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Over many years, there has been great practical
interest in how solid bodies interact with and skim
on liquid layers. In the present investigation, the
focus is on the important role of body mass and
shape in such skimming motions. Considering a thin
two-dimensional solid body that impacts obliquely
and then rebounds on a shallow inviscid water
layer, we develop a mathematical model to predict
quantitatively the duration and evolution of the
body and fluid motions and indeed the success or
failure of the whole skim. In the current setting, the
shallow water layer thickness is small relative to the
representative body length. The combined roles of
increased mass and shape are found to be crucial,
governed by a similarity solution. The relationship
C ∼ M2/3 between scaled body curvature and mass
is identified and highlighted. In particular, increased
convex curvature of the underbody is found to alter
the interactive pressure in such a way that it inhibits
the occurrence of a super-elastic response in the exit
vertical velocity and height of the body, and in effect
enables a much heavier body to skim successfully
provided the above relationship is maintained.

1. Introduction
The skimming of a thin body, i.e. the low-angle impact
of a body onto water and its subsequent exit, has both
playful and serious interests behind it. The playful aspect
is very well-known to many people through their efforts
at skimming a slender stone across a stretch of water.
The serious aspect, on the other hand, which is perhaps
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Figure 1. Illustrative (non-dimensional) sketchof a successful skimmingmotion for a curvedbodyof largemass. The sub-figures
show successive points within the body motion: (a) body entry, (b) mid-skim and (c) exit (rebound). The combined effects of
increased body mass and underbody shaping are investigated in the paper. (Online version in colour.)

less well-known and potentially more worthy of quantification, concerns various applications
in industry and aviation. These include icing-impact applications on aircraft surfaces [1–4], the
repeated bouncing of meteors and the landing of aeroplanes on water [5–7].

The present study is on the skimming of a two-dimensional thin body on a shallow layer of
inviscid water or other liquid but with particular attention paid to the influence of body shape
and weight as an important new aspect. Experienced stone throwers are well aware of the crucial
role that stone shape and weight play in skimming a stone across water. However, the main
practical motivation of our study comes from repeated particle-skimming over water layers on
vehicle surfaces as a safety issue [1–4], where the particles can take many distinct sizes and
shapes. Substantial heat transfer is often generated when such skimming takes place with ice
particles. The main research aim here is to understand and quantify physically how bodies that
are both relatively thick and heavy can skim, where thickness may be associated with underbody
curvature and heaviness with the body mass.

For shallow-water skimming, the Hicks & Smith [8] model describes the dynamic fluid/body
interaction involved when the body motion is driven by the pressure force due to the disturbed
water flow acting between the underbody and the horizontal substrate, with the effects of air
flow being negligible during contact with the water. Subsequently, however, between-skim air
flow effects were accounted for by Liu & Smith [9] in their consideration of multiple skims with
weight rather than mass affecting the body motion between successive skims. Flat underbody
shapes are the prime concern in the above works, whereas curved shape effects are included by
Palmer & Smith [10]. Our focus here is on the combined role of shape and mass since they both
tend to be present and important in practice, and there is much interest in their joint influence
on the success (rebound) or failure (flooding) of the skim, especially in realistic cases where both
the shape variation (e.g. curvature) and the mass are increased in magnitude. Thus, we seek to
understand the conditions under which heavier bodies may skim successfully rather than flood
and sink, presenting new practical dangers (e.g. new dynamics to consider in aircraft icing).

Figure 1 illustrates a successful skimming motion for a curved body of significantly large mass,
as is modelled in this paper. Each of the sub-figures shows a successive point within the body
motion, in the body frame. The body has an overall length of 2 through its centre (notably the
angles of incidence are accentuated in these sketches). During the skimming motion the body
undergoes a vertical translation and body rotation about the trailing edge (x = 1). The leading
contact point between the body and the water layer, x1(t) is unknown and the corresponding
wetted region extends from the trailing edge to this point, along the underbody, during the middle
of the skim, (b). A so-called super-elastic response is depicted in (c), whereby a body of large
mass rebounds and exits the water layer at a greater height and vertical velocity than its entry
(a): the greater height and vertical velocity here essentially define the term super-elastic. This
phenomenon is explained further in the analysis to follow.
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Concerning the leading contact point x1(t), whose position is unknown, the flow can reverse
upstream of this point, potentially producing a thin splash jet extending ahead of the body. A
small so-called ‘square’ Euler region encompasses the leading contact position, continuing to
surround it as it moves, and the Euler region where flow angles become O(1) describes the liquid
layer turnover. These effects are incorporated into the modelling via pressure jump conditions
[8,11]. Importantly, however, upstream of this region the oncoming water layer is undisturbed to
leading order. Another point for consideration is the contact angle between the liquid layer and
the body (the angle between the free surface and underbody, at the point where the free surface
detaches from the body). In describing the body motion via the leading contact point (as above),
the possibility for a splash jet to form, and the linearized theory (detailed below), the location
where the liquid layer detaches from the body is unknown. However, the precise dynamics of the
fluid–body interaction inside the small Euler region at this point are not required to capture the
body’s skimming motion to leading order and therefore are not explicitly modelled.

