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Abstract

Stochastic partial differential equations (SPDEs) are crucial
for modelling dynamics with randomness in many areas in-
cluding economics, physics, and atmospheric sciences. Re-
cently, using deep learning approaches to learn the PDE solu-
tion for accelerating PDE simulation becomes increasingly
popular. However, SPDEs have two unique properties that
require new design on the models. First, the model to ap-
proximate the solution of SPDE should be generalizable over
both initial conditions and the random sampled forcing term.
Second, the random forcing terms usually have poor regular-
ity whose statistics may diverge (e.g., the space-time white
noise). To deal with the problems, in this work, we design
a deep neural network called Deep Latent Regularity Net
(DLR-Net). DLR-Net includes a regularity feature block as
the main component, which maps the initial condition and the
random forcing term to a set of regularity features. The pro-
cessing of regularity features is inspired by regularity struc-
ture theory and the features provably compose a set of basis to
represent the SPDE solution. The regularity features are then
fed into a small backbone neural operator to get the output.
We conduct experiments on various SPDEs including the dy-
namic Φ4

1 model and the stochastic 2D Navier-Stokes equa-
tion to predict their solutions, and the results demonstrate that
the proposed DLR-Net can achieve SOTA accuracy compared
with the baselines. Moreover, the inference time is over 20
times faster than the traditional numerical solver and is com-
parable with the baseline deep learning models.

Introduction
Stochastic partial differential equations (SPDEs) are crucial
for modeling dynamics in many areas including economics
(Barone-Adesi and Whaley 1987), physics (Uhlenbeck and
Ornstein 1930), atmospheric sciences (Hasselmann 1976),
biology (Wilkinson 2018), etc. SPDEs, generalized from
PDEs, take random forcing terms into consideration, and
they are widely used to study the statistical mechanics of
dynamical systems. Plenty of scientific models are formu-
lated in the form of SPDEs, such as Φ4 model arising in
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the stochastic quantisation of quantum field theory (Hairer
2015), and stochastic Navier-Stokes equations modeling the
statistics of turbulent flows (Buckmaster and Vicol 2019) in
atmospheric science. Since SPDEs are so important in sci-
entific areas, studying their dynamics from both theoretical
and numerical aspects is of vital importance in both mathe-
matics and physics.

Recently, integrating AI techniques with differential
equations to accelerate the dynamics simulation is very pop-
ular and there have been many deep learning models arisen
(Kovachki et al. 2021; Lu, Jin, and Karniadakis 2019). A
promising setup is using deep neural networks to model the
solution of parametric PDEs, which maps from input func-
tions (e.g., initial functions) to their corresponding solutions.
For example, Neural Operators (Kovachki et al. 2021) and
DeepONet (Lu, Jin, and Karniadakis 2019) are two network
architectures that can model the PDE operator with theo-
retical guarantees on universal approximation. These mod-
els are trained by supervised learning, relying on pre-given
training samples, which are usually generated by the tradi-
tional numerical solver. However, SPDEs usually have poor
regularity w.r.t the time variable for function-valued noise
and singularity w.r.t space for space-time white noise that
these models do not take into consideration. Directly apply-
ing these kinds of models to learn SPDEs’ solutions will
meet two problems. The first is the universality of these
models to approximate the map from the random forcing
to SPDEs’ solutions is not guaranteed (e.g., the space-time
white noise does not lie in the function spaces in Assumption
1 in Neural Operator (Li et al. 2020c).). The second is that
the sample complexity will be large if the ground truth map-
ping is rough, i.e., it requires more training samples, but the
computational cost of acquiring samples relies on numerical
solvers which may be expensive.

The model feature vectors (Chevyrev, Gerasimovics, and
Weber 2021) inspired by the regularity structure theory
(Hairer 2014) compose a set of bases of SPDEs’ mild so-
lution. They have improved regularity compared to the ran-
dom forcing and have previously been treated as a fixed
feature transformation, on top of which a model may be
built. (Chevyrev, Gerasimovics, and Weber 2021) was the
first work to propose the model feature vector for learning
the SPDEs. However, (Chevyrev, Gerasimovics, and Weber



2021) used the regularity structure as a deterministic feature
extraction and only considered the linear model, which sig-
nificantly limits the effectiveness of this feature to predict
the SPDE solution. Prior knowledge is needed to determine
the number of feature vectors, and its computational cost
grows exponentially as the order of the features becomes
large.

