parameters with little to no effect are swiftly identified and separated from relevant
parameters. Not only that, but a hierarchy of the effect of different parameters is
also established much more rapidly. For example the effect of Z; on the ionisation
rate being greater than that of a. Because of this we will be able to use the t-SNE
in the following section to rapidly assert what parameters are relevant and to what

degree.
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Figure 6.8: Plot of the 16 995 9-dimensional data points that have been projected
onto two axis y; and yy using the t-SNE dimensional reduction technique described
in section 2.6. Each subplot has the projected data plotted as a function an initial
input parameter. The initial input parameters include (a) the ionisation rate T,
(b) the right molecular well depth Z,, (c) the electron localisation «, (d) the field
strength Ej, (e) the internuclear distance R. Also included but not shown here
are the left molecular well depth Z;, the left initial wavepacket width ~;, the right
wavepacket width ~, and the phase difference between the left and right initial
wavepackets 6. In subplot (f) the separatrix energy difference AFE is shown for each
data point, however it is not one of the input parameters. The input data set has
been reduced from 100 000 data points to only have either I' < 0.002 or I > 0.05.
PCA distributions using the original 100 000 data points are shown in Appendix B.
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Figure 6.9: Plot of the 1332 12-dimensional data points that have been projected
onto two axis y; and ys using the t-SNE dimensionality reduction technique de-
scribed in section 2.6. Each subplot has the projected data plotted as a function of
an initial input parameter (shown by the colour bar). All units are in [a.u.]. unless
stated otherwise. The input parameters shown in this figure are (a) The step func-
tion shape obtained by the sorting algorithm in section 6.1.2 that outputs ‘constant’,
‘other’; or the length of the step in the autocorrelation function and (b) The initial
electron wavepacket localisation represented by the parameter o in Eq. (6.1.4). The
full list of input parameters as well as details on the initial data set used can be
found in section 6.1. PCA distributions using 500 000 data points are shown in
Appendix B.

6.3 Time dependent fields - optimising autocor-

relation step functions

As seen in Chapter 5, when using a time-dependent field, the interplay between
the frequency of the quantum bridge and the external field leads to quite complex
structures. When using a polychromatic field (see Eq. 6.1.2) and specific parameters,
we can obtain a ‘controlled’ ionisation release, which translates to a step function
in the autocorrelation function plot. In the following section we will be looking at
what parameters lead to step functions and why specific configurations lead to a

controlled ionisation release.

6.3.1 t-SNE application to step functions
The 3 clusters and electron localisation

The t-SNE algorithm separates the data into three different clusters, whose nature
can be seen in the two plots of Fig. 6.9. Therein, the data points are coloured
with respect to (a) their autocorrelation function type and (b) their initial electron
localisation «. Indeed, one cluster groups all autocorrelation functions classified

as ‘constant’ or ‘other’, while the other two contain the autocorrelation functions
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Figure 6.10: Plot of the 1332 12-dimensional data points that have been projected
onto two axis y; and yy using the t-SNE dimensional reduction technique described
in section 2.6. Each subplot has the projected data plotted as a function an initial
input parameter (shown by the colour bar). All units are in [a.u.]. unless stated
otherwise. The input parameter shown in this figure are (a) The ratio r; between
the two colour field amplitudes, (b) the overall field amplitude Ej in Eq. (6.1.2) and
(c) the internuclear distance R. The full list of input parameters as well as details
on the initial data points used can be found in section 6.1.

classified as ‘steps’. Those two clusters are understood by looking at the distribution
with respect to the initial electron localisation. All autocorrelation functions that are
classified as ‘steps’ have their initial electron wavepacket localised completely at one
centre. The clusters are separated between having the initial electron wavepacket
localised at the left centre (v > 0.95, or dark red) and localised at the right centre
(v < 0.05, or dark blue). From this it is clear that the initial wavepacket must be
localised either to the left or to the right for there to be steps. This is explained
when looking at Fig. 6.14, in section 6.3.2.

Difference between the two ‘step’ clusters and the ‘other’ and ‘constant’

cluster

From looking at the different clusters, we can find other correlations, shown in
Fig. 6.10, between certain parameters and the presence of step functions, most
Indeed,

while originally the value of 7, is chosen randomly from a range [0:1], the two step

notably, the field ratio r; between the two driving waves, in subplot (a).

clusters have a median r; value of 0.81 and an average of 0.75. Moreover, longer
step lengths (more than 150 a.u., or orange/red) have a r; median value of 0.85 and
an average of 0.8.