The typical skim here is for oblique impact involving small angles of body incidence and small
angles in the induced water flow direction, with the trailing edge of the two-dimensional body
impacting first. This initial point of contact tends to lead to the expectation that separation or
detachment will continue to be subsequently situated at the trailing edge, although different
detachment sites are certainly possible [12,13] following other forms of initial impact. The flow
is reasonably assumed to be unsteady, incompressible, inviscid and two-dimensional. In the
body frame the Hicks & Smith [8] model applies based on shallow-water balances beneath
the underbody for small perturbations about the oncoming uniform flow; this is coupled with
Newton’s laws for the body motion, yielding two-way interaction. It should be remarked that
there is a considerable and notable literature on impacts generally, for example [5–12,14–27],
covering parameter ranges which tend to be quite different from the present. Among these studies
are a variety of configurations that consider impact onto deep water, including: the early and
pioneering works that focus on the landing of seaplanes [5,6,14]; and the mathematical treatment
of different shaped skimmers/bouncers, including flat plates [7,15,16], wedges [19], cylinders
[20], ellipses [12] and spheres [25]. Further recent and notable works include [22,23,25–27] which
cover a range of new physical considerations (such as tangential velocities [23] and droplet
impacts [27]). For a full discussion of many of these papers, we refer interested readers to the
original work of Hicks & Smith [8].

A significant difference in the present work is the water being shallow, with a water layer depth
much less than the body length; an additional difference is that our work has the body being free
to move subject to the forces acting on its surface because of the unknown fluid dynamics, thus
yielding two-way fluid/body coupling. Altogether, with the variations in the underbody shape
significantly smaller than the liquid-layer thickness, the current study lies in a regime between
the theories of Tuck & Dixon [11] and Korobkin [22] and that of Wagner [6]. Of note, many of the
other regimes examined above present a range of different physics and therefore require other
considerations and assumptions. For instance, several recent experimental and modelling studies
contrast with the present work by studying low Weber number interactions in deep water baths
in which capillary effects become important, e.g. [25–27].

The mathematical model is presented in §2 which describes the relevant physical scales of
the skim including those of the body shape, represented by thickness or underbody curvature,
and the body mass, as well as presenting the perturbed water flow and the nonlinear interactive
system. For example, the representative time scale of a successful skim is usually somewhat short,
being of order LD/UD where LD and UD are the typical body half-length and incident speed,
respectively, in dimensional (D) terms. Thus, a stone of representative length 5 cm and speed
of order 10 ms−1 yields a time scale of order 0.005 s, while a small particle say of length 5 mm
impacting on a vehicle at 50 ms−1 yields a scale of order 0.0001 s. In the context of aircraft landing
on water, the typical speed of approach for an aeroplane is approximately 50 ms−1, landing on
10 m floats and giving a time scale of 0.2 s. The vertical velocity component which is necessary
for an impact is implied by the range of small approach angles of the thin body. Section 3
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gives numerical solutions of the nonlinear integro-differential system when shaping and mass
are varied. The metrics of interest include: contact time (duration of skim), penetration depth
(extent of body wetting and height of centre of mass), body moment, leading edge pressure and
wake profiles. Then §4 addresses emerging analytical properties as shaping and mass increase. A
crucial relation, C = O(M2/3), is found between the scaled curvature C and mass M for the success
of a skim for a relatively heavy body. Conclusions are provided in §5 along with comments on
more nonlinear effects and further discussion.

2. The skimming model
The body of mass mD and length 2LD is thin and impacts on the water obliquely at a small
angle with horizontal velocity UD, as in [8]. The development of the physical model and
governing equations follows that of Hicks & Smith [8]. Interested readers are encouraged to see
their derivation for further details. Our purpose here is to build upon this study and several
others [9,10,13,28] by investigating the unexplored combined effects of underbody curvature and
mass, producing new physical insights through numerical and analytical investigations of such
skimming body interactions and showing the dominant underlying physics at different stages of
the skimming motion.

In the body frame, i.e. relative to the centre of mass, non-dimensional Cartesian coordinates
(x, εy) are measured with respect to LD, where the small constant ε represents the typical angles
involved, and the freely moving underbody surface y = h can then be described by

h(x, t) = Y(t) + xθ (t) − T(x). (2.1)

Here, time is UDt/LD, T(x) is the fixed shape of the underbody, θ is the scaled rotation angle
and Y denotes the perturbation height of the centre of mass, which lies at the mid-point x = 0
in the present cases. The leading and trailing edges of the body are at x = −1, x = 1, respectively.
The governing equations and conditions presented below form the basis for the numerical and
analytical investigations in subsequent sections.

During the skim, only the pressured or ‘wetted’ underbody is subjected to the excess pressure
of the water flow beneath, while the remainder of the body surface is subjected to atmospheric
pressure (taken as zero without loss of generality). The surrounding atmosphere, typically air,
is thus treated as a void whose dynamics has a negligible effect during the skim. In practice
air cushioning as in [29–32] could be significant; as yet no rational means of incorporating air
cushioning into a skim model has been found but we should mention in passing that research by
FTS with Ellen Jolley is underway. In the current model, if x = x1(t) is the moving contact point at
the front of the wetted underbody at time t then the body motion is described by

MY′′ =
∫ 1

x1

p(x, t) dx (2.2a)

and

Iθ ′′ =
∫ 1

x1

xp(x, t) dx, (2.2b)

which account for the vertical and rotation motions. Here, the pressure is ρDU2
Dp with ρD

being the water density, while M, I denote the scaled mass and moment of inertia given by
mDε/(ρDL2

D), IDε/(ρDL4
D) in turn. For the time scales of interest, the body’s horizontal motion

in the laboratory frame consists of a constant x-wise velocity of unity in scaled terms, since the
horizontal forces on the thin body are relatively small, and this then supports the fixed-origin
assumption in the body frame used in the present work.

