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Introduction
Dyslipidaemia is an important cardiovascular risk factor (Expert 
Panel on Detection, Evaluation, and Treatment of High Blood 
Cholesterol in Adults, 2001) for people with severe mental illness 
(Osborn et al., 2015), contributing to premature mortality (Firth 
et al., 2019). The link between medications used in the treatment 
of psychosis with dyslipidaemia is well established (Li et  al., 
2020; Ribeiro et al., 2018; Rummel-Kluge et al., 2010). United 
Kingdom (UK) National Institute for Health and Care Excellence 
(NICE) guidelines recommend monitoring blood lipid profiles 
(i.e., total, low-, and high-density lipoprotein cholesterol (L/
HDL-C), triglycerides and the total cholesterol to HDL-C ratio) 
in people prescribed such medications (National Institute for 
Health and Care Excellence, 2014). Evidence and guidance 
regarding medications used for depression, however, are mixed, 
with a paucity of high-quality studies (Hiles et al., 2016; Noordam 
et al., 2015; Raeder et al., 2006; Viscogliosi et al., 2020).

We use the terms ‘antipsychotic’ and ‘antidepressant’ to refer 
to medications in the ‘drugs for psychosis’ and ‘drugs for 
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depression’ sections of the Neuroscience based Nomenclature 
(Nutt and Blier, 2016), respectively. Several important, evidence-
based, interventions – including psychological therapies, antide-
pressant medications, exercise and non-invasive brain stimulation 
– are recommended in the treatment of depression (National 
Institute for Health and Care Excellence, 2022), with antidepres-
sant medications widely prescribed. Several relatively small 
observational studies report associations between antidepressant 
use and dyslipidaemia (Noordam et  al., 2015; Raeder et  al., 
2006), including higher triglycerides and lower HDL-C (Hiles 
et al., 2016; Viscogliosi et al., 2020), even though, in one study, 
most associations became non-statistically significant when 
adjusted for additional potential confounders (Viscogliosi et al., 
2020). Some studies implicate tricyclics as most detrimental 
(Hiles et  al., 2016), and others, selective serotonin reuptake 
inhibitors (Raeder et al., 2006). These studies, however, all had 
limited power to explore the relative effects of individual medi-
cations. A 2006 review concluded that certain antidepressants, 
such as tricyclics and mirtazapine, may negatively impact lipids 
more so than others (i.e., bupropion, venlafaxine, duloxe-
tine), but noted low methodological quality of included stud-
ies and called for robust studies (McIntyre et al., 2006). The 
electronic medicines compendium, which provides access to 
manufacturers’ summaries of product characteristics for 
UK-licensed medicines, does not list lipid-related reactions for 
several antidepressants (e.g., amitriptyline, citalopram/escitalo-
pram, fluoxetine), but lists increased cholesterol as common for 
paroxetine and venlafaxine and rare for sertraline (Electronic 
medicines compendium (EMC), 2022).

Antipsychotic medications are considered a mainstay of treat-
ment in psychosis and multiple meta-analyses report links 
between individual antipsychotics and dyslipidaemia (Li et  al., 
2020; Ribeiro et al., 2018; Rummel-Kluge et al., 2010). A 2010 
head-to-head meta-analysis of second-generation antipsychotics 
(48 blinded randomised trials) reported that olanzapine led to sig-
nificantly greater increases in total cholesterol than aripiprazole, 
risperidone and ziprasidone and that quetiapine led to greater 
increases than risperidone (Rummel-Kluge et  al., 2010). The 
electronic medicines compendium lists increased cholesterol and 
triglycerides as very common for quetiapine and olanzapine (the 
former also linked to adverse L/HDL-C); increased cholesterol as 
uncommon, and increased triglycerides rare, for risperidone; 
hypercholesterolemia and hypertriglyceridemia very rare for clo-
zapine – while lipids are not mentioned for prochlorperazine, and 
lipid changes noted not clinically important for aripiprazole 
(Electronic medicines compendium (EMC), 2022).

Wide inter-individual variation in efficacy and adverse reactions 
of antidepressants and antipsychotics exists. Pharmacogenetics 
could play a significant role in individualising pharmacotherapy 
(Hicks et  al., 2015, 2017). The Cytochrome P450 (CYP450) 
superfamily of enzymes are heavily involved in the metabolism of 
many prescribed medications (Lynch and Price, 2007); with 
CYP2C19 and CYP2D6 heavily involved for antidepressants and 
antipsychotics. The genes encoding these enzymes are highly 
polymorphic and thus represent promising pharmacogenetic tar-
gets (Hicks et  al., 2015, 2017). Individuals can be phenotyped, 
respectively, based on CYP2C19 and CYP2D6 polymorphisms: 
‘normal metabolisers’ carry two homozygous wild-type alleles 
and have normal enzymatic capacity; ‘poor metabolisers’ carry 
two loss-of-function alleles and have no enzymatic capacity; 

‘intermediate metabolisers’ have reduced enzymatic capacity 
compared to normal metabolisers but greater capacity than poor 
metabolisers (e.g., one wild-type and one reduced capacity allele); 
and ‘rapid’ and ‘ultra-rapid metabolisers’ have greater than nor-
mal enzymatic capacity, due to either at least one increased 
function allele or duplications of functional allele(s) (Hicks 
et  al., 2015, 2017). Phenotypes, of which distributions vary 
across ancestries, impact medication plasma concentrations 
and risk of adverse reactions (Austin-Zimmerman et al., 2021; 
Milosavljević et al., 2021), with poor metabolisers predicted as 
most at risk due to greater concentrations.