In this paper, we propose a novel approach that combines
the advantages of the model feature vectors with modern
deep learning frameworks. We propose Deep Latent Regu-
larity Net (abbrev. DLR-Net) to model dynamics given by
SPDEs. In contrast to (Chevyrev, Gerasimovics, and We-
ber 2021), the proposed Latent Regularity Net is a train-
able layer, which can be stackable to multi-layers to ex-
tract the high order feature information and tackle the di-
mension issue of model vector features, hence leading to
significant performance boost. The stacked regularity fea-
ture block as the main component, consecutively encodes
the random forcing to regularity features. We prove that the
output features can approximate SPDEs’ mild solutions and
that the terms of the features can be selected in a data-
dependent way. Moreover, the regularity feature block has
fewer parameters compared to the deep-learning-based base-
lines, which is helpful to reduce the sample complexity in
learning.

Our Contributions. We introduce the DLR-Net to model
the dynamics of parametric SPDEs. This deep-learning-
based method has three advantages as follows:
• The DLR-Net utilizes more information from the equa-

tions themselves as we select kernels in regularity feature
blocks as semigroup operators from the linear part of the
SPDEs, which is physics-informed, resolution-invariant,
and then leads to lower loss.

• The DLR-Net is efficient for inferring the solution of
SPDE. With accelerating the regularity feature calcula-
tion, DLR-Net is over 20 times faster than traditional nu-
merical solver and is comparable with the baseline deep
learning models.

• We test the DLR-Net on the dynamic Φ4
1 model, reaction-

diffusion equation with linear multiplicative noise, and
the stochastic 2D Navier-Stokes equation. Using the
DLR-Net, both the testing accuracy and computational
time are enhanced. Specifically, the error is one order of
magnitude lower than other baselines.

Related work
There have been several popular deep-learning-based meth-
ods for modeling the dynamics driven by differential equa-
tions (Lu, Jin, and Karniadakis 2019; Patel et al. 2021; Ko-
vachki et al. 2021; Li et al. 2020b; Bhattacharya et al. 2020;
Nelsen and Stuart 2021; Li et al. 2020a).

Neural ODE and its variants. The neural ordinary dif-
ferential equations (Neural ODEs) (Chen et al. 2018) seek to
learn a function fθ that models an ordinary differential equa-
tion dxt = fθ(xt, t)dt. Afterwards, several variants such
as Neural CDE(Kidger et al. 2020), Neural RDE(Morrill
et al. 2021), and Neural jump SDE(Jia and Benson 2019)

were proposed for modelling differential equations with dif-
ferent structures and regularity. For example, Neural RDE
is proposed for solving rough differential equations, which
has poor regularity w.r.t. time. These models are designed
for modelling the temporal dynamics, while they do not
consider the effectiveness to extract the spatial information,
which limits their performance to process signals varying
both in space and time, e.g., PDE operators.

Neural Operator. The Neural Operators (Kovachki et al.
2021) are generalizations of neural networks capable of
modelling the maps between spaces of functions, e.g.
Fourier Neural Operator (FNO) (Li et al. 2020b). DeepONet
is a representative architecture designed with universal ap-
proximation to approximate an operator. One of the applica-
tions of neural operators is to map a family of functions to
the corresponding solutions of parametric PDEs. By taking
the randomness into consideration, neural SPDE (Salvi and
Lemercier 2021) - a neural operator architecture that takes
the randomness into consideration is proposed for modelling
the SPDE operator.