The water flow is modelled as free of viscous, gravity and capillary effects because of the
large typical Reynolds, Froude and Weber numbers (e.g. for a 5 cm stone travelling at a speed of
10 ms−1 on a water layer: Re ∼ 75 000, Fr ∼ 200, We ∼ 67 000, or for a 5 mm particle at a speed of
50 ms−1 : Re ∼ 190 000, Fr ∼ 51 000, We ∼ 170 000) and therefore shallow water equations apply in
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Table 1. Table parameters for the numerical investigations.

parameter value

perturbation height of centre of mass, Y0 4 + 2C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vertical velocity of the body, V0 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

scaled angle of body rotation, θ0 −4 − 2C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

angular velocity of the body,ω0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

scaled body mass,M= 3I scaled moment of inertia, I = 1, 2, 3, 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the small-perturbation form
ht + hx + ux = 0 (2.3a)

and
ut + ux = −px, (2.3b)

when x1(t) < x < 1. These balances concern the kinematic condition and the horizontal
momentum of the water flow, respectively, with the perturbation water velocity u(x, t) and
pressure p(x, t) independent of y due to the uniform oncoming flow and the vertical momentum.
The perturbation height h here is measured with respect to the undisturbed water level. In the
wake region x > 1, the pressure is constant (atmospheric) and so p(1, t) = 0 such that

ht + hx + ux = 0 (2.4a)

and
ut + ux = 0, (2.4b)

giving the water velocity and free-surface height aft of the body.
The conditions holding at the contact point allow for local conservation of mass and

momentum, as a thin splash jet is generated locally, yielding

p + (1 − x′
1)u = 0 at x = x+

1 (2.5a)

and
u + (1 − x′

1)h = 0 at x = x+
1 , (2.5b)

where the prime denotes differentiation in time. Finally, here the condition

p = 0 at x = 1 (2.6)

stems from the Kutta requirement at the trailing edge.
The body motion and the water flow, along with other responses, and indeed the success or

failure of the skim, depend as in Hicks & Smith [8] on the solution properties of the nonlinear
system (2.1)–(2.6) for h, u, p, Y, θ , x1, given that initially h is zero and x1 is unity at time zero.
Further comments on nonlinear influences will be made later. The modelling, equations and
method follow the derivation of [8]; however, the analysis is now extended to study the effects
of the prescribed underbody shape T(x) and the mass M (with the moment of inertia I remaining
proportional to M in practice). The influence of the relationship between the typical thickness size
|T| and the mass is to be investigated below (§3, 4) as they are varied (the parameters used for our
analysis below are shown in table 1).

3. Computational solutions
The stress in this section is on numerical solutions and their properties for O(1) values of the
parameters present. To maintain the physicality of the model, the initial touchdown must occur
at the trailing edge which is required to remain fixed at x = 1 throughout the skimming motion.
Furthermore, we require that the body makes contact with the liquid layer over a single region.
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Clearly, x = 1 must be a simple root of T(x) with the underbody thickness function satisfying
T(1) = T(−1) = 0. Thus

T(x) = (1 − x)

(n−1∑
m=0

amxm

)
,

n−1∑
m=0

am(−1)m = 0, (3.1)

where the am constants are known. If n = 1 then T(x) = 0, giving a flat plate. By contrast, cases
where n = 2, 3, . . . are addressed below (here and §4) since these correspond to a curved body.

To calculate the motion of the body through the water layer, specifically the fluid flow and
body responses in the wetted region [x1, 1], we obtained computational solutions using a seventh-
and eighth-order Runge–Kutta integration. This was with an adaptive step size [33] initiated by
applying the small-time conditions set out in [8,10]. The code is an adaptation of a freely and
openly available solver [34], which has been edited to solve a linear system of equations at each
time step (the code is available online as part of the current paper’s electronic supplementary
material). The contact point x1(t) is determined as part of the numerical scheme, full details of
which are given in [8,10,33].

In all of the computational results in this section, we consider a quadratic underbody shape

T(x) = C(1 − x2). (3.2)

Here, C is the scaled curvature of the underbody. Our main interest is in the influences of M, I
and C on the overall dynamics of the skimming motion and in determining either the successful
rebound of the body (where the wetted region remains within the confines of the body’s length
throughout the skim, i.e. −1 ≤ x1 < 1) or failure due to flooding (where fluid is able to run over
the top of the body [35], i.e. x1 < −1 at some point during the skimming motion).

To begin the exploration of the solution properties for O(1) parameter values, we discuss in
(a) below the fundamental characteristics of the skimming interaction, following the three stage
structure from the analysis in §4. After that, in (b), we highlight solution trends as mass M and
thickness effect C increase with I proportional to M throughout.

(a) The general skimming motion
To explain the entire skimming motion, we provide four figures to be considered together. In
figure 2, the change in the leading contact position x1 throughout the skim(s) is displayed, in
figures 3 and 4, the body’s vertical motion and rotational behaviour are shown respectively, and
finally in figure 5 the contact-point pressure at x1 is presented.