Few studies have investigated variation in CYP2C19 and 
CYP2D6 and lipid parameters in the context of antidepressants 
and antipsychotics. One study genotyped 150 inpatients with 
depression (most receiving antidepressants and over half also 
receiving antipsychotics) for CYP2C9, CYP2C19 and CYP2D6 
and calculated four combinatory-gene indices, all of which sig-
nificantly correlated with total cholesterol, LDL-C and HDL-C, 
but not triglycerides (Ruaño et al., 2011). A study of 76 patients 
taking risperidone found a significant negative change in HDL-C 
from pre-treatment to 8 weeks post-treatment in carriers of 
CYP2D6*2 and CYP2D6*65 (Lu et  al., 2021). These studies, 
however, did not account for use of other medications such as 
statins, a mainstay of dyslipidaemia prevention and treatment, 
and were too small to draw conclusions.

Aims

Given widespread and increasing use of antidepressants and 
antipsychotics (NHS Business Services Authority, 2022), it is 
important to study potential adverse effects, and their determi-
nants, to inform optimal prescribing strategies and reduce risks at 
the individual- and population-level. Our aims were to investi-
gate (1) if antidepressant/antipsychotic use was associated with 
lipid parameters in a large sample of participants from UK 
Biobank and (2) if CYP2C19 and CYP2D6 genetic variation 
plays a role influencing lipid parameters in participants taking 
antidepressants/antipsychotics. We hypothesised that (1) antipsy-
chotics would be associated with worse lipid profiles than antide-
pressants and (2) the presence of one or more low function 
CYP2C19 or CYP2D6 alleles would be associated with increased 
risk of adverse lipid profiles.

Materials and methods

Study design

This population-based, observational, cohort study used genetic 
and cross-sectional data from UK Biobank (Bycroft et al., 2018; 
UK Biobank, 2007) – a major biomedical database with around 
500,000 participants. UK Biobank received ethical approval 
from the North West – Haydock Research Ethics Committee (ref-
erence: 21/NW/0157). All participants provided written informed 
consent.

Participants

UK Biobank methods have been described elsewhere (UK 
Biobank, 2007). We used data from the baseline visit, where, in 
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brief, participants, aged 37–73, attended one of 22 UK assess-
ment centres between 2006 and 2010 and completed an extensive 
set of measures, including questionnaires and interviews (e.g., 
demographics, medical history, medication use), and provided 
biological samples.

Outcomes

Lipid parameters investigated were total cholesterol, LDL-C, 
HDL-C and triglycerides, measured in millimoles per litre 
(mmol/L), extracted directly from UK Biobank (originally 
derived from non-fasting venous blood samples analysed using a 
Beckman Coulter AU5800). To aid interpretation, we calculated 
and used the total cholesterol to HDL-C (TC:HDL) ratio as an 
additional outcome in analyses addressing aim one.

Exposures

Exposures were (a) antidepressants/antipsychotics and (b) 
CYP2C19 and CYP2D6 genetic metabolic phenotypes. We 
reviewed self-reported ‘regular prescription medications’ data to 
identify all antidepressants/antipsychotics, considering both 
generic and proprietary names (identified through multiple 
sources (European Medicines Agency, 2022; The National 
Institute for Health and Care Excellence, 2022; U.S. Food and 
Drug Administration, 2022)), and combined equivalent medica-
tions under the generic name for analyses. We combined citalo-
pram and escitalopram (the active enantiomer of citalopram) 
(The National Institute for Health and Care Excellence, 2022) as 
one medicine for analyses. We investigated aims in individual 
medications only if reported as being taken by ⩾1800 partici-
pants (consistent with a previous study) (Austin-Zimmerman 
et al., 2021). Medications not reaching this threshold were con-
sidered for inclusion in a higher-level combined group (e.g., all 
antipsychotics together).