Path Signature and Model Feature Vectors. Path signa-
ture (Chevyrev and Kormilitzin 2016) is a powerful tool in
the analysis of time-ordered data. In the rough path theory,
path signature can well characterize the path up to a natu-
ral equivalence relation. Model feature vectors (Chevyrev,
Gerasimovics, and Weber 2021) are the multi-dimensional
generalization of path signature, i.e., from the temporal di-
mension to the spatial-temporal dimension. Both path sig-
nature and model feature vectors are used as features in ap-
plications for modelling spatial-temporal data, such as a so-
lution of CDE (Morrill et al. 2021) and SPDE (Chevyrev,
Gerasimovics, and Weber 2021; Hu et al. 2022) respectively.
Because the computational complexity will dramatically in-
crease when calculating high-order signatures, prior knowl-
edge is needed on determining the degree of the features.

In this paper, we propose a deep neural network structure
to generate regularity features. It is motivated by feature en-
gineering for SPDE proposed by (Chevyrev, Gerasimovics,
and Weber 2021), but our designed layer contained train-
able weights, which goes beyond feature engineering. Since
the regularity features incorporate more prior (including the
kernel, the initial condition, and the forcing) of the SPDE, it
is expected to have a better generalization and lower sample
complexity.

Preliminary
Mild solution of SPDE
We consider an SPDE on [0, T ]×D with the following form

∂tu− Lu = µ(u, ∂1u, · · · , ∂du) + σ(u, ∂1u, · · · , ∂du)ξ,
u(0, x) = u0(x), (1)

where x ∈ D ⊂ Rd, t ∈ [0, T ], ∂i := ∂/∂xi, i = 1, · · · , d,
L is a linear differential operator, ξ : [0, T ] × D → R is
a stochastic forcing, u0 : D → R is the initial condition,
µ, σ : R × Rd → R are two functions. Under local Lips-
chitz conditions on µ, σ with respect to suitable norm, this



SPDE has a unique mild solution (Hairer 2014; Salvi and
Lemercier 2021):

ut = etLu0 +

∫ t

0

e(t−s)Lµ(us, ∂1us, · · · , ∂dus) ds

+

∫ t

0

e(t−s)Lσ(us, ∂1us, · · · , ∂dus)ξ dsdy, (2)

where ut(·) := u(t, ·), t ∈ [0, T ]. The space-time white
noise ξ is in space of distributions with negative regular-
ity, i.e., C− (d+2)

2 −ϵ, ϵ > 0 with regularity −(d+2)
2 −. Taking

L := ∆ =
∑d

i=1 ∂
2
i as an example, the following theorem

tells the regularity after operating et∆.1

Theorem 1 (Lemma A7 in (Gubinelli, Imkeller, and
Perkowski 2015)). Let Cα(D) be the Hölder space with
α ∈ R and ut ∈ Cα(D). For every δ ≥ 0, there exists a
constant B independent of ut such that:

∥et∆ut∥Cα+δ ≤ B · t− δ
2 ∥ut∥Cα .

Model Feature Vectors
The concept model in the regularity structures theory (Hairer
2014) is a collection of model feature vectors, which are
multi-dimensional signals designed to approximate the mild
solutions of SPDEs even with low regularity regimes. The
motivation comes from the Picard theorem and Taylor ex-
pansion. According to the representation of the mild so-
lution in Eqn.(2), we define two linear operators I[f ]t =∫ t

0
e(t−s)Lfs ds and Ic[g]t = etLg for any function f :

[0, T ] × D → R and g : D → R. Picard theorem shows
that the following recursive sequence approximates the so-
lution u of equation (1) as n → ∞

u0
t = Ic[u0]t,

un+1
t = Ic[u0]t + I[µ(un) + σ(unξ)]t.

(3)

Using Taylor expansion on µ and σ, we then have the recur-
sive sequence that can approximate ut as m, l, n → ∞2

u0,m,l
t =Ic[u0]t,

un+1,m,l
t =Ic[u0]t +

m∑
k=0

µ(k)(0)

k!
I[(un,m,l)k]t (4)

+

l∑
k=0

σ(k)(0)

k!
I[(un,m,l)kξ]t.

Then, the solution of SPDE can be approximated
by the weighted sum of the features I[(un,m,l)k1 ],
I[(un,m,l)k2ξ], k1 = 0, · · · ,m; k2 = 0, · · · , l, where we
call n as the height, and m, l as the width in the approxima-
tion. Motivated by this, (Chevyrev, Gerasimovics, and We-
ber 2021) develops a tool for feature engineering of SPDEs.