Next, the overall electric field strength FEj, chosen at random from a range of
[0.04:0.08], has an median and average value of £y, = 0.07 a.u.. These can be
understood by seeing that both a high field ratio r; and a high field strength Ej lead
to a higher field peak during which more of the population will escape, causing a

deeper drop in the autocorrelation function.
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Figure 6.11: Plot of the 1332 12-dimensional data points that have been projected
onto two axis y; and y, using the t-SNE dimensionality reduction technique de-
scribed in section 2.6. Each subplot has the projected data plotted as a function
an initial input parameter (shown by the colour bar). All units are in [a.u.]. unless
stated otherwise. The input parameters shown in this figure are (a) the phase differ-
ence between the left and right initial wavepackets 6, (b) the left initial wavepacket
width 7, (¢) the right wavepacket width 7,, (d) the left molecular well depth Z; and
(e) the right molecular well depth Z,.. The full list of input parameters as well as
details on the initial data points used can be found in section 6.1.

Finally, the internuclear distance is clearly closer to the peak internuclear dis-
tance of R = 7 a.u., which is also confirmed by the standard deviation being only
1.05 instead of 1.3. R is also for 92.6% of all data in the step clusters above a min-
imum internuclear distance of R = 6 a.u.. The cause of this effect is more complex,

and is discussed in detail in section 6.3.2.

Symmetry between the ‘localised to the left’ and ‘localised to the right’

step clusters

The value of « is not the only difference between the two step clusters. The next
series of parameters, shown in Fig. 6.11, are connected to the symmetry between the
left and right molecular wells. First, there is quite naturally the distribution of ~,
and 7,. From their definition in Eq. (6.1.4), v, only influences the initial wavepacket
localised to the left. Therefore, if the initial wavepacket was localised to the left, only
the initial left wavepacket width ~; is a relevant parameter, and vice versa. Since, as

shown in Fig. 6.9, both step clusters use initially localised wavepackets exclusively,
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only one v parameter influences each cluster and the § parameter (subplot (a)) has
no effect on them. As seen in Fig. 6.11 (b) and (c), 22.8% of 7; in the localised
right step cluster are above 0.8, but only 6.8% are above 0.8 in the localised left
step cluster. Similarly, 27.5% of ~, in the localised left step cluster are above 0.8,
while 5.3% are above 0.8 in the localised right step cluster. The width v = 0.5
corresponds to the minimal ground-state energy of a field free single-centre soft-core
potential with our current parameters, and the vast majority of step functions have
a 7 value that is within the range [0.2 : 0.8]. As v deviates from 0.5, part of the
initial wavepacket bleeds out of the bound region despite being initially localised.
This leads to oscillations during the flat ‘step’ portion of the autocorrelation function
and explains the absence of initial wavepacket widths v above 0.8 in the step clusters.

The other set of parameters symmetric with respect to the left /right direction
are the molecular weights Z; and Z,.. Their effect on one cluster should be mirrored
on the other. From Figs. 6.11(d) and (e), while there is no clear connection between
the localised left cluster and Z,, Z; is more likely to be close to 1.0 (and vice-versa).
Indeed there are 42% of data points that have Z; < 1.2 in the localised right cluster,
but 70% in the localised left cluster. Similarly, 39% of data points have Z, < 1.2
in the localised left cluster, but 67% in the localised right cluster. This is further

investigated in section 6.3.2.

Link between different parameters and the step length

Going back to the distribution with respect to the autocorrelation function type in
Fig. 6.9, those two ‘step’ clusters are then also distinguished into regions of ‘short’
(less than 150 a.u., or lime yellow) and ‘long’ (more than 150 a.u., or orange/red)
step length. From Fig. 6.12, we can already glean that the field-frequency ratio b
affects the step length. However, there is no clear link with the field offset ¢. This

is further expanded upon in section 6.3.2.

6.3.2 Analysis of step functions

In order to obtain a controlled burst of ionisation, two pre-requisites are needed:
First, a time interval in which the population stays bounded, and, second, a short
burst of enhanced ionisation. Following the conclusions drawn from section 6.3.1,
we already know what parameter range is required or preferred. In this section, we
will provide an intuitive, physics-based analysis for the controlled-ionisation burst

conditions.

Electron localisation

From Fig. 6.9, it is clear that the initial electron wavepacket must be localised, either

around the left or right molecular well. Fig. 6.13 illustrates the difference between
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Figure 6.12: Plot of the 1332 12-dimensional data points that have been projected
onto two axis y; and y, using the t-SNE dimensionality reduction technique de-
scribed in section 2.6. Each subplot has the projected data plotted as a function
of an initial input parameter (shown by the colour bar). All units are in [a.u.]
unless stated otherwise. The input parameters shown in this figure are (a) The
field-frequency ratio b and (b) the field offset ¢ in Eq. (6.1.2). The full list of input
parameters as well as details on the initial data points used can be found in section
6.1.

using an initial localised wavepacket and a delocalised wavepacket. This, along with
the Wigner function shown in Fig. 6.14, allows us to understand the mechanism

behind the controlled ionisation release.