For genetic exposures, we leveraged genome-wide genotyp-
ing and processing conducted centrally by UK Biobank (Bycroft 
et  al., 2018). Genotyping was performed using the Affymetrix 
UK BiLEVE Axiom array on an initial sample (50,000 partici-
pants) and the Affymetrix UK Biobank Axiom® array 
(Affymetrix, Santa Clara, CA, USA) for all subsequent partici-
pants. These arrays include >820,000 variants (with good cover-
age of pharmacogenetics variants), with subsequent imputation 
of >90 million variants. Using the fully-imputed dataset, we then 
performed local quality control and assigned CYP450 metabolic 
phenotypes, as described previously (Austin-Zimmerman et al., 
2021). In brief, to include and account for participants of non-
European ancestry (European ancestry was determined cen-
trally), two rounds of principal component analysis were 
conducted (using PC-AiR (Conomos et al., 2015) and PC-Relate 
(Conomos et al., 2016)), identifying four ancestry groups (East 
Asian, South Asian, African, admixed with predominantly 
European origin); participants not clustering with any main group 
were excluded. Subsequent processing excluded variants with 
minor allele frequency <1% and/or Fisher information score of 
<0.3 in each ancestry group; one of each pair of participants with 
a kinship score >0.083 (approximately third-degree relatives); 
and participants with >10% missingness, excessive genetic 
relatedness (>10 third-degree relatives); or a mismatch between 
self-reported and genetically-inferred sex.

To assign CYP metabolic phenotypes, we extracted CYP2C19 
and CYP2D6 regions of interest (defined as one mega-base 
upstream of the 5′ end and one mega-base downstream of the 3′ 
end of the gene). Using an input map and reference panel from the 
1000 genomes project (Delaneau et al., 2014), haplotypes were 
constructed based on genetic data, imputed using Beagle (version 
5.0) (Browning et al., 2018), according to the star allele nomen-
clature system (PharmVar: Pharmacogene Variation Consortium, 
2022) in line with Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guidelines (Clinical Pharmacogenetics 
Implementation Consortium (CPIC), 2021; Hicks et  al., 2015, 
2017). Haplotypes containing no star allele-defining single-
nucleotide polymorphism variants were classified as wild-type 
(*1) alleles for the corresponding gene. We grouped individuals 
into CYP2C19 metabolic phenotypes based on activity of the 
individual haplotypes and resulting diplotypes (PharmVar: 
Pharmacogene Variation Consortium, 2022), and into CYP2D6 
phenotypes according to the activity score method (Gaedigk 
et al., 2008). We did not have data on CYP2D6 copy number vari-
ants and were unable to define CYP2D6 ultra-rapid metabolisers, 
or other whole gene deletions (e.g., CYP2D6*5). Of CYP2D6 
star alleles not called, *5 and *6 are most noteworthy; both are 
associated with poor metabolism, but each have a <3% fre-
quency amongst Europeans (Zhou et al., 2017).

Statistical analysis

Aim one analyses considered all participants with data on at least 
one lipid parameter and, from these, aim two considered partici-
pants with high-quality genetic data that reported taking antide-
pressants/antipsychotics.

In addition to lipid parameters, across each medication group 
– we described participants’ age at recruitment (years), sex, self-
reported ethnic background, body mass index (BMI) (kg/m2), 
selected self-reported illnesses (depression, anxiety, schizophre-
nia, bipolar disorder) and concomitant use of cholesterol-lower-
ing medications. We reported proportions for each lipid parameter 
using national categories (National Health Service, 2019). We 
included a comparison group of participants not taking medica-
tions of interest. In participants with high-quality genetic data 
that reported taking antidepressants/antipsychotics, we reported 
distributions of genetically-determined ancestry group, CYP2C19 
and CYP2D6 metabolic phenotypes and use of strong/moderate 
inhibitors (as per United States Food and Drug Administration) 
(Center for Drug Evaluation and Research, 2021). Means with 
standard deviations, medians with interquartile ranges and/or 
counts and proportions were used, as appropriate.

We ran two linear regression models for each lipid parameter 
as a continuous outcome. The first, using all participants, investi-
gated associations of use of each medication (main predictor) 
with each lipid parameter (outcome), adjusted for age (continu-
ous), sex (binary) and use of cholesterol-lowering medication 
(binary). The second investigated the pharmacogenetic associa-
tions of CYP2C19 and/or CYP2D6 metabolic phenotype (main 
predictor(s)) with each lipid parameter (outcome). These models 
included participants with high-quality genetic data and were 
run in each medication group. CYP2C19 and CYP2D6 were 
modelled together where both genes are majorly involved in the 
metabolism of the medication (as per CPIC) (Clinical 
Pharmacogenetics Implementation Consortium (CPIC), 2021; 
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Hicks et  al., 2015, 2017), with normal metaboliser phenotypes 
used as reference. In addition to age, sex and cholesterol-lower-
ing medication, these models were adjusted for genetic ancestry 
group (categorical) and, as relevant, use of strong/moderate 
CYP2C19 or CYP2D6 inhibitors (binary). We adjusted for strong/
moderate inhibitors (e.g., fluoxetine and fluvoxamine for 
CYP2C19 and paroxetine and quinidine for CYP2D6), as they 
play a major role in phenoconversion, a phenomenon whereby 
drug–gene or drug–drug–gene interactions may result in an 
observed phenotype different from the genetically-predicted phe-
notype (Cicali et al., 2021). We did not adjust for weak inhibitors 
as they have a much less clinically relevant impact on phenocon-
version (Center for Drug Evaluation and Research, 2021) and are 
therefore not typically included when accounting for inhibitors 
(Cicali et al., 2021). We did not adjust for BMI in order to avoid 
the risk of overadjustment bias (Perry and Singh, 2018).