1For general linear operator L, similar results can be estab-
lished with different scaling of t, i.e., t−βδ . (Gubinelli, Imkeller,
and Perkowski 2015)

2Here, we assume µ(u) and σ(u) does not depend on ∂u for
simplifying the description. The following constructed features are
applicable to µ, σ that depend on ∂u.

By the regularity structure theory, the model feature vectors
are obtained by integrals of functionals of u0 and ξ (as I and
Ic are convolution operations). The regularity is improved
according to Theorem 1, i.e.,

∥I[u]t∥Cα+2 ≤ B · sup
t∈[0,T ]

∥ut∥Cα . (5)

Generation of the Model Feature Vectors
We briefly review the generation process of the model fea-
ture vectors (Chevyrev, Gerasimovics, and Weber 2021).
Consider the tuple of non-negative integers α = (m, l) ∈ N2

and n ∈ N. Given an initial feature s : [0, T ]×D → R, and
forcing ξ, the feature set is recursively generated as
S0
α(s, ξ) ={s};

Sn
α(s, ξ) ={I[ξj

k∏
i=1

∂aifi] : fi ∈ Sn−1
α , ai, j ∈ {0, 1},

k ∈ N,1 ≤ k + j ≤ mIj=0 + ℓIj>0} ∪ Sn−1
α , (6)

where n denotes the height of the features, (m, l) denotes
the width of the features, which corresponds to the n,m, l in
Eqn.(4). Taking s = Ic[u0], Sn

α(Ic[u0], ξ) gives the feature
set of Eqn.(1).

Next, we discuss the universality and complexity of the
model feature vectors.
Proposition 1. For the given SPDE in Eqn.(1) and fi ∈
Sn
α , as n,m, l → ∞, there exists coefficients ci to make∑
fi∈Sn

α
cifi tend to the mild solution of the SPDE.

Proof : We only need to prove every term in the summa-
tion on the right side of Eqn.(4) is contained in Sn

α , which
can be proved by hypothesis testing.

Complexity. As the number of model feature vectors
grows exponentially as n increases, the computational com-
plexity also grows exponentially. Therefore, it requires prior
knowledge to determine the order n to achieve less informa-
tion loss and computational cost. It motivates us to design
DLR-Net to better tradeoff the approximation accuracy and
efficiency.

Regularity Feature Transformation as a Layer
in Neural Network

In this section, we introduce the structure of the regularity
feature block (RF block). We combine model feature vectors
and neural networks to obtain better expressiveness in learn-
ing SPDEs. The regularity feature block also benefits from
the transformation I[·] in the generation of model features,
since the regularity of the input function can be improved
according to Eqn.(5).

For computing I[·] and Ic[·] emerging in above model fea-
tures, equivalently to I[f ]t =

∫ t

0
e(t−s)Lfs ds and Ic[g]t =

etLg, the operations I[f ] and Ic[g] satisfy the following
equations:

(∂t − L)I[f ] = f and I[f ]0 = 0, (7)
(∂t − L)Ic[g] = 0 and Ic[g]0 = g. (8)

By discretizing above equations, the values of I[·] and Ic[·]
can be obtained in an iterative manner.
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Figure 1: Architecture of the Deep Latent Regularity Network. DLR-Net takes an initial condition u0 and a stochastic forcing ξ
as inputs. After the transformation by a stack of regularity feature blocks and concatenation of the output features F 1, · · · , F k,
DLR-Net decodes the feature vectors and outputs the prediction of the mild solution u.
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Figure 2: Architecture of the regularity feature block. RF
block takes an initial feature sin, i.e., Ic[u0] or the output ŝout

of another RF block, and a stochastic forcing ξ as inputs. It
outputs the model features F out and the latent sout given by
the MLP.