To obtain a burst of enhanced ionisation, the system must be in an optimal
configuration. This was initially found in a study using static fields in Chapter 3,
and further expanded upon in section 6.2. A key point is that the initial wavepacket
must be localised upfield. This allows the population to escape directly through
the quantum bridge to the semiclassical escape pathway and ultimately the contin-
uum. It also stops the quantum bridge from cycling through the momentum space
and bringing the population back to the upfield centre. Similarly, the population
must stay bounded for an interval of time, meaning that the system must be in the
configuration with lowest ionisation rate. As seen in Fig. 6.3, for static fields, this
happens when the initial wavepacket is localised downfield. For the time dependent
polychromatic field, the terms ‘upfield’ and ‘downfield’ become relative as the con-
figuration changes with the direction of the field. However, in either case the initial
wavepacket must be localised on one of the molecular centres. As seen in the be-
haviour of the Wigner function in Fig. 6.14 [right column] these two conditions are
not possible if the initial wavepacket is delocalised. As seen in Chapter 3, because
of the quantum interference between the two molecular centres, there is always the

cyclic motion of the quantum bridge.

The localisation of the wavepacket must work in conjunction with the sign of
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Figure 6.13: Comparison of auto-correlation functions at R = 6.8 a.u. with initial
wavepacket localised upfield or delocalised. Direction of the field is denoted by the
colour of the background, blue regions are positive values, pink are negative. The
field is shown as the orange dashed lines with values shown on the rightmost y-
axis and has form & o« coswt 4 cos 2wt where w = 0.057 a.u. The stars denote
autocorrelation function values at times ¢ = 10 a.u., t = 25 a.u., t = 50 a.u., and
t =85 a.u..

the external field for the stepwise behaviour to be present in the autocorrelation
function. If the wavepacket is localised to the left and the external field E(t) is
positive, or if the wavepacket is localised to the right and £(t) is negative, this
will result in downfield localisation. Alternatively, upfield localisation occurs for a
wavepacket localised to the left and negative E(t), or a wavepacket localised to the

right and positive E(t).

In order to obtain a step function, the localisation must be upfield during the drop
and downfield during the flat part of the step. In Fig. 6.13, the different field signs
are shown by the different coloured shaded areas. Indeed, during the initial drop,
the external field is positive and the population localised to the right, and therefore
upfield. It escapes rapidly through the quantum bridge as seen by the Wigner
function in Fig. 6.14(a) and the separatrices are open. As soon as the field changes
sign, the approximately constant behaviour in the autocorrelation function begins.
As seen in Figs. 6.14(b), (c) and (d), during that time the wavepacket localisation is
now downfield. Because of that, despite the separatrices being sometimes open, like
in subplots (b) and (d), ionisation is suppressed. When the field is no longer strongly
negative around ¢t = 60, the separatrices are closed, as shown in subplot (¢). This
also stops the population from escaping. The autocorrelation function therefore has
a step until the field becomes positive again, with the separatrices strongly open.
From this analysis and the clustering obtained by the t-SNE distribution, it is clear
the electron localisation is the most important parameter in obtaining a controlled

ionisation release.
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Figure 6.14: Wigner quasiprobability distributions computed for internuclear dis-
tances R = 6.8 a.u. with initial wavepacket localised at the right potential well
(av = 0.0) [left column] or delocalised between the two molecular wells (o = 0.5)[right
column]. The external field has frequency w = 0.057 a.u. and strength Fy =
0.0534 a.u.. The snap shots are taken at times t = 10 a.u. for (a) and (a’), t = 25 a.u.
for (b) and (b’), t = 50 a.u. for (¢) and (¢’), and ¢ = 85 a.u. for (d) and (d’). These
times are indicated by stars in Fig. 6.13.
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Figure 6.15: Different plots of autocorrelation functions [Top row] and AE [Bottom
row| for R =4 a.u., R =7 a.u. and R = 10 a.u. with [Left column] E, = 0.04 a.u.,
[Middle column] Ey = 0.06 a.u. and [Right column] Ey = 0.08 a.u.. The external
laser field is represented by the red dotted line (not to scale). We consider an
initial wavepacket localised to the right, with v, = 0.5, and equal molecular weights
Z, = Z; = 1.0. The external field amplitude and frequency ratios are r; = 1.0 and
b = 0.5, respectively.