Effect estimates are reported with 95% confidence intervals 
(CIs) and uncorrected p values in tables and forest plots. Given 
analysis of three independent (LDL-C, HDL-C and triglycer-
ides), and two highly correlated/combinatory (total cholesterol 
and TC:HDL ratio (the latter not included in pharmacogenetic 
analyses)) outcomes, we corrected for multiple testing by using 
an adjusted significance threshold of <0.013 (i.e., 0.05/4). 
Analyses were conducted in Stata/MP version 17.0 (StataCorp 
LLC, College Station, TX, USA).

Results

Participants

Overall, 469,739 participants had data for at least one lipid 
parameter. Of these, 36,043 reported taking at least one antide-
pressant, 3255 at least one antipsychotic, while 431,853 did not 
take either. Use of both an antidepressant and an antipsychotic 
was reported by 1412 participants. A wide range of medications 
were reported – with amitriptyline, citalopram and fluoxetine the 
most common antidepressants and prochlorperazine, olanzapine 
and quetiapine the most common antipsychotics (Figure 1). 
Amitriptyline, fluoxetine, citalopram/escitalopram, paroxetine, 
sertraline and venlafaxine met sample size threshold for individ-
ual medication analyses. No individual antipsychotic met thresh-
old; all reported antipsychotics were therefore analysed together. 
Of participants taking antidepressants/antipsychotics, 33,472 had 
high-quality genetic data.

Sample characteristics, including demographics, unadjusted 
lipid parameters and genetic metabolic phenotypes, are shown in 
Table 1 and Supplementary Table 1. Compared to participants not 
taking antidepressants/antipsychotics, median age was similar 
across medication groups, but the proportion of females was con-
sistently higher. Median BMI was highest in participants taking 
venlafaxine (28.4 kg/m2) and antipsychotics (28.2 kg/m2). Across 
antidepressants, participants taking amitriptyline had the lowest 
proportion of self-reported depression (17.5%) and anxiety 
(4.6%), while 27.9% taking antipsychotics self-reported schizo-
phrenia or bipolar disorder. Nearly a quarter (24.7%) of partici-
pants taking antidepressants/antipsychotics were also taking 
cholesterol-lowering medications, compared to around a sixth 
(16.8%) in those not taking antidepressants/antipsychotics. 
Unadjusted lipid parameters stratified by cholesterol-lowering 
medication status are shown in Supplementary Table 2. For 

CYP2C19, most were either normal (13,939, 38.0%) or interme-
diate (10,860, 29.6%) metabolisers, with 1255 (3.4%) poor, 9069 
(24.7%) rapid and 1535 (4.2%) ultra-rapid metabolisers. For 
CYP2D6, most (26,154, 71.4%) participants were normal metab-
olisers, with 1919 (5.2%) and 8585 (23.4%) poor and intermedi-
ate metabolisers, respectively.

Antidepressants, antipsychotics and lipid 
parameters

Significant associations were found with the use of each antide-
pressant and each lipid parameter, respectively, when compared 
to participants not taking the medication (Figure 2, Supplementary 
Table 3). Antipsychotic use was significantly associated with 
lower HDL-C (mean difference: −0.10 mmol/L, 95% CI: −0.11 to 
−0.08, p < 0.001) and higher triglyceride levels (0.31 mmol/L, 
95% CI: 0.28 to 0.35, p < 0.001), but not with total cholesterol or 
LDL-C.

Venlafaxine was associated with the highest levels of total 
cholesterol (mean difference: 0.21 mmol/L, 95% CI: 0.17 to 0.26, 
p < 0.001), followed by paroxetine (0.17 mmol/L, 95% CI: 0.12 
to 0.21, p < 0.001) and sertraline (0.16 mmol/L, 95% CI: 0.12 to 
0.21, p < 0.001). A similar pattern was observed for LDL-C. The 
lowest HDL-C levels were observed with antipsychotics and 
with amitriptyline (−0.08 mmol/L, 95% CI: −0.09 to −0.08, 
p < 0.001). The highest triglyceride levels were observed with 
venlafaxine (0.35 mmol/L, 95% CI: 0.31 to 0.40, p < 0.001) and 
sertraline (0.32 mmol/L, 95% CI: 0.28 to 0.37, p < 0.001). 
Results were similar when excluding participants taking any 
other antidepressants/antipsychotics from the reference group 
(Supplemental Table 4).

We conducted two post hoc analyses. As prochlorperazine 
was the most commonly reported antipsychotic, but is not typi-
cally currently used in the treatment of psychosis or bipolar dis-
order in the UK, we explored the impact of dropping participants 
taking (solely) prochlorperazine (n = 969) from analyses; results 
were consistent with the primary analyses (Supplementary 
Table 5). Given that amitriptyline is often prescribed for pain 
management, we conducted a secondary analysis considering 
amitriptyline only where participants also self-reported depres-
sion (n = 1651); results revealed a much larger adverse associa-
tion of amitriptyline on lipid parameters in this subgroup (e.g., 
triglycerides: 0.42 mmol/L, 95% CI: 0.37 to 0.47, p < 0.001, 
TC:HDL ratio: 0.41, 95% CI: 0.36 to 0.47, p < 0.001), when 
compared the primary analyses (Supplementary Table 5). 
Characteristics of participants in the post hoc subgroups are com-
pared with the overall group in Supplementary Table 6.