(i) Stage 1: water entry

The skimming motion is initiated at the trailing edge of the body where it makes first contact with
the water layer (x = 1, in figures 1 and 2). Since the body has an initial negative vertical velocity (V
in figure 3), the body descends into the water (Y − Y0 initially falls linearly in figure 3), forming a
region of contact between the body and the water that extends from the fixed trailing edge, along
the underbody, to the leading contact position (x1(t)).

(ii) Stage 2: the majority of the skimming motion

As the body continues to descend, the size of the wetted region grows with x1 moving towards the
body’s leading edge (x = −1). However, throughout this descent, the pressure on the underbody
increases as the water resists the body’s motion (figure 5), decreasing its velocity and causing the
body to rotate in an anti-clockwise direction (ω > 0, figure 4), thus reducing the body’s angle of
incidence (θ − θ0 > 0, figure 4).

At some point during the skim, the wetted region reaches a maximum size, for which two
cases are possible. Firstly, as previously noted, when the body’s mass is too large compared
to the curvature (as shown in figure 2) the wetted region may extend to and pass the body’s
leading edge such that x1 < −1 in effect. This represents the onset of flooding and the body may
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Figure 2. Evolution of contact point x1 as a function of scaled time for varying M= 3I, with I = 1, 2, 3, 4, and varying C =
0, 1, 10, 100. See table 1 for all parameter values. (Online version in colour.)

sink soon afterwards. When this occurs we no longer consider the body’s subsequent motion
(see the case where M = 12 and C = 0 in figure 2). In this instance, the pressure under the body
has not grown large enough to reverse its downward trajectory and thus the body fails to move
upwards.

Secondly, however, if M and I are not too large compared with C (for the given initial
conditions) then x1(t) > −1 throughout the entire skimming motion, and a rebound occurs. At
a particular time during the skimming motion, the vertical velocity becomes positive and the
body begins to ascend through the water layer with the wetted region beginning to shrink (as
depicted by the leading contact position moving back towards x = 1). Throughout this process,
the pressure under the body reaches a peak and also begins to fall towards zero while (in most
cases) the body continues to rotate in an anti-clockwise fashion.

(iii) Stage 3: water exit

When the above drop in pressure occurs the body is close to exiting the water layer. While the
leading contact point gets closer to the trailing edge the pressure rapidly tends to zero [8]. This
causes the body’s vertical and angular velocities to tend to a near constant over a short time
period. When x1(te) = 1, at some exit time te, the body leaves the water layer at a height Y(te) with
an angular inclination of θ (te). These values will then determine the body’s subsequent flight
through the air; this air flight is not considered here.

While the above description is true in general, some very interesting dynamics can occur
when different values of body mass (M), moment of inertia (I) and underbody curvature (C) are
considered, which we proceed to do next.
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Figure 3. (a) Evolution of centre of mass height Y as a function of scaled time. (b) Evolution of vertical velocity V as a function
of scaled time. Each plot is for varyingM= 3I, I = 1, 2, 3, 4, and varying C = 0, 1, 10, 100. See table 1 for all parameter values.
(Online version in colour.)

(b) The effect of increased underbody curvature on a heavy-body skim
(i) Duration of skimming motion

The size of M and I relative to C affects the duration of the skim and thus the magnitude of body
wetting (e.g. the minimum value of x1). For a flat body (C = 0) or cases of comparatively small C
relative to M and I (e.g. C = 1) the duration of the skim increases with M and I as does the amount
of body wetting. However, when C increases there is a significant influence from the underbody
curvature on the body trajectory leading to shallower water penetration, a reduction in skimming
duration towards a limit and a more rapid exit. Notably, when M = 12 the flat-body floods but
increased curvature prevents this from occurring such that curved, heavier bodies are able to
sustain full skimming motions that would otherwise flood or potentially sink equivalent flatter
bodies.

(ii) Qualitative change in underbody pressure

The variation in body wetting is largely accounted for by the qualitative change in underbody
pressure that occurs with increased C. When the body’s mass is smaller, a larger value of body
curvature results in a greater magnitude of pressure throughout the skimming motion. Yet,
when the body begins to ascend through the water the pressure also reduces more quickly, a
phenomenon which is associated with the body’s more rapid exit. On the other hand, when we
consider the largest values of M and I, if C is relatively small, the overall shape of the pressure
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Figure4. (a) Evolution of scaled angle of rotationθ as a function of scaled time. (b) Evolution of angular velocityω as a function
of scaled time. Each plot is for varyingM= 3I, I = 1, 2, 3, 4, and varying C = 0, 1, 10, 100. See table 1 for all parameter values.
(Online version in colour.)

curve changes with a higher pressure sustained for longer towards body exit (for comparative
values of C). By increasing C, this trend is counteracted, indicating that there is a value of C
relative to M and I at which the influence of body curvature on the skimming dynamics overtakes
those of the mass and moment of inertia (e.g. compare the curve of C = 0 with those for the other
C values when M = 9).