Discretization. To numerically calculate the value of I[f ],
we discretize the space-time domain [0, T ]×D with D ⊂ Rd

onto the grid G = OT × OX1 × · · · × OXd
, with 0 = t0 <

t1 < · · · < tk < · · · < tK = T and tk+1 − tk = δt.
Now we consider to evaluate the functions and operators on
this grid. The operator L can be approximated by a finite-
dimensional tensor using finite-difference. (We put detailed
examples in Appendix.) Given the grid, the I[f ] is approxi-
mated by numerical method. Here, we use the implicit Euler
scheme, i.e.,

(I[f ]tk+1
− I[f ]tk)− δt · LI[f ]tk+1

= utk+1
· δt. (9)

By rearranging the formula, we have

I[f ]tk+1
= (I[f ]tk + utk+1

· δt) ·M, (10)

where the tensor M is to approximate (Id−L·δt)−1, where
Id denote the identity function, i.e., Id[f ] = f,∀f . In the
following context, when we mention I[·], we refer its dis-
cretized version as above.

Using the discretized spatial grids G, we discretize the op-
erator L as a finite-dimensional tensor with the same size as
the spatial grids. For example, if L equals the 1d Laplace
operator, i.e., L = ∆, the discretized operator using finite
difference is

∆dis =
1

ϵ2



−2 1 0 · · · 0

1 −2 1
. . . 0

...
. . . . . . . . .

...

0
. . . 1 −2 1

0 · · · 0 1 −2

 , (11)

where ϵ is the discretized step. Then we calculate kernel
M = (Id−∆dis · δt)−1. Given the temporal grids, the time
integral in Eqn.(7) and Eqn.(8) can be equivalently repre-
sented as

I[f ]tk+1
= (ft1 ·Mk + ft2 ·Mk−1 + · · ·+ ftk ·M) · δt

(12)

Ic[g]tk+1
= g ·Mk+1 (13)

Remark: To make the pre-processed matrix M applicable to
different resolution, we upsample the training data by linear
interpolation to fit the size of M .

With the pre-calculated M , we introduce the computing
process of the model feature vectors in Eqn.(6).

Computing of Model Feature Vectors. Here we present
the algorithm to compute model feature vectors iteratively.



Algorithm 1: Generation of Model Feature Vectors
Input: Initial feature s, forcing ξ
Parameter: Height n, α = (m, l), discretized operator Ldis

Output: Feature set Sn
α(s, ξ)

1: Calculate M = (Id− Ldis · δt)−1

2: Initial function set S0
α = {s}

3: for p = 1, · · · , n do
4: Generate set Zp

α = {ξj
∏k

i=1 ∂
aifi : fi ∈

Sn−1
α , ai, j ∈ {0, 1}, k ∈ N, 1 ≤ k + j ≤ mIj=0 +

ℓIj>0}
5: for k = 0, 1, · · · ,K − 1 do
6: For f ∈ Zp

α, I[f ]tk+1
= (I[f ]tk + ftk · δt) ·M

7: end for
8: Sp

α = {I[f ], f ∈ Zp
α} ∪ Sp−1

α
9: end for

Next, we introduce the regularity feature block as shown
in Figure 2.

Structure of the Regularity Feature Block. Given a fea-
ture set Sn

α , RF block maps the initial feature sin and the
stochastic forcing ξ to model features F out and a latent vari-
able sout. Note that all of them are defined on the grid G.
Leveraging the property of Sn

α , the regularity feature block
contains two component layers: the first layer is the regular-
ity feature transformation on (sin, ξ); the second layer is a
multi-layer perceptron (MLP), which includes linear trans-
formation plus non-linear activation functions, i.e.,

F out = Sn
α(s

in, ξ), (14)

sout = V sin + MLPW

(
F out) , (15)

where sin, sout ∈ RG , F out ∈ RNF×G , NF = |Sn
α(·, ·)| is

fixed given n, α, and V ∈ RG×G is the learnable weights.
Here, MLPW (F out) is a multi-layer perceptron network with
learnable weights W and non-linear activation functions.

Deep Latent Regularity Network
We move on to introducing the architecture of the Deep La-
tent Regularity Network as shown in Figure 1. For given
SPDEs which have the form in Eqn.(1), our goal is to learn
the mapping from (u0, ξ) to u where u0 is assumed to be
generated by a parametric distribution. We assume the SPDE
is partially observed, i.e., the linear part ∂t − L is known.