The influence of CYP2C19 and CYP2D6 
metabolic phenotypes

Adjusted estimates of the influence of CYP2C19 and CYP2D6 
metabolic phenotypes on lipid parameters across each medica-
tion group are shown in Table 2 and Supplementary Table 6, 
respectively. In participants taking sertraline, the CYP2C19 inter-
mediate metaboliser phenotype was significantly associated with 
an average 0.05 mmol/L higher HDL-C (95% CI: 0.01 to 0.09, 
p = 0.007) and with an average 0.17 mmol/L lower triglyceride 
level (95% CI: −0.29 to −0.05, p = 0.007), compared with normal 
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Figure 1.  Frequency of antipsychotic and antidepressant medication use in UK Biobank participants.
Numbers refer to the number of participants taking each medication. Antidepressants are shown in purple and antipsychotics in green. Medications were self-reported and 
are included if reported by at least 20 participants.
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Figure 2.  The associations of antidepressants and antipsychotics with lipid parameters.
Linear regression models were adjusted for age, sex and concomitant use of cholesterol-lowering medications; effect estimates are coefficients for the main predictor 
variable, which was a binary variable defined by whether participants were taking the relevant medication (or not). A total of 469,591 participants contributed total 
cholesterol data, 468,708 for LDL cholesterol, 429,873 for HDL cholesterol and 469,216 for triglycerides.
HDL: high-density lipoprotein; LDL: low-density lipoprotein; mmol/L: millimoles per litre; TC:HDL: total cholesterol to high-density lipoprotein cholesterol ratio.
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metabolisers (Figure 3). As significant associations were in an 
unanticipated direction, we undertook post hoc analyses exploring 
the impact of cholesterol-lowering medications (Supplementary 
Table 8). Extension of the sertraline HDL-C model to include an 
interaction term for CYP2C19 metabolic phenotype by choles-
terol-lowering medications resulted in a main effect of the inter-
mediate metaboliser phenotype larger than the primary analysis 
(0.08 mmol/L, 95% CI: 0.03 to 0.12, p = 0.001), with an interme-
diate metaboliser phenotype by cholesterol-lowering medica-
tions interaction effect in the opposite direction (−0.10 mmol/L, 
95% CI: −0.19 to −0.01, p = 0.03, n = 126). Stratified analysis 
revealed a statistically strong effect of the CYP2C19 intermediate 
metaboliser phenotype in participants not taking cholesterol-low-
ering medications (0.08 mmol/L, 95% CI: 0.03 to 0.12, p = 0.001, 

n = 424), but no evidence in those taking them. There was no evi-
dence of an interaction in the extended triglycerides model, but 
some evidence in stratified analysis of a stronger association in 
participants not taking cholesterol-lowering medications 
(−0.15 mmol/L, 95% CI: −0.29 to −0.02, p = 0.03, n = 456).

No significant pharmacogenetic associations were found for 
other antidepressants or for antipsychotics. Use of strong/moder-
ate CYP2C19 inhibitors was not a significant predictor of any 
lipid parameter in CYP2C19 substrates. Use of strong/moderate 
CYP2D6 inhibitors was associated with higher triglyceride levels 
in participants taking antipsychotics (0.29 mmol/L, 95% CI: 0.14 
to 0.44, p = <0.001, n = 277). For venlafaxine, although CYP2D6 
inhibitor use was significant for total cholesterol and LDL-C, this 
subgroup was too small to meaningfully interpret (n = 16).
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Figure 3.  The influence of CYP2C19 metabolic phenotypes on lipid parameters in participants taking sertraline.
Linear regression models were adjusted for age (continuous), sex (binary), genetically-determined ancestry group (categorical), concomitant use of cholesterol-lowering 
medications (binary) and use of strong/moderate CYP2C19 inhibitors (binary). The CYP2C19 normal metaboliser phenotype is the reference group.
HDL: high-density lipoprotein; IM: intermediate metaboliser; LDL: low-density lipoprotein; mmol/L: millimoles per litre; PM: poor metaboliser; RM: rapid metaboliser; UM: 
ultra-rapid metaboliser.
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Table 2.  The influence of CYP2C19 metabolic phenotypes on lipid parameters in participants taking antidepressants or antipsychotics.