x[a.u]

Figure 6.16: Evolution of the Wigner function with internuclear distance R = 4 a.u.
and external field parameters r, = 1.0, b = 0.5 and Ey = 0.04 a.u.. The snap shots
are taken at times (a) t = 65 a.u., (b) ¢ = 85 a.u. and (c¢) t = 100 a.u.. Initial
wavepacket localised to the right, with +, = 0.5. Molecular weights Z, = Z; = 1.0.
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Separatrices

On top of the electron localisation, the presence of step functions is strongly depen-
dent on the value of Fy, r, and R, as seen in Fig. 6.10 and Fig. 6.11. Both Fy and r,
have a similar effect on the external laser field: when r; is close to 1.0 and when Ej
is large, the field peak increases in absolute value. As shown in Fig. 6.8, when using
a static field, increasing Ej leads to higher ionisation yield. In our time-dependent
case, when FEj or r; is high, the value of AE at the field peak is much higher, mean-
ing the separatrices are wide open. This phenomenon is best seen in Fig. 6.15 for a
fixed value of R. In the second row it is clear that the increase in £y leads to higher
maximum values of AFE. For example, at internuclear distance R = 10, Ey = 0.04
has AE = 0.7 at the field maximum, while £y = 0.08 has AF = 1.6. Compared
to the corresponding autocorrelation functions in the first row, we see that when
matched by the correct electron localisation, this will lead to a much steeper drop
during the decreasing part of the autocorrelation function step. Using our previous
example, at Ey = 0.04 the first step plateaus at 0.9, while £y = 0.08 at 0.5.

The effect of the internuclear distance R is at a glance not clear. When focusing
on the initial drop, the connection between AE and the initial drop of the correlation
seem contradictory. Intuitively one would expect that a higher maximum AFE lead
to a steeper drop of the autocorrelation function, as was the case for varying r;
and FEjy. But the opposite appears true with varying R. This is understood by
the results in Chapter 3, and illustrated in Fig. 6.15. As R becomes too large, the
quantum bridge between the two molecular wells weakens and the ionisation rate
falls. In consequence the initial drop of the autocorrelation function is low. With
Ey being low as well, this leads to a ‘constant’ autocorrelation function as seen in
Fig. 6.15 for R = 10 and E = 0.04. When R is too small, the quantum bridges
between the molecular wells are at their strongest, and initially facilitate population
transfer, leading to a steeper drop. However, as seen in section 6.2, a small R does
not lead to a high ionisation rate. This is illustrated by the Wigner functions in
Fig. 6.16: the quantum bridge brings population back to the right-side core. This
cyclic motion does not follow the direction of the external field. As a consequence,
the quasiprobability distribution does not stay within one centre during the ‘flat’

portion of the step autocorrelation function, as illustrated in Fig. 6.15.

Symmetric effect

While the effect of Z; and Z, differs greatly depending on the step cluster analysed,
their effect is also mirrored, so conclusions on one cluster can be expanded to both.
Focusing on the initially localised to the right cluster from Fig. 6.11, we see that
while Z; has little influence, the vast majority of step autocorrelation functions has
Z, < 1.2. This is illustrated in Fig. 6.17: The initial drop of the step autocorrelation

function greatly reduces as Z, increases. From the corresponding AFE plot, the peak
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Figure 6.17: Different plots of autocorrelation functions and AFE for [Left column]
Z. =10 au., Z, = 1.25 au. and Z, = 1.5 a.u. with Z;, = 1.0 a.u.. and [Right
column] Z; = 1.0 a.u., Z; = 1.25 a.u. and Z; = 1.5 a.u. with Z. = 1.0 a.u.. The
initial wavepacket is localised to the right and other parameters are set to R = 7 a.u.,
Ey =0.06 a.u., r, = 1.0 and b = 0.5. The external laser field is represented by the
red dotted line (not to scale).

separatrix energy difference goes from 0.7 for Z,. = 1.0 to 0.6 for Z, = 1.5. Compared
to the effect of the separatrix energy difference of Ey and its effect on the initial
autocorrelation function drop, it appears something else must be at play. A better
understanding is obtained when looking at the ionisation rate in static fields as a
function of Z, and Z;. As explained in section 6.2.1, the biggest difference between
Fig. 6.6 is not the separatrix energy difference, but the range of the bound region,
especially in the momentum space. Back to the time dependent situation, as Z,
increases, the population (here initially localised to the right) stays trapped at the
right molecular well, and the initial step drop will be much shorter.