Encoder Ic[·]. Let Xi,K be the number of grids on the i-
th spatial dimension and temporal dimension, respectively.
For each sample u0 ∈ RX1×···×Xd with dimension equal
to the spatial grids, the input u0 is encoded by the Ic[·] :
RX1×···×Xd → RX1×···×Xd×K operator, i.e.,

Ic[u0] = u0 · Mc, (16)

where Mc = (Id,M,M2, · · · ,MK).

Connected Regularity Feature Blocks. A sequence of
connected RF blocks is used to extract the model fea-
tures of the target SPDEs. Given k blocks in total, we use
si, F i, i = 1, · · · , k to denote the outputs of the ith RF
block. (Ic[u0], ξ) is fed into the first RF block, while (si, ξ)

is used as the input of (i+1)th block. Next, we concatenate
the model features as [F 1, F 2, · · · , F k] to be the input of
the following decoder.

Decoder. The features output by the regularity feature
blocks can be combined with several types of the decoder
that can deal with the temporal series. Considering the effi-
ciency, we select the Fourier layer in neural Fourier operator
(Li et al. 2020b) as the decoder. Each feature is regarded as a
channel and the neural Fourier operator projects the features
to the solution u. For details about the Fourier layer, readers
can refer to Appendix and (Li et al. 2020b).

Loss function. The DLR-Net is trained in a supervised
way. Given m samples {(ui

0, ξ
i;ui), i = 1, · · · ,m}, we op-

timize the loss function

L(θ) =

m∑
i=1

∥ui − FDLR
θ (ui

0, ξ
i)∥22, (17)

where FDLR
θ denotes the DLR-Net with learnable weights θ.

Optimizers such as Adam can be used to minimize the loss.

Experiments
In this section, we evaluate the performance of DLR-Net
on three SPDEs including the dynamic Φ4

1 model, reaction-
diffusion equation with linear multiplicative forcing, and
2D Navier-Stokes equation with additive noise. We report
the accuracy of two supervised operator learning settings:
ξ → u with observed forcing and fixed initial condition;
(u0, ξ) → u with observed forcing ξ and different u0 sam-
pled from a distribution. In addition, the number of parame-
ters and the inference time per sample are measured as well.

Dynamic Φ4
1 Model

We first consider the dynamic Φ4
1 model with the periodic

boundary condition as in (Chevyrev, Gerasimovics, and We-
ber 2021). It takes the form

∂tu−∆u = 3u− u3 + ξ, (t, x) ∈ [0, T ]×D

u(t, 0) = u(t, 1), (Periodic BC)

u0(x) = u(0, x) = x(1− x) + κη(x),

(18)

where ξ is the space-time white noise. Following the settings
in (Salvi and Lemercier 2021; Chevyrev, Gerasimovics, and
Weber 2021), we choose T = 0.05, D = [0, 1], η(x) =∑k=10

k=−10
ak

1+|k|2 sin(λ
−1kπ(x − 0.5)), with ak ∼ N (0, 1),

λ = 2, and κ = 0 or 0.1 corresponding to the initial con-
dition is fixed or not. The time and space domain is evenly
divided into 50 and 128 points to make the grid OT × OX .
Space-time white noise ξ and reference solution u on this
grid are given by numerical simulator in (Chevyrev, Gerasi-
movics, and Weber 2021) on this grid.

For this equation, we use two RF blocks with height n =
2 and α = (3, 1) in the feature sets. In the decoder layer, we
use 4-layer 2d-FNO with s1 = 16, s2 = 16 and width = 8.

The result is shown in Table 1. We consider two settings,
in both of which our architecture outperforms other bench-
marks a lot with a small network and shorter inference time.