(iii) Inhibition of vertical motion

The body’s vertical motion changes dramatically with increased M and I; however, larger values
of C are shown to inhibit this (figure 3). In detail, when M and I are comparatively small relative
to the body curvature, the body leaves the water at a lower height than it entered with a smaller
magnitude of vertical velocity (Y − Y0 < 0 and V < V(0) = 1 in figure 3). Yet, when M and I
increase and C remains small a so-called ‘super-elastic response’ is possible which has remarkably
different characteristics. In particular, the body is able to leave the water layer with far greater
vertical velocity and at a greater height than it entered with. This curious response is a result of
the body’s angle of inclination and a developing splash jet under the body working to convert a
proportion of the water’s large horizontal kinetic energy into vertical kinetic energy that propels
the body out of the water layer. It is found however that with increased C this super-elastic
response is inhibited both in terms of velocity and the exit height of the body. For an example
of this see the case for M = 9 in figure 3 as C increases (a result of the change in the pressure
profile under the body).
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(iv) Suppression of body rotation

In each of the cases presented in figure 4, an initial anti-clockwise moment on the body causes
the body’s angular velocity to increase and thus decrease its angle of inclination. For most cases,
this trend continues throughout the skimming motion until near to the body’s exit. However,
when C is small, and M and I are comparatively large, there is a reversal in the body’s rotation
that increases its inclination. This is a consequence of the heavy body resisting the rotational
torque which, in part, enables the super-elastic responses for heavier cases (i.e. the body remains
in contact with the water layer for longer, maintaining higher positive pressure under the body
which in turn leads to the super-elastic response). Once again, however, larger body curvature
works to inhibit the effects of larger mass such that the body behaves similarly to a flat plate with
no reversal in the rotational dynamics.

(v) Reduction of wake effects

The water layer velocity and free-surface height perturbations in the wake of the body (2.4a),
(2.4b) are presented for successful skims in figures 6 and 7, respectively. The profiles show the
characteristics of the developed wake of each case addressed above close to body exit, i.e. at
a time te − 0.5, where te is the time of body exit. When the body’s mass increases (relative
to body curvature), the wake’s profile is stretched in the positive x-direction (downstream).
Additionally, larger mass produces a marginal increase in the velocity of the free-surface and
a significant increase in the height of the free-surface aft of the body. When C is increased, the
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the results for varyingM= 3I, I = 1, 2, 3, 4, and varying C = 0, 1, 10, 100. See table 1 for all parameter values. (The profile for
M= 12 and C = 0 is omitted due to flooding.). (Online version in colour.)

wake effects are reduced in the x-direction yet remain of a similar order of magnitude (although
interestingly, larger negative perturbation velocities are seen close to the body’s trailing edge).
Thus, approximately, the body’s mass influences the free-surface height and velocity and the
overall magnitude of the wake’s length, while the body’s curvature modulates the extent to which
these effects persist aft of the body (for a given body mass).

4. Analysis for large mass and large curvature
The emphasis now is placed on analysing the skimming system when M, I, C are all increased
and then on identifying the vital relationship between C, M for skimming to succeed, with I kept
proportional to M throughout. As shown above, by increasing the body’s mass and inertia relative
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to its curvature, the duration of the skim increases and flooding becomes more likely, while in
some cases a super-elastic response is possible. Yet, with increased C the depth of the body’s
penetration diminishes and the time to exit shortens. The competing effects of large M and I and
increased C are considered in detail below, returning to the original interaction equations of §2.
This applies for a general smooth shape of the underbody T and it is found possible to determine
the contact position x1(t) more analytically here as well as identifying the balance C ∼ M2/3 as a
distinguished scaling. There are three temporal stages as described in (a–c).

(a) Stage 1: water entry
The first stage, soon after entry, follows [10] exactly since M and I play no significant role within
the entry stage. To summarize the salient points here, for small time, the body has just entered
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the liquid layer; hence the leading contact point and trailing edge of the body nearly coincide.
As a result, there is a small spatial scale for body wetting near the entry point x − 1 = C−1x∗
(as indicated by the orders of magnitude) with x∗ of O(1). A distinguishing feature of this first
stage is the comparability between horizontal body speed and wetting speed and thus time
scales as t = C−1t∗ (corresponding to the contact speed being of order unity). Additionally, the
underbody function T is small and O(C−1). Given the small length and time scales the effects of
increased mass and moment of inertia are delayed until the next stage of the skimming motion.
Furthermore, since the initial body velocity is O(1) and the body surface is highly curved, we
expect the variations in u, p, h, Y, θ to all be O(C−1).

Expanding the variables with respect to these scales and substituting into the equations of
motion leads to a single nonlinear ODE (the workings of which are found in [10])

(τ − V∗∗t∗)χχ ′′ + {χτ ′ − 2V∗∗χ + (τ − V∗∗t∗)(χ ′ − 2)}χ ′ + 2V∗∗χ = V∗∗t∗, (4.1a)

where χ (t∗) = x∗
1(t∗), τ (t∗) = sx∗ + qx∗2 is the scaled underbody shape with s and q both O(1)

constants, and V∗∗ = V∗
0 + ω∗

0 is a constant comprised of the scaled vertical velocity and scaled
angular velocity. Also here x1 = 1 + C−1x∗

1. The response at large t∗ shows the growth

x∗
1 ∼ λt∗2/3 + · · · , f ∗

1 ∼ μt∗ + · · · , (t∗ → ∞), (4.1b)

where λ = −(3V∗∗/(4q))1/3, μ = 2qλ3/3. In addition, the other properties act according to

(u∗, p∗, h∗, T∗) ∼ qλ2(1, −1, −1, 1)t∗4/3 + O(t∗). (4.1c)

Altogether, the large t∗ behaviour here informs the onset of the next stage, the majority of the
skimming motion, in which we see new dynamics owing to the large curvature and increased
mass.