Predictors Estimate (95% confidence interval) [p value]

Total cholesterol (mmol/L) LDL cholesterol (mmol/L) HDL cholesterol (mmol/L) Triglycerides (mmol/L)

Amitriptyline
  CYP2C19 PM −0.02 (−0.16, 0.12) [0.79] −0.02 (−0.12, 0.09) [0.75] 0.03 (−0.011, 0.08) [0.17] −0.10 (−0.25, 0.04) [0.16]
  CYP2C19 IM −0.02 (−0.08, 0.04) [0.49] −0.02 (−0.06, 0.03) [0.49] 0.00 (−0.02, 0.02) [0.93] −0.05 (−0.11, 0.01) [0.13]
  CYP2C19 RM −0.04 (−0.10, 0.02) [0.23] −0.03 (−0.07, 0.02) [0.26] 0.00 (−0.03, 0.02) [0.66] −0.01 (−0.07, 0.05) [0.78]
  CYP2C19 UM −0.06 (−0.17, 0.06) [0.36] −0.03 (−0.12, 0.06) [0.48] −0.04 (−0.08, −0.01) [0.025] 0.02 (−0.11, 0.14) [0.79]
Citalopram/escitalopram
  CYP2C19 PM 0.08 (−0.05, 0.21) [0.25] 0.05 (−0.05, 0.15) [0.35] 0.03 (−0.02, 0.08) [0.20] 0.03 (−0.10, 0.17) [0.65]
  CYP2C19 IM −0.02 (−0.07, 0.04) [0.54] −0.02 (−0.06, 0.02) [0.42] 0.01 (−0.01, 0.02) [0.54] −0.01 (−0.07, 0.04) [0.67]
  CYP2C19 RM −0.02 (−0.08, 0.04) [0.51] −0.03 (−0.07, 0.02) [0.23] 0.02 (−0.00, 0.04) [0.08] −0.05 (−0.11, 0.01) [0.10]
  CYP2C19 UM −0.05 (−0.17, 0.06) [0.38] −0.04 (−0.13, 0.05) [0.37] 0.01 (−0.03, 0.05) [0.59] −0.08 (−0.20, 0.04) [0.20]
Sertraline
  CYP2C19 PM 0.09 (−0.19, 0.36) [0.53] 0.06 (−0.16, 0.27) [0.61] 0.01 (−0.08, 0.01) [0.88] 0.01 (−0.27, 0.30) [0.92]
  CYP2C19 IM −0.01 (−0.13, 0.11) [0.85] −0.01 (−0.11, 0.08) [0.76] 0.05 (0.01, 0.09) [0.007] −0.17 (−0.29, −0.05) [0.007]
  CYP2C19 RM −0.01 (−0.13, 0.12) [0.93] −0.01 (−0.11, 0.09) [0.88] 0.03 (−0.02, 0.07) [0.24] −0.07 (−0.20, 0.06) [0.32]
  CYP2C19 UM −0.12 (−0.38, 0.14) [0.37] −0.07 (−0.28, 0.13) [0.47] 0.05 (−0.04, 0.13) [0.29] −0.24 (−0.51, 0.03) [0.08]

Linear regression models were adjusted for age (continuous), sex (binary), genetically-determined ancestry group (categorical), concomitant use of cholesterol-lowering 
medications (binary) and use of strong/moderate CYP2C19 or CYP2D6 inhibitors (binary). The CYP2C19 normal metaboliser phenotype is the reference group.
HDL: high-density lipoprotein; IM: intermediate metaboliser; LDL: low-density lipoprotein; mmol/L: millimoles per litre; PM: poor metaboliser; RM: rapid metaboliser;  
UM: ultra-rapid metaboliser.

Discussion
In this population-based, observational, cohort study using 
genetic and cross-sectional data on 469,739 participants from UK 
Biobank, we found that the use of amitriptyline, citalopram/esci-
talopram, fluoxetine, paroxetine, sertraline and venlafaxine were 
each all significantly associated with adverse levels of total cho-
lesterol, LDL-C, HDL-C and triglycerides. In participants taking 
sertraline, we found that the CYP2C19 intermediate metaboliser 
phenotype was significantly associated with higher HDL-C and 
lower triglycerides. Antipsychotic use was significantly associ-
ated with lower HDL-C and higher triglycerides.

Contrasting a previous review (McIntyre et al., 2006), venla-
faxine was the antidepressant associated with the worst lipid pro-
file in our study – with the highest levels of total cholesterol, 
LDL-C, triglycerides and greatest TC:HDL ratio. A similar pro-
file was observed for paroxetine and sertraline, but, apart from 
HDL-C, the range of the CIs were generally less favourable for 
venlafaxine. Amitriptyline, in our primary analyses, was associ-
ated with more modest differences in total cholesterol and LDL-C 
but was associated with the lowest HDL-C levels. Citalopram/
escitalopram appeared to have the least detrimental lipid profile 
– only fluoxetine was associated with a point estimate indicating 
less of a reduction in HDL-C (but with very similar CIs), though 
fluoxetine was associated with higher levels of the other lipids. 
Although amitriptyline was the most frequently reported antide-
pressant in our sample and associated with an adverse lipid 
profile, we anticipated a substantial proportion were taking ami-
triptyline for pain management (and therefore on lower doses 
than used for depression); in post hoc analyses that considered 
amitriptyline only where participants also reported depression, 
amitriptyline was associated with a much worse lipid profile, 
possibly reflecting a dose-response relationship, though this was 
based on a much smaller sample.