Model #Para Inference N = 1000 N = 10000
time (ms) ξ 7→ u (u0, ξ) 7→ u ξ 7→ u (u0, ξ) 7→ u

Numerical Solver × 4.088 × × × ×
NCDE 272672 0.851 0.112 0.127 0.056 0.072
NRDE 2164356 0.127 0.129 0.150 0.070 0.083
NCDE-FNO 48769 2.079 0.071 0.066 0.066 0.069
DeepONet 159600 0.062 0.126 × 0.061 ×
FNO 6301761 0.235 0.032 0.030 0.027 0.024
NSPDE 265089 0.277 0.009 0.012 0.006 0.006
DLR-Net 133178 0.182 0.0009±0.0001 0.0027±0.0004 0.0004±0.0001 0.0008±0.0001

Table 1: Dynamic Φ4
1 model. We show the l2 errors of the baselines and our model in two settings with training data size

N = 1000 or 10000. Baseline l2 errors are based on (Salvi and Lemercier 2021). Symbol × means not applicable. Results for
DLR-Net are averaged on 3 runs.

Reaction-Diffusion Equation with Linear
Multiplicative Forcing
As the dynamic Φ4

1 model is a parabolic equation with ad-
ditive forcing, we then consider a parabolic equation with
multiplicative forcing as in (Chevyrev, Gerasimovics, and
Weber 2021), which is given by

∂tu−∆u = 3u− u3 + σuξ, (t, x) ∈ [0, T ]×D

u(t, 0) = u(t, 1), (Periodic BC)

u0(x) = u(0, x) = x(1− x) + κη(x),

(19)

where ξ is the space-time white noise scaled by σ = 0.1. T ,
D, η(x), grid and numerical simulator are chosen to be the
same as in the Φ4

1 model.
For this equation, we use two RF blocks with height n =

2 and α = (3, 2) in their feature sets. As for the decoder, we
use 4-layer 2d-FNO with s1 = 16, s2 = 16, and width = 8.

As the parameter numbers and inference time is almost
the same with the dynamic Φ4

1 model, we list the l2 errors in
Table 2. The results show that our model achieves the lowest
error in both of the two settings. The experiments on the two
equations clearly show the effectiveness of DLR-Net.

Stochastic 2D Navier-Stokes Equation
In this section, we aim to evaluate our model on the 2D
Navier-Stokes equation for a viscous, incompressible fluid
in vorticity form

∂tw − ν∆w = −u · ∇w + f + σξ, (t, x) ∈ [0, T ]×D

ω(0, x) = ω0(x) (20)

where u is the velocity field, ω = ∇×u is the vorticity, ω0 is
the initial vorticity, f = 0.1(sin(2π(x1+x2))+cos(2π(x1+
x2))) is the deterministic forcing as in (Li et al. 2020b), ξ is
the random forcing rescaled by σ = 0.05 as in (Salvi and
Lemercier 2021), T = 1, D = [0, 1]2, and the viscosity
coefficient ν = 10−4. We generate the reference solution
as (Salvi and Lemercier 2021) do. Specifically, the time do-
main is evenly divided into 1000 points, and the 2D space
domain is evenly divided into a 64 × 64 grid. Numerical
simulation is then performed on this grid to generate 1000
reference solution samples, which are further downsampled
on 100 evenly divided time points and 16×16 evenly spaced

spatial grid to be our training dataset. More details can be
found in Appendix.

Our target is to model the vorticity ω, which is harder to
learn compared with the velocity u. For this equation, we
use two RF blocks with height n = 2 and α = (2, 1) in their
feature sets. In the decoder layer, we use 4-layer 3d-FNO
with s1 = 8, s2 = 8, s3 = 8 and width = 8.

We first train and evaluate our model on 16 × 16 spatial
grid. As shown in Table 3, the error of our model is the low-
est in both of the settings. Besides, we transfer our model
trained on 16 × 16 grid to evaluate on 64 × 64 grid. Figure
3 shows the numerical simulation references and the pre-
dictions of our model. Although our model is trained on a
coarse grid, it works well on a higher-resolution grid.
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Figure 3: 2D stochastic Navier-Stokes equation. We train
the model on 16 × 16 grid and evaluate on 64 × 64 grid.
(Top): Numerical simulation references. (Bottom): Predic-
tions of DLR-Net.

Ablation Studies
In this section, we do ablation studies on the feature vector
complexity. We control the height n and α in Eqn. (6) of
the feature vector generating process, and present the model
inference time and l2 error on ξ 7→ w in Table 4 and Table 5.
The results show the robustness of our DLR-Net to different
parameters n and α.