(b) Stage 2: the majority of the skimming motion
The second stage explains the majority of the skimming motion featuring the body’s downward
and upward movement through the water layer (if a successful rebound occurs). In contrast to
stage 1, the lift and moment on the body are now significant as the time t now rises to O(1). We
first summarize the M ∼ 1 findings in [10]. The key results for M of order unity, deduced from
(4.1b), (4.1c), are that the spatial scale here is x − 1 = C−1/3X with X of O(1) and the expansion of
the solution along with the underbody shape takes the form

x1(t) − 1 = C−1/3X1(t) + C−2/3X11(t) + · · · , (4.2a)

(p, h, u, T − C2/3σ1X) = C1/3(p̄0, h̄0, ū0, T̄0) + (p̄1, h̄1, ū1, T̄1) + · · · (4.2b)

and (Y, θ ) = (Cσ2 + Ȳ0, Cσ1 + θ̄0) + · · · . (4.2c)

Substituting these expansions into (2.2) and (2.3) and working through, it can shown that the
body’s progression through the liquid layer can be determined by a linear ODE

Z′′′ = −c1Z, (4.3a)

where Z = X3
1 and c1 = (I + M)/(2IM) is a positive constant. Of note, this ODE is formulated using

a local underbody shape correction of T̄0(X) = qX2. The initial condition must match the trend
(4.1b) from the first stage such that

Z ∼ λ3t2 as t → 0+, (4.3b)

with λ3 = −3V∗∗/(4q) being negative.
For increased-mass effects, we consider (4.3a) when the mass M becomes large; then the

constant c1 ∼ 1/M which implies that the time scale increases like M1/3. Furthermore, the initial
condition (4.3b) continues to hold over a large portion of time since the influence of the right-hand
side of (4.3a) is delayed, suggesting that Z becomes of order M2/3 and thus X1 grows as M2/9. This
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correction term then overtakes the dominant term in (4.2a) when M is as large as C3/2, providing
the new feature of interest here when mass is large.

Therefore, we deduce, and highlight, the scaling

C = M2/3C∗,

with C∗ of O(1) as the new setting of the present analysis. This leads to a new distinguished time
scale of O(M1/3) which brings in the lift and moment significantly. These arguments then imply
the following scales and expansions:

x1(t) − 1 = O(1), x′
1 = M−1/3 dx1

dt∗
, (4.4a)

(p, h, u, T) = M2/3 (p0, h0, u0, T0) + M1/3(p1, h1, u1, T1) + · · · (4.4b)

and (Y, θ ) = M2/3C∗(σ2, σ1) + M1/3(Y0(t∗), θ0(t∗)) + · · · . (4.4c)

Notably, the initial conditions require σ1 + σ2 = 0 and according to (4.4a) the underbody is wetted
substantially. Substitution of (4.4a)–(4.4c) into (2.2) and (2.3) gives the balances

Y′′
0(t∗)

C∗σ2
= 1

2
(1 − x10(t∗))2 − 1

C∗σ2

∫ 1

x10

T0(x) dx, (4.5a)

I∗θ ′′
0 (t∗)

C∗σ2
= 1

6
(1 − x10(t∗))2(2x10(t∗) + 1) − 1

C∗σ2

∫ 1

x10

xT0(x) dx (4.5b)

and
Y0(t∗) + θ0(t∗)

C∗σ2
= 2x′

10(t∗)
(

(1 − x10(t∗)) − 1
C∗σ2

T0(x10(t∗))
)

, (4.5c)

where x10 comes from the expansion of x1 = x10 + M−1/3x11 + · · · . Thus, the motion of the body
during this stage reduces to the above nonlinear system of equations.

The initial conditions at small time t∗ follow from (4.3b) or from (4.1b) and (4.1c) to give

x10(t∗) ∼ 1 − λ∗t∗2/3, (4.6a)

Y0(t∗) ∼ V0t∗ (4.6b)

and θ0(t∗) ∼ ω0t∗, (4.6c)

as t∗ → 0+, with λ = (3(V0 + ω0)/(2d2T0/dx2(1)))1/3 being a positive constant.
The form (4.5a)–(4.5c) holds for a general shape T0(x). Solutions for T0 = (1 − x2) with V0(0) =

−1, ω0(0) = 0, σ1 = −σ2 = −2, I = 10, 100, 1000, M = 3I and C∗ = 5 and 1000 are shown in figure 8.
Overall, closer agreement is seen between the asymptotic solutions (4.5a)–(4.5c) and the numerical
calculations of the full system (2.1)–(2.6) during the portion of the skim when the body is
descending into the liquid layer, and matches more closely towards the exit when the body mass
is larger or x1 remains small overall (i.e. when C∗ is large). In figure 8a, the scaled leading edge
position of the wetted region is presented. For smaller values of C∗, e.g. C∗ = 5, we see x1 tends
closer to −1 (the leading edge of the solid body) and the duration of the skim increases. When C∗
increases in magnitude the large curvature dynamics of [10] begin to dominate with the exit time
tending towards a limit and with x1 remaining close to 1.