Finally, the other parameters governing the initial wavepacket configuration are
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Figure 6.18: Different plots of autocorrelation functions 7, = 0.5 [a.u], v, =
0.75 [a.u.] and 7, = 1.0 [a.u.] with Ey = 0.06 [a.u.], R = 7.0 [a.u.], initial wavepacket
localised to the right, with molecular weights Z, = Z; = 1.0. External field param-
eters are r; = 1.0 and B = 0.5.
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Figure 6.19: Plot of the 27 194 8-dimensional data points that have been projected
onto two axis y; and y, using the t-SNE dimensional reduction technique described
in section 2.6. All units are in [a.u.]. unless stated otherwise. Each subplot has
the projected data plotted as a function a initial input parameter. The initial input
parameters include (a) The output of the step function algorithm from section 6.1.2
that is the length of the step in the autocorrelation function and (b) the frequency-
ratio of the second colour field b as well as not shown here the offset of the second field
¢, the field ratio r;, the internuclear distance R, the left molecular well depth Z;, the
right molecular well depth Z,., the right initial wavepacket width ,. All data points
use an initially localised to the right wavepacket with Fy = 0.07. The input data set
has been reduced from 1 000 000 data points to only look at step autocorrelation
functions. PCA distributions using the original 1 000 000 data points have been
analysed for accuracy (not shown).

v; and ., the initial wavepacket widths. From Fig. 6.11, most step autocorrelation
functions have ~ around 0.5, and at least within the range [0.2:0.8]. Indeed, v = 0.5
corresponds to the minimal ground-state energy of a field free single-centre soft-core
potential with our current parameters. Fig. 6.18 shows what the change in v does
to the autocorrelation function. The oscillations during the "flat" section of the step
function intensify as v deviates from 0.5. That is because, despite being an initially

localised wavepacket, part of the initial wavepacket bleeds out of the bound region.

Step length and two colour field frequencies

From Fig. 6.12 we can already observe that the step length is connected to the value
of the two colour field frequency ratio b. Indeed, while step functions of step length
less than 110 [a.u.] have on average b = 1.5, step functions of step length greater
than 150 [a.u.] have on average b = 0.9.

In order to view the relationship between the step length and other parameters
in greater detail, we will use a modified data set and perform the t-SNE dimen-

sional reduction algorithm again. First, we only conserve data points with ‘step’
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Figure 6.20: Plot of the corresponding autocorrelation function and external field in
each of the four different clusters in Fig. 6.19, in order of increasing field frequency
ration b. Constant parameters are Ey = 0.07, R = 7, o = 0.0, 7. = 0.5 . The
parameters used in each subplot are (a) from Cl; b = 0.5, r;, = 1.0, ¢ = —0.2,
Z, =12and 7, = 1.2, (b) from C2; b = 0.7, r, = 1.0, ¢ = —0.2, Z, = 1.2 and
Z; =12, (c) from C3; b =13, r, =10, ¢ = 1.0, Z, = 1.1 and Z; = 1.1 and (d)
from C4; b =2.0, r, = 1.0, ¢ = —0.13, Z, = 1.05 and Z; = 1.5.
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autocorrelation functions. Next, we set the initial wavepacket to be localised at the
right centre. This is equivalent to focusing only on the ‘localised to the right’ cluster
of Fig. 6.9. Because of this, we also remove the initial wavepacket width ~; and 6
parameters. Finally, we fix the field strength to Fy = 0.07 a.u.. These results are
shown in Fig. 6.19.

The t-SNE algorithm separates the data into four different clusters. The C1 and
C3 clusters represent step lengths between 110 and 260. They are distinguished by
the value of the frequency ratio b of the two-color fields: the largest C1 having an
average of b = 0.65 and the smallest C3 b = 1.32. Next, the C2 cluster is the smallest
and corresponds to all autocorrelation functions with a very long (greater than 260)
step length. Finally, the C4 cluster is the largest cluster and corresponds to all
autocorrelation functions with a short step length. Here the average step length is
1.09. An example of autocorrelation function and external field within each cluster
is shown in Fig. 6.20.

As seen in the previous sections, the temporal location of the field peak, when
matched with the population localisation, determines the step drop. From this,
we can assume that the specific times for which the field peaks occur match the
step length. This can be seen in Fig. 6.20 (a) and (b), when increasing the second
field frequency-ratio from b = 0.5 to b = 0.7, the distance between two field peaks
increases and the step length goes from 187 to 285. This is also confirmed when
looking at an example step function from clusters (c) and (d): The distance between

field peaks matches the step length.