Our antidepressant results are consistent with some aspects of 
the 2021 Maudsley Prescribing Guidelines in Psychiatry (Taylor 
et al., 2021), but the latter highlight only venlafaxine, sertraline 
and mirtazapine (not studied here) as raising total cholesterol, 
and venlafaxine and mirtazapine as raising LDL-C. None are 
noted to impact HDL-C or triglycerides (notable given the largest 
effects in this study were observed for triglycerides, which con-
tributes to metabolic syndrome). Overall, our results indicate that 
antidepressants are not benign with regards to lipid profiles – and 
more than typically assumed are in fact associated with adverse 
effects – highlighting the importance of studying individual med-
ications. To date, a greater amount of efforts have been put into 
elucidating the cardiometabolic effects of antipsychotics, where 
baseline and annual monitoring is recommended in NICE guide-
lines (National Institute for Health and Care Excellence, 2014). 
Given that antidepressants are some of the most commonly pre-
scribed medications – over 83 million were prescribed to over 
8.3 million people in England alone in 2021/2022 (with numbers 
increasing year-on-year) (NHS Business Services Authority, 
2022) – it is paramount to fully understand these effects and their 
determinants (genetic and environmental) in order to minimise 
adverse reactions for patients and to reduce cardiovascular risk at 
both the individual and population levels. Considering the mag-
nitude of associations (and their associated CIs) identified, anti-
depressant choice may be most clinically relevant for patients at 
high risk for cardiovascular morbidity, including those with 
severe mental illness or pre-existing cardiovascular disease, 
where, for example, prescribing venlafaxine may be particularly 
detrimental to cardiovascular health and require a detailed risk-
benefit analysis. Policymakers and guideline panels should con-
sider whether the introduction of baseline and regular (e.g., 
annual) monitoring of lipids may be warranted, especially in 
high-risk groups prescribed antidepressants. Antidepressants in 
our study reflect contemporary prescribing in England (Statista, 
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2022), but further research into the effects of others (e.g., mir-
tazapine, duloxetine, trazadone) is needed.

Our pharmacogenetic results suggest that, in people taking 
sertraline, the CYP2C19 intermediate metaboliser phenotype 
could be protective for HDL-C, possibly offsetting the overall 
lower HDL-C associated with sertraline and may also limit the 
higher triglyceride levels otherwise associated with sertraline. 
This is an important finding given that sertraline was dispensed 
over 20 million times in England in 2021 (Statista, 2022). As the 
CYP2C19 intermediate metaboliser phenotype is relatively com-
mon (30% in this sample) and associated with clinically signifi-
cant higher levels of sertraline exposure (Milosavljević et  al., 
2021), these results may have significance at the population-
level, warranting replication and further investigation. A priori, 
we hypothesised that the presence of one or more low function 
CYP2C19 or CYP2D6 alleles would be associated with increased 
risk of adverse reactions such as an altered lipid profile. A similar 
paradoxical finding, of less adverse events in those with reduced 
CYP2C19 metabolic activity taking sertraline, has also been 
reported in a paediatric sample (though lipids were not reported) 
(Rossow et al., 2020). These results suggest that reduced CYP2C19 
activity does not represent a general mechanism of increased 
risk of adverse reactions from CYP2C19 substrates – instead, 
CYP2C19 function may interact in complex (non-linear) ways 
with specific metabolic pathways to possible reactions, some of 
which may be beneficial. For sertraline, post hoc analyses identi-
fied that the effect of the CYP2C19 intermediate metaboliser phe-
notype on HDL-C was observed in participants not taking 
cholesterol-lowering medications. Statins may therefore inhibit 
the observed protective effect through a much stronger impact on 
lipid metabolism in order to achieve their primary therapeutic 
target (LDL-C reduction). Given increasing polypharmacy, fur-
ther research into possible interactions, both drug-drug and drug-
drug-gene, on clinical outcomes and adverse reactions is 
warranted. Nevertheless, we did not find evidence for a role of 
CYP2C19 or CYP2D6 metabolic phenotypes on lipid parameters 
in other medications studied – research into other genes (e.g., 
HTR2A; Noordam et al., 2015; NCAM1 and KIAA1211; Fjukstad 
et al., 2021) could be informative, as well as into other biological 
mechanisms to explain how antidepressants impact lipids.