Discussion
In this section, we discuss the extension and limitation of the
proposed DLR-Net. DLR-Net provides a framework to effi-
ciently incorporate regularity features in the design of deep



Model N = 1000 N = 10000
ξ 7→ u (u0, ξ) 7→ u ξ 7→ u (u0, ξ) 7→ u

NCDE 0.016 0.087 0.010 0.059
NRDE 0.023 0.584 0.023 0.641
NCDE-FNO 0.015 0.034 0.017 0.019
DeepONet 0.023 × 0.023 ×
FNO 0.0036 0.0063 0.0035 0.0037
NSPDE 0.0016 0.0062 0.0012 0.0026
DLR-Net 0.0006±0.0001 0.0028±0.0005 0.0002±0.0001 0.0006±0.0002

Table 2: Reaction-Diffusion equation. We compare the l2 errors of the baselines and our model with training data size N =
1000 or 10000. Symbol × means not applicable. Results for DLR-Net are averaged on 3 runs.

Model Inference time (ms) ξ 7→ ω (ω0, ξ) 7→ ω
Numerical Solver 18.18 × ×
NCDE 0.683 0.513 0.723
NRDE - - -
NCDE-FNO 0.269 0.571 0.615
DeepONet 0.170 0.492 ×
FNO 0.657 0.084 0.073
NSPDE 0.449 0.052 0.067
DLR-Net 0.896 0.024±0.0001 0.020±0.001

Table 3: Stochastic 2D Navier-Stokes equation. We compare the l2 errors of the baselines and our model in two settings with
1000 training samples. We train and test these models on downsampled 16 × 16 grid. Symbol × means not applicable, and -
means memory limit exceeded. Results for DLR-Net are averaged on 3 runs.

n Inference time (ms) ξ 7→ w
1 0.125 0.0015
2 0.182 0.0009
3 0.394 0.0011

Table 4: Ablation study over the height n of the feature set
Sn
α on Dynamic Φ4

1 model with training data size N = 1000.
α = (m, l) is fixed to be (3, 1).

neural operators. Although the DLR-Net is motivated by the
roughness of the SPDE, the feature calculation described in
section 3.1 can also be applied to PDEs, where ξ is set to
1,∀t, x in Sn

α . We will investigate whether DLR-Net still has
a benefit in modeling PDE in the future. The second exten-
sion is to incorporate other discretization schemes in the fea-
ture calculation, e.g., using finite volume methods to replace
finite difference, which is widely used in CFD. In future de-
velopment, we will include different discretization schemes
as sub-modules of the DLR-Net framework, and apply them
to real-world applications. Moreover, we will combine the
regularity feature transformation with autoregressive mod-
els, such as LSTM, to efficiently simulate SPDE for a long
time, which we will investigate for future work. One lim-
itation is that the DLR-Net relies on a pre-calculated dis-
cretized operator M , which relies on the resolution. A po-
tential adjustment for fast adaption under different settings
is to approximate M using a model, e.g., a neural network,
and pre-train the model for different operators to make it
generalizable. We may investigate it in future work.

m l Inference time (ms) ξ 7→ w
1 1 0.141 0.0014
2 1 0.161 0.0012
3 1 0.182 0.0009
3 2 0.192 0.0014
3 3 0.213 0.0009

Table 5: Ablation study over α = (m, l) of the feature set
Sn
α on dynamic Φ4

1 model with training data size N = 1000.
n is fixed to be 2.

Conclusion
In this work, we introduce DLR-Net as a strong SPDE-
solving tool. By incorporating the regularity feature block,
the DLR-Net absorbs both the advantages of Neural Opera-
tors and regularity structure and makes up for the shortcom-
ings. Experiments demonstrate that not only can the DLR-
Net learn solution operators (u0, ξ) 7→ u of SPDEs, but also
has a much lower error compared with other deep learn-
ing models. In the future development, DLR-Net will be ex-
tended to include different discretization schemes, and it will
be applied to solve a broader range of PDEs or SPDEs from
real-world applications.
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