6.4 Conclusion

In this Chapter we use dimensionality reduction techniques, namely the the t-
distributed stochastic neighbor embedding (t-SNE) method and Principal compo-
nent analysis (PCA) to investigate the effect of multiple parameters at once in
enhanced ionisation. We show how quantum effects in strong-field ionisation of
stretched diatomic molecules may be understood, classified and synchronised with
the external laser field in order to create tailored ionisation bursts. Thereby, the t-
SNE was crucial to establish a hierarchy of parameters, and manipulate the relevant
time scales. These time scales are either dictated by the field, or by the molecular
system. The latter is associated with quantum-interference structures that provide
a direct, intra-molecular population transfer via a quantum pathway in phase space:
the quantum bridges studied in Chapters 3, 4 and 5. The results presented here
have been mainly obtained with the t-SNE, while the PCA was used to rule out
possible algorithm-dependent artefacts.

The effectiveness and accuracy of the t-SNE is first showcased on the ionisa-

tion rate using a static field. The expected results are found using phase-space
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arguments and Wigner quasiprobability distributions. They completely match the
conclusions drawn from the t-SNE distributions. Furthermore, a hierarchy in the im-
portance of different parameters is quickly and effectively demonstrated. Because of
this, we confidently used the t-SNE to project data of autocorrelation functions and
their parameters for time-dependent fields. Using a two-colour field, we obtained
a controlled ionisation release, which translates to a stepwise behaviour in the au-
tocorrelation function. By using the t-SNE to project multi-dimensional data sets
into 2 dimensions, ionisation profiles obtained while varying multiple parameters at

once are organised and understood.

A conclusion from Chapters 3 and 5 was that a key to understand enhanced
ionisation is the interplay between the intra-molecular quantum bridges and the
external field. This also holds for controlled ionisation release (represented by a step
function in the autocorrelation function), where the system requires a short burst of

enhanced ionisation followed by a time interval during which the population stays
bounded.

Quantum bridges are tied to many predictors for a step function in the autocor-
relation function, including the strongest one: electron localisation. A delocalised
initial wavepacket creates an interference pattern in both positive and negative mo-
mentum space. This leads to ionisation bursts that do not follow the external field.
Therefore, we cannot obtain a time interval for which the population stays bounded.
Moreover, the quantum bridges are highly tied to the internuclear distance. For that
reason, configurations that suppress momentum gates do not lead to the burst of
ionisation needed. This is the case when the internuclear distance is too large. Alter-
natively, a too small internuclear distance leads to cyclic motion in the momentum
space, regardless of the initial state. This also stops the population from staying

bounded at one centre.

On the other hand, a higher field peak maximum leads to stronger ionisation
bursts. A stronger field peak is achieved by increasing the field amplitude Fy or
adding a second field. This is neatly quantifiable by the separatrix energy differ-
ence AF. From this we determine bounded regions with closed separatrices and
ionisation burst regions when the localisation is upfield with open separatrices. The
timing of these field peaks matching with the upfield population lead to the start
of the autocorrelation function drops. The field frequency determines the distance
between the field peaks and is therefore the key to controlling the length of the steps.
Finally, changing the molecular weights Z,; affects the presence of step functions.
As the upfield molecular weight increases, the upfield bound region increases and

this greatly suppresses ionisation.

In summary, we can understand the physical cause and requirements for con-
trolled ionisation release by separating the phenomenon into two steps, a short burst

of enhanced ionisation and a time interval where the population stays bounded. For
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static fields, the optimal configuration for enhanced ionisation is pinpointed to an
initial wavepacket localised upfield at optimal internuclear distance with a high in-
tensity external field and a low upfield molecular weight. The separatrices are open
with a high separatrix energy difference. This also holds during the time-dependent
ionisation burst time interval, and will be periodic as the upfield and downfield con-
figurations will change along with the sign of the external field, matching the field
frequency. For the population to stay bounded, either the field strength must be low,
separatrices closed or barely open, or the population must be localised in the down-
field centre and therefore not follow the changes in the field strength and direction.
In addition, the population must not cycle around through momentum gates, mean-
ing the internuclear distance cannot be too short. The t-SNE was greatly effective
at separating results into clusters and therefore visualising results due to specific
combinations of parameters. For example, an overall analysis of the effect of Z,. on
the step function autocorrelation function reveals only negligible effects. However,
the step function results were separated into two clusters a < 0.2 and a > 0.8.
The effect of the increased bound region and ionisation suppression from Z, only
affecting the a < 0.2 cluster is brought into focus. Moreover, the t-SNE presented a
hierarchy of the correlation between different parameters and the quantity of study.

From that, the role of electron localisation was pinpointed as the key parameter.