We were surprised not to find an association between antipsy-
chotic use and total cholesterol or LDL-C, given that this rela-
tionship is well established (Electronic medicines compendium 
(EMC), 2022; Li et al., 2020; National Institute for Health and 
Care Excellence, 2014; Ribeiro et  al., 2018; Rummel-Kluge 
et al., 2010; Taylor et al., 2021). This could have been due to the 
population-based sampling used, which resulted in a relatively 
low number of participants taking each medication – no individ-
ual antipsychotic reached the ⩾1800-participant threshold. Our 
analyses therefore considered all antipsychotics as one poten-
tially heterogeneous group – post hoc analyses; however, exclud-
ing the most frequently reported antipsychotic, prochlorperazine 
(commonly used for nausea) was consistent. It is also likely that 
many participants taking antipsychotics in our study were not 
taking them for psychosis or bipolar disorder, but rather for nau-
sea, anxiety, hiccups, and therefore may have been on substan-
tially lower doses. Another explanation could relate to clinical 
cardiovascular management. Almost 30% of participants taking 
antipsychotics also took cholesterol-lowering medications, 
nearly double than in the group not taking antipsychotics/antide-
pressants. Given known cardiometabolic adverse reactions, and 

the role of cardiovascular morbidity in the premature mortality in 
this population, UK general practitioners and psychiatrists have 
placed particular emphasis on managing cardiovascular risks and 
promoting health behaviours, including the prescription of statins 
and promotion of smoking cessation, a healthy diet and exercise. 
This area has also been the subject of UK government public 
health initiatives (Public Health England, 2018) and interven-
tional research (Osborn et  al., 2018). It is possible that closer 
monitoring could be limiting the detrimental effects of antipsy-
chotics (noting participants were recruited from 2006 to 2010); 
different results may be observed in other settings.

This study has several limitations. Data on medication was 
self-reported and, along with lipids, measured at one time-
point. Data on doses prescribed, medication plasma concentra-
tions, duration of therapy and treatment indication would have 
enabled more sophisticated and detailed analyses. Future stud-
ies could consider other lipid parameters (e.g., very LDL-C), 
and randomised studies, controlling for other potential envi-
ronmental confounders (e.g., diet, physical activity, tobacco, 
drug and alcohol use) and with multiple sampling time-points, 
are needed to provide more definitive evidence. It is also pos-
sible that certain psychiatric conditions or symptoms impact 
lipid parameters directly (Hiles et  al., 2016; McIntyre et  al., 
2006) and/or interact with medications. Despite the large sam-
ple size, the number of non-normal metabolisers (particularly 
poor metabolisers) was much more modest – as expected, 
given the prevalence of polymorphisms that result in non-nor-
mal phenotypes, limiting statistical power and precision in our 
pharmacogenetic analyses. Future studies will need to employ 
different methods, such as oversampling, to ensure larger num-
bers of non-normal metabolisers. We were unable to define 
CYP2D6 ultra-rapid metabolisers (any such individuals would 
be treated as normal metabolisers by default), but the preva-
lence of this phenotype is very rare (around 3% of Europeans; 
Gaedigk et al., 2017). Furthermore, we followed Pharmacogene 
Variation Consortium and CPIC guidelines to assign metabolic 
phenotypes from genetic data; these guidelines are generally 
similar to those from the Dutch Pharmacogenetics Working 
Group, but some important differences exist (e.g., the latter 
does not use the CYP2C19 rapid metaboliser phenotype) (Bank 
et al., 2018).

Around 94% of our sample were of white ethnicity and, when 
compared to the 2011 England and Wales population estimate 
(86%) (Office for National Statistics, 2015), this highlights that 
all other ethnicities were under-represented, potentially limiting 
generalisability, especially as cardiovascular risk is greater in 
some other ethnicities. It should also be noted that stigma and 
discrimination of both mental illness (Serafini et al., 2011) and 
taking psychiatric medications (Townsend et al., 2022) is preva-
lent and likely impacts service use, diagnosis, medication adher-
ence as well as self-reports in this study.

This study also has strengths. We included a very large sam-
ple of participants from UK Biobank – enabling robust compari-
sons, particularly across individual antidepressants, comparing 
favourably to previous studies. Our pharmacogenetic analyses 
did not exclude participants of non-European ancestry, a practice 
that has been common in genetic studies (Ben-Eghan et  al., 
2020). Analyses were adjusted to account for key co-variates 
(e.g., cholesterol-lowering medications and CYP2C19 /CYP2D6 
inhibitors). To our knowledge, this is also the first large study to 
investigate CYP450 metabolic phenotypes in this context.
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Conclusion
Commonly prescribed antidepressants were significantly associ-
ated with adverse lipid profiles – potentially warranting the intro-
duction of baseline and regular monitoring of lipids, especially in 
high-risk groups prescribed them, in a similar way to existing 
recommendations for antipsychotics. Venlafaxine was associated 
with the worst lipid profile and might be avoided in those at high 
risk of cardiovascular morbidity, whereas citalopram/escitalo-
pram had the smallest effect sizes for raised lipids and may be 
preferable in this group. Further research should investigate the 
mechanistic pathways underlying the protective effects of the 
CYP2C19 intermediate metaboliser phenotype on HDL-C and 
triglycerides in people taking sertraline. Antipsychotic use was 
not associated with total cholesterol or LDL-C in our sample, 
possibly due to heterogeneity, modest statistical power and/or co-
prescribed cholesterol-lowering medication, but was associated 
with lower HDL-C and higher triglycerides.
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