These trends are further confirmed by figure 8b,c where the vertical movement of the body
and its rotational dynamics are shown, respectively. In particular, for C∗ = 5, the exit height
and velocity are far greater in comparison to those for larger values C∗, with the super elastic
response of a heavy body possible for smaller values of C∗ still. Additionally, the large mass
rotational dynamics are also seen with the body rotating more slowly and potentially reversing
(which occurs for C∗ < 1). When C∗ increases, the curves for Y0, V0, θ0 and ω0 each tend to a limit,
confirming the large curvature dynamics.
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andω (ii) using (2.1)–(2.6) for C∗ = 5 and C∗ = 500 (labelled). (Online version in colour.)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 J

an
ua

ry
 2

02
3 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220311

..........................................................

The ending of stage 2 has the overall shape effects represented by T0 becoming negligible since
exit is approached; a square-root response arises in the contact point behaviour such that

x1 ∼ 1 − k(t∗0 − t∗)1/2 as t∗ tends to t∗0−, (4.7)

as in the very recent work [28]. Here, k is a positive constant.

(c) Stage 3: Water exit
The final stage of the skim takes place over a short time scale t, deduced from the behaviour (4.7)
to be of order M−1/3 relative to the end value M1/3t∗0 found in the previous stage. The moving
contact-point location takes the form

x1 = 1 − O(M−1/3). (4.8)

This leads to the final exit process, with the underbody shape now having little effect. The time
scale M1/3 is consistent with the trend of the numerical results in figures 2–4 as M and I increase.

5. Conclusion
The skimming of a thin and heavy solid body following its oblique impact onto a water layer
has been explored computationally and analytically using an inviscid spatially two-dimensional
model with small-angle approximations. A special focus has been on understanding physically
and quantifying the previously unexplored role of the underbody shape (represented by scaled
curvature C) in combination with body mass (scaled as M) in determining the evolution of the
contact point position at the front of the wetted area of the underbody. A crucial balance is seen
to arise between C and M2/3 in terms of orders of magnitude, that is

C ∼ M2/3. (5.1)

Thus increased convex curvature of the underbody implies an increased likelihood that the skim
will be successful. The time scales as C1/2 for increasing curvature and mass. The balance between
the curvature (shape) C and mass M therefore determines the dynamics seen during the skimming
motion. Specifically, while large mass leads to deeper, longer skimming motions, larger wake
effects that extend further aft, and the potential for a super elastic response, when curvature is
increased these effects are much inhibited and indeed shortened (mainly due to the underbody
shape qualitatively and quantitatively changing the pressure response under the body). The
precise conditions at entry also play a part while body weight (Mg), largely negligible during
the skim, matters during any flight through air between successive skims. The study here which
covers all smooth shapes of body in principle shows that shape is an important influence in the
early and middle phases of a successful skim but less significant during the final exit phase as the
body rebounds from the water.

A major finding is that for any mass of particle there is a critical value of the underbody
curvature that would produce maximal wetting; for curvatures above the critical value a body
will successfully skim for the given initial conditions. Further, the occurrence of a super-elastic
response in the exit vertical velocity and in the corresponding height of the body is inhibited
when curvature is suitably increased. This is in addition to the specific scales identified in the
previous paragraph.

The physical understanding and prediction of skims for bodies that are, in a sense, both fatter
and heavier than previously addressed may prove helpful for future direct numerical studies.
The small-perturbation approach in the current paper, while nonlinear, is more analytical with
formulaic results and is often quite realistic in covering wide parameter ranges. The moving
contact point is determined fairly readily by this method whereas it can be a difficult property to
pin down in direct computational approaches, for example. The analysis also enables the question
raised in the introduction concerning successful heavier-body skims to be given an affirmative
answer.
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The particular novelty of this study lies in the consideration and interplay of body thickness
and convex curvature or underbody shaping of the body with increased mass. These factors
lead to new asymptotic results that show the dominant underlying physics at different stages
of the skimming motion. Therefore, the presented analysis is distinct from previous studies in
which flat bodies are of concern [8,28] and those in which underbody shape varies but with
smaller mass [10]. The above considerations thus tend to make the modelling more physically
realistic than before. The combined influence of body shape and mass is potentially important:
for instance (5.1) implies that a body whose mass or weight is increased by a factor of 8 say
can still skim successfully provided its convex curvature is raised by a factor of 4. It would
be helpful to also extend the modelling to allow for three spatial dimensions, including the
influence of spin about the vertical axis which appears to be central for the air flights between
skims. There are other physical effects neglected here that are present in real applications
to varying degrees of significance: air effects may be among the most notable in certain
circumstances.