The importance of electron localisation is in agreement with the findings by
several groups, reported over many years. In fact, resolving and ultimately control-
ling electron localisation in extended or dissociating molecules holds the promise
of steering chemical reactions. This has led to many studies, both theoretical and
experimental, employing, for instance, pump-probe schemes [183, 250, 233, 234,
251, 235, CEP stabilised few-cycle pulses [252, 232], long-wavelength fields [253,
254] or synthesised wave forms [255]. Moreover, orthogonally polarised fields have
also been applied to trace or control the ionisation site [182, 256, 181]. Regarding
enhanced ionisation, electron localisation in the upfield well, together with coupled
charge-resonant states, were widely mentioned in the literature as major contribut-
ing factors. This holds both for seminal enhanced ionisation papers [162, 165] and
more recent work in which models for time-dependent ionisation bursts have been
developed [257, 75, 258, 259].

Since potential wells occur in a wide range of physical systems, the present
techniques can be applied not only to more realistic molecular models, but also to
solids and nanostructures. Thereby, a crucial issue would be to incorporate other
degrees of freedom, multielectron dynamics and assess the role of decoherence. Loss
of coherence can be caused by many physical mechanisms, such as coupling with
additional degrees of freedom, intensity fluctuations, and incoherent emission from
across the focal volume (for a brief discussion of some decoherence mechanisms in

the context of strong-field quantum sensing see [260]). Recent studies using pump-
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probe schemes in Hy have shown that coupling of electronic and vibrational degrees
of freedom affects coherence and may hinder electron localisation [261]. Still, studies
in large molecules indicate that phase relations may be preserved even in systems
with many degrees of freedom [262], and could even be controlled leading to tailored
ionisation enhancement or suppression [263]. This simplified model is meant as a

proof of concept and a first step towards more realistic scenarios.
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Chapter 7
Summary

The main topic of this thesis is non-classical features in strong field enhanced ioni-
sation, at the attosecond scale. In order to understand the dynamics of our system,
we mainly use both classical and quantum phase space tools. We begin this thesis
with an overview of phase space methods in attoscience in Chapter 1, including a
broad overview of the existing landscape, with a focus on strong-field ionisation and
rescattering, high-order harmonic generation, stabilisation and free-electron lasers.
Furthermore we provide an overview of enhanced ionisation, a phenomenon that
happens to stretched molecules in low frequency, high intensity fields that consists
of a sharp increase of the ionisation rate at specific internuclear distances. In H,,
several ionisation bursts that do not follow the time profile of the external field have
been identified. When using Wigner quasi-probability distributions, structures that
cycle through the momentum space, called momentum gates [76] have been asso-
ciated with this phenomenon. In Chapter 3, we investigate the momentum gates
and find that they can occur even when using a static field. By considering various
initial wavepackets and internuclear distances and using Wigner quasiprobability
distributions, we conclude that their primary cause is an interference-induced bridg-
ing mechanism that occurs if both wells in the molecule are populated. When the
initial wavepacket is delocalised, or when the internuclear distance leads to nested
separatrices, the Wigner function performs a clockwise rotation whose period is in-
trinsic to the molecule. At a critical nuclear distance, with an initial wavepacket
localised upfield, the optimal conditions for enhanced ionisation occur. The molec-
ular wells are close enough to allow a quantum bridge between them to form, but
not so close as to cycle the population back to the upfield well. There the quantum
bridge provides a direct pathway for the upfield wavepacket to the downfield well,
which then follows the semiclassical escape pathway to the continuum. As seen
using the quantum Liouville equation, the evolution of the Wigner function around
the momentum gates is essentially non-classical (as opposed to its evolution at the
semiclassical escape pathway). This means estimating the frequency of the quantum

bridging mechanism with classical arguments provides limited results.
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We continue the investigation of the quantum evolution of the momentum gates
using the QTM. In Chapter 4 we aim at propagating directly quantum trajectories
by discretising the density, following the work of [211, 212, 213]. By modifying
the computational method to improve on its accuracy, and more specifically on the
evolution of boundary trajectories, similar results can be obtained using a much
smaller number of trajectories. The goal of these improvements was to limit the
computational issues that arise when the trajectories are clustered together and
eventually allow an investigation of the non-classical effects in enhanced ionisation
with quantum trajectories. While this allowed the investigation of the quantum
potential as a non-classicality criteria for atomic tunnel ionisation, it fails for the
propagation of quantum trajectories in double well potential systems because of the

rapid changes in the quantum potential.

Instead, using a hyperbolic potential model in a field-free system in Chapter
5 enabled us to apply an analytical approach to study the frequency of the cyclic
motion of the momentum gates. This novel analytical model, presented in [215],
leads to obtaining the eigenfrequencies at play. From those we can conclude that
the pure frequency qualitatively observed is caused by the presence of only two even
Fourier coefficients A. These frequencies are robust upon the inclusion of an external
static field, and allow for the study of the interplay between an external time-
dependent field frequency and the dynamics of the quantum bridging mechanism.
Indeed, the momentum gates (having the highest frequency) may at times aid or
hinder enhanced ionisation. The quasiprobability distribution at times counter-
intuitively flows against the field gradient. These mechanisms could be optimised

using the appropriate initial states and driving fields.

Since the large number of tunable parameters involved in this system limits
the qualitative assessment of each individual parameter, Chapter 6 brings machine
learning dimensional reduction techniques to the forefront. The effectiveness of the
t-SNE projection is demonstrated within the ionisation mechanisms of a stretched
molecule in a static field. The results match those found using phase space arguments
and Wigner quasiprobability distributions. Furthermore, the t-SNE is fast, presents
a clear hierarchy of parameters, and allows the visualisation of non-linear effects due
to combinations of parameters. Consequently we applied this method to the more
complex issue of controlled bursts of ionisation. Indeed, when using a polychromatic
field, the autocorrelation function can present a stepwise behaviour. After projecting
our dataset onto 2-dimensions with the t-SNE, we conclude that the system requires
a localised initial wavepacket in order to admit both bursts of enhanced ionisation
and periods of suppressed ionisation, whose length is determined by the frequency

ratio of the external two-colour field.

Moving forward, as the t-SNE is purposefully made for the projection of very high

dimensional datasets, the model system used throughout this thesis can be expanded
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in complexity (pulse shape, multi-dimensional model, etc). More generally, the
phase-space and machine learning tools presented in this thesis can be applied to

many areas of strong field and attosecond sciences.
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Appendix A

Atomic units

Throughout this thesis we use atomic units, meaning h = m = e¢? = 1.. In the table

below the value of different unit quantities is displayed.

ﬁ2
Length — =5.29177249 10" m
(&
62
Velocity - = 218769142 10° m/s
FLS
Time —— =2.41888433 107" s
me?
Intensity 3.51 10'® W /cm?
2,5

Electric field strength mﬁf = 5.14220826 10" V/m

Frequency ";:; — 413413732 Hz = \ = 45.56 nm
me?
Energy = 272113962 &V
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Appendix B

Principal Component Analysis

In this Appendix we will present a few of the PCA results obtained throughout
Chapter 6. The aim of PCA is to compute the eigenvectors of the covariance matrix
(principal components) of the multidimensional data set and recast the data along
the two largest eigenvectors. In other words, the first principal component can be
defined as the direction that maximises the variance of the projected data. Through-
out Chapter 6 all t-SNE distributions were computed along with PCA distributions
for comparison. In this appendix we present two examples, one from the static
field analysis in section 6.2 and one from the time-dependent step autocorrelation
function analysis in section 6.3, Fig. B.1 and Fig. B.2 respectively.

The PCA distribution in Fig. B.1, obtained for the ionisation rate data set
calculated using the static field, does not exhibit individual clusters corresponding
to different ionisation rates. However, the distribution is organised following the
different ionisation rates. From this we can see that both upfield electron localisation
(a =0) and a right molecular weight Z, = 1.0 lead to the highest ionisation rates.

When it comes to the time-dependent autocorrelation function, the PCA dis-
tribution in Fig. B.2 does break into three distinct clusters corresponding to the
different autocorrelation outputs: constant, step, and other. This allows us to draw
similar conclusions to those obtained with the t-SNE, for instance that the electron
must be localised to the right or left in order for the autocorrelation function to have
a stepwise shape. However, contrary to the t-SNE distribution shown in Fig. 6.9,
the step autocorrelation initially localised to the right data points and those initially
localised to the left are not separated. That means that parameters that affect those
two groups differently will not have their effect visually represented, for example Z,
and Z;.
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Figure B.1: Plot of the 100 000 9-dimensional data points that have been projected
onto their two principal component axis using PCA. The initial parameters used
are equal to that of Figure. 6.8. Each subplot has the projected data plotted as a
function an initial input parameter. The initial input parameters include (a) the

ionisation rate I', (b) the electron localisation o and (c¢) the right molecular well
depth Z,.
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Figure B.2: Plot of the 500 000 12-dimensional data points that have been projected
onto their two principal component axis using PCA. The initial parameters used are
equal to that of Figure. 6.9. Each subplot has the projected data plotted as a
function an initial input parameter. The initial input parameters include (a) The
step function shape obtained by the sorting algorithm in section 6.1.2 that outputs
‘constant’, ‘other’; or the length of the step in the autocorrelation function and (b)
the electron localisation «.
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