Several points are of much potential interest to the applications mentioned in the introduction,
especially to industry. For instance, the work shows a range of skimming motions which could
be relevant in the aircraft icing context. First, flooding and sinking can lead to ice growth
in a liquid layer. Second, for different bodies, completed skims generate a range of post-
skim trajectories depending on curvature and mass. Given a relatively consistent range of ice
particle densities, continued analysis could match parameter ranges to what dynamics may
be seen (e.g. concerning when super-elastic rebounds may occur). Usually the rather ‘erratic’
response of skimming particles makes their post-skim trajectories very hard to predict. Future
modelling could also address post-ejection trajectories with rotational dynamics/multiple skims,
leading perhaps to very interesting re-entry orientations and initial conditions. Third, the super-
elastic response is of much interest as regards the interaction with oncoming air flow in
practice and the possibility of destabilization of the air flight. Fourth, a wider range of shapes
ideally needs to be considered, including a relaxing of the sharp trailing edge assumption
(see [12,13]).
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Appendix A. Comment on the numerical methods and solutions
The results presented in figures 2–8 were computed in MATLAB R2020b on a computer
with a 2.60GHz Intel(R) Core(TM) i7-9850H processor and 16GB of RAM. The system of
equations solved is presented in (2.1)–(2.6), and forms six ODEs and four linear equations
that are solved simultaneously at each time step. To verify the code, initial computations
were performed to replicate and compare with the solutions presented in Hicks & Smith
[8]. Furthermore, our comparisons between the numerical results for the full system and the
asymptotic solutions developed within the current paper (and the preceding papers [10,28])
provide further verification of the modelling.

As the body enters or exits the liquid layer, x1 is near to the trailing edge at x = 1. The numerical
solutions are particularly sensitive here, requiring an accurate small-time solution (presented in
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Table 2. The typical runtimes of analysis presented in figures 2–5 in seconds for skimmingmotions of varyingmass and scaled
underbody curvature.

runtime in seconds C = 0 C = 1 C = 10 C = 100

M= 3 0.4375 1.9460 3.7786 5.1647
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 6 0.8517 2.2895 4.1036 5.4828
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 9 1.3992 2.8425 4.4851 5.8387
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 12 1.6251 3.5418 4.9271 6.2381
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Maximumpercentage errors for x1 comparing the solutions for computations using an adaptive time stepmethodwith
those using a fixed, higher resolution time step method.

maximum x1 error C = 0 (%) C = 1 (%) C = 10 (%) C = 100 (%)

M= 3 0.1441 0.0881 0.0209 0.0101
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 6 0.0863 0.0577 0.0233 0.0156
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 9 0.5363 0.3269 0.0287 0.0290
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 12 0.0177 0.5132 0.0456 0.0108
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Maximumpercentage errors for Y comparing the solutions for computations using an adaptive time stepmethodwith
those using a fixed, higher resolution time step method.

maximum Y error C = 0 (%) C = 1 (%) C = 10 (%) C = 100 (%)

M= 3 0.0130 0.0089 0.0020 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 6 0.0241 0.0120 0.0024 0.0003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 9 0.0345 0.0166 0.0031 0.0003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 12 0.0156 0.0269 0.0035 0.0004
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[10]) and an accurate ODE solver. To this end, we employed a seventh/eighth-order Runge–Kutta
method with adaptive time stepping using a minimum time-step size of 10−6 and a maximum size
of 10−2. The spatial error tolerances are set at 10−6, which is used to determine when time step
needs to be changed for increased accuracy or improved runtime. Of note, parallelization was not
used since the typical runtimes last only a few seconds (stated below).

Firstly, we show the running time for the analyses presented in figures 2–5. Sixteen examples
of skimming motion are shown in these figures, for increasing mass values of M = 3, 6, 9 and 12,
and scaled body curvature of C = 0, 1, 10, 100. In each case, the code is reasonably fast due to the
adaptive time stepping increasing the step size when appropriate. The values included in table 2
are from a single run of the code and represent the typical runtime of our analysis. Of interest,
the time steps for the computation near entry and exit are calculated to be O(10−6), while for the
majority of the skimming motion they are O(10−2), reflecting the greater need for accuracy when
x1 is close to the trailing edge.

Secondly, we present the percentage error for the data presented in figures 2–5 (produced using
an adaptive time-step method as detailed above) compared with solutions using a fixed time
step of size 10−6 throughout (notably, smaller timesteps result in unreasonable run times with no
benefit in incremental accuracy). In tables 3–7, we present the maximum percentage errors across
the whole solution of each as a percentage difference of the refined solution.
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Table 5. Maximumpercentage errors for V comparing the solutions for computations using an adaptive time stepmethodwith
those using a fixed, higher resolution time step method.

maximum V error C = 0 (%) C = 1 (%) C = 10 (%) C = 100 (%)

M= 3 0.0099 0.0057 0.0010 0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 6 0.0202 0.0078 0.0011 0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 9 0.0317 0.0111 0.0013 0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 12 0.0160 0.0163 0.0014 0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6. Maximumpercentage errors forθ comparing the solutions for computations using an adaptive time stepmethodwith
those using a fixed, higher resolution time step method.

maximum θ error C = 0 (%) C = 1 (%) C = 10 (%) C = 100 (%)

M= 3 0.0276 0.0166 0.0043 0.0007
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 6 0.0288 0.0153 0.0051 0.0008
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 9 0.0273 0.0144 0.0055 0.0010
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 12 0.0092 0.0152 0.0057 0.0011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 7. Maximum percentage errors for ω comparing the solutions for computations using an adaptive time step method
with those using a fixed, higher resolution time step method.

maximumω error C = 0 (%) C = 1 (%) C = 10 (%) C = 100 (%)

M= 3 0.0107 0.0070 0.0017 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 6 0.0118 0.0060 0.0014 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 9 0.0206 0.0058 0.0014 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M= 12 0.0154 0.0101 0.0013 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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